Math 615, Winter 2011 Problem Set #1 : Solutions

1. The number of copies of $E_R(R/P)$ in the direct sum decomposition does not change when we localize at P, since $E_{R_P}(N_P) \cong E_R(N)_P$. It follows that we may assume that (R, P) is local. Then for any R-module M, $\operatorname{Hom}_R(K, M) \cong \operatorname{Ann}_M P$. Quite generally, if $N \subseteq M$ is essential, then $\operatorname{Ann}_N I \subseteq \operatorname{Ann}_M I$ for any ideal I of R: every nonzero element of $\operatorname{Ann}_I M$ has a nonzero multiple in N, and this multiple is clearly killed by I and so in $\operatorname{Ann}_N I$. Hence, $\operatorname{Hom}_R(K, N) = \operatorname{Ann}_N P \subseteq \operatorname{Ann}_{E_R(N)} P = \operatorname{Hom}_{R_P}(K, E_R(N))$ is essential. Since this is an inclusion of K-vector spaces, for it to be essential we must have $\operatorname{Hom}_R(K, N) = \operatorname{Hom}_{R_P}(K, E_R(N))$, since an inclusion of vectors spaces always splits. The K-vector space dimension of the latter is the number of copies of $E_R(K)$ in a direct sum decomposition for $E_R(N)$ by a class theorem, and this is equal to the K-vector space dmension of the former, as required. \Box

2. By the universal mapping property for base change, the functor $\operatorname{Hom}_R(_, E)$ is isomorphic to the functor $\operatorname{Hom}_S(S \otimes_R _, E)$. (This is true for any S-module E viewed as an R-module by restriction of scalars.) This is the composition of the functors $S \otimes_R _$, which is exact because S is flat over R, and $\operatorname{Hom}_S(_, E)$, which is exact because E is injective over S. It follows that the functor $\operatorname{Hom}_R(_, E)$ is exact and, hence, that E is injective over R. \Box

3. Note that a discrete valuation ring (V, tV, K) is a PID, since every nonzero element is a unit times a power t^k of t, with $t \in \mathbb{N}$. To show that \mathcal{F}/V is injective, it suffices to show that it is a divisible V-module, which is clear because it is a homomorphic image of the divisible V-module \mathcal{F} . Every element of $\mathcal{F} - \{0\}$ is a unit of V times a power t^k of t, with $k \in \mathbb{Z}$. Thus, the nonzero elements of \mathcal{F}/V can be represented by an element of the form ut^{-k} , where u is a unit of V and k > 0. If we multiply by $u^{-1}t^{k-1}$, we obtain t^{-1} , which is killed by t and so by tV = m. Thus, the cyclic module generated over V by the class of t^{-1} is $\cong K$, and the extension is essential. Thus, $\mathcal{F}/V \cong E_V(K)$. \Box

4. By a class result, E is injective if and only if maps from prime ideals of R to E extend to R. [Consider a map to E defined on $N \subseteq M$ which supposedly cannot be extended further. Pick $m \in M - N$. One may replace m by a multiple such that the ideal multiplying m into N is prime. (The image of m in M/N has a multiple which has prime annihilator.)] This is trivial for the 0 prime ideal, and extending maps from principal ideals of a domain can be done if and only if the module is divisible. Hence, we may assume that E is divisible. The only remaining prime ideal of R is the maximal ideal (x, y)R. Thus, a divisible module E is injective if every map from (x, y)R to E extends to a map $R \to E$. We can map $R^2 \to m$ by $(r, s) \mapsto rx + sy$. If (r, s) is in the kernel, then rx = -sy. Since x is prime and does not divide y, it must divide s, say s = ax. But then it follows that r = -ay, and (r, s) = a(-y, x). Thus, $m \cong R^2/R(-y, x)$. To give a map $m \to E$ is therefore the same as to give a map $R^2 \to E$ that kills (-y, x), i.e., to give $u, v \in E$ such that -yu + xv = 0, where $u, v \in E$ are to be the images of $x, y \in m$. The problem of extending the map to R is the same as the problem of specifying the value w for 1 so that x will map to u and y to v, i.e., such that xw = u and yw = v. \Box

5. The map cannot be extended to R because the image of 1 in the direct sum of the E_n will be nonzero in only finitely many E_n , which implies that the image of the map is contained in only finitely many E_n . But each x_j maps to a nonzero element in the corresponding E_j , a contradiction. \Box

6. Consdier a nonzero element $v \oplus e$ in $S = V \oplus E$. If v is not 0 it has the form ut^k where u is a unit of V and $k \ge 0$. In this case we may take $(0 \oplus u^{-1}t^{-k+1})(ut^k \oplus e)$ to obtain $0 \oplus t^{-1} \in 0 \oplus K$. If the nonzero element has the form $0 \oplus e$ where $e \ne 0$, we may multiply by an element of $V \oplus 0$ to get a nonzero element of K, since $K \hookrightarrow E$ is essential. Thus, $K = 0 \oplus K \hookrightarrow V \oplus E$ is essential. Since every element of E is killed by a power of t, if we localize at t, E becomes 0, while $V_t \cong \mathcal{F}$. Thus, $S_t \cong \mathcal{F}$ is a field. The extension is no longer essential, since the submodule becomes 0 while the ambient module does not. Note that since S_t is a field, it has a unique maximal ideal, which means that S_t is also the localization of S at the prime ideal $0 \oplus E$.

Extra Credit 1. Let K[X] and K[Y] be polynomial rings in one variable over the field K. K(X) (resp., K(Y)) is divisible as a module over the principal ideal domain K[X] (resp., K[Y]), and, hence, injective. But $M = K(X) \otimes_K K(Y)$ is not injective over $K[X] \otimes_K K[Y] \cong K[X, Y]$: one can see this because, for example, X + Y has no inverse, and so M is not divisible. \Box