Math 615, Winter 2011 Due: Monday, Febraury 14 Problem Set #2

1. Let R be any ring, let J be a finitely generated ideal of R, and let E be any injective R-module. Let M^{\vee} denote $\operatorname{Hom}_R(M, E)$. Prove that $(\operatorname{Ann}_M J)^{\vee} \cong M^{\vee}/JM^{\vee}$.

2. Let (R, m, K) be a local ring, and let I be an m-primary ideal such that the socle in R/I is a one-dimensional K-vector space. Suppose that $I \subseteq J$. Prove or disprove that I : (I : J) = J, where $I : J = \{r \in R : rJ \subseteq I\}$.

3. Let $I \subseteq J$ be ideals of the Noetherian ring R. Show that there is a natural map $H^i_J(M) \to H^i_I(M)$ for every integer i using the definition of local cohomology as a direct limit of Ext modules. Show that the map you define is an isomorphism if I and J have the same radical.

4. Let *M* be a finitely generated module over a Noetherian ring *R*, let *I* be an ideal of *R* with $IM \neq M$, and let $x_1, \ldots, x_d \in I$ be a maximal regular sequence on *M*.

(a) Part of the long exact sequence for local cohomology coming from the short exact sequence $0 \to M \xrightarrow{x_1} M \to M/x_1 M \to 0$ gives

$$0 \to H^{d-1}_I(M/x_1M) \xrightarrow{\partial} H^d_I(M) \xrightarrow{x_1} H^d_I(M)$$

Show that ∂ is an essential extension, and, hence, that Ass $(H_I^d(M)) = \text{Ass}(H_I^{d-1}(M/x_1M))$. (b) Conclude that Ass $(H_I^d(M)) = \text{Ass}(H_I^0(M/(x_1, \ldots, x_d)M))$. Hence, Ass $(H_I^d(M))$ is finite.

5. Let $T = K[x_1, \ldots, x_n]$ be a polynomial ring over a field K, and let $d_1, \ldots, d_n > 0$ be integers. Let I be the ideal of T generated by the products $x_i x_j$ for $i \neq j$ and the elements $x_i^{d_i}$, $1 \leq i \leq n$. Let R = T/I. Let m be the maximal ideal $(x_1, \ldots, x_n)R$. Determine the length of $E = E_R(R/m)$, and determine the least number of generators of E.

6. Let R be a Noetherian ring, let I be an ideal and let M be a module of finite length. Let $f \in R$ be any element and let J = I + fR. Show that there is an exact sequence

$$0 \to H^0_J(M) \to H^0_I(M) \to H^0_I(M_f) \to 0$$

EXTRA CREDIT 2. Let (R, m, K) be a local ring and suppose that we have a map $K \hookrightarrow R$ such that the composite $K \to R \twoheadrightarrow K$ is an isomorphism. (We then say that K is a *coefficient field* for R. (This holds, for example, whenever R is complete and contains any field.) Let E denote the set of K-linear maps $R \to K$ that kill m^n for some integer n > 0. Prove that E is an injective hull for K over R.

EXTRA CREDIT 3. Let K[u, v, x, y] be a polynomial ring over a field, and let R be the subring K[xu, xv, yu, yv]. Let m = (xu, xv, yu, yv)R. Let I = (xu, xv). Show that every element of $H_I^2(R)$ is killed by a power of m. Does $H_I^2(R)$ have DCC?