Math 615, Winter 2011 **Problem Set #2: Solutions**

1. Let $J = (f_1, \ldots, f_n)R$, and map $g : M \to M^{\oplus n}$ by $m \mapsto (f_1m, \ldots, f_nm)$. Then $0 \to \operatorname{Ann}_M J \to M \xrightarrow{g} M^{\oplus n}$ is exact. Since $_^{\vee}$ is an exact, we get an exact sequence $M^{\vee \oplus n} \xrightarrow{g^{\vee}} M^{\vee} \to (\operatorname{Ann}_M J)^{\vee} \to 0$. Since $g^{\vee}(u_1 \oplus \cdots \oplus u_n) = f_1u_1 + \cdots + f_nu_n$ the image of g^{\vee} is $J(M^{\vee})$ and so we have that $M^{\vee}/J(M^{\vee}) \cong (\operatorname{Ann}_M J)^{\vee}$. \Box

2. Replace R by R/I and J by J/I. Then R is an Artin local ring such that $E_R(K) = R$, J is an ideal of R, and the assertion becomes that the $O :_R (0 :_R J) = J$ (or $\operatorname{Ann}_R(\operatorname{Ann}_R(J)) = J$.) This is true. It was proved in class that if R is complete local and $E = E_R(K)$, then there is a bijection between ideals of R and submodules of E: the map in each direction is taking the annihilator (either of the ideal in E or of the submodule in R). This is the special case where E = R. \Box

3. Since $I \subseteq J$, we have $I^t \subseteq J^t$ for all t, giving surjections $R/J^t \to R/I^t$. The diagrams

$$\begin{array}{cccc} R/I^{t+1} & \longrightarrow & R/J^{t+1} \\ & & & \downarrow \\ R/I^t & \longrightarrow & R/J^t \end{array}$$

commute, and hence, we have that for all i and t the diagrams

commute. Hence, there is an induced map $\lim_{\longrightarrow} t \operatorname{Ext}_R^i(R/J^t, M) \to \lim_{\longrightarrow} t \operatorname{Ext}^i(R/I^t, M)$ i.e., of $H_J^i(M) \to H_I^i(M)$ for all i. From this construction it is also easy to see that if $I \subseteq J \subseteq J'$, the map $H_{J'}^i(M) \to H_I^i(M)$ is the composition of the map $H_{J'}^i(M) \to H_J^i(M)$ with the map $H_J^i(M) \to H_I^i(M)$. If I and J have the same radical, then there is an integer s > 0 such that $J^s \subseteq I \subseteq J$, and then $I^s \subseteq J^s \subseteq I \subseteq J$. The fact that the map $H_J^i(M) \to H_{J^s}^i(M)$ is an isomorphism follows from the fact that $H_J^i(M)$ is also the direct limit of the cofinal elements $\operatorname{Ext}_R^i(R/J^{st}, M)$ in the direct limit system of $\operatorname{Ext}_R^i(R/J^t, M)$. Similarly, $H_I^i(M) \cong H_{I^s}^i(M)$. We have $H_J^i(M) \xrightarrow{f} H_I^i(M) \xrightarrow{g} H_{J^s}^i(M) \xrightarrow{h} H_{I^s}^i(M)$, where hg is an isomorphism, so that g is injective, and gf is an isomorphism, so that g is onto. Thus, g is an isomorphism, and, hence, so is $g^{-1}(gf) = f$. \Box

4. Let $u \in H_I^d(M)$ be nonzero. Since some power of I kills u and $x_1 \in I$, there is a least positive integer t such that $x_1^t u = 0$. It follows that $x_1^{t-1}u$ is a nonzero multiple of u in the kernel of the map given by multiplcation by x_1 , and therefore in the image of ∂ . This shows that $H_I^{d-1}(M/x_1M) \xrightarrow{\partial} H_I^d(M)$ is essential. If $u \in H_I^d(M)$ has prime annihilator P, $Ru \cong R/P$ then meets the image of $H_I^{d-1}(M/x_1M)$ in a nonzero element v. We may think of v as a nonzero element of R/P. Thus, $\operatorname{Ann}_R v = P$. This proves the assertion about the associated primes, and completes the argument for part (b). It then follows by induction on k that Ass $(H_I^d(M)) = \text{Ass}(H_I^{d-k}(M/(x_1, \ldots, x_k)M))$ for $0 \le k \le d$. Finally, note that $H_I^0(M/(x_1, \ldots, x_d)M))$ is a submodule of the Noetherian module $M/(x_1, \ldots, x_d)M$, so that the set of associated primes is finite. \Box

5. *R* has *K*-basis consisting of 1 and the elements x_i^k for $1 \le i \le n$ and $1 \le k \le d_i - 1$. The number of such elements is $1 + \sum_{i=1}^n (d_i - 1) = \sum_{i=1}^n d_i - (n-1)$, and this is both the *K*-vector space dimension of *R* and the length of *R* as an *R*-module. By a class theorem, the length of $E_R(K)$ is the same as the length of *R* for an Artin local ring *R*, and so $E_R(K)$ also has this length. By, a class theorem, the least number ν of generators of *E* is the dimension of the socle in *R*. If all of the $d_i = 1$, then R = K = E and $\nu = 1$. In all other cases, the socle in *R* is spanned as a *K*-vector space by those x^{d_i-1} such that $d_i \ge 2$, and ν is the number of values of *i* such that $d_i \ge 2$. \Box

6. Clearly, $H_J^0(M) \hookrightarrow H_I^0(M)$ by definition $(J^t u = 0 \Rightarrow I^t u = 0)$. Ker $(H_I^0(M) \to H_I^0(M_f))$ (the latter is $\cong H_I^0(M)_f$) consists of all $v \in H_I^0(M)$ such that v is killed by a power of f (as well as a power of I). Thus, $0 \to H_J^0(M) \to H_I^0(M) \to H_I^0(M_f)$ is exact for all M. If M has finite length, $M \cong M_1 \oplus \cdots \oplus M_k$ where each M_k is killed by a power of a maximal ideal m_k . Hence, we may assume that M is killed by a power of a maximal ideal m_k . Hence, we may assume that M is killed by a power of a maximal ideal m_f , and we need only show that $\theta : H_I^0(M) \to H_I^0(M_f)$ is onto. But if $f \in m$, then $M_f = 0$, while if $f \notin m$, then $M \cong M_f$ and θ is an isomorphism.

EXTRA CREDIT 2. By a class result, if $(R, m, K) \to (S, n, L)$ is local and modulefinite, then $\operatorname{Hom}_R(S, E_R(K))$ is an injective hull for L over S. Thus, if R is Artin local and contains $K \subseteq R$ that maps isomorphically onto R/m, then $\operatorname{Hom}_K(R, K) \cong E_R(K)$. Thus, the linear functionals E_n from $R \to K$ that kill m^n form an injective hull for K over R/m^n , and $E = \bigcup_{n=1}^{\infty} E_n$. Each E_n is an essential extension of $K = \operatorname{Hom}_K(R/m, K) = E_1$, Since every element of E is in some E_n , it follows that E is an essential extension of $K = E_1$. Hence, $E \subseteq E'$ where E' is maximal essential extension of E and, hence, of K. Since every element of E' is killed by m^n for some n. we can show that E = E' by showing that $\operatorname{Ann}_E m^n \subseteq \operatorname{Ann}_{E'} m^n$ is an isomorphism. The former contains E_n , which is an injective hull for K over R/m^n , and the latter is an injective hull for K over R/m^n . Hence, their lengths are the same, and the inclusion cannot be proper. \Box

EXTRA CREDIT 3. Let $H = H_I^2(R) \cong R_{xuxv}/(R_{xu} + R_{xv})$. R is spanned as a K-vector space by all monomials $u^a v^b x^c y^d$ such that a + b = c + d with $a, b, c, d \in \mathbb{N}$ and so R_{xuxv} is spanned by the set \mathcal{M} of monomials such that a + b = c + d, $a, b, c \in \mathbb{Z}$ and $d \in \mathbb{N}$. R_{xu} is spanned by the monomials in \mathcal{M} such that $b, d \in \mathbb{N}$ and R_{xv} by those such that $a, d \in \mathbb{N}$. Thus, the quotient H is spanned over K by the set \mathcal{N} of all monomials for which a + b = c + d, $a, b < 0, d \in \mathbb{N}$, and a + b = c + d. Any monomial in \mathcal{N} , viewed in H, is killed by powers of xu and yu (resp., xv and yv), since a (resp., b) will become nonnegative after multiplication by a large power. This shows that every element of H is killed by a power of m. However, H does not have DCC: the issue is whether the annihilator of m in H is a finite-dimensional vector space or not. In fact, the images of the infinitely many elements $u^{-1}v^{-1}x^{-d-2}y^d$ for $d \in \mathbb{N}$ are part of the basis for H and are killed by m. \Box