Math 615, Winter 2011 Due: Monday, April 11 Problem Set #4

1. Let x be a nonzerodivisor on a Noetherian module M over a Noetherian ring. Suppose that dim (M) = n. Show that $xH_I^n(M) = H_I^n(M)$. Hence, if R is a local domain of dimension n, $H_I^n(R)$ is a divisible R-module.

2. Let $S = K[[x_1, \ldots, x_n]]$ denote formal power series in *n* variables over a field *K*, where $1 \le k \le n$ are integers Let *R* be the subring of *S* consisting of power series in which the total degree of every monomial that occurs is divisible by *k*. Let $A = k[[x_1^k, \ldots, x_n^k]] \subseteq R$. (a) Explain why Hom_A(*S*, *A*) \cong *S* as an *S*-module, and give an explicit generator.

(b) What is the type of R?

3. Let R be a Cohen-Macaulay local domain and I a proper ideal of R such that $I \cong \omega_R$ as R-modules. Prove that R/I is a Gorenstein local ring.

4. Let K be a field and let R = K[x, y, u, v] denote a polynomial ring in 4 variables over R, let m = (x, y, u, v)R.Let f = xu, g = yv, and h = xv + yu. Let I = (f, g, h).

(a) Determine the minimal primes of I, the radical J of I, and show that I has height 2. (b) Show that $H_I^3(R) \cong H_m^4(R) \cong E_R(R/m) \neq 0$. [Use the Mayer-Vietoris theorem.]

5. Let $S = K[[x_1, \ldots, x_n]]$ be a formal power series, ring, and let $I = (x_i x_j : i \neq j)$. Let R = S/I. dim (R) = 1 and R is reduced \Rightarrow Cohen-Macaulay. What is the type of R?

6. Let $X = (x_{ij})$ denote a 3×2 matrix over a field K. Let $S = K[x_{ij} : i, j]$ be the polynomial ring in the 6 variables x_{ij} over K. Let Δ_i denote $(-1)^{i-1}$ times the 2×2 minor of X obtained by omitting the *i*th row. Let $I = I_2(X)$ denote the ideal of S generated by the Δ_i , and let R = S/I. You may assume that R is a Cohen-Macaulay domain of dimension 4. Let $M = (\Delta_1 \Delta_2 \Delta_3)$. You may assume that $0 \to S^2 \xrightarrow{X} S^3 \xrightarrow{M} S \to R \to 0$ is exact. Prove that $\omega = (x_{11}, x_{12})R$ is a global canonical module for R.

EC5. Let $r \leq s$ be integers, let $X = (x_{ij})$ be an $r \times s$ matrix of indeterminates, and let $S = K[[x_{ij} : i, j]]$ be the formal power series ring in the rs variables x_{ij} over K. Let $P = I_r(X)$ denote the ideal generated by the $r \times r$ minors of X. Let R = S/P. You may assume that this ring is Cohen-Macaulay of dimension (r-1)s + r - 1 = rs - (s - r + 1). (It is also known to be a domain.)

(a) The matrix X has s - r + 1 diagonals D_i , $1 \le i \le s - r + 1$, where D_i begins with the element $x_{1,i}$ of the first row and contain the elements $x_{1+k,i+k}$ for $0 \le k \le r - 1$. Show that the elements below the first diagonal $(x_{ij} \text{ for } i > j)$, above the last diagonal $(x_{ij} \text{ for } j > s - r + i)$, together with the differences of the consecutive elements on these diagonals $(x_{1+k+1,i+k+1} - x_{1+k,i+k}, 1 \le i \le s - r + 1, 0 \le k \le r - 2)$ form a system of parameters for R.

(b) Show that the quotient of R by the ideal generated by the system of parameters described above is isomorphic to T/\mathcal{M}^r , where T is the polynomial ring in s - r + 1 variables and \mathcal{M} is the maximal ideal of T generated by the variables.

(c) Give the type of R as a binomial coefficient.