
Math 615, Winter 2011 Problem Set #4: Solutions

1. Since dim (M/xM) < dim (M) = n, we know from a class theorem that Hn
I (M/xM) =

0. Consequently, the three terms of degree n in the long exact sequence for local co-
homology coming from the short exact sequence 0 −→ M

x−→ M −→ M/xM −→ 0 are
Hn
I (M) x−→ Hn

I (M) −→ 0 = Hn
I (M/xM), which shows the surjectivity of multiplcation by

x on Hn
I (M), as required. The statement about domains R is immediate. �

2. (a) Since S is module-finite over A, which is regular, by a class theorem HomA(S, A) ∼=
ωS , and this is S since S is regular. S is free over A on the basis consisting of monomials
µ = xa1

1 · · ·xan
n such that 0 ≤ ai ≤ k−1, 1 ≤ i ≤ n. Thus, HomA(S, A) has a free basis the

maps Tµ, where Tmu has value 1 on µ and is 0 on the other monomials in the free basis.
Let ν = xk−1

1 · · ·xk−1
n . Then Tν generates HomA(S, A) over S: if µ is any monomial in the

free basis for S over A we can write ν = ρµ for some monomial ρ in S, and the Tµ = ρTν ,
for the value of ρTν on a monomial λ in the free basis is T (ρλ). If λ = µ this is 1. For any
other λ, ρλ is a monomial in A times a monomial in the free basis different from ν, and
the value is 0.

(b) Since xk1 , . . . , x
k
n is a system of parameters, it suffices to find the dimension of the socle

modulo the ideal they generate. Because of the Nn-grading, the socle will be spanned by
monomials, and we need only count the number of monomials µ = xa1

1 · · ·xan
n satisfying

these conditions: (1) 0 ≤ ai ≤ k − 1, 1 ≤ i ≤ n, (2)
∑
i ai ≡ 0 mod k, and ( 3) if α is any

monomial of degree k, at least one exponent of αµ is at least k. Let bi = k − 1 − ai. We
count the choices for the bi instead. Condition (1) is unaffected. Condition (3) is easily
seen to be equivalent to the condition that

∑
i bi ≤ k − 1 (e.g., if it is k or more, we may

multiply by a degree k divisor of xb11 · · ·xbn
n without getting an exponent larger than k−1).

Condition (2) becomes
∑
i(k − 1 − bi) ≡ 0 mod k or

∑
i bi ≡ −n mod k. Let h denote

the unique integer between 0 and k − 1 inclusive that is congruent to −n mod k. Now
condition (3) implies that

∑
i bi = h. Therefore, the type is the same as the number of

monomials of degree h in n variables, which is
(
h+n−1

h

)
. �

3. Let (R, m, K) have dimension n. By a class theorem, I is an ideal all of whose associated
primes have height one. It follows that dim (R/I) = n − 1, To show that R/I is Cohen-
Macaulay, it suffices to show that the depth of R/I is at least n−1, since it cannot exceed
dim (R/I). From the short exact sequence (∗) 0 → I → R → R/I → 0 we have a long
exact sequence for local cohomology part of which is Hi

m(I)→ Hi
m(R/I)→ Hi+1

m (R). For
i < n−1, the first and third terms vanish, since I ∼= ωR and R both have depth n. It follows
that Hi

m(R/I) = 0 for i < n−1, as required. By a class theorem, if M is finitely generated
Cohen-Macaulay of dimension d, then Exti(K, M) = 0 for i < d while the K-vector space
dimension of ExtdR(K, M) = 0 is the type of R. Part of the long exact obtained by applying
HomR(K, ) to (∗) is 0 = Extn−1

R (K, R) → Extn−1
R (K, R/I) → ExtnR(K, I) ∼= K, since

I ∼= ωR has type 1. Since Extn−1
R (K, R/I) injects into K, the type of R/I must be one. �

Alternatively, by local duality, ωR/I ∼= Ext1R(R/I, I), and applying HomR( , I) to (∗)
yields · · · → HomR(R, I)→ HomR(I, I)→ Ext1R(R/I, R)→ Ext1R(R, I) = 0. The image
of HomR(R, I) ∼= I in HomR(I, I) ∼= R is I, which shows that ωR/I ∼= R/I. �



4. Let P = (x, y) and Q = (u, v). Note that P ∩Q = (x, y)∩ (u, v) = (xu, xv, yu, yv) is a
radical ideal containing I, and that (xv)2 = xvh−fg ∈ I and (yu)2 = yuh−fg ∈ I. Hence,
P ∩Q = J = Rad (I), P and Q are the minimal primes of I, and since P and Q have height
2, so does I. Note that P +Q = m, the homogeneous maximal ideal of R. The the Mayer-
Vietoris sequence yields H3

P (R) ⊕H3
Q(R) → H3

J(R) → H4
m(R) → H4

P (R) ⊕H4
Q(R). The

first and last terms displayed are 0, since both P and Q have only two generators, and so
the middle two terms are isomorphic. Thus, H3

I (R) ∼= H3
J(R) ∼= H4

m(R), as required. �

5. If n = 1 the type is 1. Assume n ≥ 2. A prime not containing xi must contain all the
other variables: let Pi be the prime generated by all the variables except xi. Then it follows
that P1, . . . , Pn are all the minimal primes of R, and R/Pi ∼= K[[xi]]. Thus, dim (R) = 1.
Then x =

∑n
i=1 xi is a one element system of parameters: in fact, x2

i = xix ∈ Rx. Then
R/Rx is K ⊕V where V is spanned by over K by the xi and has dimension n− 1 because∑n
i=1 xi is 0 in R/Rx. Then V is the socle in R/Rx, and so the type of R is n− 1. �

6. By a class theorem, we may take ω = Ext2S(S/I, S) as a global canonical module for
R = S/I, and the given resolution may be used to calculate it. We apply HomS( , S). If
we use dual bases for the last two free modules, we obtain that ω = Ext2S(S/I, S) is the
cokernel of X∗ : S3 → S2, where X∗ denotes the transpose of X. Map S2 onto (x11, x12)
by sending (1, 0) 7→ x12 and (0, 1) 7→ −x11. Then the image of X∗ vanishes under the
composite map: the columns of X∗ map to 0 along with two of the minors, and all three
are all 0 in R. This yields a surjection of the cokernel Ext2S(S/I, S) � (x11, x12)R. Since
both modules are rank one torsion-free over R (the canonical module is because this holds
locally, by a class theorem), the kernel must be 0, and the map is an isomorphism. �

EXTRA CREDIT 5. Kill the the elements specified. The image of the matrix has entries
equal to 0 below the first diagonal, a constant value xi (the image of, say, x1,i) on the i th
diagonal, where x = x1, . . . , xs−r+1 are indeterminates, and entries equal to 0 above the
last diagonal. Since the proposed system of parameters has the correct cardinality, it will
suffice for both (a) and (b) to show the image of the ideal P is (x)r, and it is clearly
contained in this ideal. We use induction on both r and s. Each r× r minor involving the
first column is x1 times an r − 1 size minor of the matrix obtained by omitting the first
row and column. The smaller matrix has the same form, and it follows that its r − 1 size
minors generate the ideal (x)r−1. This implies that the image of P contains all monomials
of degree r in x that are divisible by x1. Now suppose we have shown that the image of P
contains all monomials of degree r in x that are divisible by any of the elements x1, . . . , xi.
To show that we get all monomials divisible by xi+1, we first consider the problem modulo
x1, . . . , xi. Kill these variables, and omit the first i columns of the matrix. Then it follows
by induction that the image of P contains the required monomials mod x1, . . . , xi. Thus,
each monomial of degree r divisible by xi+1 differs from a linear combination of elements
of P by a sum S of multiples of the elements x1, . . . , xi, and the coefficients can be taken
of degree r − 1. Thus, S is a linear combination of monomials of degree r divisible by at
least one of x1, . . . , xi, and so is in the image of P . It follows that the image of P also
contains all degree r monomials divisible by xi+1 as well. �

(c) The type will be the same as the type of K[x]/(x)r, which is the number of monomials
of degree r − 1 in s− r + 1 variables, or

(
s−r+1+(r−1)−1

r−1

)
=
(
s−1
r−1

)
.


