Math 615, Winter 2011 Problem Set #4: Solutions

1. Since dim (M /xzM) < dim (M) = n, we know from a class theorem that H} (M /zM) =
0. Consequently, the three terms of degree n in the long exact sequence for local co-
homology coming from the short exact sequence 0 — M = M — M/xM — 0 are
HY(M) % HP (M) — 0 = HP(M/xM), which shows the surjectivity of multiplcation by
x on HP (M), as required. The statement about domains R is immediate. [J

2. (a) Since S is module-finite over A, which is regular, by a class theorem Hom 4 (S, A) =
wg, and this is S since S is regular. S is free over A on the basis consisting of monomials
p=azi' -z such that 0 < a; < k—1,1 <7 <n. Thus, Homx4(S, A) has a free basis the
maps T},, where T,,u has value 1 on g and is 0 on the other monomials in the free basis.
Let v = %71 ... 25=1 Then T, generates Hom4 (S, A) over S: if i is any monomial in the
free basis for S over A we can write v = pu for some monomial p in S, and the T, = pT),,
for the value of pT), on a monomial A in the free basis is T'(pA). If A = p this is 1. For any
other A\, p\ is a monomial in A times a monomial in the free basis different from v, and
the value is 0.

(b) Since z¥, ..., x% is a system of parameters, it suffices to find the dimension of the socle
modulo the ideal they generate. Because of the N"-grading, the socle will be spanned by
monomials, and we need only count the number of monomials p = z{* - -z satisfying
these conditions: (1) 0<a; <k—-1,1<i<mn,(2) > ,a; =0mod k, and ( 3) if « is any
monomial of degree k, at least one exponent of oy is at least k. Let b; =k —1 —a;. We
count the choices for the b; instead. Condition (1) is unaffected. Condition (3) is easily
seen to be equivalent to the condition that >, b; < k —1 (e.g., if it is & or more, we may
multiply by a degree k divisor of a:lil - xbn without getting an exponent larger than k—1).
Condition (2) becomes ) .(k —1—b;) = 0 mod k or > ,b; = —n mod k. Let h denote
the unique integer between 0 and k£ — 1 inclusive that is congruent to —n mod k. Now
condition (3) implies that ) . b; = h. Therefore, the type is the same as the number of

monomials of degree h in n variables, which is (h+Z_1). 0

3. Let (R, m, K) have dimension n. By a class theorem, I is an ideal all of whose associated
primes have height one. It follows that dim (R/I) = n — 1, To show that R/I is Cohen-
Macaulay, it suffices to show that the depth of R/I is at least n — 1, since it cannot exceed
dim (R/I). From the short exact sequence (x) 0 — I — R — R/I — 0 we have a long
exact sequence for local cohomology part of which is H? (I) — H! (R/I) — H:F'(R). For
1 < n—1, the first and third terms vanish, since I = wr and R both have depth n. It follows
that H? (R/I) = 0 for i < n—1, as required. By a class theorem, if M is finitely generated
Cohen-Macaulay of dimension d, then Ext!(K, M) = 0 for i < d while the K-vector space
dimension of Ext% (K, M) = 0 is the type of R. Part of the long exact obtained by applying
Hompg(K, _) to () is 0 = Ext%s ' (K, R) — Ext% ' (K, R/I) — Ext%(K, I) = K, since
I = wp, has type 1. Since Ext’; ' (K, R/I) injects into K, the type of R/I must be one. [
Alternatively, by local duality, wp,; = ExthL(R/I, I), and applying Homg(_, I) to (x)
yields - -+ — Hompg(R, I) — Hompg(I, I) — ExtL(R/I, R) — Exth(R, I) = 0. The image
of Homg (R, I) = I in Hompg(/, I) = R is I, which shows that wgr,; = R/I. O



4. Let P = (z,y) and Q = (u,v). Note that PNQ = (z, y) N (u,v) = (zu, xv, yu, yv) is a
radical ideal containing I, and that (zv)? = zvh— fg € I and (yu)? = yuh— fg € I. Hence,
PNQ =J =Rad (I), P and @ are the minimal primes of I, and since P and () have height
2, so does I. Note that P+ () = m, the homogeneous maximal ideal of R. The the Mayer-
Vietoris sequence yields H3(R) ® H)(R) — H3(R) — H,,(R) — Hp(R) ® H4(R). The
first and last terms displayed are 0, since both P and () have only two generators, and so
the middle two terms are isomorphic. Thus, H3(R) & H3(R) = H},(R), as required. [

5. If n = 1 the type is 1. Assume n > 2. A prime not containing x; must contain all the
other variables: let P; be the prime generated by all the variables except x;. Then it follows
that Py, ..., P, are all the minimal primes of R, and R/P; = K|[z;]]. Thus, dim (R) = 1.
Then z = 2?21 z; is a one element system of parameters: in fact, 22 = ;2 € Rz. Then
R/Rx is K @V where V is spanned by over K by the z; and has dimension n — 1 because
> x;is 0in R/Rxz. Then V is the socle in R/Rx, and so the type of Risn—1. O

6. By a class theorem, we may take w = Ext%(S/I, S) as a global canonical module for
R = S/I, and the given resolution may be used to calculate it. We apply Homg(_, S). If
we use dual bases for the last two free modules, we obtain that w = Ext%(S/I, S) is the
cokernel of X* : $% — S2 where X* denotes the transpose of X. Map S? onto (x11,712)
by sending (1,0) +— z12 and (0,1) — —x1;. Then the image of X* vanishes under the
composite map: the columns of X™* map to 0 along with two of the minors, and all three
are all 0 in R. This yields a surjection of the cokernel Ext%(S/I, S) — (11, z12)R. Since
both modules are rank one torsion-free over R (the canonical module is because this holds
locally, by a class theorem), the kernel must be 0, and the map is an isomorphism. [

EXTRA CREDIT 5. Kill the the elements specified. The image of the matrix has entries
equal to 0 below the first diagonal, a constant value z; (the image of, say, x; ;) on the ith
diagonal, where x = x1, ... ,z5_,+1 are indeterminates, and entries equal to 0 above the
last diagonal. Since the proposed system of parameters has the correct cardinality, it will
suffice for both (a) and (b) to show the image of the ideal P is (z)", and it is clearly
contained in this ideal. We use induction on both r and s. Each r X r minor involving the
first column is z; times an r — 1 size minor of the matrix obtained by omitting the first
row and column. The smaller matrix has the same form, and it follows that its » — 1 size
minors generate the ideal (2)"~!. This implies that the image of P contains all monomials
of degree r in x that are divisible by x1. Now suppose we have shown that the image of P
contains all monomials of degree r in x that are divisible by any of the elements =1, ... , x;.
To show that we get all monomials divisible by ;4 1, we first consider the problem modulo
r1, ... ,x;. Kill these variables, and omit the first i columns of the matrix. Then it follows
by induction that the image of P contains the required monomials mod z1, ... ,x;. Thus,
each monomial of degree r divisible by x;; differs from a linear combination of elements
of P by a sum S of multiples of the elements x1, ... ,z;, and the coefficients can be taken
of degree r — 1. Thus, S is a linear combination of monomials of degree r divisible by at
least one of z1, ... ,x;, and so is in the image of P. It follows that the image of P also
contains all degree » monomials divisible by z;,; as well. [

(¢) The type will be the same as the type of K[z]/(z)", which is the number of monomials
sfr+1+(7‘71)71) — (sfl)'

of degree r — 1 in s — r + 1 variables, or ( 1 r—1



