Math 615, Winter 2011 **Problem Set #4: Solutions**

1. Since dim $(M/xM) < \dim(M) = n$, we know from a class theorem that $H_I^n(M/xM) = 0$. Consequently, the three terms of degree n in the long exact sequence for local cohomology coming from the short exact sequence $0 \to M \xrightarrow{x} M \to M/xM \to 0$ are $H_I^n(M) \xrightarrow{x} H_I^n(M) \to 0 = H_I^n(M/xM)$, which shows the surjectivity of multiplication by x on $H_I^n(M)$, as required. The statement about domains R is immediate. \Box

2. (a) Since S is module-finite over A, which is regular, by a class theorem $\text{Hom}_A(S, A) \cong \omega_S$, and this is S since S is regular. S is free over A on the basis consisting of monomials $\mu = x_1^{a_1} \cdots x_n^{a_n}$ such that $0 \le a_i \le k-1, 1 \le i \le n$. Thus, $\text{Hom}_A(S, A)$ has a free basis the maps T_{μ} , where $T_m u$ has value 1 on μ and is 0 on the other monomials in the free basis. Let $\nu = x_1^{k-1} \cdots x_n^{k-1}$. Then T_{ν} generates $\text{Hom}_A(S, A)$ over S: if μ is any monomial in the free basis for S over A we can write $\nu = \rho\mu$ for some monomial ρ in S, and the $T_{\mu} = \rho T_{\nu}$, for the value of ρT_{ν} on a monomial λ in the free basis is $T(\rho\lambda)$. If $\lambda = \mu$ this is 1. For any other λ , $\rho\lambda$ is a monomial in A times a monomial in the free basis different from ν , and the value is 0.

(b) Since x_1^k, \ldots, x_n^k is a system of parameters, it suffices to find the dimension of the socle modulo the ideal they generate. Because of the \mathbb{N}^n -grading, the socle will be spanned by monomials, and we need only count the number of monomials $\mu = x_1^{a_1} \cdots x_n^{a_n}$ satisfying these conditions: (1) $0 \le a_i \le k - 1$, $1 \le i \le n$, (2) $\sum_i a_i \equiv 0 \mod k$, and (3) if α is any monomial of degree k, at least one exponent of $\alpha\mu$ is at least k. Let $b_i = k - 1 - a_i$. We count the choices for the b_i instead. Condition (1) is unaffected. Condition (3) is easily seen to be equivalent to the condition that $\sum_i b_i \le k - 1$ (e.g., if it is k or more, we may multiply by a degree k divisor of $x_1^{b_1} \cdots x_n^{b_n}$ without getting an exponent larger than k-1). Condition (2) becomes $\sum_i (k-1-b_i) \equiv 0 \mod k$ or $\sum_i b_i \equiv -n \mod k$. Let h denote the unique integer between 0 and k-1 inclusive that is congruent to $-n \mod k$. Now condition (3) implies that $\sum_i b_i = h$. Therefore, the type is the same as the number of monomials of degree h in n variables, which is $\binom{h+n-1}{h}$. \Box

3. Let (R, m, K) have dimension n. By a class theorem, I is an ideal all of whose associated primes have height one. It follows that $\dim (R/I) = n - 1$, To show that R/I is Cohen-Macaulay, it suffices to show that the depth of R/I is at least n - 1, since it cannot exceed $\dim (R/I)$. From the short exact sequence $(*) \quad 0 \to I \to R \to R/I \to 0$ we have a long exact sequence for local cohomology part of which is $H^i_m(I) \to H^i_m(R/I) \to H^{i+1}_m(R)$. For i < n-1, the first and third terms vanish, since $I \cong \omega_R$ and R both have depth n. It follows that $H^i_m(R/I) = 0$ for i < n-1, as required. By a class theorem, if M is finitely generated Cohen-Macaulay of dimension d, then $\operatorname{Ext}^i(K, M) = 0$ for i < d while the K-vector space dimension of $\operatorname{Ext}^d_R(K, M) = 0$ is the type of R. Part of the long exact obtained by applying $\operatorname{Hom}_R(K, _)$ to (*) is $0 = \operatorname{Ext}^{n-1}_R(K, R) \to \operatorname{Ext}^{n-1}_R(K, R/I) \to \operatorname{Ext}^n_R(K, I) \cong K$, since $I \cong \omega_R$ has type 1. Since $\operatorname{Ext}^{n-1}_R(K, R/I)$ injects into K, the type of R/I must be one. \square Alternatively, by local duality, $\omega_{R/I} \cong \operatorname{Ext}^1_R(R/I, I)$, and applying $\operatorname{Hom}_R(_, I) \to \operatorname{Hom}_R(I, I) \to \operatorname{Hom}_R(I, I) \to \operatorname{Ext}^1_R(R/I, R) \to \operatorname{Ext}^1_R(R, I) = 0$. The image of $\operatorname{Hom}_R(R, I) \cong I$ in $\operatorname{Hom}_R(I, I) \cong R$ is I, which shows that $\omega_{R/I} \cong R/I$. \square

4. Let P = (x, y) and Q = (u, v). Note that $P \cap Q = (x, y) \cap (u, v) = (xu, xv, yu, yv)$ is a radical ideal containing I, and that $(xv)^2 = xvh - fg \in I$ and $(yu)^2 = yuh - fg \in I$. Hence, $P \cap Q = J = \text{Rad}(I)$, P and Q are the minimal primes of I, and since P and Q have height 2, so does I. Note that P + Q = m, the homogeneous maximal ideal of R. The the Mayer-Vietoris sequence yields $H^3_P(R) \oplus H^3_Q(R) \to H^3_J(R) \to H^4_m(R) \to H^4_P(R) \oplus H^4_Q(R)$. The first and last terms displayed are 0, since both P and Q have only two generators, and so the middle two terms are isomorphic. Thus, $H^3_I(R) \cong H^3_J(R) \cong H^4_m(R)$, as required. \Box

5. If n = 1 the type is 1. Assume $n \ge 2$. A prime not containing x_i must contain all the other variables: let P_i be the prime generated by all the variables except x_i . Then it follows that P_1, \ldots, P_n are all the minimal primes of R, and $R/P_i \cong K[[x_i]]$. Thus, dim (R) = 1. Then $x = \sum_{i=1}^{n} x_i$ is a one element system of parameters: in fact, $x_i^2 = x_i x \in Rx$. Then R/Rx is $K \oplus V$ where V is spanned by over K by the x_i and has dimension n-1 because $\sum_{i=1}^{n} x_i$ is 0 in R/Rx. Then V is the socle in R/Rx, and so the type of R is n-1. \Box

6. By a class theorem, we may take $\omega = \operatorname{Ext}_S^2(S/I, S)$ as a global canonical module for R = S/I, and the given resolution may be used to calculate it. We apply $\operatorname{Hom}_S(_, S)$. If we use dual bases for the last two free modules, we obtain that $\omega = \operatorname{Ext}_S^2(S/I, S)$ is the cokernel of $X^* : S^3 \to S^2$, where X^* denotes the transpose of X. Map S^2 onto (x_{11}, x_{12}) by sending $(1,0) \mapsto x_{12}$ and $(0,1) \mapsto -x_{11}$. Then the image of X^* vanishes under the composite map: the columns of X^* map to 0 along with two of the minors, and all three are all 0 in R. This yields a surjection of the cokernel $\operatorname{Ext}_S^2(S/I, S) \to (x_{11}, x_{12})R$. Since both modules are rank one torsion-free over R (the canonical module is because this holds locally, by a class theorem), the kernel must be 0, and the map is an isomorphism. \Box

EXTRA CREDIT 5. Kill the the elements specified. The image of the matrix has entries equal to 0 below the first diagonal, a constant value x_i (the image of, say, $x_{1,i}$) on the *i* th diagonal, where $\underline{x} = x_1, \ldots, x_{s-r+1}$ are indeterminates, and entries equal to 0 above the last diagonal. Since the proposed system of parameters has the correct cardinality, it will suffice for both (a) and (b) to show the image of the ideal P is $(x)^r$, and it is clearly contained in this ideal. We use induction on both r and s. Each $r \times r$ minor involving the first column is x_1 times an r-1 size minor of the matrix obtained by omitting the first row and column. The smaller matrix has the same form, and it follows that its r-1 size minors generate the ideal $(\underline{x})^{r-1}$. This implies that the image of P contains all monomials of degree r in <u>x</u> that are divisible by x_1 . Now suppose we have shown that the image of P contains all monomials of degree r in \underline{x} that are divisible by any of the elements x_1, \ldots, x_i . To show that we get all monomials divisible by x_{i+1} , we first consider the problem modulo x_1, \ldots, x_i . Kill these variables, and omit the first *i* columns of the matrix. Then it follows by induction that the image of P contains the required monomials mod x_1, \ldots, x_i . Thus, each monomial of degree r divisible by x_{i+1} differs from a linear combination of elements of P by a sum S of multiples of the elements x_1, \ldots, x_i , and the coefficients can be taken of degree r-1. Thus, S is a linear combination of monomials of degree r divisible by at least one of x_1, \ldots, x_i , and so is in the image of P. It follows that the image of P also contains all degree r monomials divisible by x_{i+1} as well. \Box

(c) The type will be the same as the type of $K[\underline{x}]/(\underline{x})^r$, which is the number of monomials of degree r-1 in s-r+1 variables, or $\binom{s-r+1+(r-1)-1}{r-1} = \binom{s-1}{r-1}$.