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FINITENESS THEOREMS
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by Melvin Hochster

0. INTRODUCTION AND BACKGROUND

We shall restrict attention to the situation where I is an ideal of a Noetherian ring R.
However, because some of the results we discuss apply to iterated local cohomology, we
want to study the local cohomology modules Hi

I(M) even when M need not be Noetherian.

We take as our definition that

Hi
I(M) = lim

−→ t ExtiR(R/It, M).

In particular,
H0
I (M) = lim

−→ t HomR(R/It, M),

and this may be identified with ⋃
t

AnnMIt.

In these definitions the powers It may be replaced by any decreasing sequence of ideals
cofinal with the powers of I. If I = (f1, . . . , fh)R, one may use, for example, the sequence
It = (f t1, . . . , f

t
h)R. A mildly different alternative definition is to use the right derived

functors of H0
I ( ): take a right injective resolution of M (omitting M), apply H0

I ( ),
and then take cohomology.

The modules H0
I (M) only depend on the radical of I. They have the property that

every element is killed by a power of I.

Of greater interest is the following alternative method of obtaining the local cohomolgy.
Suppose that the radical of I is the same as the radical of (f1, . . . , fh)R. Then Hi

I(M)
is the same as the direct limit of the Koszul cohomology modules Ki(f t1, . . . , f th;M). Yet
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another alternative is take the direct limit of Koszul complexes before taking cohomology.
Using this idea one sees that Hi

I(M) is the i th cohomology module of the complex

0→M →
⊕
i

Mfi
→
⊕
i1<i2

Mfi1fi2
→ · · · →Mf1···fh

→ 0.

This complex may be though of as the result of tensoring together the h complexes

0→ R→ Rfi
→ 0

(where the copy of R is in degree zero and the copy of Rfi
in degree one), and then tensoring

with M . Note that it follows that Hi
I(M) = 0 if i exceeds the number of genrators of I or

of any ideal with the same radical as I.

Extending sections: let X = Spec (R), and let U = X − V (I). Let M be the sheaf
associated with the R-module M . Then there is a long exact sequence which begins:

0→ H0
I (M)→ H0(X,M)→ H0(U,M|U )→ H1

I (M)→ 0

and shows that Hi
I(M) ∼= Hi−1(U,M|U ) for i ≥ 2. We are using that, because X is

affine, Hi(X,M) = 0 for all i ≥ 1. This shows that H1
I (M) represents the obstruction to

extending a section of M|U to all of X.

Any of the definitions shows that if one has a short exact sequence of modules

0→M ′ →M →M ′′ → 0

then there is a long exact sequence for local cohomology:

H0
I (M ′)→ H0

I (M)→ H0
I (M ′′)→ H1

I (M ′)→ · · ·

→ Hi
I(M

′)→ Hi
I(M)→ Hi

I(M
′′)→ Hi+1

I (M ′)→ · · ·

Another consequence of the Koszul cohomology point of view is that if R→ S is a ring
homomorphism, I is an ideal of R, J = IS, and M is an S-module, which may also be
viewed as an R-module by restriction of scalars, then HI

I (M) = Hi
IS(M). The complexes

used to compute the two cohomology modules are the same.

If M is a finitely generated R-module and I = IM then I+AnnRM = R, and it follows
that all the modules Hi

I(M) = 0. If M is finitely generated and IM 6= M , then Hi
I(M)

vanishes for i < d = depth IM , but with Hd
I (M) 6= 0. Thus, the first nonvanishing local

cohomology module of M is governed by the depth of M on I.

If I = m is a maximal ideal of R and M is finitely generated we have that Hi
m(M)

does not change if we replace m by mRm and M by Mm. We may also complete without
changing anything. The local cohomology has DCC in this case.
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In general, Hi
I(M) does not have ACC nor DCC, even when M is finitely generated.

Typically, it is a huge module.

What about the set of associated primes of a local cohomology module? Is it necessarily
finite? The answer is no. But it is an open question whether the set of minimal primes of
Hi
I(M) is finite when M is Noetherian. This question is open even when M is R and R is

local.

Suppose that (R,m,K) is local. Must the socle, i.e., the annihilator of m, in a local
cohomology module Hi

I(M) be finite if M is finitely generated? This is not true even
if R is local and M = R, although it was conjectured by Grothendieck. However, if
R = K[[x, y, u, v]]/(xu−yv) then the socle in H2

(x,y)(R) is an infinite-dimensional K-vector
space.

I want to survey some results in the literature about such matters. In some cases details
will be given. In others, details would take a semester or a year and I will only sketch
ideas. For example, we shall make use of the theory of D-modules in equal characteristic
0, but I will not do all details of this theory.

1. D-MODULES

This is an expository sketch of part of the theory of D-modules and their application
to the proof of some of the results of Lyubeznik [Lyub1] on local cohomology over regular
rings in equal characteristic zero. Our objective is to give a treatment of several of the
less technical results that will give an indication of the methods. We want to note that
the results of [Lyub1] are stronger than those obtained here in that the class of functors T
allowed in results like Theorem (6.2) is larger, and that, moreover, the results proved here
for T (R) hold, in the case where R is a formal power series ring over a field of characteristic
0, when T (R) is replaced by any holonomic D(R, K)-module.

The main source for the treatment of D-modules here is Jan-Erik Björk’s book Rings
of Differential Operators, which we refer to as [Björk]. Most of the proofs of results from
Björk’s book have been omitted, but, in some cases, there is an indication of the key idea.

Similar results are obtained in positive prime characteristic p by Frobenius methods in
[HunSh] and [Lyub2].

I want to thank Toby Stafford for several valuable conversations, and for pointing out
the reference [Gab-Lev].

1. The basic set-up: filtered rings. Throughout we shall be considering an associative
(but not necessarily commutative) ring A with 1 equipped with an ascending filtration

Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ · · ·
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(this means that each Σi is an additive subgroup, that 1 ∈ Σ0, that
⋃
i Σi = A, and that

for all i and j we have that ΣiΣj ⊆ Σi+j). There is an obvious way of putting a ring
structure on gr(A) = Σ0 ⊕ Σ1/Σ0 ⊕ · · · ⊕Σi/Σi−1 ⊕ · · · and we shall assume throughout
that A has a filtration such that gr(A) is commutative and Noetherian, although we usually
repeat this hypothesis when stating theorems. Modules are assumed to be left modules
unless otherwise specified. We shall also assume frequently, but not always, that gr(A) is
a regular commutative Noetherian ring.

2. The main example: D(R, K). Let K be a field of characteristic 0 and let R denote
the formal power series ring K[[x1, . . . , xn]] in n variables over K, where n ≥ 0 is an
integer. Let D = D(R, K) denote the subring of the K-vector space endomorphisms of
R generated by R (each element of R yields an endomorphism of itself via multiplication
by that element) and the usual differential operators δ1, . . . , δn, defined formally, so that
δif = ∂f

∂xi
. Then we may write D(R, K) = R〈δ1, . . . , δn〉, where 〈 〉 indicate adjunction of

elements to a ring in the non-commutative case. This is very similar to the definition of the
Weyl algebra (the only difference is that in the Weyl algebra one uses the polynomial ring
K[x1, . . . , xn] in place of the formal power series ring R). Then D(R, K) has a filtration
in which Σi consists of all R-linear combinations of monomials in the elements δj such that
the monomial has degree at most i in the δj . Note that

δiδj − δjδi = 0

for all i, j, that
δixj − xjδi = 0

if j 6= i and that
δixi − xiδi = 1

(as operators on R) (this is a consequence of the rule for differentiating a product). More
generally, for any f ∈ R and every i one has the relation

δif − fδi =
∂f

∂xi
.

It follows that every element of D(R, K) can be written as an R-linear combination of
monomials in the δi (the latter mutually commute), i.e., that D(R, K) is R-free on these
monomials as a left R-module, and it is also easy to check that it is R-free on these mono-
mials as as a right R-module. It then follows easily as well that gr(D(R, K)) is isomorphic
with a polynomial ring R[ζ1, . . . , ζn] in n variables over R, and so is commutative, Noe-
therian, and regular. (Here, ζi is the image of δi in Σ1/Σ0.) This ring has Krull dimension
2n.

R is a module over D(R, K), but since we also think of elements of R as in D(R, K),
an expression such as δif with f ∈ R has two possible meanings: if this is δi acting on an
element of the D(R, K)-module R, the value is ∂f

∂xi
∈ R. But if the multiplication is being
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performed in D(R, K) the value is the operator that sends g ∈ R to ∂(fg)
∂xi

= f∂g
∂xi

+ ∂f
∂xi

g,
and this operator is the same as fδi + ∂f

∂xi
, which is the reason for the third displayed

relation.

It is not true, as asserted on p. 100 of [Björk], that all maximal ideals of gr(D(R, K)) ∼=
K[[x1, . . . , xn]][ζ1, . . . , ζn] have height 2n: e.g., if n = 1, x1ζ1 − 1 generates a maximal
ideal of height 1, and there are, in general, maximal ideals of height 2n− 1 as well as 2n.
This error is inessential: the hypothesis that gr(A) be regular of pure dimension frequently
assumed in [Björk] can be replaced throughout by the weaker hypothesis that the height of
all homogeneous maximal ideals be the same, since the annihilator and associated primes
of graded modules over gr(A) will be homogeneous, and the Krull dimension of an N-
graded commutative Noetherian ring is always the same as the supremum of the heights of
its homogeneous maximal ideals. Following the appendix to the unpublished manuscript
[Gab-Lev], we shall say that an N-graded commutative Noetherian ring has pure graded
dimension h if every homogeneous maximal ideal has height h, and then h is the same as
the Krull dimension of the ring. The results that are proved in [Björk] under the hypothesis
that gr(A) be commutative, Noetherian and regular of pure dimension actually hold when
gr(A) is commutative, Noetherian, and regular of pure graded dimension, and so may be
applied to D(R, K).

3. Good filtrations of modules and dimension. If A is filtered with gr(A) commu-
tative Noetherian as in §1. then every finitely generated (left) A-module M has a good
filtration Γ, i.e., an ascending filtration, indexed by Z, consisting of abelian subgroups
{Γi} such that Γi = 0 for all sufficiently small values of i, such that

⋃
i Γi = M , such that

ΣiΓj ⊆ Γi+j for all i, j ∈ N (the conditions so far are the conditions for a filtration) and
such that the associated graded module

grΓ(M) =
∞⊕
i=1

Γi/Γi−1

is finitely generated over gr(A) (this last condition is the condition for the filtration to be
good).

(3.1) Proposition. Let A be a filtered ring as above such that gr(A) is commutative and
Noetherian. Then A is both left and right Noetherian. Moreover, an A-module M has a
good filtration if and only if it is finitely generated as an A-module, and if {Γi} and {Γ′i}
are two such filtrations then there exists an integer c such that Γi ⊆ Γ′i+c and Γ′i ⊆ Γi+c
for all i.

(This is Proposition (6.1) on p. 69 of [Björk].)

When M is a finitely generated A-module we shall write d(M) for the Krull dimension of
the module grΓ(M) (in the commutative rings sense). We refer to d(M) as the dimension
of M . The comparison of filtrations in Proposition (3.1) can be used to show that d(M)
is independent of the choice of Γ. See Lemma (6.2) on p. 69 of [Björk]. Once one knows
this one has:
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(3.2) Proposition. Let A be a filtered ring as above such that gr(A) is commutative and
Noetherian. Given a short exact sequence of nonzero A-modules 0→M1 →M2 →M3 → 0
such that M2 is finitely generated (this holds if and only if both M1 and M3 are finitely
generated), one has d(M2) = max {d(M1), d(M3)}.

This is Lemma (6.2) of [Björk]. The point is that if one has a good filtration of M2,
it induces a good filtration on M1 (by intersecting) and on M3 (by taking images), and
then one has a short exact sequence 0→ gr(M1)→ gr(M2)→ gr(M3)→ 0, and the result
follows.

4. The regular case. We next focus on the case where gr(A) is assumed to be regular,
of finite Krull dimension, as well as commutative and Noetherian.

We first recall that the weak global dimension, denoted w.gl.dim(A), of a ring A is d
if whenever M is a right A-module and N is a left A-module then TorAi (M, N) = 0 for
i > d while there exist M , N such that TorAd (M, N) 6= 0. For a regular Noetherian
commutative ring S, the weak global dimension of S is the same as the Krull dimension
of S. The following result, which holds without the commutative Noetherian restrictions
on gr(A), is Theorem (3.7) of [Björk]:

(4.1) Theorem. If A is any filtered ring, w.gl.dim(A) ≤ w.gl.dim(gr(A)).

Of course, this is not interesting unless w.gl.dim(gr(A)) is finite.
For the rest of this section we shall assume that A is a filtered ring such that gr(A) is

commutative, Noetherian, and regular of finite pure graded dimension, which will then be
the same as w.gl.dim(gr(A)). If M is a finitely generated A-module we denote by j(M)
the smallest nonnegative integer j such that ExtjA(M, A) 6= 0.

The following is Theorem (7.1) of [Björk].

(4.2) Theorem. Let A be a filtered ring such that gr(A) is commutative, Noetherian, and
regular of finite pure graded dimension. Then for every finitely generated A-module M ,
d(M) + j(M) = w.gl.dim(gr(A)).

From this one deduces:

(4.3) Corollary. With A as in (4.2), for every finitely generated A-module M we have
that d(M) ≥ w.gl.dim(gr(A))− w.gl.dim(A).

The finitely generated modules M such that d(M) = w.gl.dim(gr(A)) − w.gl.dim(A),
together with 0, constitute the (left) Bernstein class. Since they are of smallest possible
dimension, their submodules and quotient modules are also in the Bernstein class, and if
0 → M1 → M2 → M3 → 0 is exact then M2 is in the Bernstein class if and only if both
M1 and M3 are in the Bernstein class. In the case where A = D(R, K) as in §2, we shall
refer to the modules in the Bernstein class as holonomic.

There is an analogous notion for right modules. This is important, because it turns out
that one has:
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(4.4) Theorem. With A as in (4.2) and with µ = w.gl.dim(A), the functor that sends
M to ExtµA(M, A) is an exact contravariant functor that interchanges the left Bernstein
class and the right Bernstein class. Moreover, M ∼= ExtµA(ExtµA(M, A), A) naturally if
M is in either the left or the right Bernstein class, so that one has an anti-equivalence
of categories. In consequence, the modules in the Bernstein class have finite length as A-
modules, i.e., each nonzero module in the Bernstein class has a finite filtration by simple
A-modules (each of which is again in the Bernstein class).

See Definition (7.12), Theorem (7.13) and Lemma (7.14) on p. 76 of [Björk]. Note
that to show that M has finite length one wants to prove that M has both ACC (this is
automatic here) and that M has DCC. (That M has DCC enables one to choose a nonzero
simple submodule M1 ⊆M to begin the filtration, and then one does this again for M/M1,
etc. Since M has ACC the process terminates.) One uses the fact that the dual (right)
module ExtµA(M, A) has ACC as a right A-module to prove that M has DCC as a left
module.

5. Back to the main example: holonomic modules and local cohomology.
Throughout this section K is a field of characteristic 0, R = K[[x1, . . . , xn]] for some
fixed integer n ≥ 0, and D(R, K) = R〈δ1, . . . , δn〉 as in §2. We want to apply the results
of the preceding section with A = D(R, K) as in §2. Then w.gl.dim(gr(A)) = 2n. With
much more difficulty one can prove:

(5.1) Theorem. Let K be a field of characteristic 0, let R = K[[x1, . . . , xn]] be the formal
power series ring and let D(R, K) = R〈δ1, . . . , δn〉. Then w.gl.dim(D(R, K)) = n.

This is Proposition (1.8) on p. 90 of [Björk]. We shall call a D(R, K)-module M holo-
nomic if it is in the Bernstein class, which in this case means that M is finitely generated
over D(R, K) and that d(M) = n, since w.gl.dim

(
gr(D(R, K))

)
− w.gl.dim(D(R,K)) =

2n− n = n.

We note that R itself, with the differential operators δi acting as usual, is a holonomic
D(R, K)-module.

If W is any multiplicative system in D(R, K) and M is a D(R, K)-module, then W−1M
has the structure of a D(R, K)-module in such a way that the map M → W−1M is a
homomorphism of D(R,K)-modules. The issue is to extend the actions of the δi to the
localized module. One extends the operator δi by the usual quotient rule for differentiation,
δi(m/f) = (f · δim− ∂f

∂xi
·m)/f2.

Of critical importance for applications to local cohomology theory is the following dif-
ficult result, which is Theorem (4.1) on p. 113 of [Björk].

(5.2) Theorem. With K, R, n, and D(R, K) as in (5.1), if M is a holonomic D(R, K)-
module and f ∈ R, then the localization Mf is a holonomic D(R, K)-module.
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(5.3) Corollary. With K, R, n, and D(R, K) as in (5.1), let M be a module over
D(R, K). Let I be an ideal of R. Then the local cohomology modules Hj

I (M) all have the
structure of D(R, K)-modules in such a way that if M is holonomic, then all the Hj

I (M)
are holonomic.

Proof. Let I = (f1, . . . , fs)R. Then Hi
I(M) may be described as the i th cohomology

module of the complex

0→M →
⊕
i

Mfi →
⊕
i<j

Mfifj → · · · →Mf1···fs → 0

where the maps are constructed from the various natural maps Mg →Mgfi
, possibly with

a sign, where g is a product of a subset of the f ’s. It follows that each term in this complex
is a D(R, K)-module and is holonomic if M is, and the maps are D(R, K)-linear. Thus,
each kernel and each image is a D(R, K)-module and is holonomic if M is, and the same
holds for the cohomology of the complex. �

(5.4) Corollary. With K, R, n, and D(R, K) as in (5.1), if M is a simple D(R, K)-
module then the assassinator of M as an R-module contains a unique prime P of R.
Hence, if M is a holonomic D(R, K)-module, then the assassinator of M as an R-module
is finite.

Proof. If M is simple and P is an associated prime, then H0
P (M) is nonzero and is a

submodule of M , hence, all of M . If Q is another associated prime we also get H0
Q(M) =

M , and it follows that P = Q. The final statement follows from the fact that a holonomic
module has a finite filtration by simple holonomic modules. �

By an obvious induction we also have:

(5.5) Corollary. With K, R, n, and D(R, K) as in (5.1), if I1, . . . , Is is a sequence
of ideals of R, i1, . . . , is is a sequence of integers, and M is a holonomic D(R, K)-
module, then His

Is

(
H
is−1
Is−1

(· · ·Hi1
I1

(M) · · · )
)

is a holonomic D(R, K)-module. In particular,

His
Is

(
H
is−1
Is−1

(· · ·Hi1
I1

(R) · · · )
)

is a holonomic D(R, K)-module, and so has a finite assassi-
nator. �

(5.6) Proposition. With K, R, n, and D(R, K) as in (5.1), let m be the maximal ideal
of R. Then D(R, K)/D(R, K)m ∼= Hn

m(R) as an R-module, and this, of course, may be
thought of as ER(R/m).

Proof. Let S be the polynomial ring K[x1, . . . , xn] and let Q be the ideal (x1, . . . , xn)S.
Then Hn

m(R) ∼= Hn
QSQ

(SQ) ∼= Hn
Q(S). Let yt denote the product of the xj other than

xt, so that ytxt = x1 · · · xn. Then Hn
Q(S) ∼= Coker (

⊕n
t=1 Syt

→ Sx1 ··· xn
), which is

the R-span of the monomials x−j11 · · · x−jnn where j1, . . . , jn are positive integers. Since
D(R, K) is R-free as a right R-module on the monomials in δ1, . . . , δn, it follows that
D(R, K)/D(R, K)m is K-free on the span of the images of the monomials in the δi. There
is a D(R, K)-linear map of D(R, K) to Hn

Q(S) that sends 1 to the image of x−1
1 · · · x−1

n .
This maps kills m and hence the left ideal D(R, K)m, so that we have an induced map
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D(R, K)/D(R, K)m → Hn
Q(S). The image of the element represented by δi11 · · · δinn is

represented by

∂i1

∂xi11
· · · ∂

in

∂xinn
(x−1

1 · · · x−1
n ) = (−1)i1+···+ini1! · · · in!x−(i1+1)

1 · · · x−(in+1)
n ,

from which it follows that this D(R, K)-linear map carries a K-vector space basis for the
domain module to a K-vector space basis for the target module, and so is an isomor-
phism. �

(5.7) Proposition. With K, R, n, and D(R, K) as in (5.1), let m be the maximal ideal
of R. If M is any D(R, K)-module (no finiteness condition is necessary) such that every
element is killed by a power of m, then M is isomorphic with a direct sum of copies of
D(R, K)/D(R, K)m. If M is holonomic the direct sum is finite.

Proof. M is an essential extension of a K-vector space V ⊆ M , and we may choose a
K-vector space basis {vλ}λ∈Λ for V . Consider a free D(R, K)-module G with a free basis
{uλ}λ∈Λ indexed by Λ. Since each copy of D(R, K) is both a left and right module over
D(R, K), it follows that G is both a left and left right module over R. We map G to M
by sending the free generator uλ to the element vλ. This induces a map G/Gm→M , that
sends the images of the uλ to the corresponding elements in the basis vλ for V . Note that
G/Gm may be identified with the direct sum of a family of copies of D(R, K)/D(R, K)m
indexed by Λ. Thus, G/Gm is an essential extension of a K-vector space, its socle, that
is mapped isomorphically onto V . Since the map G/Gm → M is injective on the socle
in G/Gm, it is injective, and we know that G/Gm is injective as an R-module. Thus, M
may be written as the direct sum of the image of G/Gm and another module, M0. Since
M0 ⊆M , every element is killed by a power of m. If M0 6= 0, then it has a nonzero socle.
But this is a contradiction, since the entire socle V of M is contained in the image of
G/Gm. Thus, M0 = 0, and G/Gm ∼= M , as required. �

For convenience we shall use the letter T to indicate a functor obtained by composition
of a finite number of local cohomology functors Hi

I , where both i and I are allowed to
vary, as in the statement of Corollary (5.5).

(5.8) Corollary. With K, R, n, and D(R, K) as in (5.1), let m be the maximal ideal of
R. Let T be a composition of local cohomology functors as described just above. If T (R)
has the property that every element is killed by a power of m, then T (R) is isomorphic as
a D(R, K)-module with a finite direct sum of copies of D(R, K)/D(R, K)m, and so is
injective.

Proof. By Corollary (5.5), T (R) is a holonomic D(R, K)-module and then the result is
immediate from Propositions (5.7) and (5.6). �

6. Bass numbers and the main results for arbitrary equal characteristic 0 regu-
lar rings. Recall that if R is Noetherian and M is any R-module, then µi(P, M) denotes
the i th Bass number of M with respect to P , i.e., the number of copies of the injective
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hull ER(R/P ) of R/P over R occurring as direct summands in the i th injective module
of a minimal injective resolution of M . With κ(P ) = RP /PRP (which is isomorphic with
the fraction field of R/P ), one also has µi(P, M) = dim κ(P )ExtiRP

(κ(P ), MP ).

We should mention that in [Björk], it is shown (lines 3–6 on p. 109) that for every
holomorphic D(R, K)-module M , µ0(P, M) is finite. (This is established in the course
of proving quite a different result: that if M is a holonomic D(R, K)-module and φ is
a D(R, K)-module endomorphism of M , then φ is algebraic over K in the sense that it
satisfies a polynomial equation with coefficients in K. See Proposition (3.11) and Remark
(3.12) on p. 103 of [Björk].) But this is rather difficult, and we shall not give the argument
here.

However, in case the holonomic D-module M is actually iterated local cohomology of
R, we can proceed as follows. Localize at P and then complete. The new regular local
ring is power series over a larger field, but we have not changed the value of µ0 for P in
replacing P by the expansion of P to the completion of RP . The new module is still an
iterated local cohomology module of the ring. We therefore have reduced to the case where
of calculating µ0

(
m, T (R)

)
for an iterated local cohomology functor T . We may replace

T (R) by H0
m

(
T (R)

)
. The result is now immediate from (5.8).

(6.1) Lemma. Let R be any commutative ring, let M be an R-module, and suppose that
0→M → E0 → E1 → · · · → Ei → · · · is a minimal injective resolution of M .
(a) Let m be a maximal ideal of R. Then for all i ≥ 0, the map AnnEim→ AnnEi+1m is

0.
(b) Suppose that (R, m, K) is local Noetherian and M is an arbitrary R-module. Suppose

that Hi
m(M) is injective as an R-module for all i. Then the map αi :H0

m(Ei) →
H0
m(Ei+1) is 0 for all i. It follows that, for all i, Hi

m(M) ∼= ER(K)µ
i(m,M) and that

for all i, µi(m, M) = µ0
(
m, Hi

m(M)
)
.

Proof. (a) Since Ei is an essential extension of the image W of Ei−1, each element v of
AnnEim has a nonzero multiple in W , which must lie in AnnWm. But such a multiple
must be the same as the product of v with a nonzero element of R/m, which has an inverse
in R/m, and it follows that v itself is in AnnWm, i.e., v is in the image of Ei−1 and so
maps to 0 in Ei+1, as required.

For part (b), first note that the cohomology of the complex H0
m(E•) is H•m(M), and

so consists of injective modules. Now, Ej ∼=
⊕

P ER(R/P )µ
j(P,M) where P runs through

all prime ideals of R and ER(R/P )µ
j(P,M) denotes the direct sum of µj(P,M) copies of

ER(R/P ). Since the only associated prime of ER(R/P ) is P , it follows that H0
m(Ej) ∼=

ER(K)µ
j(m,M).

Suppose the result is false, and let i be the least integer such that αi 6= 0. Then the
image of H0

m(Ei−1) in H0
m(Ei) is 0, and it follows that Hi

(
H0
m(E•)

) ∼= Hi
m(M) is the

kernel W of αi. The hypothesis implies that W is an injective module, and so splits from
H0
m(Ei), say H0

m(Ei) = W ⊕RW ′, where we think of the direct sum as internal. By part
(a), W contains the entire socle of H0

m(Ei), and this implies that W ′ ⊆ H0
m(Ei) is zero,

for a nonzero module in which every element is killed by a power of m must have a nonzero
socle. But then W = H0

m(Ei), which implies that αi = 0, contradicting our assumption.
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The statements in the final sentence now follow from our earlier observation that
H0
m(Ej) ∼= ER(K)µ

j(m,M) together with the fact that all the maps vanish. �

The following results may now be obtained for an arbitrary regular ring of equal char-
acteristic zero. As mentioned earlier, we shall use T to denote the composition of several
local cohomology functors Hi

I where i and I may vary.

(6.2) Theorem. Let R be any regular Noetherian of equal characteristic 0. If T is a
composition of local cohomology functors as described just above then:
(a) For any given maximal ideal of m, the set of associated primes of T (R) contained in

m is finite.
(b) If the assassinator of T (R) consists entirely of maximal ideals of R then T (R) is

injective; if, moreover, (R, m, K) is local, then T (R) is a finite direct sum of copies
of ER(K).

(c) For every prime ideal P of R, all the Bass numbers of T (R) for P are finite.
(d) The injective dimension of T (R) (i.e., the length of a minimal injective resolution of

T (R)) is bounded by the h = sup{dimR/P : P ∈ Ass
(
T (R)

)
}.

Proof. (a) Suppose that the assassinator of T (R) contains an infinite sequence of distinct
primes P1, . . . , Ps, . . . within m. Then we can replace R by Rm and still have a coun-
terexample: we may replace the ideals used in defining T by their expansions to Rm.
We may similarly replace R by R̂: R̂ ⊗R T (R) ∼= T (R̂), and we may again expand the
ideals used in defining T . Moreover, if R/P embeds in M = T (R), then R̂/P R̂ embeds
in R̂ ⊗R M , and for each Pi we may choose a minimal prime of PiR̂ lying over Pi and
then R̂/Qi embeds in R̂/P R̂, so that Qi will be an embedded prime of R̂ ⊗R T (R). We
therefore get a counterexample over the completion of R, which is isomorphic with formal
power series over a field. Now the result is immediate from Corollary (5.5).

To prove (b) we note that the hypothesis on T (M) implies that it is the direct sum of
its submodules H0

m(T (M)) as m varies through the maximal ideals of R. Thus, it suffices
to see that the result holds when the assassinator consists of a single maximal ideal of R.
But, as in part (a), the situation is unaffected if we first localize R at this maximal ideal,
and then complete. The result is then immediate from Corollary (5.8).

(c) To see that the Bass numbers are finite we note that the Bass numbers for P do not
change when we replace T (R) by T (R)P ∼= T (RP ), and in describing T we may replace
each ideal that occurs as a subscript by its expansion to RP . Thus, we may assume
without loss of generality that (R, m, K) is local and that P = m. But if one of the Bass
numbers is infinite we may replace R by its completion without affecting that, and, again,
R̂ ⊗R T (R) ∼= T (R̂). Moreover, as before, in the description of T we may replace each
subscript ideal by its expansion to R̂. Therefore, we may assume without loss of generality
that R is complete and that P = m. Thus, we may think of R as K[[x1, . . . , xn]]. We
first note that every Hi

m(T (R)) is a holonomic module, since Hi
m ◦ T = T ′ is a functor

of the same form as T , and so isomorphic with a finite direct sum of copies of ER(K), by
part (b). It follows from Lemma (6.1b) that µi(m, T (R)) = µ0(Hi

m(T (R)) and the result
follows.
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(d) To prove the result it suffices to prove that µi(P, T (R)) = 0 for all primes P and
for all i > h. Assume the result false and and choose Q of smallest possible height so that
T (RQ) gives a counterexample. Thus, we still have a counterexample after localization at
Q, but we do not have a counterexample if we localize further. Note that when we localize
further the supremum of the dimensions of the R/P for P ∈ AssT (R) must decrease.
Thus, we may assume that (R, m, k) is local and that µi(P, T (R)) = 0 if P 6= m and
i ≥ h while µh+1(m, T (R)) 6= 0 or the injective dimension will be h.

Thus, if 0 → T (R) → E0 → E1 → · · · → Ei → · · · is a minimal injective resolution of
T (R) we have that Ei ∼= H0

m(Ei) ∼= ER(K)µi(m,T (R)) for all i ≥ h. It follows from Lemma
(6.2b) that the maps H0

m(Ei) → H0
m(Ei+1) vanish for all i, and, hence, that the maps

Ei → Ei+1 vanish for i ≥ h. Since E• is a minimal injective resolution, this can only
happen if Ei+1 = 0 for i > h, as required. �
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