Completion of rings and modules

Let (A, <) be a directed set. This is a partially ordered set in which for any two
elements A, p there is an element v such that A < p and p < v. Examples include any
totally ordered set, e.g., the positive integers under <, and the finite subsets of a given set
ordered by C. We want to describe inverse limits over A. An inverse limit system consists
of objects X indexed by A and for all A < p a morphism f) , : X,, — X\. A candidate
for the inverse limit consists of an object X together with maps gy : X — X, such that
for all A < p1, gn = fau 0 gu- A candidate Y together with morphisms hy : Y — X is an
inverse limit precisely if for every candidate (X, gy) there is a unique morphism k : X — Y
such that for all A\, gx = h) o k. The inverse limit is denoted 1(£n A X and, if it exists, it is

unique up to canonical isomorphism compatible with the morphisms giving X and Y the
structure of candidates.

We next want to see that inverse limits exist in the categories of sets, abelian groups,
rings, R-modules, and R-algebras. The construction for sets also works in the other cate-
gories mentioned. Let (A, <) be a directed partially ordered set and let (X, fy ,) be an
inverse limit system of sets. Consider the subset X C [], X, consisting of all elements
x of the product such that for A < pu, fx .(z,) = xx, where x) and z, are the A and p
coordinates, respectively, of x. It is straightforward to verify that X is an inverse limit
for the system: the maps X — X, are obtained by composing the inclusion of X in the
product with the product projections 7y mapping the product to X.

If each X, is in one of the categories specified above, notice that the Cartesian product
is as well, and the set X is easily verified to be a subobject in the appropriate category.
In every instance, it is straightforward to check that X is an inverse limit.

Suppose, for example, that X is a family of subsets of A ordered by D, and that the
map X, — X, for X, O X, is the inclusion of X,, C X,. The condition for the partially
ordered set to be directed is that for all A and p, there is a set in the family contained in
XN X,. The construction for the inverse limit given above yields all functions on these
sets with a constant value in the intersection of all of them. This set evidently may be
identified with (1, Xx.

We are particularly interested in inverse limit systems indexed by N. To give such a
system one needs to give an infinite sequence of objects Xy, X1, Xs, ... in the category
and for every ¢ > 0 a map X; 11 — X;. The other maps needed can be obtained from these
by composition. In the cases of the categories mentioned above, to give an element of the
inverse limit is the same a giving a sequence of elements g, x1, x3, ... such that for all i,
x; € X;, and x;41 maps to x; for all ¢ > 0. One can attempt to construct an element of
the inverse limit by choosing an element xg € X, then choosing an element z; € X; that
maps to xg, etc. If the maps are all surjective, then given x; € X; one can always find an
element of the inverse limit that has x; as its i th coordinate: for h < 7, use the image of
x; in Xy, while for i + 1,7+ 2, ... one can choose values recursively, using the surjectivity
of the maps.

We want to use these ideas to describe the I-adic completion of a ring R, where R is a
ring and I C R is an ideal. We give two alternative descriptions. Consider the set of all
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sequences of elements of R indexed by N under termwise addition under multiplication:
this ring is the same as the product of a family of copies of R index by N. Let €;(R)
denote the subring of Cauchy sequences for the I-adic topology: by definition these are the
sequences such that for all ¢ € N there exists N € N such that for all i, j > N, r; —r; € I".
This is a subring of the ring of sequences. It is an R-algebra via the map R — €;(R)
that sends r € R to the constant sequence r, r, r, .... Let €Y(R) be the set of Cauchy
sequences that converge to 0: by definition, these are the sequences such that for all t € N
there exists N € N such that for all « > N, r; € I'. These sequences are automatically
Cauchy. Then €9(R) is an ideal of €;(R). It is easy to verify that every subsequence of
a Cauchy sequence is again Cauchy, and that it differs from the original sequence by an
element of €%(R).

Given an element of €;(R), say ro,71,72,... we may consider the residue mod I* for a
given t. These are eventually all the same, by the definition of a Cauchy sequence. The
stable value of these residues is an element of R/I*, and we thus have a map €;(R) — R/I*
that is easily seen to be a ring homomorphism that kills €9(R). Therefore, for all ¢ we
have a surjection €;(R)/€%(R) — R/I'. These maps make €;(R)/€%(R) a candidate for
lim ¢ (R/I%), and so induce a ring homomorphism €;(R)/€?(R) — lim ¢ R/T'.

This map is an isomorphism. Given a sequence of elements in the rings R/I' that
determine an element of the inverse limit, for each residue p; choose an element r; of R
that represents it. It is straightforward to verify that the r; form a Cauchy sequence in
R and that it maps to the element of 1(121,5 R/I'" with which we started. Consider any

other Cauchy sequence with the same image. It is again straightforward to verify that the
difference of the two Cauchy sequences is in €Y(R). This proves the isomorphism:

Theorem. Let R be any ring and I any ideal. Then €(R)/€Y(R) — 1<iint (R/I') is an

isomorphism, and the kernel of the map from R to either of these isomorphic R-algebras
18 ﬂtIt. O

These isomorphic rings are denoted RT or simply ﬁ, if I is understood, and either is
referred to as the I-adic completion of R. If I C R, then R is called I-adically separated
if ), I* = (0), and I-adically complete if R — R is an isomorphism: this holds iff R is I-
adically separated, and every Cauchy sequence is the sum of a constant sequence r, r, 7, . ..
and a sequence that converges to 0. The Cauchy sequence is said to converge to r.

Given a Cauchy sequence in R with respect to I, we may choose a subsequence such
that the residues of all terms from the ¢ th on are constant mod I**!. Call such a Cauchy
sequence standard. Given a standard Cauchy sequence, let sg = rg and s;11 = r¢ 11 —r; € It
for t > 0. Then the sg + --- + s; = r;. Thus, the partial sums of the “formal series”
S0+ 81+ s2 + - -+ form a Cauchy sequence, and if the ring is complete it converges. Given
any formal series >~ oS¢ such that s, € I' for all ¢, the partial sums form a Cauchy
sequence, and every Cauchy sequence is obtained, up to equivalence (i.e., up to adding a
sequence that converges to 0) in this way.

Proposition. Let J denote the kernel of the map from R - R/I (J consists of elements
represented by Cauchy sequences all of whose terms are in I). Then every element of R
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that is the sum of a unit and an element of J is invertible in RI. Every maximal ideal
of R contains J, and so there is a bijection between the mazimal ideals of R and the
mazimal ideals of R/I. In particular, if R/I is quasi-local, then R! is quasi-local.

Proof. If u is a unit and j € J we may write u = u(1+u~1j), and so it suffices to to show
that 1+ j is invertible for j € J. Let rg,r1,... be a Cauchy sequence that represents j.
Consider the sequence 1 —rg, 1 —71 +7r%,...1 =7y +7r2 — - (=1)""1pntl .1 call the
nth term of this sequence v,,. If r,, and r,, 1 differ by an element of I*, then v, and v,
differ by an element of I + I"*2. From this it follows that v, is a Cauchy sequence, and
1—(147r,)v, = r**2 converges to 0. Thus, the sequence v,, represents an inverse for 1+ j

A n
in R.

Suppose that m is a maximal ideal of RT and does not contain j € J. Then j has an
inverse v mod m, so that we have jv = 1 + u where v € m, and then —u = 1 — jv is not
invertible, a contradiction, since jv € J. U

Suppose that (), I* = 0. We define the distance d(r, s) between two elements r, s € R
to be 0 if r = s, and otherwise to be 1/2™ (this choice is somewhat arbitrary), where n
is the largest integer such that » — s € I™. This is a metric on R: given three elements
r,s,t € R, the triangle inequality is clearly satisfied if any two of them are equal. If not,
let n,p,q be the largest powers of I containing r — s, s — ¢, and ¢t — r, respectively. Since
t—r=—(s—1t)— (r—s), ¢ > min{n,p}, with equality unless n = p. It follows that
in every “triangle,” the two largest sides (or all three sides) are equal, which implies the
triangle inequality. The notion of Cauchy sequence that we have given is the same as the
notion of Cauchy sequence for this metric. Thus, Rl is literally the completion of R as a
metric space with respect to this metric.

Given a ring homomorphism R — R’ mapping I into an ideal I’ of R’, Cauchy sequences
in R with respect to I map to Cauchy sequences in R’ with respect to I’, and Cauchy
sequences that converge to 0 map to Cauchy sequences that converge to 0. Thus, we get

o~ T
an induced ring homomorphism R’ — R’ . This construction is functorial in the sense
that if we have a map to a third ring R”, a ring homomorphism R’ — R, and an ideal

12

~ 1
I" of R” such that I’ maps into I”, then the induced map R’ — R’ is the composition

’ 1’

/\I /\I o~ /\I/
(R — R" )o(Rl — R ). If R — R is surjective and I maps onto I’, then the map

/

of completions is surjective: each element of j%\’l can be represented as the partial sums
of a series so + s1 + s2 + - -+, where s,, € (I')". But I" will map onto (I’)", and so we can
find r, € I"™ that maps to s,, and then rq + 71 + ro --- represents an element of R! that
maps to sg +s1 +Ss2 4+ - -.

Example. Let S = R[zi, ... ,xz,]| be the polynomial ring in n variables over R, and let
I =(x1,...,2,)S. An element of S/I" is represented by a polynomial of degree < n — 1
in the ;. A sequence of such polynomials will represent an element of the inverse limit
if and only if, for every n, then nth term is precisely the sum of the terms of degree at
most n in the n+ 1st term. It follows that the inverse limit ring S7 is R[[z1, ... ,2,]], the
formal power series ring. In consequence, we can prove:
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Theorem. If R is a Noetherian ring and I is an ideal of R, then R! is Noetherian.

Proof. Suppose that I = (f1, ..., fn)R. Map the polynomial ring S = R[z1, ... ,z,] to
R as an R-algebra by letting z; — f;. This is surjective, and (21, ... ,z,)S maps onto
I. Therefore we get a surjection R[[xq, ... ,7,]] - RI. Since we already know that the

formal power series ring is Noetherian, it follows that RI is Noetherian. O

We next want to form the [-adic completion of an R-module M. This will be not
only an R-module: it will also be a module over R!. Let R be a ring, I C R an ideal
and M an R-module. Let €;(M) denote the Cauchy sequences in M with respect to I:
the sequence ug, uq,us, - is a Cauchy sequence if for all t € N there exists N € N such
that u; —u; € I'M for all 4,5 > N. These form a module over €;(R) under termwise
multiplication, and set of Cauchy sequences, €9(M), that converge to 0, where this means
that for all ¢, the terms of the sequence are eventually all in I'M, is a submodule that
contains €9(R)€;(M). The quotient €;(M)/€Y(M) is consequently a module over R
Moreover, any homomorphism s : M — N induces a homomorphism from €;(M) — €;(N)
that preserves convergence to 0, and hence a homomorphism Bl MT — NI, Thisis a
covariant functor from R-modules to RI-modules. There is an R-linear map M — M!
that sends the element u to the element represented by the constant Cauchy sequence
whose terms are all u. The kernel of this map is (), I* M, and so it is injective if and only if

N, I*M = 0, in which case M is called I-adically separated. If M — M! is an isomorphism,

M is called I-adically complete. The maps M — M! give a natural transformation from
the identity functor on R-modules to the I-adic completion functor. Moreover, by exactly

the same reasoning as in the case where M = R, M=~ lim, M/I*M.

I-adic completion commutes in an obvious way with finite direct sums and products
(which may be identified in the category of R-modules). The point is that w, @ v, gives
a Cauchy sequence (respectively, a sequence converging to 0) in M @ N if and only if wu,
and v, give such sequences in M and N. Moreover if f; : My — N and fy : My — N,
we have that the I-adic completion of the map f1 ® fo : M1 & My — N is the direct sum
of the completions, ]?1 &) )?2 A similar remark applies when we have g; : M — N; and
g2 : M — Ny, and we consider the map (g1,g2) : M — N; x Ny. The situation is the
same for finite direct sums and finite direct products. Note also that if we consider the
map given by multiplication by r» on M, the induced endomorphism of M s given by
multiplication by r (or by the image of r in R! ).

If M — @ is surjective, the map M - @I is surjective: as in the case of rings, any
element z of @I can be represented using the Cauchy sequence of partial sums of a formal
series qo+q1 +q2+- - - where ¢; € I'Q. To see this, take a Cauchy sequence that represents
the element. Pass to a subsequence wg, wi, wa, ... such that the residue of wy, in M/I* M
is the same for all kK > ¢t. The element can be thought of as

wo+(w1—w0)+(w2—w1)—|—--~

Thus, take go = wo and q; = wy —wy_; for t > 1. For all t, I* M maps onto ItQ. Therefore
we can find u; € I*M such that u; maps to ¢, and the partial sums of ug +uy +ug + - - -
represent an element of M’ that maps to z.
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Note that because M7 is an R-module and we have a canonical map M — M that is
R-linear, the universal property of base change determines a map RI® rRM — M. These
maps give a natural transformation from the functor Rl @ r _ to the I-adic completion
functor: these are both functors from R-modules to RI-modules. If M is finitely generated
over a Noetherian ring R, this map is an isomorphism: not only that: restricted to finitely
generated modules, I-adic completion is an exact functor, and R! is flat over R.

In order to prove this, we need to prove the famous Artin-Rees Lemma. Let R be a
ring and I an ideal of R. Let ¢ be an indeterminate, and let It = {it : i € I} C R[t]. Then
R[It] = R+It+I%*t?+- - - is called the Rees ringof I. If I = (f1, ..., f,) is finitely generated
as an ideal, then R[It] = R|[fit, ..., fut] is a finitely generated R-algebra. Therefore, the
Rees ring is Noetherian if R is.

Before proving the Artin-Rees theorem, we note that if M is an R-module and ¢ and
indeterminate, then every element of R[t] ® M can be written uniquely in the form

1®u0—|—t®u1+---+tk®uk7

where the u; € M, for any sufficiently large k: if a larger integer s is used, then one has
mig+1 = -+ = mg = 0. This is a consequence of the fact that R[t] is R-free with the
powers of t as a free basis. Frequently one writes ug + uit + - - - + ut® instead, which
looks like a polynomial in ¢ with coefficients in M. When this notation is used, M[t] is
used as a notation for the module. Note that the R[t]-module structure is suggested by
the notation: (rt/)(ut*) = (ru)t/**, and all other more general instances of multiplication
are then determined by the distributive law.

We are now ready to prove the Artin-Rees Theorem, which is due independently to
Emil Artin and David Rees.

Theorem (E. Artin, D. Rees). Let N C M be Noetherian modules over the Noetherian
ring R and let I be an ideal of R. Then there is a constant positive integer c such that
for allm > ¢, I"M NN = I["¢(I°M N N). That is, eventually, each of the modules
Nyt = I" MM NN is I times its predecessor, N,, = I"M N N.

In particular, there is a constant ¢ such that I"M NN C I""°N for all n > c. In con-
sequence, if a sequence of elements in N is an I-adic Cauchy sequence in M (respectively,

converges to 0 in M) then it is an I-adic Cauchy sequence in N (respectively, converges
to 0in N ).

Proof. We consider the module R[t] ® M, which we think of as M[t]. Within this module,
M =M+ IMt+I*Mt* + -+ I*MtF + ..

is a finitely generated R[[t]-module, generated by generators for M as an R-module: this
is straightforward. Therefore, M is Noetherian over R[It]. But

N=N+({IMON)t+PMON)E+---,
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which may also be described as N[t M, is an R[It] submodule of M, and so finitely gen-
erated over R[It]. Therefore for some ¢ € N we can choose a finite set of generators whose
degrees in t are all at most ¢. By breaking the generators into summands homogeneous
with respect to t, we see that we may use elements from

N,(IM N N)t,(I*M N N)t?, ..., (I°M N N)t

as generators. Now suppose that n > ¢ and that u € I""M N N. Then ut™ can be written
as an R[It]-linear combination of of elements from

N,(IM N N)t,(I*M N N)t?,...,(I°M N N)t
and hence as an sum of terms of the form
int"vit! = (ipv;)thT

where j < ¢, i), € I", and '
e ’MnNN.

Of course, one only needs to use those terms such that h + 7 = n. This shows that
(I"M)N N is the sum of the modules

I" (M N N)

for 7 < c. But o o
I" 7 (PMNN)=1"°I“7(I"MNN),

and o
I“7(PMNN)CI°MNN,

so that we only need the single term I"~¢(I°M N N). O

Theorem. Let R be a Noetherian ring, I C R an ideal.

(a) If0 = N — M — @Q — 0 is a short exact sequence of finitely generated R-modules,
then the sequence 0 — NI — M — @I — 0 is exact. That is, I-adic completion is
an exact functor on finitely generated R-modules.

(b) The natural transformation 6 from R! ®pr _ to the I-adic completion functor is an
tsomorphism of functors on finitely generated R-modules. That is, for every finitely
genemted R-module M, the natural map 9M RI Rr M — M! is an 1somorphism.

(c) R! is a flat R-algebra. If (R, m) is local, R = R™ is a faithfully flat local R-algebra.

Proof. (a) We have already seen that the map M M QI is surjective. Let y be an element
of M7 that maps to 0 in @ Choose a Cauchy sequence that represents z, say ug, u1, Uz, - . . .
After passing to a subsequence we may assume that u; — uzy1 € I'M for every t. The
images of the u; in @Q = M/N converge to 0. Passing to a further subsequence we may
assume that the image of u; € I*(M/N) for all ¢, so that u! € I'"M + N, say uy; = v; + wy
where v; € I'M and w; € N. Then w; is a Cauchy sequence in M that represents z: in
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fact, wy —wy1 € I"M N N for all t. Each wy; € N, and so the elements w; form a Cauchy
sequence in N, by the Artin-Rees Theorem. Thus, every element in Ker (M? — Q7) is in
the image of N'.

Finally, suppose that zg, 21, 22,... is a Cauchy sequence in N that converges to 0 in
M. Then z already converges to 0 in N, and this shows that N injects into M!. This
completes the proof of part (a).

(b) Take a presentation of M, say R" A R™ M — 0, where A = (r;;) is an m x n
matrix over R. This yields a diagram:

§I®RR” _4 ., §I®RRm _ }/%]@RM — 0

Oren T 0 T HMT
—~ 1T A —T —
R™ — R™ R M — 0
where the top row is obtained by applying Rl g _, and is exact by the right exactness
of tensor, the bottom row is obtained by applying the I-adic completion functor, and is
exact by part (a). The vertical arrows are given by the natural transformation 6, and the
squares commute because 6 is natural. The map 0p» is an isomorphism for h =mor h =n
because both functors commute with direct sum, and the case where the free module is
just R is obvious. But then 0, is an isomorphism, because cokernels of isomorphic maps
are isomorphic.

(¢) We must show that R @z N — R @g M is injective for every pair of R-modules
N C M. We know this from parts (a) and (b) when the modules are finitely generated.
The result now follows from the Lemma just below. Faithful flatness is clear, since the
maximal ideal of R clearly expands to a proper ideal in RI. O

Lemma. Let F' be an R-module, and suppose that whenever N C M are finitely generated
R-modules then FF @ N — F @r M 1is injective. Then F' is flat.

Proof. Let N C M be arbitrary R-modules. Then F ®p N is the directed union of the
images of the modules F' ®r Ny as F' runs through the finitely generated submodules of
M. Thus, if z € F® N maps to 0 in F'® M, it will be the image of 2’ € Ny @ M — {0},
which implies that 2’ € F ®g Ny maps to 0 in F'®r M. But since M is the directed union
of its finitely generated modules M, containing Ny, and since F' ® g M is the direct limit of
these, it follows that for some sufficiently large but finitely generated My O Ny, the image
of 2z’ under the map F ® Ny — F'® My is 0. But then 2z’ = 0 and so z = 0, as required. [



