
Math 615, Winter 2012 Problem Set #1: Solutions

1. Since In is also finitely generated the powers of I and In are cofinal, we may replace
I by In. It therefore suffices to consider the case n = 1. Let I = (f1, . . . , fh). Clearly, J
be the ideal of S which is the image of the Cauchy sequences with all entries in I. It is
clear that IS ⊆ J . It therefore suffices to show that if {rn}n is a Cauchy sequence with
entries in I, there is an equivalent sequence in IS. As in class, we may replace the given
sequence with a subsequence with the property that for j ≥ i, rj − ri ∈ Ii. If s1 = r1
and sn = rn − rn−1 for n ≥ 1 the given sequence is the partial sums of

∑∞
n=0 sn, where

sn ∈ In = IIn−1 = (f1, . . . , fh)In−1, so that for each n we may write sn =
∑h

j=1 fjsn,j
with sn,j ∈ In−1 for all n ≥ 1 and all j. Let ρj = {rn,j}n be the sequence of partial sums

of
∑∞

n=1 sn,j . This is clearly Cauchy, and {rn}n =
∑h

j=1 fjρj , as required. �
Given an element of the completion, it is represented by a Cauchy sequence. The residues
of the terms mod I are eventually all the same. This gives an obvious surjection S � R/I.
The kernel evidently consists of Cauchy sequences whose terms are eventually in I. Such
a sequence is equivalent to a subsequence whose terms are all in I, by omittting finitely
many terms, and hence to a sequence representing an element of IS by the first part. �

2. Since a monomial with 2n − 1 factors, each from I or J , must have at least n factors
from I or n from J , we have that (I + J)2n−1 ⊆ In + Jn ⊆ (I + J)n. Hence, a Cauchy
sequence with respect to I + J has a subsequence {rn}n such that rt − rn ∈ In + Jn for
all t ≥ n. This sequence can be thought of as partial sums of a series

∑∞
s=0 sn where

sn ∈ In + Jn. Let sn = in + jn where in ∈ In and jn ∈ Jn. Then the partial sums of∑∞
n=0 in (resp.,

∑∞
n=0 jn) are Cauchy with respect to I (resp., J) and have a limit u (resp.,

v) in S, by completeness with respect to I (resp., J). It follows that u+v has the required
property. �

3. The sum is not even in I. If it were, it would be a linear combination of finitely many of
the generators xi, and hence of x1, . . . , xk for some sufficiently large k. But every element
of the ring has a unique expression as a formal power series

∑∞
i=0 Fi where the Fi are

polynomial forms that are either 0 or degree i, and any element in the ideal generated by
x1, . . . , xk has the property that all of the terms that occur in the power series expansion
consist of monomials that are divisible by at least one of x1, . . . , xk. The given element
has the property that it has a term xNN for N > k which is not in (x1, . . . , xk)R. �

4. Every f ∈ K[[x1, . . . , xm, y1, . . . , yn]] is an infinite linear combination over K of
monomials in all the variables each of which can written uniquely in the form µν, whereµ
(resp., ν) is a monomial in x1, . . . , xm (resp., y1, . . . , yn). The condition that f be in the
image is that for each monomials µ in x1, . . . , xm, the number of terms of the form µνi
for some monomial νi in y1, . . . , yn is finite, for this means precisely that the coefficient of
µ in K[[y1, . . . , yn]] is actually in K[y1, . . . , yn]. This is false for a given µ, then µ occurs
as a coefficient for infinitely many monomials ν in y1, . . . , yn, and since we can choose k
so that µ /∈ P k, this contradicts the given condition. On the other hand, if the condition
fails, there exists k and infinitely many νi with a coefficient not in P k. Since there are only
finitely many monomials in x1, . . . , xm not in P k and a least one of these must occur as



a coefficient in one of the νi, by the pigeonhole principle one of them, call it µ must occur
in a term cµνi of f (where c ∈ K − {0}) for infinitely many choice of i. �

5. By Hensel’s lemma, zn − (1 + u) = 0 will factor into n linear factors, lifting the
factorization of zn− 1 = 0 mod m, which will give n roots corresponding to the n distinct
n th roots of unity in the residue class field. The distinctness of the roots is needed so
that the linear factors over K will be relatively prime in pairs. The final assertions are
immediate.

6. Let A = Q[π + x] ∈ C[[x]]. The image of any nonzero element f(π + x) of A, where
f is ,a nonzero polynomial in one variable over Q mod xC[[x]] is f(π), which is nonzero
because π is transcendental over Q. Hence, every element of the multiplicative system
W = A − {0} is a unit in C[[x]], and has an inverse in that ring. It follows from the
universal mapping property of localization that we have a nonzero map W−1A → C[[x]],
which is an injection since W−1A is the field Q(π+x). Thus, Q(π+x) is a field contained
in C[[x]]. By a class theorem, every subfield of characteristic 0 in a complete local ring can
be enlarged to a coefficient field. �

EXTRA CREDIT 1. We construct R with ideals I, J ⊆ R such that R is complete
and separated with respect to I and J but not separated with respect to I + J . Adjoin
countably many indeterminates x = xij , y = yij 1 ≤ j ≤ i <∞, to a field K. Kill all xnij ,

n > 1, all xijyi′j′ , and all xijxi′j′ , yijyi′j′ for i 6= i′. Let un =
∏n

j=1 xnj and vn =
∏n

j=1 ynj .

un and vn both kill (x, y) for all n. Complete with respect to the ideal (x, y) generated

by all xij , yi′j′ . In the resulting ring T , every element is uniquely a formal sum
∑∞

n=0 Fn

where each Fn is the sum of polynomial in the xij of total degree n whose degree in each
xij is 1 (and such that if xij , xi′j′ occur in a term, then i = i′) and a polynomial in the
yij satisfying corresponding conditions. There is a maximal ideal M consisting of formal
sums in which the constant is 0, and it is killed by both un and vn. Hence, M also killed
by all the gn = un + vn ∈ (I + J)n. Let A be the ideal generated by the gn − gn+1. Then
any element of A is a finite K-linear combination of the gn − gn+1 and, hence, a finite
K-linear combination of the gn in which the sum of the coefficients is 0. Let R = T/A.
We show that R is complete and separated with respect to both I = (x)R and J = (y)R,
but that g1 ∈

⋂
n(I + J)n and g1 6= 0.

To see that g1 is not 0, it suffices to show g1 is not a finite K-linear combination of the
gn − gn + 1. This is clear, since the gi are linearly independent over K: in fact, even the
y terms of the gi, which are the vi, are linearly independent over K.

By symmetry, it suffices to prove I-adic separation (every I-adic Cauchy sequence has a
limit, since this is true in T ). An element in (x)nT is in (xij : i ≤ s)n for some s. Hence,
in its unique representation there are no terms involving the y, nor any xmj for j > s.
Hence, the element is represented by a polynomial Hn in the x all of whose terms have
degree at least n. Thus, a nonzero element of R = T/A in

⋂
n I

n has a sequence of nonzero
polynomial representatives Hn ∈ T such that the difference of any two, HN−Hn, is a finite
K-linear combination of the gt. But this K-linear combination must be 0, since HN − hn
has no terms in the y and the vt are linearly independent over K. Hence HN and Hn 6= 0
cannot be equal in R when N is larger than the degree of Hn unless both are 0. �



EXTRA CREDIT 2. (a) No, since −1 has no square root in even in the fraction field
of the ring, which R(x).

(b) Likewise, K(x) does not contain an element algebraic over K but not in K.

(c) Yes, this can happen. Let k be any field and let t, x be indeterminates over K. Let
K = k(t), and let f = x2 − t, which is irreducibe. In this case, K[x]P has a coefficient
field! First note that k[x] ⊆ K[x]P meets the maximal in 0: it maps to the quotient
V/PV ∼= K(

√
t) = k(

√
t) so that x maps to

√
t while k is fixed. Hence, K(x) ⊆ RP , and

is mapped isomorphically to the residue class field k(
√
t) mod PRP .


