Math 615, Winter 2012 Due: March 16. Problem Set #3

1. Let M and N be R-modules and let S be a flat R-algebra. Show that there is a natural isomorphism $S \otimes_R \operatorname{Tor}_i^R(M, N) \cong \operatorname{Tor}_i^S(S \otimes_R M, S \otimes_R N)$. In particular, the calculation of Tor commutes with localization and, if R is local and M, N are finitely generated, with completion.

2. Let *M* be a finitely generated module over a domain *A*. Let u_1, \ldots, u_r be a maximal set of elements in *M* that are linearly independent over *A*. Show that there exists $a \in A - \{0\}$ such that $aM \subseteq \sum_{i=1}^r Au_i = G$, which is free.

(a) Show that $\operatorname{Tor}_{i}^{A}(M, N)$ is killed by a for every $i \geq 1$ and every A-module N.

(b) Prove that M_a is free over A_a .

(c) Show that if $M \hookrightarrow Q$ as A-modules and $M \otimes_A N$ is torsion-free, then $M \otimes_A N \hookrightarrow Q \otimes N$ as A-modules.

3. Let M be a Cohen-Macaulay module over a local ring (R, m, K). Let P be a prime ideal such that $M_P \neq 0$. Replace R by $R/\operatorname{Ann}_R M$ and so assume that M is faithful. Note that M_P is faithful over R_P , since calculation of the annihilator commutes with localization.

(a) Show that there are elements x_1, \ldots, x_k in P whose images are a system of parameters for R_P and that are part of a system of parameters for R.

(b) Show that M_P is Cohen-Macaulay over R_P .

4. Let $R = K[[X, Y]]/(X^2, XY) = K[[x, y]]$, where K is a field, X, Y are formal indeterminates with imges x, y, and m = (x, y)R is the maximal ideal.

(a) Prove that a minimal first module of syzygies of m is isomorphic with $K \oplus m$.

(b) Find all the minimal modules of syzygies of K, and determine the Betti numbers of K = R/m.

5. Let M be a finitely generated module over a local ring (R, m, K). Let $f_1, \ldots, f_d \in R$ form a regular sequence on M. Prove that every nonzero submodule of M has Krull dimension at least d.

6. A Noetherian ring R is called *Cohen-Macaulay* if all of its localizations at prime ideals are Cohen-Macaulay. By #3.(b), it suffices if the localizations at maximal ideals are Cohen-Macaulay. Prove that if R is Cohen-Macaulay, so is the polynomial ring $R[x_1, \ldots, x_n]$ in *n*-variables over R. (Reduce to the case where n = 1, (R, m, K) is local, and R[x] is localized at maximal ideal lying over m.)

EXTRA CREDIT 5. Let *R* be any ring. Show that an *R*-module *M* is flat if and only if $\operatorname{Tor}_1^R(R/I, M) = 0$ for every ideal $I \subseteq R$. Show that if *R* is Noetherian, *M* is flat iff $\operatorname{Tor}_1^R(R/P, M) = 0$ for every prime ideal *P* of *R*.

EXTRA CREDIT 6. Let $(R, m, K) \rightarrow (S, n, L)$ be a homomorphism of local rings such that m maps into n. Prove that S is R-flat if and only if $\operatorname{Tor}_{1}^{R}(K, S) = 0$.