Math 615, Winter 2012 **Problem Set #4: Solutions**

1. Each of M, N is the direct sum of a free module and a torsion module: say $M = F \oplus A$ and $N = G \oplus B$. Since Tor distributes over \oplus and higher Tors with free modules are 0, $\operatorname{Tor}_1^R(M, N) \cong \operatorname{Tor}_1^R(A, B)$. Thus, it suffices to show that $\operatorname{Tor}_1^R(A, B) \cong A \otimes_R B$. A and Bare finite direct sums of cyclic torsion modules. Since both $\operatorname{Tor}_R^R(_,_)$ and \otimes_R distribute over \oplus , we may assume that A = R/aR, B = R/bR, $a, b \neq 0$. Then $A \otimes_R B \cong R/(a, b)R =$ R/dR where $d = \operatorname{GCD}(a, b)$. Use the resolution $0 \to R \xrightarrow{a} R \to 0$ for R/aR to see that $\operatorname{Tor}_R^1(R/aR, R/bR) = \operatorname{Ker}(R/bR \xrightarrow{a} R/bR)$. If a = a'd, b = b'd where $\operatorname{GCD}(a', b') = 1$, the kernel is b'R/bR (since $\operatorname{GCD}(a', b') = 1$) $\cong b'R/b'dR \cong R/dR = R/(a, b)R$.

2. If M is any R-module and f is a nonzerodivisor in R, $0 \to R \xrightarrow{f} R \to 0$ resolves R/fR, and so $\operatorname{Ext}^1_R(R/fR, M)$, computed by applying $\operatorname{Hom}_R(_, M)$ is $\operatorname{Coker}(M \xrightarrow{f} M) \cong M/fM$. Hence, $\operatorname{Ext}^1(R/fR, R) \cong R/fR$, and $\operatorname{Ext}^1_R(R/fR, R/gR) \cong R/(f,g)R$ in all cases. Now suppose that $M \cong F \oplus A$ and $N \cong G \oplus B$ over the PID R as in Problem #1. Then $\operatorname{Ext}^1_R(F, _)$ vanishes, and so $\operatorname{Ext}^1_R(M, N) \cong \operatorname{Ext}^1_R(A, N)$. For each cyclic summand R/fR of A, $\operatorname{Ext}^1_R(R/fR, N) \cong N/fN \cong (R/fR) \otimes_R N$. Hence, $\operatorname{Ext}^1_R(M, N) \cong A \otimes_R N$.

3. Every prime in R contains one of the X_i and so is in the image of some $G_0(R/X_iR) \to G_0(R)$. But $G_0(R/X_iR) \cong \mathbb{Z}$, where $[R/X_iR]$ generates. It follows that the n elements $[R/X_iR]$ span $G_0(R)$. Now suppose that $\sum_{i=1}^n a_i[R/X_iR] = 0$, where the $a_i \in \mathbb{Z}$. To complete the proof, it suffices to show that all the a_i are 0. Let $P_i = X_iR$. The map $M \mapsto \text{length}_{R_{P_i}}(M_{P_i})$ is additive on short exact sequences and so induces a map $G_0(R) \to \mathbb{Z}$ that sends $[R/P_j] \mapsto 0$ if $j \neq i$ and $[R/P_i] \mapsto 1$. Hence, its value on $\sum_{i=1}^n a_i[R/X_iR]$ is a_i . Consequently, if the sum is 0, all the a_i are 0. \Box

4. Necessity is clear. We use Noetherian induction on R: we may assume the result for all R/I, $I \neq 0$. Let P_1, \ldots, P_k be the minimal primes of R. Then $\operatorname{Spec}(R) = \bigcap_i V(P_i)$, and so it suffices to show that $U_i = U \cap V(P_i)$ is open in $V(P_i)$ for all i. U_i satisfies the same conditions within $V(P_i) = \operatorname{Spec}(R/P_i)$. So we have reduced to the case of one minimal prime, P. If $P \notin U$, U must be empty. Otherwise, choose $f \notin P$ such that the open set $D_f \subseteq U$. It suffices to show that $U \cap V(f)$ is open in V(f). But we may identify $\operatorname{Spec}(R/fR)$ with V(f), and then $U \cap V(f)$ satisfies the same conditions. By the hypothesis of Noetherian induction, $U \cap V(f)$ is open in V(f). \Box

5. Note that dim M = d implies that $I = \operatorname{Ann}_R M$ has height n-d. Let $x_1, \ldots, x_h = \underline{x}$ be a maximal regular sequence on R in I, and let $P \supseteq I$ be an associated prime of (\underline{x}) . Then \underline{x} is a maximal regular sequence in R_P , which is Cohen-Macauly, so P has height $h \ge$ height I. Let Q be a minimal prime of I of height n-d/ Any regular sequence in I is part of a system of parameters for R_Q , so $h \le n-d$. Thus, h = n-d, and depth_I R = n-d. By a class theorem, the first nonvanishing $\operatorname{Ext}_R^j(M, R)$ occurs with j = n-d. Since M is Cohen-Macaulay, by the Auslander-Buchsbaum theorem $\operatorname{pd}_R M = \operatorname{depth}(R) - \operatorname{depth}(M) = n \dim(M) = n-d$. Hence, there is a unique nonvanishing $\operatorname{Ext}_R^j(M, R)$ for j = n-d. Since $\operatorname{Ext}_R^{\bullet}(M, R) = H^{\bullet}(\operatorname{Hom}_R(G_{\bullet}, R))$, $\operatorname{Hom}_R(G_{\bullet}, R)$, numbered backwards, is a free resolution of $\operatorname{Ext}_R^{n-d}(M, R) = M^{\vee}$. The matrices for the dual bases in the dual complex are the transposes of those in the original complex, and so have entries in m. Hence, this resolution of M^{\vee} is minimal. If we use the dual complex to calculate $(M^{\vee})^{\vee} = \operatorname{Ext}_{R}^{n-d}(M^{\vee}, R)$ we get the original complex back, and so $M^{\vee\vee} \cong M$. Clearly, $\operatorname{Ann}_{R}M$ kills M^{\vee} , and $\operatorname{Ann}_{R}M^{\vee}$ kills $(M^{\vee})^{\vee}$. Hence, M and M^{\vee} have the same annihilator and the same dimension. Also $\operatorname{pd}(M^{\vee}) = n - d$ implies that depth $(M^{\vee}) = d$. Thus, M^{\vee} is Cohen-Macaulay, and $M^{\vee\vee} \cong M$. Exactness is immediate from the long exact sequence for Ext (only the terms in degree n - d are nonzero). Note also that if x is a nonzerodivisor on M, the long exact sequence for Ext gives that x is not a zerodivisor on M^{\vee} and an isomorphism $(M/xM)^{\vee} \cong M^{\vee}/xM^{\vee}$, which yields a different proof, by induction on dim(M), that M^{\vee} is Cohen-Macaulay.

6. Given the short exact sequence $0 \to A \to M \to B \to 0$, denoted S, we get a map of G_{\bullet} to the complex $0 \to A \to M \to 0$ that lifts id_B . The map $h: G_1 \to A$ must kill $Im G_2$ and so gives a map $f: B_1 \to A$. Every such f in fact arises from a unique $h: G_1 \to A$ that kills Im G_2 . The maps $A \hookrightarrow M$ and $G_0 \twoheadrightarrow M$ give a map $A \oplus G_0 \twoheadrightarrow M$ and $a \oplus b$ maps to 0 iff $b \in B_1$ and $a + f(b_1) = 0$. Thus $0 \to A \to M \to B \to 0$ arises, up to isomorphism, from $f : B_1 \to A$ by the construction given: with $N_f = \{(f(b_1) \oplus -b_1 : b_1 \in B_1)\}$ the constructed module in the middle is $M_f = (A \oplus G_0)/N_f$. To get the bijection with $\operatorname{Ext}^1_R(A,B)$ it suffices to show that $f, f': B_1 \to A$ give isomorphic extensions iff f - f'extends to G_0 . For "if", note that if ϕ extends f' - f to G_0 the map $A \oplus G_0 \to A \oplus G_0$ given by $a \oplus u \mapsto (a + \phi(u)) \oplus u$ induces the isomorphism. For "only if", we may use the isomorphism of sequences to get a map $\theta: A \oplus G_0 \to A \oplus G_0$ that is the identity on A and induces the identity map on B, which means we may take the map on G_0 to have the form $\phi \oplus \mathrm{id}_{G_0}$, where $\phi: G_0 \to A$. For θ to take Z_f to $Z_{f'}$, as needed, we must have that ϕ extends f' - f to all of G_0 . We have at once from the construction of the connecting homomorphism (using the snake lemma on the short exact sequence of complexes obtained by taking $\operatorname{Hom}_R(G_{\bullet}, \mathcal{S})$) that id_B maps to $[h] \in \operatorname{Ext}^1(B, A)$: id_B is induced by the map $G_0 \to M$, and composing with $G_1 \to G_0$ gives h, which actually takes values in A.

EXTRA CREDIT 7. Since $G_0(R/xR) \to G_0(R) \to G_0(R_x) \to 0$ is exact, $G_0(R)$ will be generated by Im $G_0(R/xR)$ and lifts of generators of $G_0(R_x)$. Since $R_x \cong K[x, y, z]_x$ (we may solve for u) and $G_0(K[x, y, z]) \cong \mathbb{Z}$, generated by the class of the ring, we have that $G_0(R)$ is generated by [R] (lifting $[R_x]$) and Im $G_0(R/xR)$. Now, $R/xR \cong (K[y, z]/(yz))[u]$, polynomial over K[y, z]/(yz). Hence, $G_0(R/xR) \cong G_0(K[yz]/(yz)) \cong \mathbb{Z} \oplus \mathbb{Z}$ generated by [R/(x, y)] and [R/(x, z)] by Problem **#3.** But [R/xR] = 0 in $G_0(R)$, and $0 \to R/(x, y) \stackrel{z}{\to}$ $R/xR \to R/(x, z) \to 0$ is exact, so that [R/(x, z)] = -[R/(x, y)] in $G_0(R)$. Hence, [R]and [R/(x, y)] generate $G_0(R)$. Since R is a domain, $\mathbb{Z} \cdot [R]$ splits off. We need only show that [R/(x, y)] is not torsion in $\overline{G}_0(R)$. But P = (x, y)R has infinite order in the divisor class group of R: note that $R \cong K[as, at, bs, bt]$ with as, at, bs, bt corresponding to x, y, u, vrespectively, that $(x, y)^k$ is the contraction of the primary ideal a^k in K[a, b, s, t], hence primary, and so $P^{(k)} = P^k$, which needs k + 1 minimal generators. \Box

EXTRA CREDIT 8. Finite length case. We have $0 \to \operatorname{Hom}_R(C, A) \to \operatorname{Hom}_R(C, B) \to \operatorname{Hom}_R(C, C) \to D \to 0$. Because $B \cong A \oplus C$ in some way, length $\operatorname{Hom}_R(C, B)$ is the sum of the lengths of $\operatorname{Hom}_R(C, A)$ and $\operatorname{Hom}_R(C, C)$. Hence, length D = 0, and so D = 0. But then id_C is the image of a map $C \to B$, which means that the sequence splits. We leave the general case as a continuing problem. \Box