Math 615, Winter 2012 Due: Monday, April 16.

Problem Set #5

1. Let M be a Cohen-Macaulay module of dimension d over a local ring (R, m, K). Let $\underline{x} = x_1, \ldots, x_d$ be a system of parameters (i.e., a maximum regular sequence) on M, and let $x = x_1$, so that x is a nonzerodivisor on M.

(a) Prove that $\operatorname{Ext}_R^d(K, M) \cong \operatorname{Ext}_R^{d-1}(K, M/xM).$

(b) Prove that $\operatorname{Ext}_{R}^{d}(K, M) \cong \operatorname{Hom}_{R}(K, M/(\underline{x})M)$. Hence, the K-vector space dimension of $\operatorname{Hom}_{R}(K, M/(\underline{x})M) \cong \operatorname{Ann}_{M/(\underline{x})M}m$ is independent of the choice of system of parameters x_{1}, \ldots, x_{d} .

The positive integer $\dim_K \operatorname{Ext}^d_R(K, M)$ is called the *type* of M. Also show that the type of M is the same as the type of \widehat{M} over \widehat{R} .

2. A local ring (R, m, K) that has type 1 as a module over itself is called *Gorenstein*. Prove if R is regular, then R is Gorenstein, and that if R is Gorenstein, so is $R/(f_1, \ldots, f_k)R$ whenever f_1, \ldots, f_k is part of a system of parameters for R.

3. Let M be a Cohen-Macaulay module of dimension d over a regular local ring (R, m, K) of dimension n. Show that the type of M is the same as the least number of generators of its Ext dual $\operatorname{Ext}_{R}^{n-d}(M, R)$. (It may be helpful to reduce to the case where Krull dim M = 0.)

4. Let $X = (x_{ij})$ denote a 3×2 matrix of indeterminates over a field K, and let R be the polynomial ring in the six variables x_{ij} over the field K. Let m denote the ideal generated by the variables. Let Δ_1 , $-\Delta_2$ and Δ_3 be the determinants of the 2×2 matrices obtained by omitting the first, second and third rows of the matrix, respectively, and let Y be the 1×3 matrix ($\Delta_1 \Delta_2 \Delta_3$), So that YX = (0). Let $P = (\Delta_1, \Delta_2, \Delta_3)R$. You may assume that the complex (*) $0 \to R^2 \xrightarrow{X} R^3 \xrightarrow{Y} R \to R/P \to 0$ is exact, and so gives a free resolution of R/P. Let Q be the ideal generated by $x_{12}, x_{11} - x_{22}, x_{21} - x_{32}$, and x_{31} in R. Show that the images of these elements form a homogeneous system of parameters for R/P, determine the type of R_m/PR_m in two different ways, and determine the intersection multiplicity of Z = V(P) and L = V(Q) at the origin.

5. Let R = K[[x, y]]/(xy), where K is a field. Determine the minimal first modules of syzygies of R/xR and R/yR. Describe a minimal free resolution of R/xR over R and determine all the Betti numbers of R/xR over R. Find $\operatorname{Tor}_{i}^{R}(R/xR, R/yR)$ for all $i \geq 0$.

6. Let $(R, m, K) \to (S, n, L)$ be a flat local extension such that dim S/mS = 0. Let M be a Cohen-Macaulay module over R. Show $S \otimes_R M$ is Cohen-Macaulay and its type is the product of the type of M and the type of S/mS.

EXTRA CREDIT 9. Prove that the complex described in #4. is exact.

EXTRA CREDIT 10. Use the resolution in #4. to calculate the Hilbert function of R/P. Show that R/P maps as K-algebra onto the Segre product T of the polynomial rings K[x, y, z] and K[s, t] so as to preserve degree. The Hilbert function of T was calculated in an earlier exercise. Conclude from the fact that R/P and T have the same Hilbert function that the map $R/P \rightarrow T$ is an isomorphism.