Math 615, Winter 2012 **Problem Set #5: Solutions**

1. (a) By a class theorem, the first non-vanishing $\operatorname{Ext}_R^i(K, M)$ occurs at the depth of M on m. Thus, $\operatorname{Ext}_R^{d-1}(K, M) = 0$. Therefore, the long exact sequence for Ext coming from $0 \to M \xrightarrow{x} M \to M/xM \to 0$ yields $0 \to \operatorname{Ext}_R^{d-1}(K, M/xM) \xrightarrow{\theta} \operatorname{Ext}_R^d(K, M) \xrightarrow{x} \operatorname{Ext}_R^d(K, M)$. The rightmost map is 0 because x kills K, and so θ is an isomorphism. \Box (b) By a straightforward induction k, it then follows that for $1 \le k \le d$ that $\operatorname{Ext}_R^d(K, M) \cong \operatorname{Ext}_R^{d-k}(K, M/(x_1, \ldots, x_k)M)$. The stated result is the case k = d. \Box

Since \widehat{R} is flat over R, completion commutes with Ext for finitely generated R-modules, from which the final statement follows.

2. If *R* is regular, we may compute the type as the *K*-vector space dimension of $R/(\underline{x})R = K$, where $\underline{x} = x_1, \ldots, x_d$ is a minimal set of generators of *m* (but also, since *R* is regular, a system of parameters. The result follows. By **1(b)**, type does not change when we kill part of a system of parameters: it can simply be computed for both rings after killing the rest of the system of parameters.

3. Replacing M by $M/(x_1, \ldots, x_k)M$ does not change the type nor the minimal number of generators, and replaces M^{\vee} by $M^{\vee}/(x_1, \ldots, x_k)M^{\vee}$. Thus, it suffices to consider the case where M has finite length. Let x_1, \ldots, x_d generate the maximal ideal of R, and consider the map $M \to M^d$ sending $m \mapsto (x_1m, \ldots, x_dm)$. The kernel V is a K-vector space and is evidently $\operatorname{Ann}_M m$. Since $(*) \quad 0 \to V \to M \to M^d$ is an exact sequence of 0-dimensional Cohen-Macaulay modules, applying the exact contravariant functor $_^{\vee}$ yields an exact sequence $(M^{\vee})^d \to M \to V^{\vee} \to 0$, where the leftmost map sends (u_1, \ldots, u_d) to $\sum_{i=1}^d x_i u_i$. It follows that $V^{\vee} \cong M^{\vee}/mM^{\vee}$. By Nakayama's lemma, the K-vector space dimension of the latter is the least number of generators of M^{\vee} . Thus, the result follows if V and V^{\vee} have the same dimension. Since $_^{\vee}$ commutes with direct sum, it suffices to check this when V = K. But $\operatorname{Ext}^d(K, R/(x_1, \ldots, x_d))$ has K-vector space dimension equal to the type of R, which is 1.

4. After killing the elements $\underline{f} = f_1, f_2, f_3, f_4$ suggested as a homogeneous system of parameters, the matrix has the form $\begin{pmatrix} u & 0 \\ v & u \\ 0 & v \end{pmatrix}$ where u is the common image of x_{11} and

 x_{22} and v is the common image of x_{21} and x_{32} . The 2×2 minors are v^2, uv, u^2 . Thus, the quotient $B \cong K[u, v]/(u^2, uv, v^2) \cong K+Ku+Kv$ is Artin. Hence, dim $(R/P) \leq 4$. But R maps onto the Segre product described in **EC10**, whose fraction field is K(xs, ys, zs, t/s), which has transcendence degree 4. So dim R/P = 4. From the given projective resolution, which has length 2, the depth of $(R/P)_m$ is 6-2 = 4. Thus $(R/P)_m$ is Cohen-Macaulay, and the given homogeneous system of parameters is a regular sequence. From the calculation of the quotient as K + Ku + Kv, the dimension of the annihilator of m in the quotient, which is Ku + Kv, is 2. So the type is 2. This also follows from the fact that when uses the given resolution to compute $\text{Ext}^2(R/P, R) \cong \text{Coker } X^{tr}$, it needs two minimal generators, even after localization at m. Thus, the homogeneous system of parameters is a regular sequence. Finally, the required intersection multiplicity e may be computed from

the Koszul homology $H_i(\underline{f}; (R/P)_m)$. All of this homology vanishes for $i \ge 1$ since \underline{f} is a regular sequence. Hence, \underline{e} is the length of $(R/P)_m/(f) \cong K + Ku + Kv$, and so is $\overline{3}$.

5. The first module of syzygies of R/xR is $xR \cong R/yR$. One has symmetry here. Hence, the minimal free resolution is $\cdots \xrightarrow{y} R \xrightarrow{x} R \xrightarrow{y} R \xrightarrow{x} R \to R/xR \to 0$: it is periodic with period 2, the maps are alternately multiplication by x and multiplication by y, and all the Betti numbers are 1. When we omit the augmentation, apply $\otimes_R R/yR$, note that R/yR = K[[x]], and that multiplication by y becomes the 0 map, we obtain the Tors as the homology of $\cdots \xrightarrow{0} K[[x]] \xrightarrow{x} K[[x]] \xrightarrow{0} K[[x]] \xrightarrow{x} K[[x]] \to 0$. It follows that $\operatorname{Tor}_i^R(R/xR, R/yR) \cong K$ if i is even and is 0 if i is odd. (Tor is not rigid in this example.)

6. We may replace R by $R/\operatorname{Ann}_R M$ and S by $S/(\operatorname{Ann}_R M)S$. Let y_1, \ldots, y_h be a system of parameters in R. We may replace M by $M/(y_1, \ldots, y_h)M$. Since S is R-flat, the y_i form a regular sequence on $S \otimes_R M$ as well as on M. Since dim S/mS = 0, n is nilpotent mod m and so it is nilpotent mod $(y_1, \ldots, y_h)S$. Thus, we may assume that R, S are Artin local. Let $(x_1, \ldots, x_d) = m$. Then we have an exact sequence $(*) \quad 0 \to V \to M \to M^d$ as in 3. above, where $V = \operatorname{Ann}_M m$, so that dim $_K V = t$ is the type of M. Apply $S \otimes_R _$ to obtain an exact sequence $(S \text{ is } R\text{-flat}) \ 0 \to S \otimes_R V \to S \otimes_R M \to (S \otimes M)^d$. Then Ann $_{S \otimes_R M}m$ may be identified with $V \otimes_R S$, which, since m kills V, may be identified with $N = V \otimes_K (S/mS)$, and N contains the annihilator N' of n in $S \otimes_R M$. Hence, N' may be identified with Ann $_{V \otimes_K (S/mS)}n \cong V \otimes_K W$, with $W = \operatorname{Ann}_{S/mS}n$, an L-vector space with dim $_L W = t'$, where t' is the type of S/mS. Hence, $N' \cong V \otimes_K W \cong K^t \otimes_K L^{t'} \cong L^{tt'}$. \Box

EXTRA CREDIT 8., continued. One needs that $\operatorname{Hom}_R(C, B) \to \operatorname{Hom}_R(C, C)$ is onto. The issue is local, and we may aslso complete. Thus, we may assume (R, m) is complete local. For all $n, 0 \to N \to A/m^n A \to B/m^n B \xrightarrow{g_n} C/m^n C \to 0$ is exact for a suitable kernel N. The hypothesis implies that the length of $B/m^n B$ is the sum of the lengths of the surrounding modules, which forces N to be 0. For each n, there is a nonempty coset in $\operatorname{Hom}_R(C/m^n C, B/m^n B)$ consisting of maps f such that $g_n \circ f = \operatorname{id}$, because we have already shown there are splittings in the finite length case. The inverse limit W of these cosets is nonempty by a class lemma, and an element of W induces a map of $C \to B$ that splits $B \to C$. \Box

EXTRA CREDIT 9. The only issue that is not straightforward is exactness at the R^3 spot, which says that the columns C_1, C_2 of X span the relations on the Δ_i . Suppose that $f_1\Delta_1 + f_2\Delta_2 + f_3\Delta_3 = 0$. Then $\Delta_1, \Delta_2 \in (x_{31}, x_{32})$, which is prime, and Δ_3 is not in this ideal. Hence, $f_3 = ux_{31} + vx_{32}$. It follows that if f is the column given by the f_i , then $f - uC_1 - vC_2$ has third coordinate 0, so that it is a relation, essentially, on Δ_1 and Δ_2 . Since Δ_1 and Δ_2 are relatively prime, this relation is a multiple of the relation $(-\Delta_2)\Delta_1 + (\Delta_1)\Delta_2 + (0)\Delta_3 = 0$, and the result follows because the column of coefficients in this relation is $x_{32}C_1 - x_{31}C_2$.

EXTRA CREDIT 10. The alternating sum of the Hilbert functions of the modules in the resolution is 0. Thus, the Hilb_{*R/P*} $(n) = \binom{n+5}{5} - 3\binom{n+3}{5} + 2\binom{n+2}{5}$. Factoring (n+2)(n+1)/5! from each term gives $(n+5)(n+4)(n+3) - 3(n+3)n(n-1) + 2n(n-1)(n-2) = (1-3+2)n^3 + (12-6-6)n^2 + (20+15+12+9+4)n + (60+0+0) = 60(n+1)$, so the Hilbert function is $(n+2)(n+1)^2/2 = \binom{n+2}{2}(n+1)$. \Box (Cf. Problem Set #2, **5(a).)**