Math 615, Winter 2012 Problem Set \#5: Solutions

1. (a) By a class theorem, the first non-vanishing $\operatorname{Ext}_{R}^{i}(K, M)$ occurs at the depth of M on m. Thus, $\operatorname{Ext}_{R}^{d-1}(K, M)=0$. Therefore, the long exact sequence for Ext coming from $0 \rightarrow M \xrightarrow{x} M \rightarrow M / x M \rightarrow 0$ yields $0 \rightarrow \operatorname{Ext}_{R}^{d-1}(K, M / x M) \xrightarrow{\theta} \operatorname{Ext}_{R}^{d}(K, M) \xrightarrow{x}$ $\operatorname{Ext}_{R}^{d}(K, M)$. The rightmost map is 0 because x kills K, and so θ is an isomorphism.
(b) By a straightforward induction k, it then follows that for $1 \leq k \leq d$ that $\operatorname{Ext}_{R}^{d}(K, M) \cong$ $\operatorname{Ext}_{R}^{d-k}\left(K, M /\left(x_{1}, \ldots, x_{k}\right) M\right)$. The stated result is the case $k=d$.
Since \widehat{R} is flat over R, completion commutes with Ext for finitely generated R-modules, from which the final statement follows.
2. If R is regular, we may compute the type as the K-vector space dimension of $R /(\underline{x}) R=$ K, where $\underline{x}=x_{1}, \ldots, x_{d}$ is a minimal set of generators of m (but also, since R is regular, a system of parameters. The result follows. By $\mathbf{1}(\mathbf{b})$., type does not change when we kill part of a system of parameters: it can simply be computed for both rings after killing the rest of the system of parameters.
3. Replacing M by $M /\left(x_{1}, \ldots, x_{k}\right) M$ does not change the type nor the minimal number of generators, and replaces M^{\vee} by $M^{\vee} /\left(x_{1}, \ldots, x_{k}\right) M^{\vee}$. Thus, it suffices to consider the case where M has finite length. Let x_{1}, \ldots, x_{d} generate the maximal ideal of R, and consider the map $M \rightarrow M^{d}$ sending $m \mapsto\left(x_{1} m, \ldots, x_{d} m\right)$. The kernel V is a K-vector space and is evidently $\mathrm{Ann}_{M} m$. Since ($*$) $\quad 0 \rightarrow V \rightarrow M \rightarrow M^{d}$ is an exact sequence of 0 dimensional Cohen-Macaulay modules, applying the exact contravariant functor _ \vee yields an exact sequence $\left(M^{\vee}\right)^{d} \rightarrow M \rightarrow V^{\vee} \rightarrow 0$, where the leftmost map sends $\left(u_{1}, \ldots, u_{d}\right)$ to $\sum_{i=1}^{d} x_{i} u_{i}$. It follows that $V^{\vee} \cong M^{\vee} / m M^{\vee}$. By Nakayama's lemma, the K-vector space dimension of the latter is the least number of generators of M^{\vee}. Thus, the result follows if V and V^{\vee} have the same dimension. Since ${ }^{\vee}$ commutes with direct sum, it suffices to check this when $V=K$. But $\operatorname{Ext}^{d}\left(K, R /\left(x_{1}, \ldots, x_{d}\right)\right)$ has K-vector space dimension equal to the type of R, which is 1 .
4. After killing the elements $\underline{f}=f_{1}, f_{2}, f_{3}, f_{4}$ suggested as a homogeneous system of parameters, the matrix has the form $\left(\begin{array}{ll}u & 0 \\ v & u \\ 0 & v\end{array}\right)$ where u is the common image of x_{11} and x_{22} and v is the common image of x_{21} and x_{32}. The 2×2 minors are $v^{2}, u v, u^{2}$. Thus, the quotient $B=\cong[u, v] /\left(u^{2}, u v, v^{2}\right) \cong K+K u+K v$ is Artin. Hence, $\operatorname{dim}(R / P) \leq 4$. But R maps onto the Segre product described in EC10, whose fraction field is $K(x s, y s, z s, t / s)$, which has transcendence degree 4 . So $\operatorname{dim} R / P=4$. From the given projective resolution, which has length 2 , the depth of $(R / P)_{m}$ is $6-2=4$. Thus $(R / P)_{m}$ is Cohen-Macaulay, and the given homogeneous system of parameters is a regular sequence. From the calculation of the quotient as $K+K u+K v$, the dimension of the annihilator of m in the quotient, which is $K u+K v$, is 2 . So the type is 2 . This also follows from the fact that when uses the given resolution to compute $\operatorname{Ext}^{2}(R / P, R) \cong \operatorname{Coker} X^{t r}$, it needs two minimal generators, even after localization at m. Thus, the homogeneous system of parameters is a regular sequence. Finally, the required intersection multiplicity e may be computed from
the Koszul homology $H_{i}\left(\underline{f} ;(R / P)_{m}\right)$. All of this homology vanishes for $i \geq 1$ since \underline{f} is a regular sequence. Hence, \bar{e} is the length of $(R / P)_{m} /(f) \cong K+K u+K v$, and so is $\overline{3}$.
5. The first module of syzygies of $R / x R$ is $x R \cong R / y R$. One has symmetry here. Hence, the minimal free resolution is $\cdots \xrightarrow{y} R \xrightarrow{x} R \xrightarrow{y} R \xrightarrow{x} R \rightarrow R / x R \rightarrow 0$: it is periodic with period 2 , the maps are alternately multiplication by x and multiplication by y, and all the Betti numbers are 1 . When we omit the augmentation, apply $\otimes_{R} R / y R$, note that $R / y R=K[[x]]$, and that multiplication by y becomes the 0 map, we obtain the Tors as the homology of $\cdots \xrightarrow{0} K[[x]] \xrightarrow{x} K[[x]] \xrightarrow{0} K[[x]] \xrightarrow{x} K[[x]] \rightarrow 0$. It follows that $\operatorname{Tor}_{i}^{R}(R / x R, R / y R) \cong K$ if i is even and is 0 if i is odd. (Tor is not rigid in this example.)
6. We may replace R by $R / \operatorname{Ann}_{R} M$ and S by $S /\left(\operatorname{Ann}_{R} M\right) S$. Let y_{1}, \ldots, y_{h} be a system of parameters in R. We may replace M by $M /\left(y_{1}, \ldots, y_{h}\right) M$. Since S is R-flat, the y_{i} form a regular sequence on $S \otimes_{R} M$ as well as on M. Since $\operatorname{dim} S / m S=0, n$ is nilpotent $\bmod m$ and so it is nilpotent $\bmod \left(y_{1}, \ldots, y_{h}\right) S$. Thus, we may assume that R, S are Artin local. Let $\left(x_{1}, \ldots, x_{d}\right)=m$. Then we have an exact sequence (*) $0 \rightarrow V \rightarrow M \rightarrow M^{d}$ as in 3. above, where $V=\mathrm{Ann}_{M} m$, so that $\operatorname{dim}_{K} V=t$ is the type of M. Apply $S \otimes_{R}$ to obtain an exact sequence (S is R-flat) $0 \rightarrow S \otimes_{R} V \rightarrow S \otimes_{R} M \rightarrow(S \otimes M)^{d}$. Then $\mathrm{Ann}_{\left.S \otimes_{R} M\right)} m$ may be identified with $V \otimes_{R} S$, which, since m kills V, may be identified with $N=V \otimes_{K}(S / m S)$, and N contains the annihilator N^{\prime} of n in $S \otimes_{R} M$. Hence, N^{\prime} may be identified with $\operatorname{Ann}_{V \otimes_{K}(S / m S)} n \cong V \otimes_{K} W$, with $W=\operatorname{Ann}_{S / m S} n$, an L-vector space with $\operatorname{dim}_{L} W=t^{\prime}$, where t^{\prime} is the type of $S / m S$. Hence, $N^{\prime} \cong V \otimes_{K} W \cong K^{t} \otimes_{K} L^{t^{\prime}} \cong L^{t t^{\prime}}$.
EXTRA CREDIT 8., continued. One needs that $\operatorname{Hom}_{R}(C, B) \rightarrow \operatorname{Hom}_{R}(C, C)$ is onto. The issue is local, and we may aslso complete. Thus, we may assume (R, m) is complete local. For all $n, 0 \rightarrow N \rightarrow A / m^{n} A \rightarrow B / m^{n} B \xrightarrow{g_{n}} C / m^{n} C \rightarrow 0$ is exact for a suitable kernel N. The hypothesis implies that the length of $B / m^{n} B$ is the sum of the lengths of the surrounding modules, which forces N to be 0 . For each n, there is a nonempty coset in $\operatorname{Hom}_{R}\left(C / m^{n} C, B / m^{n} B\right)$ consisting of maps f such that $g_{n} \circ f=\mathrm{id}$, because we have already shown there are splittings in the finite length case. The inverse limit W of these cosets is nonempty by a class lemma, and an element of W induces a map of $C \rightarrow B$ that splits $B \rightarrow C$.
EXTRA CREDIT 9. The only issue that is not straightforward is exactness at the R^{3} spot, which says that the columns C_{1}, C_{2} of X span the relations on the Δ_{i}. Suppose that $f_{1} \Delta_{1}+f_{2} \Delta_{2}+f_{3} \Delta_{3}=0$. Then $\Delta_{1}, \Delta_{2} \in\left(x_{31}, x_{32}\right)$, which is prime, and Δ_{3} is not in this ideal. Hence, $f_{3}=u x_{31}+v x_{32}$. It follows that if f is the column given by the f_{i}, then $f-u C_{1}-v C_{2}$ has third coordinate 0 , so that it is a relation, essentially, on Δ_{1} and Δ_{2}. Since Δ_{1} and Δ_{2} are relatively prime, this relation is a multiple of the relation $\left(-\Delta_{2}\right) \Delta_{1}+\left(\Delta_{1}\right) \Delta_{2}+(0) \Delta_{3}=0$, and the result follows because the column of coefficients in this relation is $x_{32} C_{1}-x_{31} C_{2}$.
EXTRA CREDIT 10. The alternating sum of the Hilbert functions of the modules in the resolution is 0 . Thus, the $\operatorname{Hilb}_{R / P}(n)=\binom{n+5}{5}-3\binom{n+3}{5}+2\binom{n+2}{5}$. Factoring $(n+2)(n+1) / 5$! from each term gives $(n+5)(n+4)(n+3)-3(n+3) n(n-1)+2 n(n-1)(n-2)=$ $(1-3+2) n^{3}+(12-6-6) n^{2}+(20+15+12+9+4) n+(60+0+0)=60(n+1)$, so the Hilbert function is $(n+2)(n+1)^{2} / 2=\binom{n+2}{2}(n+1) . \quad \square($ Cf. Problem Set \#2, 5(a).)
