
Cohen-Macaulay rings

A sequence of elements x1, . . . , xn of a ring R is called a possibly improper regular
sequence on the R-module M if x1 is not a zerodivisor on M and, for 1 ≤ i ≤ n−1, xi+1 is
not a zerodivisor on M/(x1, . . . , xi)M . If, in addition, (x1, . . . , xn)M 6= M , the sequence
is called a regular sequence on M . The main case here will be when M = R.

A local ring is called Cohen-Macaulay if some system of parameters is a regular sequence
on R. We shall see that this implies that every system of parameters is a regular sequence.
Note that a regular sequence x1, . . . , xn in a Noetherian ring R has image that is part of a
system of parameters in every local ring RP of R for a prime P with (x1, . . . , xn)R ⊆ P .
To see this, first note that the property of being a possibly improper regular sequence
is preserved by flat base change, since that is true for the nonzerodivisor property: the

injectivity of R
x·−→ R is preserved when we apply S ⊗R to obtain S

x·−→ S, and the
result follows from a straightforward induction on the number elements in the sequence.
The condition (x1, . . . , xn) ⊆ P guarantees that one has a regular sequence in RP . In
the local case, if x1 is not a zerodivsor, it is not in any minimal prime of R, and so
dim (R/x1R) = dim (R)− 1. The result that the regular sequence x1, . . . , xn is part of a
system of parameters follows from a straightforward induction on n.

Regular local rings are Cohen-Macaulay: if one has a minimal set of generators of the
maximal ideal, the quotient by each in turn is again regular and so is a domain, and
hence every element is a nonzerodivisor modulo the ideal generated by its predecessors.
Moreover, local complete intersections, i.e., local rings of the form R/(f1, . . . , fh) where
R is regular and f1, . . . , fh is part of a system of parameters for R, are Cohen-Macaulay.
It is quite easy to see that if R is Cohen-Macaulay, so is R/I whenever I is generated by
a regular sequence.

If R is a Cohen-Macaulay local ring, we shall show below that the localization of R
at any prime ideal is Cohen-Macaulay. We define an arbitrary Noetherian ring to be
Cohen-Macaulay if all of its local rings at maximal ideals (equivalently, at prime ideals)
are Cohen-Macaulay.

In general, regular sequences in a ring R are not permutable (e.g., x, (1− x)y, (1− x)z
is a regular sequence in K[x, y, z] but (1− x)y, (1− x)z, x is not), but this is true in the
local case and certain graded cases:

Proposition. Let (R,m) be local and M 6= 0 finitely generated or let R be N-graded,
M 6= 0 Z-graded with nonzero components bounded below, and let m be the ideal of R
generated by all elements of positive degree. Let x1, . . . , xn be a sequence of elements of
m (that are homogeneous of positive degree in the graded case). If the elements form a
regular sequence on M in one order, they form a regular sequence on M in every order.
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Proof. Note that under these hypotheses (x1, . . . , xn)M 6= M is automatic, by Nakayama’s
lemma. }}medskip

Since the permutation group is generated by transpositions of consecutive elements,
it suffices to show that given a regular sequence, the result of transposing consecutive
elements xi and xi+1 is a regular sequence. For the purpose, we may replace M by
M/(x1, . . . , xi−1)M . Thus, we may assume the two elements are x1 and x2. The condi-
tions that are imposed mod (x1, x2)M or on the quotient M/(x1, . . . , xj)M for j ≥ 2 are
clearly not affected by the transposition. Therefore it suffices consider the case n = 2.

Assume that x1, x2 is a regular sequence onM . We first show that x2 is not a zerodivisor.
Let N ⊆ M be the annihilator of x2, which is again graded in the graded case. If u ∈ N ,
then x2u = x1(0), and so u = x1v for some v ∈ M . Then x2x1v = 0 and since x1 is not
a zerodivisor on M , we have that x2v = 0 and v ∈ N . This shows that N = x1N . By
Nakayama’s lemma, N = 0, as required. We next show that x1 is not a zerodivisor mod
x2M . If x1u = x2w then, since x1, x2 is a regular sequence we have that w = x1v and
x1(u− x2v) = 0. Since x1 is not a zerodivisor, u = x2v, as required. �

We place special emphasis on the graded case here for several reasons. One is its
importance in projective geometry. Beyond that, there are many theorems about the
graded case that make it easier both to understand and to do calculations. Moreover,
many of the most important examples of Cohen-Macaulay rings are graded.

We first note:

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M is homogeneous. Hence, every
minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M , and then
every nonzero multiple of u 6= 0 can be thought of as a nonzero element of S/P ∼= Su ⊆M ,
and so has annihilator P as well. If ui is a nonzero homogeneous component of u of degree
i, its annihilator Ji is easily seen to be a homogeneous ideal of S. If Jh 6= Ji we can
choose a form F in one and not the other, and then Fu is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals Ji are all equal to, say, J , and clearly
J ⊆ P . Suppose that s ∈ P −J and subtract off all components of S that are in J , so that
no nonzero component is in J . Let sa /∈ J be the lowest degree component of s and ub be
the lowest degree component in u. Then sa ub is the only term of degree a + b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary. Let K be a field and let R be a finitely generated N-graded K-algebra with
R0 = K. Let M =

⊕∞
d=1Rj be the homogeneous maximal ideal of R. Then dim (R) =

height (M) = dim (RM).

Proof. The dimension of R will be equal to the dimension of R/P for one of the minimal
primes P of R. Since P is minimal, it is an associated prime and therefore is homogenous.
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Hence, P ⊆M. The domain R/P is finitely generated over K, and therefore its dimension
is equal to the height of every maximal ideal including, in particular, M/P . Thus,

dim (R) = dim (R/P ) = dim
(
(R/P )M

)
≤ dimRM ≤ dim (R),

and so equality holds throughout, as required. �

Proposition (homogeneous prime avoidance). Let R be an N-graded algebra, and
let I be a homogeneous ideal of R whose homogeneous elements have positive degree. Let
P1, . . . , Pk be prime ideals of R. Suppose that every homogeneous element f ∈ I is in⋃k

i=1 Pi. Then I ⊆ Pj for some j, 1 ≤ j ≤ k.

Proof. We have that the set H of homogeneous elements of I is contained in
⋃k

i=1 Pk. If
k = 1 we can conclude that I ⊆ P1. We use induction on k. Without loss of generality,
we may assume that H is not contained in the union of any k − 1 if the Pj . Hence, for
every i there is a homogeous element gi ∈ I that is not in any of the Pj for j 6= i, and
so it must be in Pi. We shall show that if k > 1 we have a contradiction. By raising the
gi to suitable positive powers we may assume that they all have the same degree. Then
gk−11 + g2 · · · gk ∈ I is a homogeneous element of I that is not in any of the Pj : g1 is not
in Pj for j > 1 but is in P1, and g2 · · · gk is in each of P2, . . . , Pk but is not in P1. �

Now suppose that R is a finitely generated N-graded algebra over R0 = K, where K is
a field. By a homogenous system of parameters for R we mean a sequence of homogeneous
elements F1, . . . , Fn of positive degree in R such that n = dim (R) and R/F1, . . . , Fn) has
Krull dimension 0. When R is a such a graded ring, a homogeneous system of parameters
always exists. By homogeneous prime avoidance, there is a form F1 that is not in the union
of the minimal primes of R. Then dim (R/F1) = dim (R)−1. For the inductive step, choose
forms of positive degree F2, . . . , Fn whose images in R/F1R are a homogeneous system
of parameters for R/F1R. Then F1, . . . , Fn is a homogeneous system of parameters for
R. �

Moreover, we have:

Theorem. Let R be a finitely generated N-graded K-algebra with R0 = K such that
dim (R) = n. A homogeneous system of parameters F1, . . . , Fn for R always exists. More-
over, if F1, . . . , Fn is a sequence of homogeneous elements of positive degree, then the
following statements are equivalent.
(1) F1, . . . , Fn is a homogeneous system of parameters.
(2) m is nilpotent modulo (F1, . . . , Fn)R.
(3) R/(F1, . . . , Fn)R is finite-dimensional as a K-vector space.
(4) R is module-finite over the subring K[F1, . . . , Fn].

Moreover, when these conditions hold, F1, . . . , Fn are algebraically independent over K,
so that K[F1, . . . , Fn] is a polynomial ring.

Proof. We have already shown existence.
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(1) ⇒ (2). If F1, . . . , Fn is a homogeneous system of parameters, we have that

dim
(
R/F1, . . . , Fn)

)
= 0.

We then know that all prime ideals are maximal. But we know as well that the maximal
ideals are also minimal primes, and so must be homogeneous. Since there is only one
homogenous maximal ideal, it must be m/(F1, . . . , Fn)R, and it follows that m is nilpotent
on (F1, . . . , Fn)R.

(2) ⇒ (3). If m is nilpotent modulo (F1, . . . , Fn)R, then the homogeneous maximal
ideal of R = R/(F1, . . . , Fn)R is nilpotent, and it follows that [R]d = 0 for all d � 0.
Since each Rd is a finite dimensional vector space over K, it follows that R itself is finite-
dimensional as a K-vector space.

(3) ⇒ (4). This is immediate from the homogeneous form of Nakayama’s Lemma: a
finite set of homogeneous elements of R whose images in R are a K-vector space basis
will span R over K[F1, . . . , Fn], since the homogenous maximal ideal of K[F1, . . . , Fn] is
generated by F1, . . . , Fn.

(4)⇒ (1). If R is module-finite over K[F1, . . . , Fn], this is preserved mod (F1, . . . , Fn),
so that R/(F1, . . . , Fn) is module-finite over K, and therefore zero-dimensional as a ring.

Finally, when R is a module-finite extension of K[F1, . . . , Fn], the two rings have the
same dimension. Since K[F1, . . . , Fn] has dimension n, the elements F1, . . . , Fn must be
algebraically independent. �

The technique described in the discussion that follows is very useful both in the local
and graded cases.

Discussion: making a transition from one system of parameters to another. Let R be a
Noetherian ring of Krull dimension n, and assume that one of the two situations described
below holds.

(1) (R, m, K) is local and f1, . . . , fn and g1, . . . , gn are two systems of parameters.
(2) R is finitely generated N-graded over R0 = K, a field, m is the homogeneous maximal

ideal, and f1, . . . , fn and g1, . . . , gn are two homogeneous systems of parameters for
R.

We want to observe that in this situation there is a finite sequence of systems of parame-
ters (respectively, homogeneous systems of parameters in case (2)) starting with f1, . . . , fn
and ending with g1, . . . , gn such that any two consecutive elements of the sequence agree
in all but one element (i.e., after reordering, only the i th terms are possibly different for a
single value of i, 1 ≤ i ≤ n). We can see this by induction on n. If n = 1 there is nothing
to prove. If n > 1, first note that we can choose h (homogeneous of positive degree in the
graded case) so as to avoid all minimal primes of (f2, . . . , fn)R and all minimal primes of
(g2, . . . , gn)R. Then it suffices to get a sequence from h, f2, . . . , fn to h, g2, . . . , gn, since
the former differs from f1, . . . , fn in only one term and the latter differs from g1, . . . , gn in
only one term. But this problem can be solved by working in R/hR and getting a sequence
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from the images of f2, . . . , fn to the images of g2, . . . , gn, which we can do by the induc-
tion hypothesis. We lift all of the systems of parameters back to R by taking, for each one,
h and inverse images of the elements in the sequence in R (taking a homogeneous inverse
image in the graded case), and always taking the same inverse image for each element of
R/hR that occurs. �

The following result now justifies several assertions about Cohen-Macaulay rings made
without proof earlier.

Theorem. Let (R, m, K) be a local ring. There exists a system of parameters that is a
regular sequence if and only if every system of parameters is a regular sequence. In this
case, for every prime P ideal I of R of height k, there is a regular sequence of length k in
I.

Moreover, for every prime ideal P of R, RP also has the property that every system of
parameters is a regular sequence.

Proof. For the first statement, we can choose a chain as in the comparison statement just
above. Thus, we can reduce to the case where the two systems of parameters differ in only
one element. Because systems of parameters are permutable and regular sequences are
permutable in the local case, we may assume that the two systems agree except possibly
for the last element. We may therefore kill the first dim (R) − 1 elements, and so reduce
to the case where x and y are one element systems of parameters in a local ring R of
dimension 1. Then x has a power that is a multiple of y, say xh = uy, and y has a power
that is a multiple of x. If x is not a zerodivisor, neither is xh, and it follows that y is not
a zerodivisor. The converse is exactly similar.

Now suppose that I is any ideal of height h. Choose a maximal sequence of elements
(it might be empty) of I that is part of a system of parameters, say x1, . . . , xk. If k < h,
then I cannot be contained in the union of the minimal primes of (x1, . . . , xk): otherwise,
it will be contained in one of them, say Q, and the height of Q is bounded by k. Chose
xk+1 ∈ I not in any minimal prime of (x1, . . . , xk)R. Then x1, . . . , xk+1 is part of a
system of parameters for R, contradicting the maximality of the sequence x1, . . . , xk.

Finally, consider the case where I = P is prime. Then P contains a regular sequence
x1, . . . , xk, which must also be regular in RP , and, hence, part of a system of parameters.
Since dim (RP ) = k, it must be a system of parameters. �

Lemma. Let K be a field and assume either that
(1) R is a regular local ring of dimension n and x1, . . . , xn is a system of parameters

or

(2) R = K[x1, . . . , xn] is a graded polynomial ring over K in which each of the xi is a
form of positive degree.

Let M be a nonzero finitely generated R-module which is Z-graded in case (2). Then M
is free if and only if x1, . . . , xn is a regular sequence on M .
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Proof. The “only if” part is clear, since x1, . . . , xn is a regular sequence on R and M
is a direct sum of copies of R. Let m = (x1, . . . , xn)R. Then V = M/mM is a finite-
dimensional K-vector space that is graded in case (2). Choose a K-vector space basis for
V consisting of homogeneous elements in case (2), and let u1, . . . , uh ∈ M be elements
of M that lift these basis elements and are homogeneous in case (2). Then the uj span
M by the relevant form of Nakayama’s Lemma, and it suffices to prove that they have no
nonzero relations over R. We use induction on n. The result is clear if n = 0.

Assume n > 0 and let N = {(r1, . . . , rh) ∈ Rh : r1u1+· · ·+rhuh = 0}. By the induction
hypothesis, the images of the uj in M/x1M are a free basis for M/x1M . It follow that if
ρ = (r1, . . . , rh) ∈ N , then every rj is 0 in R/x1R, i.e., that we can write rj = x1sj for all
j. Then x1(s1u1 + · · ·+ shuh) = 0, and since x1 is not a zerodivisor on M , we have that
s1u1 + · · ·+ shuh = 0, i.e., that σ = (s1, . . . , sh) ∈ N . Then ρ = x1σ ∈ x1N , which shows
that N = x1N . Thus, N = 0 by the appropriate form of Nakayama’s Lemma. �

We next observe:

Theorem. Let R be a finitely generated graded algebra of dimension n over R0 = K, a
field. Let m denote the homogeneous maximal ideal of R. The following conditions are
equivalent.
(1) Some homogeneous system of parameters is a regular sequence.
(2) Every homogeneous system of parameters is a regular sequence.
(3) For some homogeneous system of parameters F1, . . . , Fn, R is a free-module over

K[F1, . . . , Fn].
(4) For every homogeneous system of parameters F1, . . . , Fn, R is a free-module over

K[F1, . . . , Fn].
(5) Rm is Cohen-Macaulay.
(6) R is Cohen-Macaulay.

Proof. The proof of the equivalence of (1) and (2) is the same as for the local case, already
given above.

The preceding Lemma yields the equivalence of (1) and (3), as well as the equivalence
of (2) and (4). Thus, (1) through (4) are equivalent.

It is clear that (6) ⇒ (5). To see that (5) ⇒ (2) consider a homogeneous system of
parameters in R. It generates an ideal whose radical is m, and so it is also a system
of parameters for Rm. Thus, the sequence is a regular sequence in Rm. We claim that
it is also a regular sequence in R. If not, xk+1 is contained in an associated prime of
(x1, . . . , xk) for some k, 0 ≤ k ≤ n − 1. Since the associated primes of a homogeneous
ideal are homogeneous, this situation is preserved when we localize at m, which gives a
contradiction.

To complete the proof, it will suffice to show that (1) ⇒ (6). Let F1, . . . , Fn be a ho-
mogeneous system of parameters for R. Then R is a free module over A = K[F1, . . . , Fn],
a polynomial ring. Let Q be any maximal ideal of R and let P denote its contraction to
A, which will be maximal. These both have height n. Then AP → RQ is faithfully flat.
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Since A is regular, AP is Cohen-Macaulay. Choose a system of parameters for AP . These
form a regular sequence in AP , and, hence, in the faithfully flat extension RQ. It follows
that RQ is Cohen-Macaulay. �

From part (2) of the Lemma on p. 5 we also have:

Theorem. Let R be a module-finite local extension of a regular local ring A. Then R is
Cohen-Macaulay if and only if R is A-free.

It it is not always the case that a local ring (R, m, K) is module-finite over a regular
local ring in this way. But it does happen frequently in the complete case. Notice that the

property of being a regular sequence is preserved by completion, since the completion R̂ of
a local ring is faithfully flat over R, and so is the property of being a system of parameters.

Hence, R is Cohen-Macaulay if and only if R̂ is Cohen-Macaulay.

If R is complete and contains a field, then there is a coefficient field for R, i.e., a field
K ⊆ R that maps isomorphically onto the residue class field K of R. Then, if x1, . . . , xn
is a system of parameters, R turns out to be module-finite over the formal power series
ring K[[x1, . . . , xn]] in a natural way. Thus, in the complete equicharacteristic local case,
we can always find a regular ring A ⊆ R such that R is module-finite over A, and think of
the Cohen-Macaulay property as in the Theorem above.

Theorem. Let R be a Cohen-Macaulay ring. Then the polynomial ring and the formal
power series ring in finitely many variables over R is Cohen-Macaulay.

Proof. Obviously, it suffices to consider the case of adjoining one variable. In the case of
R[[x]], note that x is in every maximal idealM: if x /∈M, then 1 = gx+v for v ∈M, and
this contradicts the fact that 1−gx is invertible (the inverse is 1+gx+g2x2+· · ·+gtxt+· · · ).
It follows thatM has the form xR[[x]]+mR[[x]] for a maximal ideal m of R. But if vectfn
is a system of parameters that is a regular sequence in Rm, then x, f1, . . . , fn is a system
of parameters that is a regular sequence in R[[x]]M: note that R[[x]]M/(x) ∼= Rm.

In the polynomial ring case, every maximal ideal M of R[x] lies over a prime P of R,
and we may replace R by RP . Hence, we may assume that (R,m) is local and that M
is maximal ideal of R[x] lying over m. Let f1, . . . , fn be maximal regular sequence in R.
This is also a regular sequence in R[x] and in R[x]M. The issues are unaffected by killing
this regular sequence. We may therefore assume that m is nilpotent, so that dim (R) = 0,
and the maximal ideals of R[x] are generated mod m by monic polynomials g that are
irreducible mod m. We may lift g to a monic polynomial G of R[x] of the same degree,
and G is not a zerodivisor. Since R[x]M has dimension 1 and contains G, it follows that
G is a system of parameters whose only element is a nonzerodivisor. �

In an arbitrary Noetherian ring, we define the height, denoted height (I), of a proper
ideal I to be the least height of any minimal prime of I. By convention height (R) = +∞.
Note that a regular sequence in a proper ideal I can never have length greater than
height (I): if it did, we could localize at a minimal prime P of I whose height is height (I),
and the image of the regular sequence is part of a system of parameters in RP .
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Proposition. Let R be a Noetherian ring. The following three conditions are equivalent.
(1) R is Cohen-Macaualy.
(2) Every proper ideal I of R contains a regular sequence of length equal to height (I).
(3) Every maximal regular sequence in a proper ideal I of R has length equal to height (I).

Moreover, if R is Cohen-Macaulay, every associated prime P of an ideal x1, . . . , xn
generated by a regular sequence has height n: thus, ideals generated by regular sequences
have no embedded primes.

Proof. We first prove the final statement. If P is an associated prime of x1, . . . , xn this
remains true when we localize at P . Then, in the Cohen-Macaulay ring RP , the image
of x1, . . . , xn can be extended to a system of parameters that is a regular sequence. But
PRP /(x1, . . . , xn) consists entirely of zerodivisors, so that it is impossible to extend the
image of x1, . . . , xn in RP to a longer regular sequence. This means that RP /(x1, . . . , xn)
has dimension 0, and so P has height n, as claimed.

Clearly, (3) ⇒ (2) ⇒ (1) (a regular sequence of length equal to height m, where m is
maximal, remains a regular sequence in Rm.) It remains to prove (1) ⇒ (3). Let a proper
ideal I be given and let x1, . . . , xn be a longest possible regular sequence in I. Then
the image of I must consist entirely of zerodivisors in R/(x1, . . . , xn), and so I must be
contained in an associated prime P of x1, . . . , xn. By the result of the first paragraph,
the height of P is n. Hence n ≥ height (P ) ≥ height (I). But height (I) ≤ n by the remark
just before the statement of the Proposition. �

Theorem. Let (R,m) be a Cohen-Macaulay local ring of Krull dimension d. Then any
saturated chain of primes joining m to a minimal prime of R has length d. In particular,
the quotient of R by any minimal prime of R has dimension d.

Proof. If R has dimension 0, this is clear. We next want to show that if P ⊆ Q are
distinct primes of R with P minimal and there is no prime strictly between P and Q
then height (Q) = 1. For this purpose, we may replace R by RQ. Thus, we want to show
that if (R,m) is local Cohen-Macaulay and there is a minimal prime P such that R/P
has dimension 1, then R has dimension 1. Otherwise let x, y be a regular sequence in R.
Since P is a minimal prime of R, it is an associated prime of (0) in R, and we have an
embedding R/P ↪→ R. Let J ⊆ R be the nonzero ideal AnnRP . We claim that J/xJ
injects into R/xR, i.e., that J ∩ xR = xJ . For if xr ∈ J , then xrP = 0. Since x is not
a zerodivisor, it follows that rP = 0 and r ∈ J , as required. But J/xJ is killed by P
and x, and x /∈ P . Since R/P has dimension one, x is a parameter, and so P + xR is
m-primary. This means that J/xJ ⊆ R/xR is killed by a power of m, contradicting the
fact that y ∈ m is supposedly not a zerodivisor on R/xR.

We complete the proof induction on the dimension d of R.

Suppose that P0 ⊆ · · · ⊆ Pd = m and P ′0 ⊆ · · · ⊆ P ′e = m are two saturated chains from
minimal primes to m. Then P1 and P ′1 are both height one primes, and we can choose
a nonzerodivisor x ∈ P1 and a nonzerodivisor x′ ∈ P ′1. Then y = xx′ ∈ P1 ∩ P ′1 is a
nonzerodivisor, and so each of P1, P ′1 is a minimal prime of yR (this uses that P1 and P ′1
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have height one). Working mod yR we get two saturated chains from a minimal prime
of R/yR to the maximal ideal m/yR of the Cohen-Macaulay ring R/yR, one from P1/yR
to m/yR and one from P ′1/yR to m/yR. It follows from the induction hypothesis that
d− 1 = e− 1 and so d = e. �

Corollary. Every Cohen-Macaulay ring is universally catenary.

Proof. A finitely generated algebra over a Cohen-Macaulay ring R is a homomorphic image
over a polynomial ring S in finitely many variables over R. Since S is Cohen-Macaulay
and the catenary property passes to quotient rings, it suffices to show that all saturated
chains from P to Q in S have the same length. For this purpose we may replace S by SQ.
Furthermore, we may kill the ideal generated by a maximal regular sequence x1, . . . , xh
in PSQ. We have now reduced to the case of a local Cohen-Macaulay ring in which P is
minimal and Q is the maximal ideal. �

Examples. Every zero-dimensional Noetherian ring is Cohen-Macaulay. Every one-
dimensional reduced Noetherian ring is also Cohen-Macaulay, since a local reduced ring of
dimension one every element not in any minimal prime is a nonzerodivisor. In particular,
every one-dimensional Noetherian domain is Cohen-Macaulay.

Throughout the examples that follow, K is a field. Let x, y be indeterminates over K.
K[x, y]/(y2) is Cohen-Macaulay (it is a quotient of a regular ring by an ideal generated
by a regular sequence). So the condition that the one-dimensional ring be reduced is
sufficient but not necessary for the Cohen-Macaulay property. The ring K[x, y]/(x2, xy) is
not Cohen-Macaulay even when localized at at (x, y). The image of x is nonzero but kills
the maximal ideal, and so every element of the maximal ideal is a zerodivisor.

A normal ring of dimension at most two is Cohen-Macaulay. The localization at any
height one prime is a DVR. If one localizes at a height two prime and x, y is a system of
parameters, then every associated prime of xR has height one, and so y is not in any of
the associated primes of xR, which implies that y is not a zero divisor on R/xR. On the
other hand K[x, y, z]/(x2) is a two-dimensional Cohen-Macaulay ring that is not reduced.

The two-dimensional non-normal rings K[x2, x3, y, xy] and K[x4, x3y, xy3, y4], both sub-
ring of the polynomial ring K[x, y] are not Cohen-Macaulay. In the first, x2, y is a ho-
mogeneous system of parameters but not a regular sequence since x3(y) = (xy)x2, but
x3 is not a multiple of x2 in this ring. In the second, x4, y4 is a homogeneous system of
parameters but (x3y)2y4 = (xy3)2x4 while (x3y)2 is not a multiple of x4 in this ring.

Let X,Y, Z, s, t be indeterminates over a field K of characteristic not 3. If K[x, y, z] =
K[X,Y, Z]/(X3 + Y 3 + Z3), and R = K[xs, ys, zs, xt, yt, zt] ⊆ K[x, y, z, s, t] = S. Note
that S is Cohen-Macaulay, and it turns out that S is normal as well. S is graded by N×N
such that x, y, z have degree (1, 0) and s, t have degree (0, 1). R → S splits as a map of
R-modules: the splitting kills the span of the homogeneous elements of degree (d, d′) for
d 6= d′ and is the identity on the homogeneous elements of degree (d, d), (the latter span
R over K). It follows that R is normal. Also, R is module-finite over K[xs, ys, xt, yt] and
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has a homogeneous system of parameters consisting of xs, yt, xt − ys. R is not Cohen-
Macaulay because one has (zs)(zt)(xt − ys) = (zt)2xs − (zs)2yt, but (zs)(zt) /∈ (ys, xt)
even in K[x, y, z, s, t] after specializing s 7→ 1, t 7→ 1, since z2 /∈ (x, y) in K[x, y, z].

As mentioned earlier, the quotient of a Cohen-Macaulay ring by the ideal generated by
a regular sequin is Cohen-Macaulay, and, in particular the quotient of a regular ring by an
ideal generated by a regular sequence is Cohen-Macaulay.

There is a considerable literature studying whether specific rings are Cohen-Macaulay.
The ring generated by the n × n minors of an n × s matrix of indeterminates over K
is Cohen-Macaulay (cf. [M. Hochster, Grassmannians and their Schubert subvarieties are
arithmetically Cohen-Macaulay, J. of Algebra 25 (1973), 40–57]), the ring obtained by
killing the ideal generated by the size t minors of an r × s matrix of indeterminates is
Cohen-Macaulay (cf. [J. A. Eagon and M. Hochster, Cohen-Macaulay rings, invariant
theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–
1058]), and any normal ring generated by monomials of a polynomial ring over a field
is Cohen-Macaulay(cf. [M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings
generated by monomials, and polytopes, Annals of Math. 96 (1972), 318–337])


