
Hilbert Functions

We recall that an N-graded ring R is Noetherian iff R0 is Noetherian and R is finitely
generated over R0. (The sufficiency of the condition is clear. Now suppose that R is
Noetherian. Since R0 is a homomorphic image of R, obtained by killing the ideal J
spanned by all forms of positive degree, it is clear that R0 is Noetherian. Let S ⊆ R be the
R0-subalgebra of R generated by a finite set of homogeneous generators G1, . . . , Gh of J
(if R is Noetherian, J is finitely generated). Then S = R: otherwise, there is a form F in
R−R0 of least degree not in S: since it is in J , it can be expressed as a linear combination
of those Gi of degree at most d = deg(F ) with homogeneous coefficients of strictly smaller
degree than d, and then the coefficients are in S, which implies F ∈ S.

This means that we may write R as the homomorphic image of R0[x1, . . . , xn] for some
n, where the polynomial ring is graded so that xi has degree di > 0. In this situation Rt is
the R0-free module on the monomials xa11 · · ·xann such that

∑n
i=1 aidi = t. Since all the ai

are at most t, there are only finitely many such monomials, so that every Rt is a finitely
generated R0-module. Thus, since a Noetherian N-graded ring R is a homomorphic of such
a graded polynomial ring, all homogeneous components Rt of such a ring R are finitely
generated R0-modules. Moreover, given a finitely generated graded module M over R with
homogeneous generators u1, . . . , us of degrees d1, . . . , ds,

Mn =
s∑
j=1

Rn−djuj ,

and since every Rn−dj is a finitely generated R0-module, every Mn is a finitely generated
R0-module.

The polynomial ring R0[x1, . . . , xn] also has an Nn-grading: if we let h = (h1, . . . , hn) ∈
Nh, then

[R]h = R0x
a1
1 · · ·xann

where aidi = hi, 1 ≤ i ≤ n, or 0 if for some i, di does not divide hi. The usual N-grading
on a polynomial ring is obtained when all the di are specified to be 1.

An N-graded Noetherian A-algebra R is called standard if A = R0 and it is generated
over R0 by R1, in which case it is a homomorphic image of some A[x1, . . . , xn] with the
usual grading. The kernel of the surjection A[x1, . . . , xn] � R is a homogeneous ideal.

The associated graded ring of R with respect to I, denoted grIR, is the N-graded ring
such that

[grI(R)]n = In/In+1,

with multiplication defined by the rule [ih][ik] = [ihik], where ih ∈ Ih, ik ∈ Ik, and [ih],
[ik], and [ihik] represent elements of Ih/Ih+1, Ik/Ik+1, and Ih+k/Ih+k+1, respectively. It
is easy to see that if one alters ih by adding an element of Ih+1, the class of ihik mod Ih+k+1
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does not change since ihik is altered by adding an element of Ih+k+1. The same remark
applies if one changes ik by adding an element of Ik+1. It follows that multiplication on
these classes is well-defined, and it extends to the whole ring by forcing the distributive
law. This ring is generated over R/I by the classes [i] ∈ I/I2, i ∈ I, and if i1, . . . , is
generate I then [i1], . . . , [is], thought of in I/I2, generate grIR over R/I. Thus, grIR is a
standard graded R/I-algebra, finitely generated as an R/I-algebra whenever I is finitely
generated as an ideal of R. In particular, if R is a Noetherian ring, grIR is a standard
Noetherian (R/I)-algebra for every ideal I.

The associated graded ring can also be obtained from the second Rees ring, which is
defined as R[It, 1/t] ⊆ R[t, 1/t]. More explicitly,

R[It, 1/t] = · · ·+R
1

t2
+R

1

t
+R+ It+ I2t2 + · · · .

This ring is a Z-graded R-algebra. Let v = 1/t. Notice that v is not a unit in S = R[It, 1/t]
(unless I = R). In fact S/vS is Z-graded: the negative graded components vanish, and the
n th nonnegative graded component is Intn/In+1tn ∼= In/In+1, since In+1tn+1v = In+1tn.
Thus, S/vS may also be thought of as N-graded, and, in fact, R[It, v]/(v) ∼= grIR.

Suppose that R contains a field of K. One may think of R[It, v] as giving rise to a
family of rings parametrized by K, obtained by killing v − λ as λ varies in K. For values
of λ 6= 0, the quotient ring is R, while for λ = 0, the quotient is grIR.

If {Mn}n is an I-stable filtration of an R-module M , then there is an associated graded
module

⊕
nMn/Mn+1, which is easily checked to be a grIR-module with multiplication

determined by the rule [ih][mk] = [ihmk] for ih ∈ IhR and mk ∈ Mk, where [ih], [mk],
and [ihmk] are interpreted in Ih/Ih+1, Mk/Mk+1, and Mh+k/Mh+k+1, respectively. If
Mn+c = InMc for n ∈ N, then this associated graded module is generated by its graded
components with indices ≤ c, namely M/M1, M1/M2, . . . , Mc/Mc+1. Thus, if R and M
are Noetherian it is a finitely generated N-graded grI(R)-module, and is Noetherian. If
the filtration is the I-adic filtration, one writes grIM for the associated graded module.

When we refer to a graded ring without specifying H, it is understood that H = N.
However, when we refer to a graded module M over a graded ring R, our convention is
that M is Z-graded. If M is finitely generated, it will have finitely many homogeneous
generators: if the least degree among these is a ∈ Z, then all homogeneous elements of
M have degree ≥ a, so that the n th graded component Mn of M will be nonzero for
only finitely many negative values of n. When M is Z-graded it is convenient to have
a notation for the same module with its grading shifted. We write M(t) for M graded
so that M(t)n = Mt+n. For example, R(t) is a free R-module with a homogeneous free
generator in degree −t: note that R(t)−t = R0 and so contains 1 ∈ R.

Let M be a finitely generated graded module over a graded algebra R over R0 = A
where A is an Artin local ring. We define the Hilbert function HilbM (n) of M by the
rule HilbM (n) = `A(Mn) for all n ∈ Z, and we define the Poincaré series PM (t) of M
by the formula PM (t) =

∑∞
n=−∞HilbM (n)tn ∈ Z[[t]]. Note that `(Mn) is finite for all

n ∈ Z , because each Mn is finitely generated as an A-module, by the discussion of the
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first paragraph. If A has a coefficient field, lengths over A are the same as vector space
dimensions over its coefficient field. Technically, it is necessary to specify A in describing
length. For example, `C(C) = 1, while `R(C) = 2. However, it is usually clear from context
over which ring lengths are being taken, and then the ring is omitted from the notation.

Note that Z[t] ⊆ Z[[t]], and that elements of the set of polynomials W with constant
±1 are invertible. We view W−1Z[t] ⊆ Z[[t]], and so it makes sense to say that a power
series in Z[[t]] is in W−1Z[t].

Example. Suppose that R = K[x1, . . . , xd] the standard graded polynomial ring. Here,
A = K and length over K is the same as vector space dimension. The length of the vector
space Rn is the same as the number of monomials xk11 · · ·x

kd
d of degree n in the variables

x1, . . . , xd, since these form a K-vector space basis for Rn. This is the same as the number
of d-tuples of nonnegative integers whose sum is n. We can count these as follows: form a
string of k1 dots, then a slash, then a string of k2 dots, then another slash, and so forth,
finishing with a string of kd dots. For example, x31x

2
2x

5
4 would correspond to

· · ·/ · ·// · · · ··

The result is a string of dots and slashes in which the total number of dots is k1+· · ·+kd = n
and the number of slashes is d − 1. There is a bijection between such strings and the
monomials that we want to count. The string has total length k+d−1, and is determined
by the choice of the d− 1 spots where the slashes go. Therefore, the number of monomials
is
(
n+d−1
d−1

)
. The Hilbert function of the polynomial ring is given by the rule HilbR(n) = 0

if n < 0 and

HilbR(n) =

(
n+ d− 1

d− 1

)
if n ≥ 0. Note that, in this case, the Hilbert function agrees with a polynomial in n of
degree d − 1 = dim (R) − 1 for all n � 0. This gives one formula for the Poincaré series,
namely

∞∑
n=0

(
n+ d− 1

d− 1

)
tn.

We give a different way of obtaining the Poincaré series. Consider the formal power
series in Z[[x1, . . . , xd]] which is the sum of all monomials in the xi:

1 + x1 + · · ·+ xd + x21 + x1x2 + · · ·+ x2d + · · ·

This makes sense because there are only finitely many monomials of any given degree. It
is easy to check that this power series is the product of the series

1 + xj + x2j + · · ·+ xnj + · · ·

as j varies from 1 to d: in distributing terms of the product in all possible ways, one gets
every monomial in the xj exactly once. This leads to the formula

1 + x1 + · · ·+ xd + x21 + x1x2 + · · ·+ x2d + · · · =
d∏
j=1

1

1− xj
.
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There is a unique continuous homomorphism Z[[x1, . . . , xd]] → Z[[t]] that sends xj → t
for all j. Each monomial of degree n in the xj maps to tn. It follows that the formal power
series

1 + x1 + · · ·+ xd + x21 + x1x2 + · · ·+ x2d + · · ·

maps to PR(t), but evidently it also maps to 1/(1− t)d. This calculation of the Poincaré
series yields the identity:

1

(1− t)d
=
∞∑
n=0

(
n+ d− 1

d− 1

)
tn.

Theorem. Let R be a finitely generated graded A-algebra with R0 = A, an Artin ring,
and suppose that the generators f1, . . . , fd have positive degrees k1, . . . , kd, respectively.
Let M be a finitely generated N-graded R-module. Then PM (t) can be written as the ratio
of polynomials in Z[t] with denominator

(1− tk1) · · · (1− tkd).

If M is finitely generated and Z-graded, one has the same result, but the numerator is a
Laurent polynomial in Z[t, t−1].

Proof. If the set of generators is empty, M is a finitely generated A-module and has only
finitely many nonzero components. The Poincaré series is clearly a polynomial (respec-
tively, a Laurent polynomial) in t. We use induction on d. We have an exact sequence of
graded modules:

0→ AnnMfd →M
fd−→M →M/fdM → 0.

In each degree, the alternating sum of the lengths is 0. This proves that

PM (t)− tdkPM (t) = PM/fdM (t)− PAnnMfd(t).

Since multiplication by fd is 0 on both modules on the right, each may be thought of
as a finitely generated N- (respectively, Z-) graded module over A[f1, . . . , fd−1], which
shows, using the induction hypothesis, that (1− tkd)PM (t) can be written as a polynomial
(respectively, Laurent polynomial) in t divided by

(1− tk1) · · · (1− tkd−1).

Dividing both sides by 1− tkd yields the required result. �

Remark. Base change over a field K to a field L does not change the Krull dimension
of a finitely generated K-algebra, nor of a finitely generated module over such an alge-
bra. A finitely generated K-algebra R is a module-finite extension of a polynomial ring
K[x1, . . . , xd] ↪→ R, where d = dim (R). Then L[x1, . . . , xd] ∼= L ⊗K K[x1, . . . , xd] ↪→
L⊗K R, (L is free and therefore flat over K), and if r1, . . . , rs span R over K[x1, . . . , xd],
then 1⊗ r1, . . . , 1⊗ rs span L⊗R over L[x1, . . . , xd].
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Evidently, for graded K-algebras R with R0 = K and graded K-modules M ,

L⊗R =
⊕
n

L⊗K Rn

and
L⊗K M =

⊕
n

L⊗K Mn

are graded, and their Hilbert functions do not change.

Proposition. If R is finitely generated and graded over R0 = A, Artin local, and f ∈ R
is homogeneous of degree k > 0, then if f is a not a zerodivisor on M , a finitely generated
graded R-module, then PM (t) = 1

1−tkPM/fM .

Proof. This is immediate from the exact sequence

0→M(−k)
f−→M →M/fM → 0

of graded modules and degree preserving maps: one has

PM (t)− tkPM (t) = PM/fM (t).

�

By induction on the number of indeterminates, this gives at once:

Proposition. Let A be Artin local and x1, . . . , xd indeterminates over A whose respective
degrees are k1, . . . , kd. Let R = A[[x1, . . . , xd]]. Then

PR(t) =
`(A)∏d

i=1(1− tki)
.

�

We note the following facts about integer valued functions on Z that are eventually
polynomial. It will be convenient to assume that functions are defined for all integers even
though we are only interested in their values for large integers. We write f ∼ g to mean
that f(n) = g(n) for all n� 0.

If f is a function on Z we define ∆(f) by the rule

∆(f)(n) = f(n)− f(n− 1)

for all n. We define Σ(f) by the rule Σ(f)(n) = 0 if n < 0 and

Σ(f)(n) =
n∑
j=0

f(j)

if n ≥ 0. Suppose that d ∈ N. We shall assume that
(
n
d

)
, is 0 if n is negative or if d > n.

It is a polynomial in n of degree d if n ≥ 0, namely

1

d!
n(n− 1) · · · (n− d+ 1).

It is obvious that if f ∼ g then ∆(f) ∼ ∆(g), that Σ(f)−Σ(g) is eventually constant, that
∆Σ(f) ∼ f , and that Σ∆(f) − f is equivalent to a constant function. When f ∼ g is a
nonzero polynomial we refer to the degree and leading coefficient of f , meaning the degree
and leading coefficient of g.
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Lemma. A function f from Z to Z that agrees with a polynomial in n for all sufficiently
large n is equivalent to a Z-linear combination of the functions

(
n
d

)
, and any such Z-

linear function has this property. Hence, a polynomial g that agrees with f has, at worst,
coefficients in Q, and the leading coefficient has the form e/d!, where e ∈ Z and d = deg(g).

If f : Z → Z then ∆(f) agrees with a polynomial of degree d − 1, d ≥ 1, if and only if
f agrees with a polynomial of degree d, and the leading coefficient of ∆(f) is d times the
leading coefficient of f . ∆(f) ∼ 0 iff f ∼ c, where c is a constant integer. For d ≥ 0, Σ(f)
∼ a polynomial of degree d + 1 iff f ∼ a polynomial of degree d (nonzero if d = 0), and
the leading coefficient of Σ(f) is the leading coefficient of f divided by d+ 1.

Proof. Every polynomial in n is uniquely a linear combination of the functions
(
n
d

)
, since

there is exactly one of the latter for every degree d = 0, 1, 2, . . . . Note that ∆
(
n
d

)
=(

n
d

)
−
(
n−1
d

)
=
(
n
d−1
)

for all n� 0, from which the statement about that ∆(f) is polynomial
when f is follows, as well as the statement relating the leading coefficients. Also, if f is
eventually polynomial of degree d, then we may apply the ∆ operator d times to obtain
a nonzero constant function ∆df , whose leading coefficient is d!a, where a is the leading
coefficient of the polynomial that agrees with f , and this is an integer for large n, whence
it is an integer. It follows that the leading coefficient of f has the form e/d! for some
e ∈ Z− {0}. We may therefore subtract e

(
n
d

)
from f to obtain a Z-valued function that is

polynomial of smaller degree than f for large n. We may continue in this way. Thus, the
polynomial that agrees with f is a Z-linear combination of the polynomials that agree with
the

(
n
d

)
. Note also that Σ

(
n
d

)
=
(
0
d

)
+ · · ·+

(
n
d

)
=
(
d
d

)
+ · · ·+

(
n
d

)
for n ≥ d and 0 otherwise.

The value of the sum shown, when n ≥ d, is
(
n+1
d+1

)
, by a straightforward induction on n.

Finally, f is equivalent to a polynomial when ∆f is, since Σ∆(f) − f is equivalent to a
constant. �

Theorem. Let R be a standard graded A-algebra, where (A, µ, K) is Artin local, and let
M be a finitely generated graded R-module. Then the Hilbert function HilbM (n) of the
finitely generated graded module M is eventually a polynomial in n of degree dim (M)− 1
with a positive leading coefficient, except when M has dimension 0, in which case the
Hilbert function is eventually identically 0.

Proof. The Poincaré series can be written in the form tkQ(1− t)/(1− t)d for some k ≤ 0:
we can write a polynomial in t as a polynomial in 1− t instead. This is a sum of finitely
many terms of the form mtk/(1 − t)s. We have already seen that the coefficient on tn in
1/(1− t)s is eventually given by a polynomial in n of degree s− 1, and multiplying by tk

has the effect of substituting n− k for n in the Hilbert function. A linear combination of
polynomials is still a polynomial. It remains to prove the assertion about dimensions.

Since A is Artin, we know that µs = 0 for some positive integer s. Then M has a
filtration

M ⊇ µM ⊇ µ2M ⊇ · · · ⊇ µs−1M ⊇ µSM = 0,

and each of the µjM is a graded submodule. It follows that the Hilbert function of M is
the sum of the Hilbert functions of the modules µjM/µj+1M . Since the dimension of M
is the supremum of the dimensions of the factors, it suffices to prove the result for each
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µjM/µj+1M , which is a module over the standard graded K-algebra R/µR. We have
therefore reduced to the case where A = K is a field.

We may apply L⊗K for some infinite field L, and so we may assume without loss of
generality that K is infinite. We use induction on d = dim (M). Let m be the homogeneous
maximal ideal of R, which is generated by 1-forms. If M is 0-dimensional, this is the only
associated prime of M , and M has a finite filtration with factors ∼= K and is killed by a
power of m. Thus, M is a finite-dimensional K-vector space, and Mn is 0 for all n � 0.
Now assume that M has positive dimension. Let

N =
⋃
t

AnnMm
t.

The modules AnnMm
t form an ascending chain, so this is the same as AnnMm

t for any
t� 0 and is a graded submodule of M of finite length. The Hilbert function of M is the
sum of the Hilbert functions of M/N and N , and the latter is eventually 0. Therefore
we may study M/N instead of N . In M/N no nonzero element is killed by a power of
m (or else its representative in M is multiplied into N by a power of m — but then it
would be killed by a power of m, and so it would be in N). Replace M by M/N . Then
no element of M − {0} is killed by m, and so m /∈ AssM . This means that the associated
primes of M cannot cover R1, which generates m, for then one of them would contain R1.
Thus, we can choose a degree one element f in R1 that is not a zerodivisor on M . Then
dim (M/fM) = dim (M)−1, and so P (n) = HilbM/fM (m) is eventually a polynomial in n
of degree d− 2 if d ≥ 2; if d = 1, it is constantly 0 for n� 0. Let Q(n) = HilbM (n). Since
Q(n) − Q(n − 1) = P (n), Q is a polynomial of degree d − 1, (if d = 1, we can conclude
that Q is constant). Since Q(n) is positive for n� 0, the leading coefficient is positive for
all d ≥ 1. �

Remark. The trick of enlarging the field avoids the need to prove a lemma on homogeneous
prime avoidance.

Let (R, m, K) be a local ring, and let M be a finitely generated R-module with m-
stable filtration M = {Mn}n. We write grM(M) for the associated graded module⊕∞

n=0Mn/Mn+1, which is a finitely generated grIR-module, and we write grIM in case
M is the I-adic filtration. In this situation we define HR(n) = `(R/mn+1), and call this
the Hilbert function of R, and we write HM(n) = `(M/Mn+1), the Hilbert function of M
with respect to the m-stable filtration M. In case M is the m-adic filtration on M , we
write HM (n) for `(M/mn+1M).

Our next objective is the following result:

Theorem (existence of Hilbert polynomials. Let (R, m, K) be local and let M be a
nonzero R-module of Krull dimension d. Then for any m-stable filtrationM of M , HM(n)
is eventually a polynomial in n of degree d.

First note that grMM =
⊕

nMn/Mn+1, then for all n, HM(n) = `(M/Mn+1) =∑n
i=0 `(Mi/Mi+1) since M/Mn+1 has a filtration with the Mi/Mi+1 as factors, 0 ≤ i ≤ n.

This says that Σ HilbgrM = HM. This shows that HM(n) is eventually polynomial in n
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of degree dim
(
grM(M)

)
. Once we complete the proof of the theorem above, it will follow

that dim
(
grM(M)

)
= dim (M), and, in particular, dim

(
grm(R)

)
= dim (R) for any local

ring R. Before proving the theorem we need the following observation.

Proposition. Let (R, m, K) be local, and let 0 → N → M → M → 0 be an exact
sequence of finitely generated R-modules. Let M be an M -stable filtration on M , let M be
the induced filtration on M whose n th term in the image of Mn, and let N be the inherited
filtration on N , whose n th term is Mn ∩N . Then the sequence

0→ grN (N)→ grM(M)→ grM(M)→ 0

is an exact sequence of graded modules with degree-preserving maps, and so

HM(n) = HN (n) +HM(n)

for all n.

Proof. For every n, the sequence

(∗n) 0→ Nn →Mn → (M/N)n → 0

is exact by construction: (M/N)n is the image of Mn by definition, and the kernel of
Mn → (M/N)n is the same as the kernel of Mn → M/N , which is N ∩Mn = Nn by
definition. The exactness of (∗n) and (∗n+1) implies the exactness of the sequence of
quotients

0→ Nn
Nn+1

→ Mn

Mn+1
→ (M/N)n

(M/N)n+1
→ 0

for all n. �

In order to prove the Theorem, we may again consider N =
⋃
t AnnNm

t, which will be
the same as AnnMm

t for any t� 0. Any m-stable filtration on N is eventually 0, and so
HN (n) = `(N) for all sufficiently large n. If M is 0-dimensional we are done. If not, by
the Proposition it suffices to consider M/N instead of M .

We have reduced the problem of proving that the degree of the Hilbert function of
M 6= 0 is the Krull dimension of M to the case where m /∈ Ass (M). Here M is a finitely
generated module over the local ring (R,m,K).

Before proceeding further, we generalize the notion of Hilbert functions to a larger
context. Let M be a finitely generated module over the local ring (R, m, K) and let A
be any ideal of R that is primary to m modulo the annihilator I of M . That is, A + I
is m-primary, or, equivalently, A(R/I) is primary to m/I ⊆ R/I. Note that dim (M) =
dim (R/I), by definition. Then for any A-stable filtrationM = {Mn}n, we defineHM(n) =
`(M/Mn+1). We may always use the A-adic filtration, in which case we write HA,M (n) =
`(M/AnM). The calculation of the values of this function is unaffected if we replace R
by R/I: all of the modules involved are killed by I, and multiplying any of these modules
by A is the same as multiplying it by the expansion of A to R/I. Thus, without loss of
generality, we may readily assume that M is faithful and that A is m-primary, by passing
to R/I as indicated.

The following result will complete the proof of the Theorem on the existence of the
Hilbert polynomials.
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Theorem. Let M be a finitely generated nonzero module over a local ring (R, m, K).
For any A-stable filtration M on M , HM(n) is eventually a polynomial that agrees with
Σ HilbgrM(M). The degree and leading coefficient of this polynomial are independent of
the choice of the A-stable filtration M. The degree is the same as dim (M), and also the
same as dim

(
grM(M)

)
.

Proof. We kill AnnRM , and so assume that M is faithful over R, that A is m-primary, and
that dim (M) = dim (R). Since grM(M) is a finitely generated module over grAR, which
is a standard graded algebra over the Artin local ring R/A, we have that HilbgrM(M)(n)

is a polynomial of degree dim
(
grM(M)

)
− 1. Since

`(Mn+1) = `(M/M1) + `(M1/M2) + · · ·+ `(Mn/Mn+1),

it follows that HM(n) is polynomial of degree dim
(
grM(M)

)
.

We know compare the leading term of the polynomial coming from M = {Mn}n with
the polynomial given by the A-adic filtration. Since AMn ⊆ Mn+1 for all n, AnM ⊆ Mn

for all n, and `(M/Mn) ≤ `(M/AnM). Let c be such that Mn+c = AnMc for all n ≥ c.
Then Mn+c ⊆ Anm, and so `(M/Mn+c) ≥ `(M/AnM) for all n. Thus,

HM(n+ c) ≥ HA,M (n) ≥ HM(n)

for all n, and so HA,M is trapped between two polynomials with the same degree and
leading coefficient. Therefore all three have the same degree and leading coefficient. This
shows that the leading term of the polynomial in independent of the choice of M.

We next show that the degree is independent of the choice of A. We can choose c such
that mb ⊆ A ⊆ m, and then mnb ⊆ An ⊆ mn for all n, and so

`(M/mnb) ≥ `(M/AnM) ≥ `(M/mnM)

which shows that HA,M is eventually a polynomial trapped between HM (n) and HM (bn).
The latter two are eventually polynomials of the same degree, and so HM(n) must be as
well, since we know that it is eventually polynomial.

It remains to see that the degree is d = dim (M) = dim (R). To see that the degree
is ≤ dim (R), we choose A to be generated by a system of parameters x1, . . . , xd ∈ m.
Then grA(R) is generated over R/A by the classes of the elements xi in A/A2. Since the
algebra is generated by d elements of degree 1, the denominator of the Poincaré series for
grMM is (1 − t)d, at worst, and this shows that the degree of the Hilbert polynomial of
the associated graded module is at most d − 1, which yields the upper bound d for the
degree of HM(n).

The last step is to show that the degree is at least d. We use induction on dim (M): the
case where d = 0 is trivial. Since the degree is independent of both the m-primary ideal A
chosen and the specific A-stable filtration used, it suffices to consider the m-adic filtration.
Moreover, we have already shown that one need only consider the case when no element of
M is killed by m (for we may kill

⋃
t AnnMm

t). Thus, we may assume that m /∈ Ass (M),
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and by prime avoidance we may choose f ∈ m such that f is not a zerodivisor on M .
Consider the short exact sequence

0→M
f−→M →M/fM → 0.

Place the m-adic filtration on the central copy of M , the inherited m-adic filtration on the
left hand copy of M (using that it is isomorphic with fM to think of it as a submodule
of M : specifically, Mn = mnM :M f), and the image of the m-adic filtration of M on
M/fM : this is the same as the m-adic filtration on M/fM . By the Proposition from
last time, we find that HM (n) − HM(n) = HM/fM (n). By what was proved above, the
two polynomials on the left have the same leading term: when we subtract, we get a
polynomial of lower degree. By the induction hypothesis, the polynomial on the right has
degree dim (M/fM) = d− 1. It follows that the degree of HM (n) is at least d. �

For emphasis, we state the following consequence separately.

Corollary. If M is a finitely generated module over the local ring (R, m), and A is m-
primary, M , grm(M), and grA(M) have the same Krull dimension. �

Note that if (R, m,K) is local, for any m-primary ideal A, we have that R/An ∼= R̂/AnR̂

(recall that AR̂ ∼= Â), and that for any finitely generated R-module M , M̂/AnM̂ ∼=
M/AnM for all n. The completions referred to here are all m-adic. This shows that

we may identify grA(R) ∼= gr
Â
R̂, and grA(M) ∼= gr

Â
M̂ ; in particular, we have these

identifications when A = m.

We also note:

Proposition. If (R, m, K) is local and grm(R) is a domain then R and R̂ are domains.

Proof. The result for R implies the result for R̂, since their associated graded rings are
the same. Suppose the result is false, so that f, g ∈ m − {0} are such that fg = 0. Since
f 6= 0, we can choose s ∈ N such that f ∈ ms −ms+1, and, similarly, we can choose t ∈ N
such that g ∈ mt −mt+1. Let [f ] indicate the class of f in ms/ms+1 and [g] the class of
g ∈ mt −mt+1. Then [f ] and [g] are nonzero homogeneous elements of grm(R), and their
product is [fg] = [0], contradicting that grm(R) is a domain. �

Note that the completion of a local domain need not be a domain in general. The
polynomial f = y2 − x2(1 + x) is irreducible in the polynomial ring C[x, y], since 1 + x is
not a square (even in the fraction field), and so x2(1+x) is not a square. Thus, it generates
a prime ideal which remains prime if we localize at (x, y). Let R = C[x, y](x,y)/(f), which

is a local domain. Its completion R̂ is C[[x, y]]/(f), but now f is reducible: 1 + x is a
perfect square in C[[x]], by Hensel’s lemma (or use Newton’s binomial theorem to give an
explicit formula for the power series square root of 1 + x). Instead of C, we could have
used any field of characteristic different from 2. In characteristic 2, y3 − x3(1 + x) gives a
similar example.

We can use associated graded rings to characterize regular local rings.
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Theorem. A local ring (R, m, K) is regular if and only if grm(R) is a polynomial ring
in d variables over K, in which case d = dim (R).

Proof. Let x1, . . . , xs be a minimal set of generators for m, and note that m/m2 is the K-
vector space of forms of degree 1 in grm(R). Now d = dim (R) = dim

(
grm(R)

)
. If grm(R)

is polynomial, it must be the polynomial ring in s variables, and since it has dimension
both s and d we have that s = d, which shows that R is regular. If R is regular, we
know that grm(R) is generated over K by d one forms, and has dimension d. Thus, it is
a homomorphic image of the polynomial ring in d variables over K, where the variables
map to the [xi]. Since the dimension of grm(R) is d, there cannot be any kernel: a proper
homomorphic image of a polynomial ring in d variables has Krull dimension < d. This
shows that grm(R) is a polynomial ring in d variables. �

Since the associated graded ring of a regular local ring is a domain, we have at once:

Corollary. A regular local ring is a domain. �

Let (R, m, K) be local, let M be a nonzero finitely generated R-module with annihilator
I of Krull dimension d, and let A ⊆ R be an ideal such that A(R/I) is primary to
m/I ⊆ R/I. We define the multiplicity of M with respect to A to be d! times the leading
coefficient of the Hilbert function of M . This function is integer-valued, and the equivalent
polynomial has degree d, and is therefore a Z-linear combination of the polynomials

(
n
j

)
,

0 ≤ j ≤ d, and
(
n
d

)
must occur with positive coefficient. Therefore, the multiplicity is a

positive integer. It may also be described as

d! lim
n→∞

`(M/An+1M)

nd
.

If A = m, we simply refer to the multiplicity of M . In particular we may refer to the
multiplicity of R itself.

We shall be particularly interested in determining multiplicities of rings with respect
to parameter ideals, i.e., ideals generated by a system of parameters. In this case, the
multiplicity can be recovered as an alternating sum of lengths of homology modules for a
certain homology theory, Koszul homology, which can be viewed as a special case of Tor.
The proof that we shall give of our result in this direction will depend on the theory of
spectral sequences.

We shall also use Tor and related homological ideas to prove properties of regular rings.
The only known proofs that a localization of a regular local ring at prime is again regular
are by these methods, and the proof of unique factorization also depends on these ideas.

Before beginning the development of these homological methods, we want to make a
few more comments about associated graded rings and multiplicities.

Note that the multiplicity of any regular local ring is 1. To check this, observe that
the associated graded ring is K[x1, . . . , xd] where d is the dimension, and the Hilbert

polynomial corresponds to
(
n+d−1
d−1

)
. The Hilbert function of the local ring is obtained by
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summing the values of
(
t+d−1
d−1

)
for t = 0, . . . , n. However, we note that the number of

monomials in x1, . . . , xn of degree ≤ n is the same as the number of monomials of degree
precisely n in x0, x1, . . . , xd: there is a bijection obtained by substituting x0 = 1. Thus,
the Hilbert function of the regular ring corresponds to

(
n+d
d

)
, which has leading coefficient

1/d!, and this shows that the multiplicity is 1.

Let R = K[[x1, . . . , xd]] and let f ∈ R have a lowest degree term of degree µ > 0. The
multiplicity of the ring R/f is µ. We shall check this by giving a technique for calculating
associated graded rings of quotients.

If (R, m, K) is local and f ∈ R− {0}, there is always a unique integer t ∈ N such that
f ∈ mt−mt+1. Then [f ] ∈ mt/mt+1 = [grm(R)]t is homogeneous and nonzero: we denote
this element L(f), and call it the leading form of f . Note that L(f) is in grm(R), not in R.
If I ⊆ R, we write L(I) for the ideal of grm(R) generated by all leading forms of elements
of I − {0}: this is evidently a homogeneous ideal. In attempting to find generators for
L(I), it is not in general sufficient to take the leading forms of a set of generators of I. See
problems 1. and 5. of Problem Set #2. However, it is easy to see that this is sufficient
for a nonzero principal ideal in a formal power series ring K[[x1, . . . , xd]] over a field K:
when one multiplies by another nonzero power series, the leading form of the product is
the product of the leading forms.

Proposition. Let (R, m, K) be local and let I be a nonzero ideal of R. Then

grm/I(R/I) ∼= grmR/L(I).

Proof. We have that

[grm/I(R/I)]n = (m/I)n/(m/I)n+1 ∼= (mn + I)/(mn+1 + I) ∼= mn/
(
mn ∩ (mn+1 + I)

)
.

But if u ∈ mn+1, i ∈ I, and u+ i ∈ mn, then u ∈ mn, and so u ∈ mn ∩ I. This shows that
mn ∩ (mn+1 + I) = mn+1 + (mn ∩ I), and so

[grm/I(R/I)]n ∼= mn/(mn+1 +mn ∩ I) ∼= (mn/mn+1)/Wn,

where Wn is the image of mn ∩ I in mn/mn+1 = [grm(R)]n. But if f ∈ mn ∩ I, then
if f ∈ mn+1 the image of f in [grm(R)]n is 0, while if f /∈ mn+1 then [f ] ∈ mn/mn+1

is precisely a nonzero leading form in degree n of an element of I, and the result now
follows. �

We now come back to the problem of calculating the associated graded ring of R =
K[[x1, . . . , xd]]/(f) where f has nonzero leading form L of degree µ ≥ 1. From the
remarks we have made, grm(R) ∼= K[x1, . . . , xd]/(L). We have a short exact sequence

0→ T (−µ)
L−→ T → T/(L)→ 0, where T = K[x1, . . . , xd]. Since the Hilbert function of T

corresponds to
(
n+d−1
d−1

)
, the Hilbert function of T/(L) corresponds to

(
n+d−1
d−1

)
−
(
n−µ+d−1

d−1
)
.

When we sum, we get
(
n+d
d

)
−
(
n−µ+d

d

)
up to a constant. It is easy to check that if P (n)

has leading coefficient a, then P (n)−P (n−µ) has leading coefficient µa. Thus, the leading
coefficient is µ/d!, and so the multiplicity is µ, as asserted earlier.


