
Regular Rings, Finite Projective Resolutions, and Grothendieck Groups

Recall that a local ring (R, m, K) is regular if its embedding dimension, dimK(m/m2),
which may also be described as the least number of generators of the maximal ideal m, is
equal to its Krull dimension. This means that a minimal set of generators of m is also a
system of parameters. Such a system of parameters is called regular. Another equivalent
condition is the the associated graded ring of R with respect to m be a polynomial ring,
in which case the number of variables is the same as dim(R). (The associated graded ring
will be generated minimally by m/m2, and has the same Krull dimension as R. It follows
at once that if it is polynomial, then R is regular. But if R is regular, there cannot be any
algebraic relations over K on a basis for m/m2, or the Krull dimension of grmR will be
smaller than that of R.

It is easy to see that a regular local ring is a domain: in fact, whenever grmR is a
domain, R is a domain (if a ∈ mh−mh+1 and b ∈ mk−mk+1 are nonzero, then ab cannot
be 0, or even in mh+k+1, or else the product of the images of a in mh/mh+1 and mk in
mk/mk+1 will be 0 in grmR. We shall see eventually that regular local rings are UFDs
and, in particular, are normal.

The following fact about regular local rings comes up frequently.

Proposition. Let (R, m, K) be a regular local ring. Let J ⊆ m be a proper ideal of R.
Then R/J is regular if and only if J is generated by part of a minimal set of generators
for m, i.e., part of a regular system of parameters. (This is true if J = 0, since we may
take the set to be empty.)

Proof. If J is generated by x1, . . . , xk, part of a minimal set of generators for m, then x1 is
not in an minimal prime, since R is a domain, and both the dimension and the embedding
dimension of R/x1R are one less than the corresponding number for R. It follows that
R/x1R is again regular, and the full result follows by a straightforward induction on k.

To prove the other direction, we also use induction on dim(R). The case where dim(R) =
0 is obvious. Suppose dim(R) > 0 and 0 6= J ⊆ m2. Then R/J is not regular, for
its dimension is strictly less than that of R, but its embedding dimension is the same.
Thus, we may assume instead that there exists an element x1 ∈ J with x1 /∈ m2, so
that x1 is part of a minimal set of generators for m. Then R/x1R is again regular, and
(R/x1R)/(J/x1R) ∼= R/J is regular. It follows that J/x1R is generated by part of a
minimal system of generators x2, . . . , xk for m/x1R, where xj is the image in R/x1R of
xj ∈ m, 2 ≤ j ≤ k. But then x1, . . . , xk is part of a minimal set of generators for m. �
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Projective resolutions

We want to characterize regular local rings in terms of the existence of finite free reso-
lutions. Note that over a local ring, a finitely generated module is flat iff it is projective
iff it s free.

Over any ring R, every module has a projective resolution. That is, given M , there is
a (usually infinite) exact sequence · · · → Gn → · · · → G1 → G0 → M → 0, such that all
of the Gi are projective. In fact, we may take them all to be free.

One can construct a free resolution as follows. First choose a set of generators {uλ}λ∈Λ

for M , and then map the free module G0 =
⊕

λ∈ΛRbλ on a correspondingly indexed set of
generators {bλ}λ∈Λ onto M : there is a unique R-linear map G0 �M that sends bλ 7→ uλ
for all λ ∈ Λ. Whenever we have such a surjection, the kernel M1 of P � M is referred
to as a first module of syzygies of M . If 0 → M1 → P0 → M → 0 is exact with P0 free,
we may repeat the process and form an exact sequence 0 → M2 → P1 → M1 → 0. Then
the sequence 0→ M2 → P1 → P0 → M → 0 is also exact, where the map P1 → P0 is the
composition of the maps P1 �M1 and M1 ↪→ P0.

Recursively, we may form short exact sequences 0→ Mn → Pn−1 → Mn−1 → 0 for all
n ≥ 1 (where M0 = M), and then one has that every n ≥ 1, the sequence

(∗) 0→Mn → Pn−1 → Pn−2 → · · · → P3 → P2 → P1 → P0 →M → 0

is exact. A module Mn that occurs in such an exacct sequence (∗) in which all the Pi are
projective modules is called an n th module of syzygies of M . Equvialently, an n th module
of syzygies may be defined recursively as a first module of syzygies of any n− 1 st module
of syzygies. Note that the (usually infinite) sequence

(∗∗) · · · → Pn → Pn−1 → · · · → P3 → P2 → P1 → P0 →M → 0

is exact as well, and so is a projective resolution of M .

A projective resolution is called finite if Pn = 0 for all n� 0. If M has a finite projective
resolution, it is said to have finite projective dimension. The projective dimension of M is
defined to be −1 if M = 0 and to be 0 if M is nonzero and projective. In general, if M has
finite projective dimension and is not projective, the projective dimension n of M , which we
denote pdRM (or simply pdM if R is understood from context), is the smallest integer n
for which one can find a finite projective resolution 0→ Pn → · · · → P1 → P0 →M → 0. If
M does not have finite projective dimension, it is said to have infinite projective dimension,
and one may write pdM =∞.

If R is Noetherian and M is finitely generated, one may also construct a module of
syzygies by mapping a finitely generated free module onto M . The first module of syzy-
gies will then be a submodule of this finitely generated free module, and, hence, finitely
generated again. Therefore, M has a free resolution by finitely generated free modules.

In the sequel, we prove the following result:
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Theorem (Auslander-Buchsbaum-Serre. Let (R, m, K) be a local ring. Then the
following conditions are equivalent.
(1) R is regular.
(2) The residue field K = R/m has a finite free resolution.
(3) Every finitely generated R-module has a finite free resolution.

Before giving a proof, which will be based on elementary properties of Tor, we note an
important consequence of this characterization of regularity.

Corollary. If R is a regular local ring and Q is a prime ideal of R, then RQ is regular.

Proof. Since R is regular, R/Q has a finite R-free resolution by R-modules. We may then
localize at Q to obtain a finite RQ-free resolution of the residue class field RQ/QRQ ∼=
(R/Q)Q. �

Thus, a Noetherian ring has the property that its localization at every prime ideal is
regular if and only if it has the property that its localization at every maximal ideal is
regular. A Noetherian ring with these equivalent properties is called regular.

Minimal free resolutions over local rings

Let (R, m, K) be local. We keep the notation of the preceding section. In constructing
a free resolution for a finitely generated R-module M , we may begin by choosing a minimal
set of generators for M . Then, at every stage, we may choose a minimal set of generators
of Mn−1 and use that minimal set to map a free R-module onto Mn−1. A resolution
constructed in this way is called a minimal free resolution of M . Thus, a free resolution
· · · → Pn → · · · → P1 → P0 → M → 0 iof M is minimal precisely if every Pn that occurs
has a free basis that maps to a minimal set set of generators of the image Mn of Pn.

Our discussion shows that minimal free resolutions exist. We also note the following
fact: a free resolution → Pn → Pn−1 → · · ·P1 → P0 → M → 0 (where the Pj are finitely
generated free R-modules) is minimal if and only if for all n ≥ 1, the image of Pj in Pj1 is
contained in mPj−1. The reason for this is that image of Pj consists of elements of Pj−1

that give generators for the relations on the generators of Mj−1. These generators will be
minimal generators if and only if they have no relation with a coefficient that is a unit,
i.e., all of the generating relations are in mPj−1. An equivalent way to phrase this is that
entries of matrices for the maps Pj → Pj−1 have all of their entries in m.

Recall that Torn(M, N) may be defined as the homology module at the n th spot of
the complex P• ⊗R N , where P• is the complex · · · → Pn → · · · → P0 → 0 obtained by
replacing M by 0 in a projective resolutons · · · → Pn → · · · → P0 → M → 0. It is is
independent of the specific projective resolution chosen up to canonical isomorphism. We
assume familiarity with a few basic properties of Tor over a ring R as described in the
supplement entitled The Functor Tor. The specific facts that we need about TorR (we
frequently omit the superscript) are these:
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(1) If · · · → Pn → · · · → P0 → M is a projective resolution of M , then Torn(M, N) is
the homology of the complex · · · → Pn⊗N → · · · → P0⊗N → 0 at the Pn⊗N spot.
Hence, Torn(M, N) = 0 if n > pdM .

(2) Torn(M, N) = 0 for n < 0, and Tor0(M,N) ∼= M ⊗N .
(3) Torn(M,N) ∼= Torn(N,M).
(4) Torn(M, ) (respectively, Torn( , M)) is a covariant functor from R-modules to

R-modules
(5) If 0→M ′ →M →M ′′ → 0 is exact there is a long exact sequence:

· · · → Torn(M ′, N)→ Torn(M, N)→ Torn(M ′′, N)→ Torn−1(M ′, N)→ · · ·
(6) The map induced on Torn(M, N) by multiplication by r ∈ R on M (or N) is multi-

plication by r.
(7) The module Torn(M, N) is killed by AnnRM + AnnRN .
(8) If M or N is flat (e.g., if either is free or projective), then Torn(M, N) = 0 for n ≥ 1
(9) If R is Noetherian and M , N , are finitely generated, so is Torn(M, N) for all n.

From our discussion of minimal resolutions we obtain:

Theorem. Let M be a finitely generated module over a local ring (R, m, K). The modules
Tori(M, K) are finite-dimensional vector spaces over K, and dimK

(
Tori(M, K)

)
is the

same as the rank of the i th free module in a minimal free resolution of M .

Moreover the following conditions on M are equivalent:

(1) In a minimal free resolution P• of M , Pn+1 = 0.
(2) The projective dimension of M is at most n.
(3) Torn+1(M, K) = 0.
(4) Tori(M, K) = 0 for all i ≥ n+ 1.

It follows that a minimal free resolution of M is also a shortest possible projective
resolution of M . In particular, M has finite projective dimension (respectively, infinite
projective dimension) if and only its minimal free resolution is finite (respectively, infinite.)

Proof. If we take a minimal free resolution P• of M , because the image of every Gj is in
mGj−1, when we apply ⊗R K the maps become 0, while Gi ⊗K is a vector space Vi
over K whose dimension is the same as the rank of Gi. Hence, the homology of P• ⊗R K
at the i th spot is Vi, and the first statement follows. It is clear that (1) ⇒ (2) ⇒ (3) ⇒
(1) (note that once one of the Pj is 0, all the Pk for k ≥ j are 0). The last implication
follows from the first assertion of the Theorem. It is also clear that (1)⇒ (4)⇒ (3)⇒ (1).
There cannot be a projective resolution shorter than the minimal resolution, for if Pj 6= 0
then Torj(M, K) 6= 0, and if there were a shorter resolution it could be used to compute
Torj(M, K), which would have to vanish. The final statement is then clear. �

We shall next use some elementary facts about Tor to prove that over a regular local
ring, every finitely generated module has finite projective dimension. We first note:

Proposition. Let R be a ring and let x ∈ R an element.
(a) Given an exact sequence Q• of modules

· · · → Qn+1 → Qn → Qn−1 → · · ·
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(it may be doubly infinite) such that x is a nonzerodivisor on all of the modules Qn,
the complex Q• obtained by applying ⊗R/xR, which we may alternatively describe
as

· · · → Qn+1/xQn+1 → Qn/xQn → Qn−1/xQn−1 → · · · ,

is also exact.
(b) If x is a nonzerodivisor in R and is also a nonzerodivisor on the module M , while

xN = 0, then for all i, TorRi (M, N) ∼= Tor
R/xR
i (M/xM, N).

Proof. (a) We get a short exact sequence of complexes 0 −→ Q•
x·−→ Q• −→ Q• −→ 0 which,

at the n th spots, is 0 −→ Qn
x·−→ Qn −→ Qn/xQn −→ 0 (exactness follows because x is a

nonzerodivisor on every Qn). The snake lemma yields that

· · · → Hn(Q•)→ Hn(Q•)→ Hn(Q)→ Hn−1(Q•)→ · · ·

is exact, and since Hn(Q•) and Hn−1(Q•) both vanish, so does Hn(Q•).

(b) Consider a free resolution (∗) · · · → Pn → · · ·P0 → M → 0 for M . By part (a),
this remains exact when we apply ⊗R R/xR, which yields a free resolution of M/xM
over R/xR. Let P• be the complex (∗) with M replaced by 0. Then TorRn (M, N) is the
homology at the n th spot of P• ⊗R N . Since x kills N , (R/xR) ⊗R/xR N ∼= N . Thus,

Torn(M, N) is the homology at the n th spot of
(
P• ⊗R (R/xR)

)
⊗R/xR N , and since

P• ⊗R R/xR is a free resolution of M/xM over R/xR, this is also Tor
R/xR
n (M, N). �

We can now prove:

Theorem. If (R, m, K) is a regular local ring of Krull dimension d, then for every finitely
generated R-module M , the projective dimension of M is at most d.

Proof. We use induction on dim(R). If dim(R) = 0, then the maximal ideal of R is
generated by 0 elements, and is a field, so that every R-module is free and has projective
dimension at most 0.

Now suppose dim(R) ≥ 1. Let M be a finitely generated R-module. It suffices to prove
that Torn(M, K) = 0 for n > d. We can form a short exact sequence 0 → M1 → P →
M → 0 where P is free. Since M1 ⊆ P , if we choose a regular paramter x ∈ M , x is

not a zerodivisor on M1. Hence, TorRn (M1, K) ∼= Tor
R/xR
n (M1/xM1, K) by the preceding

Proposition. The long exact sequence for Tor coming from the short exact sequence 0 →
M1 → P → M → 0 shows that TorRn+1(M, K) ∼= TorRn (M1, K) ∼= Tor

R/xR
n (M1/xM1, K)

for n ≥ d, and the last term vanishes by the induction hypothesis, since R/xR is again
regular. �

The converse is much more difficult. We need several preliminary results. We write
pdRM or, if R is understood from context, pdM for the projective dimension of M over
R. We first note:
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Theorem. Let (R, m, K) be a local ring.

Given a finite exact sequence of finitely generated R-modules such that every term but
one has finite projective dimension, then every term has finite projective dimension.

In particular, given a short exact sequence

0→M2 →M1 →M0 → 0

of finitely generated R-modules, if any two have finite projective dimension over R, so does
the third. Moreover:

(a) pdM1 ≤ max {pdM0, pdM2}.
(b) If pdM1 < pdM0 are finite, then pdM2 = pdM0−1. If pdM1 ≥ pdM0, then pdM2 ≤

pdM1.
(c) pdM0 ≤ max{pdM1, pdM2 + 1}.

Proof. Consider the long exact sequence for Tor:

· · · → TorRn+1(M1,K)→ TorRn+1(M0,K)→ TorRn (M2,K)

→ TorRn (M1,K)→ TorRn (M0,K)→ · · ·
If two of the Mi have finite projective dimension, then two of any three consecutive terms
are eventually 0, and this forces the third term to be 0 as well.

The statements in (a), (b), and (c) bounding some pdMj above for a certain j ∈ {0, 1, 2}
all follow by looking at trios of consecutive terms of the long exact sequence such that the
middle term is TorRn (Mj ,K). For n larger than the specified upper bound for pdRMj , the
Tor on either side vanishes. The equality in (b) for the case where pdM1 < pdM0 follows
because with n = pdM0 − 1, TorRn+1(M0, K) injects into TorRn (M2, K).

The statement about finite exact sequences of arbitrary length now follows by induction
on the length. If the length is smaller than three we can still think of it as 3 by using terms
that are 0. The case of length three has already been handled. For sequences of length 4
or more, say

0→Mk →Mk−1 → · · · →M1 →M0 → 0,

either Mk and Mk−1 have finite projective dimension, or M1 and M0 do. In the former
case we break the sequence up into two sequences

0→Mk →Mk−1 → B → 0

and
(∗) 0→ B →Mk−2 → · · · →M1 →M0 → 0.

The short exact sequence shows that pdB is finite, and then we may apply the induction
hypothesis to (∗). If M1 and M0 have finite projective dimension we use exact sequences

0→ Z →M1 →M0 → 0

and
0→Mk →Mk−1 → · · · →M2 → Z → 0

instead. �
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Lemma. If M has finite projective dimension over (R,m,K) local, and m ∈ Ass (R),
then M is free.

Proof. If not, choose a minimal free resolution of M of length n ≥ 1 and suppose that the
left hand end is

0→ Rb
A−→ Ra −→ · · ·

where A is an a× b matrix with entries in m. The key point is that the matrix A cannot
give an injective map, because if u ∈ m − {0} is such that AnnRu = m, then A kills a
column vector whose only nonzero entry is u. �

Lemma. If M has finite projective dimension over R, and x is not a zerodivisor on R
and not a zerodivisor on M , then M/xM has finite projective dimension over both R and
over R/xR.

Proof. Let P• be a finite projective resolution of M over R. Then P• ⊗R R/xR is a finite
complex of projective R/xR-modules whose homology is TorRn (M, R/xR), which is 0 for
n ≥ 1 when x is not a zerodivisor on R or M . This gives an (R/xR)-projective resolution
of M over R/xR. The short exact sequence

0→ P
x−→ P → P/xP → 0

shows that each P/xP has projective dimension at most 1 over R, and then M/xM has
finite projective dimension over R by the Proposition above. �

Lemma. Let (R,m,K) be local, let In denote the n×n identity matrix over R, let x be an
element of m−m2, and let A, B be n× n matrices over R such that xIn = AB. Suppose
that every entry of A is in m. Then B is invertible.

Proof. We use induction on n. If n = 1, we have that (x) = (a)(b) = (ab), where a ∈ m.
Since x /∈ m2, we must have that b is a unit. Now suppose that n > 1. If every entry of B
is in m, the fact that xIn = AB implies that x ∈ m2 again. Thus, some entry of B is a
unit. We permute rows and columns of B to place this unit in the upper left hand corner.
We multiply the first row of B by its inverse to get a 1 in the upper left hand corner. We
next subtract multiples of the first column from the other columns, so that the first row
becomes a 1 followed by a string of zeros. We then subtract multiples of the first row from
the other rows, so that the first column becomes 1 with a column of zeros below it. Each
of these operations has the effect of multiplying on the left or on the right by an invertible
n × n matrix. Thus, we can choose invertible n × n matrices U and V over R such that
B′ = UBV has the block form

B′ =

(
1 0
0 B0

)
,

where the submatrices 1, 0 in in the first row are 1× 1 and 1× (n− 1), respectively, while
the submatrices 0, B0 in the second row are (n− 1)× 1 and (n− 1)× (n− 1), respectively.

Now, with
A′ = V −1AU−1,
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we have

A′B′ = V −1AU−1UBV = V −1(AB)V = V −1(xIn)V = x(V −1InV ) = xIn,

so that our hypothesis is preserved: A′ still has all entries in m, and the invertibility of B
has not been changed. Suppose that

A′ =

(
a ρ
γ A0

)
where a ∈ R (technically a is a 1× 1 matrix over R), ρ is 1× (n− 1), γ is (n− 1)× 1, and
A0 is (n− 1)× (n− 1). Then

xIn = A′B′ =

(
a(1) + ρ(0) a(0) + ρB0

γ(1) +A0(0) γ(0) +A0B0

)
=

(
a ρB0

γ A0B0

)
from which we can conclude that xIn−1 = A0B0. By the induction hypothesis, B0 is
invertible, and so B′ is invertible, and the invertibility of B follows as well. �

The following is critical in proving that if K has finite projective dimension over
(R,m,K) then R is regular.

Theorem. If M is finitely generated and has finite projective dimension over the local
ring (R, m, K), and x ∈ m−m2 kills M and is not a zerodivisor in R, then M has finite
projective dimension over R/xR.

Proof. We may assume M is not 0. M cannot be free over R, since xM = 0. Thus, we may
assume pdRM ≥ 1. We want to reduce to the case where pdRM = 1. If pdRM > 1, we
can think of M as a module over R/xR and map (R/xR)⊕h �M for some h. The kernel
M1 is a first module of syzygies of M over R/xR. By part (b) of the second Theorem on
p. 5, pdRM1 = pdRM − 1. Clearly, if M1 has finite projective dimension over R/xR, so
does M . By induction on pdRM we have therefore reduced to the case where pdRM = 1.
To finish the proof, we shall show that if x ∈ m −m2 is not a zerodivisor in R, xM = 0,
and pdRM = 1, then M is free over R/xR.

Consider a minimal free resolution of M over R, which will have the form

0→ Rn
A−→ Rk →M → 0

where A is an k× n matrix with entries in m. If we localize at x, we have Mx = 0, and so

0→ Rnx → Rkx → 0

is exact. Thus, k = n, and A is n×n. Let ej denote the j th column of the identity matrix
In. Since xM = 0, every xej is in the image of A, and so we can write xej = Abj for
a certain n × 1 column matrix bj over R. Let B denote the n × n matrix over R whose
columns are b1, . . . , bn. Then xIn = AB. By the preceding Lemma, B is invertible, and
so A and AB = xIn have the same cokernel, up to isomorphism. But the cokernel of xIn
is (R/xR)⊕n ∼= M = Coker (A), as required. �

We can now prove the result that we are aiming for, which completes the proof of the
Auslander-Buchsbaum-Serre Theorem (p. 3).
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Theorem. Let (R,m,K) be a local ring such that pdRK is finite. Then R is regular.

Proof. If m ∈ Ass (R), then we find that K is free. But K ∼= Rn implies that n = 1 and R
is a field, as required. We use induction on dim (R). The case where dim (R) = 0 follows,
since in that case m ∈ Ass (R).

Now suppose that dim (R) ≥ 1 and m /∈ Ass (R). Then m is not contained in m2 nor
any of the primes in Ass (R), and so we can choose x ∈ m not in m2 nor in any associated
prime. This means that x is not a zerodivisor in R. By the preceding Theorem, the fact
that K has finite projective dimension over R implies that it has finite projective dimension
over R/xR. By the induction hypothesis, R/xR is regular. Since x /∈ m2 and x is not
a zerodivisor, both the least number of generators of the maximal ideal and the Krull
dimension drop by one when we pass from R to R/xR. Since R/xR is regular, so is R. �

We have finally proved the result we were aiming for, and we have now completed the
argument given much earlier that a localization of a regular local ring is regular. We also
note:

Theorem. Let R → S be a faithfully flat homomorphism of Noetherian rings. If S is
regular, then R is regular.

Proof. Let P be a maximal ideal of R. Then PS 6= S, and there is a maximal ideal Q of
S lying over P . It suffices to show that every RP is regular, and we have that RP → SQ
is flat and local. Thus, we have reduced to the case where R and S is local and the map
is local. Take a minimal free resolution of R/P over R. If R is not regular, this resolution
is infinite. Apply S ⊗R . Since S is R-flat, we get a free resolution of S/PS over S.
Since P maps into Q, this resolution is still minimal. Thus, S/PS has infinite projective
dimension over S, contradicting the fact that S is regular. �

Grothendieck groups and unique factorization in regular rings

we introduce Grothendieck groups and use them to prove that regular local rings are
unique factorization domains, following M. P. Murthy.

Let R be a Noetherian ring. Let M denote the set of modules

{Rn/M : n ∈ N, M ⊆ Rn}.

Every finitely generated R-module is isomorphic to one in M, which is all that we really
need about S: we can also start with some other set of modules with this property without
affecting the Grothendieck group, but we use this one for definiteness.

Consider the free abelian group with basis M, and kill the subgroup generated by all
elements of the form M −M ′ −M ′′ where

0→M ′ →M →M ′′ → 0
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is a short exact sequence of elements ofM. The quotient group is called the Grothendieck
group G0(R) of R. It is an abelian group generated by the elements [M ], where [M ] denotes
the image of M ∈M in G0(R). Note that if M ′ ∼= M we have a short exact sequence

0→M ′ →M → 0→ 0,

so that [M ] = [M ′] + [0] = [M ′], i.e., isomorphic modules represent the same class in
G0(R).

A map L from M to an abelian group (A, +) is called additive if whenever

0→M ′ →M →M ′′ → 0

is exact, then L(M) = L(M ′)+L(M ′′). The map γ sending M to [M ] ∈ G0(R) is additive,
and is a universal additive map in the following sense: given any additive map L :M→ A,
there is a unique homomorphism h : G0(M) → A such that L = h ◦ γ. Since we need
L(M) = h([M ]), if there is such a map it must be induced by the map from the free
abelian group with basisM to A that sends M to h(M). Since h is additive, the elements
M −M ′ −M ′′ coming from short exact sequences

0→M ′ →M →M ′′ → 0

are killed, and so there is an induced map h : G0(R) → A. This is obviously the only
possible choice for h.

Over a field K, every finitely generated module is isomorphic with K⊕n for some n ∈ N.
It follows that G0(K) is generated by [K], and in fact it is Z[K], the free abelian group
on one generator. The additive map associated with the Grothendieck group sends M to
dimK(M)[K]. If we identify Z[K] with Z by sending [K] to 1, this is the dimension map.

If R is a domain with fraction field F , we have an additive map to Z that sends M to
dimFF ⊗RM , which is called the torsion-free rank of M . This induces a surjective map
G0(R)→ Z. If R is a domain and [R] generates G0(R), then G0(R) ∼= Z[R] ∼= Z, with the
isomorphism given by the torsion-free rank map.

Notice that if L is additive and

0→Mn → · · · →M1 →M0 → 0

is exact, then
L(M0)− L(M1) + · · ·+ (−1)nL(Mn) = 0.

If n ≤ 2, this follows from the definition. We use induction. In the general case note that
we have a short exact sequence

0→ N →M1 →M0 → 0
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and an exact sequence

0→Mn → · · · →M3 →M2 → N → 0,

since
Coker (M3 →M2) ∼= Ker (M1 →M0) = N.

Then
(∗) L(M0)− L(M1) + L(N) = 0,

and
(∗∗) L(N)− L(M2) + · · ·+ (−1)n−1L(Mn) = 0

by the induction hypothesis. Subtracting (∗∗) from (∗) yields the result. �

From these comments and our earlier results on regular local rings we get at once:

Theorem. If R is a regular local ring, G0(R) = Z[R] ∼= Z.

Proof. R is a domain, and we have the map given by torsion-free rank. It will suffice to
show that [R] generates G0(R). But if M is any finitely generated R-module, we know
that M has a finite free resolution

0→ Rbk → · · · → Rb1 → Rb0 →M → 0,

and so the element [M ] may be expressed as

[Rb0 ]−[Rb1 ]+· · ·+(−1)k[Rbk ] = b0[R]−b1[R]+· · ·+(−1)kbk[R] = (b0−b1+· · ·+(−1)kbk)[R]

�

Note that given a finite filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn = M

of a finitely generated R-module M and an additive map L we have that

L(M) = L(Mn/Mn−1) + L(Mn−1),

and, by induction on n, that

L(M) =
n∑
j=1

L(Mj/Mj−1).

In particular, [M ] ∈ G0(R) is
n∑
j=1

[Mj/Mj−1].
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Theorem. Let R be a Noetherian ring. G0(R) is generated by the elements [R/P ], as P
runs through all prime ideals of R. If P is prime and x ∈ R− P , then [R/(P + xR)] = 0,
and so if R/Q1, . . . , R/Qk are all the factors in a prime filtration of [R/(P + xR)], we
have that [R/Q1] + · · ·+ [R/Qk] = 0. The relations of this type are sufficient to generate
all relations on the classes of the prime cyclic modules.

Proof. The first statement follows from the fact that every finitely generated module over
a Noetherian ring R has a finite filtration in which the factors are prime cyclic modules.
The fact that [R/(P + xR)] = 0 follows from the short exact sequence

0→ R/P
x−→ R/P → R/(P + xR)→ 0,

which implies [R/P ] = [R/P ] + [R/(P + xR)] and so [R/(P + xR)] = 0 follows.

Now, for every M ∈ M, fix a prime cyclic filtration of M . We need to see that if we
have a short exact sequence

0→M ′ →M →M ′′ → 0

that the relation [M ] = [M ′] + [M ′′] is deducible from ones of the specified type. We know
that M ′ will be equal to the sum of the classes of the prime cyclic module coming from its
chosen prime filtration, and so will M ′′. These two prime cyclic filtrations together induce
a prime cyclic filtration F of M , so that the information [M ] = [M ′]+ [M ′′] is conveyed by
setting [M ] equal to the sum of the classes of the prime cyclic modules in these specified
filtrations of [M ] and [M ′]. But F will not typically by the specified filtration of [M ], and
so we need to set the sum of the prime cyclic modules in the specified filtration of M equal
to the sum of all those occurring in the specified filtrations of M ′ and M ′′.

Thus, we get all relations needed to span if for all finitely generated modules M and
for all pairs of possibly distinct prime cyclic filtrations of M , we set the sum of the classes
of the prime cyclic modules coming from one filtration equal to the corresponding sum for
the other. But any two filtrations have a common refinement. Take a common refinement,
and refine it further until it is a prime cyclic filtration again. Thus, we get all relations
needed to span if for every finitely generated module M and for every pair consisting of a
prime cyclic filtration of M and a refinement of it, we set the sum of the classes coming
from one filtration to the sum of those in the other. Any two prime cyclic filtrations may
then be compared by comaring each two a prime cyclic filtration that refines them both.

In refining a given prime cyclic filtration, each factor R/P is refined. Therefore, we
get all relations needed to span if for every R/P and every prime cyclic filtration of R/P ,
we set [R/P ] equal to the sum of the classes in the prime cyclic filtration of R/P . Since
Ass (R/P ) = P , the first submodule of a prime cyclic filtration of R/P will be isomorphic
with R/P , and will therefore have the form x(R/P ), where x ∈ R − P . If the other
factors are R/Q1, . . . , R/Qk, then these are the factors of a filtration of (R/P )/x(R/P ) =
R/(P + xR). Since [x(R/P )] = [R/P ], the relation we get is

[R/P ] = [R/P ] + [R/Q1] + · · ·+ [R/Qk],
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which is equivalent to
[R/Q1] + · · ·+ [R/Qk] = 0,

and so the specified relations suffice to span all relations. �

Corollary. G0(R) ∼= G0(Rred).

Proof. The primes of Rred and those of R are in bijective correspondence, and the gener-
ators and relations on them given by the preceding Proposition are the same. �

Proposition. If R and S are Noetherian rings, then G0(R× S) ∼= G0(R)×G0(S).

Proof. If M is an (R× S)-module, then with e = (1, 0) and f = (0, 1) we have an isomor-
phism M ∼= eM × fM , where eM is an R-module via r(em) = (re)(em) and fM is an
S-module via s(fm) = (sf)(fm). There is an isomorphism M ∼= eM × fM . Conversely,
given an R-module A and an S-module B, these determine an R×S-module M = A×B,
where (r, s)(a, b) = (ra, sb) such that eM ∼= A over R and fM ∼= B over R. Thus,
(R×S)-modules correspond to pairs A,B where A is an R-module and B is an S-module.
Moreover, if h : M →M ′ then h induces maps eM → eM ′ and fM → fM ′ that determine
h. Said differently, a map from A×B → A′×B′ as (R×S)-modules corresponds to a pair
of maps A → A′ as R-modules and B → B′ as S-modules. Consequently, a short exact
sequence of (R × S)-modules corresponds to a pair consisting of short exact sequences,
one of R-modules and the other of S-modules. The stated isomorphism of Grothendieck
groups follows at once. �

Proposition. Let R be an Artin ring.
(a) If (R, m, K) is Artin local, G0(R) ∼= Z · [K] ∼= Z, where the additive map M 7→ `R(M)

gives the isomorphism with Z.
(b) If R has maximal ideals m1, . . . ,mk, then G0(R) is the free abelian group on the

[R/mj ].

Proof. For part (b), notice that the R/mk are generators by Theorem, and there are no
non-trivial relations, since if x /∈ mj , R/(mj + xR) = 0. Part (a) follows easily from part
(b). We may also deduce part (b) from part (a), using the fact that an Artin ring is a
finite product of Artin local rings and the preceding Proposition. �

Proposition. Let R and S be Noetherian rings.
(a) If R→ S is a flat homomorphism, there is a a group homomorphism G0(R)→ G0(S)

sending [M ]R 7→ [S ⊗R M ]S. Thus, G0 is a covariant functor from the category of
rings and flat homomorphisms to abelian groups.

(b) If S = W−1R is a localization, the map described in (a) is surjective.
(c) If P is a minimal prime of R, there is a homomorphism G0(R)→ Z given by [M ] 7→

`RP
(MP ). Of course, if R is a domain and P = (0), this is the torsion-free rank map.

(d) If R is a domain, the map Z → G0(R) that sends 1 to [R] is split by the torsion-free
rank map. Thus, G0(R) = Z[R] +G0(R), where G0(R) = G0(R)/Z · [R], the reduced
Grothendieck group of R. When R is a domain, the reduced Grothendieck group may
be thought of as the subgroup of G0(R) spanned by the classes of the torsion R-modules.
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(e) If S is module-finite over R, there is a group homomorphism G0(S) → G0(R) send-
ing [M ]S to [RM ]R, where RM denotes M viewed as an R-module via restriction of
scalars. In particular, this holds when S is homomorphic image of I. Thus, G0 is a
contravariant functor from the category of rings and module-finite homomorphisms to
abelian groups.

Proof. (a) is immediate from the fact that S ⊗R preserves exactness.

To prove (b), note that if M is a finitely generated module over W−1R, it can be written
as the cokernel of a matrix of the form (rij/wij), where every rij ∈ R and every wij ∈W .
Let w be the product of all the wij . Then the entries of the matrix all have the form
r′ij/w. If we multiply every entry of the matrix by w, which is a unit in S, the cokernel
is unaffected: each column of the matrix is multiplied by a unit. Let M0 = Coker (r′ij).
Then S ⊗RM0

∼= M . This shows the surjectivity of the map of Grothendieck groups.

Part (c) is immediate from the fact that localization is exact coupled with the fact the
length is additive. The statement in (d) is obvious, since the torsion-free rank of R is 1.

One has the map in (e) because restriction of scalars is an exact functor from finitely
generated S-modules to finitely generated R-modules. One needs that S is module-finite
over R to guarantee that when one restricts scalars, a finitely generated S-module becomes
a finitely generated R-module. �

If S is faithfully flat or even free over R, the induced map [M ]R → [S ⊗R M ]S need
not be injective, not even if S = L⊗K R where L is a finite field extension of K ⊆ R: an
example is given in the sequel: see the top of p. 16. An R-module M is said to have finite
Tor dimension or finite flat dimension over R at most d if TorRi (M, N) = 0 for all i > d.
If M = 0, the Tor dimension is defined to be −1. Otherwise, it is the smallest integer d
such that TorRi (M, N) = 0 for all i > d, if such an integer exists, and +∞ otherwise. We
leave it as an exercise to show that M has finite Tor dimension at most d if and only if
some (equivalently, every) d th module of syzygies of M is flat. Likewise, M has finite
Tor dimension at most d if and only if M has a left resolution by flat modules of length
at most d. A nonzero module M has Tor dimension 0 if and only of M is flat over R. Of
course, if M has finite projective dimension d, then M has Tor dimension at most d.

Proposition. If S is a Noetherian R-algebra of finite Tor dimension ≤ d over the Noe-
therian ring R, there is a map G0(R)→ G0(S) that sends [M ]R to

θ(M) =
d∑
i=0

(−1)i[TorRi (S, M)]S .

Proof. We simply need to check the additivity of the map. Let 0→M ′ →M →M ′′ → 0
be a short exact sequence of finitely generated R-modules. Then we get a long exact
sequence of finitely generated S-modules

0→ TorRd (S, M ′)→ TorRd (S, M)→ TorRd (S, M ′′)→ · · ·
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→ TorR0 (S, M ′)→ TorR0 (S, M)→ TorR0 (S, M ′′)→ 0

and so the alternating sum Σ of the classes of these modules in G0(S) is 0. We think of
these 3d modules as in positions 3d − 1, 3d − 2, · · · , 2, 1, 0 counting from the left. The
terms involving M ′′ are in positions numbered 0, , 3, 6, . . . , 3(d−1). Their signs alternate
starting with +, and so their contribution to Σ is θ(M ′′). The terms involving M are in
positions numbered 1, 4, 7, . . . , 3(d − 1) + 1. Their signs alternate starting with −, and
so their contribution to Σ is −θ(M). Finally, the terms involving M ′ are in positions
numbered 2, 5, 8, . . . , 3(d − 1) + 2. Their signs alternate starting with +, and so their
contribution to Σ is θ(M ′). This yields 0 = Σ = θ(M ′)− θ(M) + θ(M ′′), as required. �

Corollary. If x is not a zerodivisor in the Noetherian ring R, there is a map G0(R) →
G0(R/xR) that sends [M ]R 7→ [M/xR]R/xR − [AnnM x]R/xR.

Proof. This is the special case of result just above when S = R/xR, which has projective
dimension at most 1 and, hence, flat dimension at most 1. We have that TorR0 (R/xR, M) ∼=
(R/xR) ⊗R M ∼= M/xM , and TorR1 (R/xR, M) ∼= AnnMx. An elementary proof of this
result may be given by showing that when

0→M ′ →M →M ′′ → 0

is exact then so is

0→ AnnM ′ x→ AnnM x→ AnnM ′′ x→M ′/xM ′ →M/xM →M ′′/xM ′′ → 0,

developing this special case of the long exact sequence for Tor from first principles. �

Corollary. Let R be Noetherian and let S denote either R[x] or R[[x]], where x is an
indeterminate. Since S is flat over R, we have an induced map G0(R) → G0(S). This
map is injective.

Proof. We have that S/xS ∼= R, where x is not a zerodivisor in S, and so we have a
map G0(S) → G0(R). Under the composite map, the class [M ]R of an R-module M
maps first to [M [x] ]S (respectively, [M [[x]] ]S), and then to [M [x]/xM [x] ]R (respectively,
[M [[x]]/xM [[x]] ]R), since x is not a zerodivisor on M [x] (respectively, M [[x]]). In both
cases, the quotient is ∼= M , and so the composite map takes [M ]R → [M ]R. Thus,
the composite G0(R) → G0(S) → G0(R) is the identity on G0(R), which implies that
G0(R)→ G0(S) is injective. �

We next aim to establish the following result, which will imply unique factorization in
regular local rings.

Theorem (M. P. Murthy). Let R be a normal domain and let H be the subgroup of
G0(R) spanned by the classes [R/P ] for P a prime of height 2 or more. Then

C` (R) ∼= G0(R)/H.
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Assuming this for the moment, note the failure of the injectivity of the map from
G0(R)→ G0(S) where R = R[x, y]/(x2 + y2− 1) and S = C⊗RR ∼= C[x, y]/(x2 + y2− 1).
We have seen in Problem 4. of Problem Set #5 from Math 614, Fall 2013, that the maximal
ideal P = (x− 1, y)R is not principal in R, from which it will follow that [P ] is nonzero in
C` (R), and so that [R/P ] is nonzero in G0(R), and therefore [R/P ] is not zero in G0(R).
But P becomes principal when expanded to S. In fact, S is a UFD, for if we let u = x+yi
and v = x− yi, then C[x, y] ∼= C[u, v] (we have made a linear change of variables), and so
S ∼= C[u, v]/(uv − 1) ∼= C[u][1/u]. Thus, [S ⊗R/P ]S = [S/PS]S = 0 in G0(S).

Recall that if R is a normal domain, one defines the divisor class group of R, denoted
C` (R), as follows. First form the the free abelian group on generators in bijective corre-
spondence with the height one prime ideals of R. The elements of this group are called
divisors. The divisor div (I) of an ideal I 6= 0 whose primary decomposition only involves
height one primes (I is said to be of pure height one) is then obtained from the primary

decomposition of I: if the primary decomposition of I is P
(k1)
1 ∩ · · · ∩ P (ks)

s where the
Pj are mutually distinct, then div (I) =

∑s
j=1 kjPj . We regard the unit ideal as having

pure height one in a vacuous sense, and define its divisor to be 0. The divisor div (r) of
an element r ∈ R − {0} is the divisor of rR, and, hence, 0 if r is a unit. Then C` (R) is
the quotient of the free abelian group of divisors by the span of the divisors of nonzero
principal ideals. The following is part of a Theorem p. 137 of the Math 614 Lecture Notes
for Fall 2013, to which we refer the reader for the proof.

Theorem. Let R be a Noetherian normal domain. If I is pure height one, then so is fI
for every nonzero element f of R, and div (fI) = div (f) + div (I). For any two ideals
I and J of pure height one, div (I) = div (J) iff I = J , while the images of div (I) and
div (J) in C` (R) are the same iff there are nonzero elements f, g of R such that fI = gJ .
This holds iff I and J are isomorphic as R-modules. In particular, I is principal if and
only if div (I) is 0 in the divisor class group. Hence, R is a UFD if and only if C` (R) = 0.

While we are not giving a full proof here, we comment on one point. If I ∼= J as an
R-module, the isomorphism is given by an element of HomR(I, J). If we localize at the
prime (0), which is the same as applying F⊗R , where F is the fraction field of R, we see
that HomR(I, J) embeds in F ⊗R HomR(I, J) ∼= HomF (IF , JF) = HomF(F , F) ∼= F ,
that is, every homomorphism from I to J is induced by multiplying by a suitable fraction
f/g, f ∈ R, g ∈ R−{0}. When this fraction gives an isomorphism we have (f/g)I = J or
fI = gJ .

Theorem (M. P. Murthy). Let R be a normal domain and let H be the subgroup of
G0(R) spanned by the classes [R/P ] for P prime of height 2 or more. Then C` (R) ∼=
G0(R)/H with the map sending [P ] 7→ [R/P ] for all height one primes P .

Before proving this, we note two corollaries. One is that regular local rings have unique
factorization. Whether this is true was an open question for many years that was first
settled by M. Auslander and D. Buchsbaum by a much more difficult method, utilizing
homological methods but based as well on a result of Zariski that showed it suffices to prove
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the result for regular local rings of dimension 3. Later, I. Kaplansky gave a substantially
simpler proof. But I feel that Murthy’s argument gives the “right” proof. We have already
seen that for a regular local ring R, G0(R) = 0. Therefore:

Corollary. A regular local ring is a UFD. �

Corollary. If R is a Dedekind domain, then G0(R) ∼= C` (R) and G0(R) = Z · [R]⊕C` (R).

Proof. This is clear, since there are no primes of height two or more. �

We now go back and prove Murthy’s result.

Proof of the Theorem. We know that G0(R) is the free group on the classes of the R/P , P
prime, modulo relations obtained from prime cyclic filtrations of R/(P + xR), x /∈ P . We
shall show that if we kill [R] and all the [R/Q] for Q of height 2 or more, all relations are
also killed except those coming from P = (0), and the image of any relation corresponding
to a prime cyclic filtration of R/xR corresponds precisely to div (x). Clearly, if P 6= 0
and x /∈ P , any prime containing P + xR strictly contains P and so has height two or
more. Thus, we need only consider relations on the R/P for P of height one coming from
prime cyclic filtrations of R/xR, x 6= 0. Clearly, R does not occur, since R/xR is a torsion
module, and occurrences of R/Q for Q of height ≥ 2 do not matter. We need only show
that for every prime P of height one, the number of occurrences of R/P in any prime cyclic
filtration of R/xR is exactly k, where P (k) is the P -primary component of xR. But we can
do this calculation after localizing at P : note that all factors corresponding to other primes
become 0, since some element in the other prime not in P is inverted. Then xRP = P kRp,
and we need to show that any prime cyclic filtration of RP /xRP has k copies of RP /PRP ,
where we know that xRP = P kRP . Notice that (RP , PRP ) is a DVR, say (V, tV ), and
xRP = tkV . The number of nonzero factors in any prime cyclic filtration of V/tkV is the
length of V/tkV over V , which is k, as required: the only prime cyclic filtration without
repetitions is

0 ⊂ tk−1V ⊂ tk−2V ⊂ · · · ⊂ t2V ⊂ tV ⊂ V . �

Theorem. G0(R) ∼= G0(R[x]) under the map that sends [M ] 7→ [M [x] ], where we have
written M [x] for R[x]⊗RM .

Proof. We have already seen that the map is injective, and even constructed a left inverse
for it, which takes

[N ]R[x] 7→ [N/xN ]R − [AnnN x]R.

However, we shall not make use of this left inverse to prove surjectivity. Instead, we prove
that every [S/Q], Q prime, is in the image of G0(R)→ G0(R[x]) by Noetherian induction
on R/(Q ∩ R). There are two sorts of primes lying over P ∈ Spec (R). One is PR[x].
The other is generated, after localization at R − P , by a polynomial f ∈ R[x] of positive
degree with leading coefficient in R − P such that the image of f is irreducible in κP [x],
where κP = RP /PRP ∼= frac (R/P ). To see this, note that every prime Q lying over P
corresponds, via contraction to R[x], to a prime of the fiber (R − P )−1(R/P )[x] ∼= κP [x].
The primes in κP [x] are of two types: there is the (0) ideal, whose contraction to R[x]
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is PR[x], and there are the maximal ideals, each of which is generated by an irreducible
polynomial of positive degree in κP [x]. We can clear the denominators by multiplying by
an element of R−P , and then lift the nonzero coefficients to R−P , to obtain a polynomial
f with leading coefficient in R−P as described previously. Note that Q is recovered from
P and f as the set of all elements of R[x] multiplied into P +fR[x] by an element of R−P .
Briefly, Q = (PR[x] + fR[x]) :R[x] (R− P ).

Since R[x]/PR[x] = (R/P )⊗RR[x] is evidently in the image, we need only show that the
primes Q of the form (PR[x]+fR[x]) :R[x] (R−P ) are in the image of G0(R)→ G0(R[x]).
We have exact sequences

(∗) 0→ (R/P )[x]
f−→ (R/P )[x]→M → 0,

where M = R[x]/(PR[x] + fR[x]), and

(∗∗) N →M → R[x]/Q→ 0.

Because (R−P )−1M = (R−P )−1R[x]/Q, we have that N is a finitely generated module
that is a torsion module over R/P . Since every generator of N is killed by an element of
R − P , we can choose a ∈ R − P that kills N . From (∗), [M ] = 0 in G0(S). From (∗∗),
[R[x]/Q] = −[N ] in G0(R[x]). Therefore, it suffices to show that [N ] is in the image. In
a prime cyclic filtration of N , every factor is killed by P + aR, and therefore for every
R[x]/Q′ that occurs, Q′ lies over a prime strictly containing P . But then every [R[x]/Q′]
is in the image by the hypothesis of Noetherian induction. �

Theorem. Let R be a ring and S a multiplicative system. Then the kernel of G0(R) →
G0(S−1R) is spanned by the set of classes {[R/P ] : P ∩ S 6= ∅}. Hence, for any x ∈ R
there is an exact sequence

G0(R/xR)→ G0(R)→ G0(Rx)→ 0.

Proof. The final statement is immediate from the general statement about localization at
S, since G0(R/xR) is spanned by classes [R/P ]R/xR such that x ∈ P and x ∈ P iff P
meets {xn : n ≥ 1}, and so the image of G0(R/xR) in G0(R) is spanned by the classes
[R/P ]R for x ∈ P .

To prove the general statement about localization, first note that the specified classes
are clearly in the kernel. To show that these span the entire kernel, it suffices to show that
all the spanning relations on the classes [S−1R/QS−1RQ] hold in the quotient of G0(R)
by the span Γ of the classes [R/P ] for P ∩ S 6= ∅. Consider a prime cyclic filtration of
S−1R/(PS−1R + (x)), where x may be chosen in R. We may contract (i.e., take inverse
images of) the submodules in this filtration to get a filtration of R/P . Each factor Ni
contains an element ui such that, after localization at S, ui generates S−1Ni ∼= S−1R/Qi.
Thus, for each i, we have short exact sequences

0→ Rui → Ni → Ci → 0 and 0→ Di → Rui → R/Qi → 0,
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where Ci and Di vanish after localization at S and so have prime cyclic filtrations with
factors R/Qj such that Qj meets S. Here, we have that Q1 = P . We must show that the
relation

∑
i>1[S−1R/S−1Qi] = 0 comes from a relation on the [R/Qi] in G0(R)/Γ. But

[R/P ] = N1 +
∑
i>1[Ni], and for every i,

[Ni] = [Rui] + [Ci] = [R/Qi] + [Ci] + [Di].

Since Q1 = P , we have

0 = [C1] + [D1] +
∑
i>1

[R/Qi] + [Ci] + [Di]

in G0(R), and the conclusion we want follows: as aleady observed, every Ci and every Di

is killed by an element of S, and so has a prime cyclic filtration in which each prime cyclic
module has a class in Γ. �

We next define the Grothendieck group of projective modules over a Noetherian ring R by
forming the free abelian group on generators P inM (one can work with any set of finitely
generated projective modules containing a representative of every isomorphism class) and
killing the subgroup spanned by elements P − P ′ − P ′′, where 0→ P ′ → P → P ′′ → 0 is
exact. In this situation the short exact sequence of projectives is split (this only uses that
P ′′ is projective), and so P ∼= P ′⊕P ′′. Thus, the elements that we kill to construct K0(R)
have the form (P ′ ⊕ P ′′)− P ′ − P ′′. Note that isomorphic projectives represent the same
class in K0(R).

There is obviously a canonical map K0(R)→ G0(R) that takes [P ] in K0(R) to [P ] in
G0(R) for every finitely generated projective module over R.

Theorem. If R is regular, the map K0(R) ∼= G0(R) is an isomorphism.

Proof. We want to define a map from G0(R) to K0(R). Given a finitely generated R-
module M , we can choose a finite projective resolution of M by finitely generated projective
modules, say P•, and suppose that the length of this resolution is d. The obvious way to
define an inverse map is to send [M ] to

[P0]− [P1] + · · ·+ (−1)d[Pd] ∈ K0(R).

We must check that this is independent of the choice of the projective resolution. Given
another such projective resolution Q• of M we must show that the two alternating sums
are the same in K0(R) (this is obvious in G0(R), since both equal [M ], but M is not
“available” in K0(R)). To prove this, choose a map of complexes φ• : P• → Q• such that
the induced map of augmentations M = H0(P•)→ H0(Q•) = M is the identity. Form C•,
the mapping cone of φ, which is a complex of projective modules. Then Cn = Pn ⊕Qn−1.
We claim that C• is exact (not just acyclic): all the homology vanishes. To see this,
consider the long exact sequence of the mapping cone:

· · · → Hn(Q•)→ Hn(C•)→ Hn−1(P•)→ Hn−1(Q•)→ · · · .
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If n ≥ 2, Hn(C•) = 0 since Hn(Q•) and Hn−1(P•) both vanish. If n = 1, H1(C•)
vanishes because H1(Q•) = 0 and the connecting homomorphism H0(P•)→ H0(Q•) is an
isomorphism. If n = 0, H0(C•) = 0 because H0(Q•) and H−1(P•) both vanish.

Thus, the alternating sum of the classes in C• is 0 in K0(R), and this is exactly what
we want.

Additivity follows because given a short exact sequence of finitely generated modules
0 → M ′ → M → M ′′ → 0 and projective resolutions P ′• of M ′ and P ′′• of M ′′ by finitely
generated projective modules, one can construct such a resolution for M whose j th term
is P ′j ⊕ P ′′j . See pp. 12 and 13 of the supplement entitled The Functor Tor. �

Note that K0 is a functor on all maps of Noetherian rings (not just flat maps) because
short exact sequences of projectives are split and remain exact no matter what algebra one
tensors with. Restriction of scalars from S to R will not induce a map on K0 unless S is
module-finite and projective over R.

Observe also that K0(R) has a commutative ring structure induced by ⊗R , with [R]
as the multiplicative identity, since the tensor product of two finitely generated projective
modules is a projective module, and tensor distributes over direct sum.

Proposition. Let P and Q be finitely generated projective modules over a Noetherian ring
R. Then [P ] = [Q] in K0(R) if and only there is a free module G such that P ⊕G ∼= Q⊕G.

Proof. [P ] = [Q] if and only if [P ] − [Q] is in the span of the standard relations used to
define K0(R), in which case, for suitable integers h, k,

P −Q =

h∑
i=1

(
(Pi ⊕Qi)− Pi −Qi

)
+

k∑
j=1

(
P ′j +Q′j − (P ′j ⊕Q′j)

)
and so

P +
h∑
i=1

(Pi +Qi) +
k∑
j=1

(P ′j ⊕Q′j) = Q+
h∑
i=1

(Pi ⊕Qi) +
k∑
j=1

(P ′j +Q′j).

The fact that this equation holds implies that the number of occurrences of any given
projective module on the left hand side is equal to the number of occurrences of that
projective module on the right hand side. Therefore, if we change every plus sign (+) to
a direct sum sign (⊕), the two sides of the equation are isomorphic modules: the terms
occurring in the direct sum on either side are the same except for order. Therefore:

P ⊕
h⊕
i=1

(Pi +Qi)⊕
k⊕
j=1

(P ′j ⊕Q′j) = Q⊕
h⊕
i=1

(Pi ⊕Qi)⊕
k⊕
j=1

(P ′j ⊕Q′j).
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In other words, if we let

N =
h⊕
i=1

(Pi ⊕Qi)⊕
k⊕
j=1

(P ′j ⊕Q′j),

then P ⊕N = Q⊕N . But N is projective, and so we can choose N ′ such that N⊕N ′ ∼= G
is a finitely generated free module. But then

P ⊕N ⊕N ′ ∼= Q⊕N ⊕N ′,

i.e., P ⊕G ∼= Q⊕G. �

Corollary. let R be Noetherian. K0(R) is generated by [R] if and only if every projective
module P has a finitely generated free complement, i.e., if and only if for every finitely
generated projective module M there exist integers h and k in N such that P⊕Rh ∼= Rk. �

We know that

K0(K[x1, . . . , xn]) ∼= G0(K[x1, . . . , xn]) ∼= G0(K) ∼= Z

is generated by the class of R. Therefore, every finitely generated projective module
over R = K[x1, . . . , xn] has a finitely generated free complement. To prove that every
projective module over a R is free, it suffices to show that if P ⊕R ∼= Rn then P ∼= Rn−1.
The hypothesis implies precisely that P is the kernel of a map Rn � R. Such a map
is given by a 1 × n matrix (r1 . . . rn). The surjectivity of the map corresponds to the
condition that the rj generate the unit ideal of R. If

∑n
j=1 rjsj = 1, then the n×1 column

matrix whose entries are s1, . . . , sn mapping R→ Rn gives a splitting. P ∼= Rn−1 implies
that this column vector v can be extended to a free basis for Rn, since Rn = P ⊕ Rv.
Since P ∼= Rn/Rv, P will be free if and only if it has n − 1 generators, and so P will be
free if only if v can be extended to a free basis for Rn. This led to the following question:
if one is given one column of a matrix consisting of polynomials over K that generate the
unit ideal, can one “complete” the matrix so that it has determinant which is a unit in
the polynomial ring? This is equivalent to completing the matrix so that its determinant
is 1 if n ≥ 2: the unit can be absorbed into one of the columns other than the first. This
is known as the “unimodular column” problem. However, some authors, who use matrices
that act on the right, study the equivalent “unimodular row” problem.

The question was raised by Serre in the mid 1950s and was open until 1976, when it
was settled in the affirmative, independently, by D. Quillen and A. Suslin. A bit later,
Vaserstein gave another proof which is very short, albeit very tricky. It is true that
projective modules over a polynomial ring over a field are free, but it is certainly a non-
trivial theorem.


