
Integral Closures in a Finite Separable Algebraic Extension

We want to prove that certain integral closures are module-finite: see the Theorem just
below. We also give, at the end of this supplement, an example of a Noetherian discrete
valuation domain of characteristic p > 0 whose integral closure is not module-finite.

Theorem. Let R be a normal Noetherian domain and let L be a finite separable algebraic
extension of the fraction field K of R (separability is automatic if K has characteristic 0).
Then the integral closure S of R in L is a module-finite over R, and, hence, a Noetherian
normal ring.

When K ⊆ L is a finite algebraic extension of fields, for any λ ∈ L, we define TrL/K(λ)
to be trace of the K-linear map L → L given by λ: it may be computed by choosing a basis
for L over K, finding the matrix of the map given by multiplication by λ, and summing
the entries of the main diagonal of this matrix. It is independent of the choice of basis. If
the characteristic polynomial is xn − cxn−1+ lower degree terms, where n = [L : K], the
trace is c. It is also the sum of the eigenvalues of the matrix (calculated in a splitting field
for f or any larger field, such as an algebraic closure of K), i.e., the sum of the roots of f
(where if a root has multiplicity k, it is used a summand k times in the sum of the roots).
We give a further discussion of the properties of trace following the proof of the theorem.

A key element of the proof is that a finite algebraic extension L of K is separable if and
only if some element of L has nonzero trace in K. This fact is quite trivial in characteristic
0, since the trace of the identity element is [L : K] 6= 0. This implies that the function
B : L×L→ K that maps (a, b) to the trace of ab is a non-degenerate symmetric bilinear
form: it is non-degenerate because if c has nonzero trace, given a ∈ L − {0}, B(a, c/a) is
the trace of c, and so is not 0. Here, n = [L : K]. This non-degeneracy tells us that if
b1, . . . , bn is any basis for L over K, then the matrix (TrL/Kbibj) is invertible over K, and
we shall assume this in proving the theorem. After we give the proof we discuss further the
facts about bilinear forms and about trace that we are using, including the characterization
of separability using trace in positive characteristic.

We next prove a preliminary result of great importance in its own right.

Theorem. Let R be a normal domain with fraction field K, and let L be a finite algebraic
extension of K. Let s ∈ L be integral over R. Multiplication by s defines a K-linear map
of L to itself. The coefficients of the characteristic polynomial of this K-linear map are in
R. In particular, TrL/K(s) ∈ R.

Proof. We first consider the case where L = K[s]. Let f be the minimal polynomial of s
over K, which has degree d. We showed earlier that f has all of its coefficients in R: this
is the first Proposition in the Lecture Notes from Octboer 1. Suppose that f has degree
d. Then [L : K] = d, and the characteristic polynomial of the matrix of multiplication by
s has degree d. Since the matrix satisfies this polynomial, so does s. It follows that the
characteristic polynomial is equal to the minimal polynomial of s over K.
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In the general case, let L0 = K[s] ⊆ L, and let v1, . . . , vd be a basis for L0 over K,
and let w1, . . . , wh be a basis for L/L0. Let A be the matrix of multiplication by s on
L0 with respect to v1, . . . , vd. Then the span of v1wj , . . . , vdwj is L0wj and is stable
under multiplication by s, whose matrix with respect to this basis is also A. Therefore,
the matrix of multiplication by s with respect to the basis

v1w1, v2w1, . . . , vdw1, . . . , v1wh, v2w1, . . . , vdwh

is the direct sum of h copies of A, and its characteristic polynomial is fh, where f is the
characteristic polynomial of A. We already know that f has coefficients in R. �

Corollary. Let R be a normal domain that contains Q, and let S be a module-finite
extension of R. Then R is a direct summand of S as an R-module. Hence, for every ideal
I of R, IS ∩R = I.

Proof. R−{0} is a multiplicative system in S, and so there is a prime ideal P of S disjoint
from R − {0}. Then R embeds in the domain S/P , which is still module-finite over R.
It suffices to show that R ↪→ S/P splits, for if φ : S/P → R is R-linear and restricts to
the identity map on R, then the composition of φ with S � S/P will be an R-linear map
S → R that restricts to the identity on R. Thus, we have reduced to the case where S
is a module-finite extension domain of R. Let K and L be the fraction fields of R and S,
respectively, and let n = [L : K]. Then (1/n)TrL/K, when restricted to S, takes values in
R (by the preceding Theorem), is R-linear, and is the identity when restricted to R. �

Proof of the Theorem. Consider K ⊗R S = (R − {0})−1S ⊆ (S − {0})−1S = L. This
domain is module-finite over K and so has dimension 0. Therefore, it is a field containing
S, and so must be L. It follows that every element of L can multiplied in S by an element
of R − {0}. Choose a basis for L over K, and multiply each basis element by a nonzero
element of R so as to get a basis for L over K consisting of elements of S. Call this
basis b1, . . . , bn, where n = [L : K]. Because the field extension is separable, the matrix
A =

(
TrL/K(bibj)

)
is invertible. By the preceding theorem, each entry of this matrix is in

R, and so the determinant D of this matrix is a nonzero element of R. We shall prove that
DS ⊆ Rb1+ · · ·+Rbn = G. Since R is a Noetherian ring, G is a Noetherian R-module, and
this implies that DS is a Noetherian R-module. But S ∼= DS as R-modules, via s 7→ Ds.

It remains to show that DS ⊆ R. Let s ∈ S. Then s ∈ L and so can be written uniquely
in the form α1b1 + · · ·+αnbn. We may multiply by bi ∈ S and take the trace of both sides:

TrL/K(sbi) =
n∑

j=1

αjTrL/K(bibj),

Let ri = TrL/K(sbi), let W be the column vector whose entries are the ri (which are in
R, by the preceding Theorem), and let V be the column vector whose entries are the αj .
Then W = AV , where A and W have entries in R. Let B be the classical adjoint of A, i.e.,
the transpose of the matrix of cofactors. Then B also has entries in R, and BA = D(I),
where I is the size n identity matrix. It follows that BW = BAV = DV , so that each
Dαj is in R. But then Ds = (Dα1)b1 + · · ·+ (Dαn)bn ∈ G, as required. �
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We next backtrack and review some facts about bilinear forms. Let K be a field and
V a vector space of finite dimension n over K. A bilinear form is simply a bilinear map
B : V × V → K, and giving V is the same a giving a linear map T : V ⊗ V → K. If
v1, . . . , vn is a basis for V , then the elements vi ⊗ vj are a basis for V ⊗K V , and so B is
completely determined by the matrix A = (B(vi, vj) = T (vi⊗vj). If the matrix A = (aij).
Suppose that we use this basis to identify V with Kn, with standard basis e1, . . . , en, then
B(ei, ej) = aij . If v and w are the n × 1 column matrices with entries c1, . . . , cn and
d1, . . . , dn, respectively, then

B(v, w) = B(
∑
i

ciei,
∑
j

djej) =
∑
i,j

cidjB(ei, ej) =
∑
i,j

ciaijdj =
∑
i

ci(
∑
j

aijdj)

which is the unique entry of the 1× 1 matrix vtr Aw.

To see the effect of change of basis, let C be an n×n matrix whose columns w1, . . . , wn

are a possibly new basis for V = Kn. Then wtr
i Awj is the i, j entry of the matrix Ctr AC

(which is called congruent or cogredient to A). The invertibility of A is unaffected by the
choice of basis. If A is invertible, the bilinear form is called non-degenerate.

Let B be a bilinear form and fix a basis v1, . . . , vn for V . Let V ∗ be the dual vector
space. Then B gives a linear map L : V → V ∗ by the rule L(v)(w) = B(v, w). fix a
basis v1, . . . , vn for V . There is a dual basis for the dual vector space V ∗ of V , whose i th
element fi is the linear functional whose value on vi is 1 and whose value on vj is 0 for
j 6= i. Since the value of L(vi) on w =

∑
j cjvj is

B(vi,
∑
j

cjvj) =
∑
j

cjB(vi, vj) =
∑
j

B(vi, vj)fj(w),

we have that L(vi) =
∑

j B(vi, vj)fj . Thus, the matrix of B with respect to c1, . . . , cn
is the same as the matrix of L with respect to the two bases v1, . . . , vn and f1, . . . , fn.
Hence, the matrix of B is invertible if and only if L : V → V ∗ is an isomorphism. This
shows that B is non-degenerate if and only if L is one-to-one, which means that B is
non-degenerate if and only if for all v ∈ V −{0} there exists w ∈ V such that L(v, w) 6= 0.

B is called symmetric if B(v, w) = B(w, v) for all v, w ∈ V , and this holds if and only
if its matrix A is symmetric.

We next give some further discussion of the notion of trace, and prove the trace char-
acterization of separability discussed earlier.

Let R be any ring and F ∼= Rn a free R-module. Consider any R-linear endomorphism
T : F → F . We define the trace of T as follows: choose a free basis for F , let M = (rij)
be a matrix for T , and let Tr(T ) be the sum

∑n
i=1 rii of the entries on the main diagonal

of M . This is independent of the choice of free basis for F : if one has another free basis,
the new matrix has the form AMA−1 for some invertible n× n matrix A over R, and the
trace is unaffected.

If S 6= 0 is a free R-algebra that has finite rank as an R-module, so that S ∼= Rn as an R-
module for some positive integer n, then for every element s ∈ S we define TrS/Rs to be the
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trace of the R-linear endomorphism of S given by multiplication by s. Then TrS/R : S → R
is an R-linear map. If r ∈ R, TrS/R(r) = nr, since the matrix of multiplication by r is r
times the n× n identity matrix. We are mainly interested in the case where R and S are
both fields. We first note:

Lemma. If T is a free S-algebra of finite rank m ≥ 1 and S is free R-algebra of finite
rank n ≥ 1, then TrT/R is the composition TrS/R ◦ TrT/S.

Proof. Let u1, . . . , un be a free basis for S over R, and let v1, . . . , vm be a free basis for
T
S . Let A = (sij) be the m×m matrix over S for multiplication by t ∈ T with respect to
the free basis v1, . . . , vm over S. Let Bij be the n×n matrix over R for multiplication by
sij acting on S with respect to the basis u1, . . . , un for S over R. Then

t(uhvk) = uh(tvk) = uh(
∑
j

sjkvk) =
∑
j

(sjkuh)vk

and sjkuh is the dot product of the h column of Bij with the column whose entries are
u1, . . . , un. It follows that a matrix for multiplication by t acting on T over R with respect
to the basis uhvk is obtained, in block form, from (sij) by replacing the i, j entry by the
block Bij . Then TrT/R(t) is the sum of the diagonal entries of this matrix, which is sum
over i of the sums of the diagonals of the matrices Bii. Now, TrT/S(t) is the sum of the
sii, and when we apply TrS/R be get the sum over i of the elements τi = TrS/R(sii. But
τi is the same as the sum of diagonal elements in Bii, and the result follows. �

Theorem. Let cL be a finite algebraic extension field of K. Then the extension is separable
if and only if there is a (nonzero) element λ ∈ L such that TrL/K(λ) 6= 0.

Proof. We have already observed that the trace of 1 is n = [L : K] which will be nonzero
if K has characteristic 0, and every finite algebraic extension is separable in characteristic
0. Now suppose that K (and, hence, L) have positive prime characteristic p.

If the extension if not separable, let F be the largest separable extension of K within
L. Since we must have an element θ ∈ L such that θp ∈ F but θ /∈ F . Let G be the field
F [θ]. Since

TrL/K = TrF/K ◦ TrG/F ◦ TrL/G

it will suffice to show that TrG/F vanishes identically. We have therefore reduced to the
case where L is purely inseparable over K, generated by a single element θ such that
θp ∈ cK. For an element c ∈ K, TrL/K(c) = pc = 0. For an element λ ∈ L − K, we have
that λp = c ∈ K. Since [L : K] = p is prime, there are no strictly intermediate fields, and
so K[λ] = L, and λ has degree p over K. It follows that the minimal polynomial of λ over
K is xp−c, and that the elements λt, 0 ≤ t ≤ p−1, are a basis for L over K. Multiplication
by λ. maps each basis vector to the next, except for λp−1, which is mapped to c · 1. The
matrix for multiplication by λ therefore has only zero entries on the main diagonal, and so
TrL/K(λ) = 0, as required. (The matrix has a string of entries equal to one just below the
main diagonal, and the element c occurs in the upper right hand corner. All other entries
are 0.)
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It remains to show that if L/K is separable, then some element has trace different from
0. By the theorem on the primitive element, we may assume that L = K[θ]. (Even without
knowing this theorem, we can think of L as obtained from K by a finite sequence of field
extensions, each of which consists of adjoining just one element, and so reduce to the case
where one has a primitive element.) Let f be the minimal polynomial of θ: the hypothesis
of separability implies that the roots of f are n distinct elements of the algebraic closure
L of L: call them θ1, . . . , θn. Let A be the matrix for multiplication by θ with respect to
some basis for L over K. Then for every t, At gives a matrix for multiplication by θt. We
shall show that for some i, 0 ≤ i ≤ n− 1, TrcL/K(θi) 6= 0. Assume otherwise.

Since A satisfies its characteristic polynomial, call it g, which is monic of degree n, θ
satisfies g. Thus, f | g. Since f and g are monic of the same degree, g = f . Thus, the

eigenvalues of A are distinct: they are the elements θj . Therefore, A is similar over (L) to
diagonal matrix with the θj on the diagonal, and it follows that, for every i, Ai is similar
to a diagonal matrix with the entries θij on the diagonal. Therefore,

TrL/K(θi) =
n∑

j=1

θij = 0.

Thus, the sum of the columns of the matrix Θ = (θi−1j ) is 0, which implies that the
determinant is 0. We conclude the proof by showing that the determinant cannot be zero.
(This is the well-known Van der Monde determinant, and its value can be shown to be
the product of the

(
n
2

)
differences θj − θi for j > i. It will not vanish because the θj are

distinct. But we argue differently, without assuming this.) If the determinant is 0 there is
an L-linear relation on the rows as well: suppose that γ = (c0 c1 . . . cn) is a vector such
that γΘ = 0, giving a relation on the rows. This simply says that for every j,

n−1∑
i=0

ciθ
i
j = 0.

But if
h(x) = c0 + c1x+ · · ·+ cn−1x

n−1,

this says that all of the θj are roots of h(x), a polynomial of degree at most n− 1. This is
a contradiction unless all of the ci are 0. �

This completes our treatment of separability and trace.

A non-module-finite integral closure in a finite inseparable extension field

The result of Problem 4. from the fourth problem set for Math 614, Fall 2013 is as
follows:

Let K1 ⊂ · · · ⊂ Kn ⊂ · · · be an infinite chain of proper field extensions. Let x be a
power series indeterminate over all the Kn. Let R =

⋃∞
n=1Kn[[x]]. Then R is a local

(Noetherian) domain in which every nonzero proper ideal is generated by a power of x.



6

That is, R is a Noetherian discrete valuation domain.

Now let k be a perfect field of characteristic p > 0, e.g., either Z/pZ or any algebraically
closed field of positive characteristic. Let t0, t1, . . . , tn . . . be an infinite sequence of
indeterminates over k, let K = k(tpk : k ∈ N), and for n ∈ N, let Kn = K0(t1, . . . , tn),
n ≥ 0. Let L =

⋃∞
n=0Kn = K(tn : n ∈ N). Note that Lp = K. Construct the ring R as in

Problem 4. using this sequence of fields (the numbering starts with 0 instead of 1, which is
not an essential difference). Since R is a DVR, it is normal. Note that K[[x]] ⊆ R ⊆ L[[x]]
and that if f ∈ L[[x]], then fp ∈ R. In fact, fp ∈ K[[xp]]. Let u =

∑∞
i=0 tix

i. Then
up ∈ R but u /∈ R. Let F be the fraction field of R and let L = F(u), a purely inseparable
extension of R.

Let S be the integral closure of R in L. We shall show that S is not module-finite
over R. For i ∈ N let ui =

∑∞
s=0 ts+ix

s = ti + ti+1x + · · · . Note that u0 = u. Let

gi =
∑i−1

s=0 tsxs ∈ Ki−1[x] ⊆ Ki−1[[x]] ⊆ R. Then ui = (u − gi)/xi is in L, and upi ∈ R,
since un ∈ L[[x]]. Hence, un is a root of the monic polynomial Zp − upn = 0, which is
in R[Z]. Thus, all of the un are in S. To complete the proof, it suffices to show that
for every n, un is not in the R-span of u0, . . . , un−1. (If S were module-finite over R,
it would satisfy ACC as an R-module.) To get a contradiction, we assume that we have

r0, . . . , rn−1 ∈ R such that (∗) un =
∑n−1

i=0 riui.

The finitely many ri =
∑∞

j=0 cijx
j will all have coefficients cij ∈ KN for some sufficiently

large choice of N . Choose such an N and choose any M such that M + n > N . Compare
the coefficients of xM on the two sides of (∗). On the left hand side the coefficient is tM+n.

On the right hand side the coefficient is
∑n−1

i=0 (
∑

j+s=M cijts+i), and the largest value of

s + i that occurs is M + (n − 1). Hence, all of the terms in the coefficient of xM on the
right hand side of (∗) are in the field KM+n−1, since this is true both for the cij and the
ts+i that occur. Since tM+n /∈ KM+n−1, we have the desired contradiction, and so S is
not module-finite over R. �


