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1. Introduction Our objective is to explain how the results of tight closure theory

in characteristic p can be extended to equal characteristic zero. The results described in

this paper and not otherwise attributed are joint work of the author and Craig Huneke.

3

The detailed treatment of the theory we sketch here is given in [HH6]. One does in fact get,

over an arbitrary Noetherian ring containing the rational numbers, Q, a closure operation

de�ned on submodules of �nitely generated modules. The operation has the same kind of

persistence properties as in the characteristic p case. For regular rings, every ideal (and

every submodule of every �nitely generated module) is tightly closed. The tight closure

of an ideal is contained in the integral closure and is usually much smaller. One has

the same kind of colon-capturing properties as in characteristic p, and, more generally,

one has an analogous phantom homology theory. In consequence, one has a theory that

yields equal characteristic 0 versions of what has been done in characteristic p: one gets

a very short proof that direct summands of regular rings are Cohen-Macaulay (and more:

they are F-regular), improved versions of the so-called \local homological conjectures"

(these conjectures are now theorems, for the most part), and a tight closure version of the

Brian�con-Skoda theorem.

In [HH6] several notions of tight closure in equal characteristic 0 are developed. There

is one for each �eld of equal characteristic 0, valid for algebras over that �eld, and a notion,

big equational tight closure, that yields a larger tight closure than any of the theories linked

to a speci�c �eld. However, here, for simplicity, we shall focus on the notion associated

to the �eld of rational numbers, also called equational tight closure in [HH6], and denoted

there by either

�eq

or

�Q

. Since we shall be dealing with only one notion we denote it

�

,

and we omit the adjective \equational." This is the smallest of our \tight closure" notions.

It is not known whether the various characteristic zero notions of tight closure actually

yield di�ering results. It is possible that they all agree, whenever they are de�ned. We

should note that some of the de�nitions here are simpler than those in [HH6], although

equivalent in the special case that we are studying.
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2 MELVIN HOCHSTER

We shall use [HH1] and [Hu] as our basic references for characteristic p tight closure

theory.

We conclude this section by recalling some of the alternative characterizations of tight

closure available in characteristic p. Before immersing ourselves in the technique of reduc-

tion to characteristic p, we want to stress the point that a variant of one of these other

characterizations may give a good theory in equal characteristic zero or even, possibly,

in mixed characteristic. Having a di�erent approach to the equal characteristic zero case

would undoubtedly be very valuable.

Recall that for good rings of characteristic p, and, in particular, for rings possessing a

completely stable test element, one may test tight closure by passing to the complete local

domains of R, i.e., to the rings obtained by localizing R at a prime, completing, and killing

a minimal prime. It turns out that u 2 I

�

if and only if the image of u is in (IB)

�

for

every complete local domain B of R. Thus, the central problem is to characterize tight

closure in a complete local domain (R;m;K).

Part (a) of the Theorem (1.1) below is phrased in terms of Hilbert-Kunz functions:

when I is primary to m, `(R=I

[p

e

]

) as a function of e is called the Hilbert-Kunz function

(cf. [Ku], [Mo], [HaMo]). (Here, \`" denotes length.) By a result of [Mo], if dimR = d

there is a positive real number �

I

such that for all q = p

e

, `(R=I

[q]

) = �

I

q

d

+O(q

d�1

). If

dimR = 1 then �

I

is a positive integer. In general, �

I

is conjectured to be rational, but this

is an open question even in dimension two! The behavior of the Hilbert-Kunz functions

is quite surprising. For example, if R = (Z=5Z)[[x

1

; x

2

; x

3

; x

4

]]=(G) where G =

P

4

i=1

x

4

i

,

then `(R=m

[5

e

]

) =

168

61

(5

e

)

3

�

107

61

(3

e

): Cf. [HaMo].

Recall that the absolute integral closure of the domain R (cf. [Ar2]), which we denote

R

+

, is the integral closure of R in an algebraic closure of its fraction �eld, and is unique

up to non-unique isomorphism.

When R is a domain, an R-moduleM is called solid if it possesses a nonzero R-module

map to R. When (R;m;K) is a complete local domain of dimension d, this is equivalent

to the condition that the local cohomology module H

d

m

(M) 6= 0. Cf. [Ho3].

Theorem (1.1). Let (R;m;K) be a complete local domain of characteristic p. Let d =

dimR. Let I be an ideal of R and let u 2 R. Each of the following statements (some of

which include a supplementary hypothesis), gives a characterization of when u is in I

�

.

(a) Suppose that I is m-primary. Let J = I + Ru. Then u 2 I

�

if and only if �

J

= �

I

.

More generally, if I � J � m are m-primary then J � I

�

if and only if �

J

= �

I

.

(This result characterizes tight closure in complete local domains of characteristic p,

since an element is in the tight closure of I � m if and only if it is in the tight closure

of all m-primary ideals containing I.)

(b) Fix a discrete Z-valuation nonnegative on R and positive on m and extend it to a

valuation v of R

+

to Q. Then u 2 I

�

if and only if there exist elements � 2 R

+

�f0g

with v(�) arbitrarily small such that �u 2 IR

+

.

(c) (K. E. Smith [Sm1].) Assume that I is generated by part of a system of parameters.

Then u 2 I

�

if and only if u 2 IR

+

.

(d) u 2 I

�

if and only if there exists a big Cohen-Macaulay algebra S for R such that

u 2 IS.
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(e) u 2 I

�

if and only if there exists a solid R-algebra S such that u 2 IS (see the

discussion just prior to the statement of this theorem).

Proof. By Theorem (8.17) of [HH1], when I � J arem-primary ideals we have that J � I

�

if and only if lim

e!1

1

q

d

`(J

[q]

=I

[q]

) = 0, which, by Monsky's result, is equivalent to the

condition that �

I

= �

J

, yielding (a). For (b) see [HH2]. Part (c) is proved in [Sm1]. The

results of (d) and (e) are obtained in [Ho3] from the perspective of \solid closure." �

Since R

+

is a big Cohen-Macaulay algebra in the characteristic p case (cf. [HH3]) and

since big Cohen-Macaulay algebras are solid, conditions (c), (d), and (e) are closely related.

Whether tight closure in locally excellent domains of characteristic p is, in general, simply

the contracted expansion from R

+

is an important open question. It reduces to the case

of complete local domains. The answer is not known even in dimension 2.

It is known, however, that R

+

is never a big Cohen-Macaulay algebra in equal charac-

teristic 0 if dimR � 3. Moreover, the main result of [Ro5] shows that \solid closure," the

notion de�ned by attempting to extend the characterization of tight closure given in part

(e), does not behave well in equal characteristic 0: ideals of regular rings of dimension 3

fail to be solidly closed in general. But (d) might give a good notion in equal characteristic

0: see x8. See also [Ho4] and [HH5].

2. Comparison of �bers and a simple example It will turn out that if K is any

�eld of characteristic 0 then in the ring R = K[X;Y;Z]=(X

3

+ Y

3

+ Z

3

) = K[x; y; z], the

element z

2

is in the tight closure of I = (x; y)R, although it is not in I. Before giving the

explanation, we want to recall that if A! R is a ring homomorphism, P is any prime ideal

of A, and �(P ) = A

P

=PA

P

, then the �ber of A! R over P is de�ned as the �(P )-algebra

�(P )


A

R. If P is a maximal ideal � of A then �(�) = A=� and the �ber is simply R=�R:

�bers over maximal ideals are referred to as closed �bers. On the other hand if A is a

domain and P = (0), then �(P ) is the fraction �eld of A, and the �ber over (0) may be

identi�ed with (A � 0)

�1

R, and is referred to as the generic �ber.

When R is �nitely generated over a Noetherian domain A of characteristic zero and one

is studying some good property P of the �bers, especially a geometric property, it is often

true that the generic �ber has property P if and only if there is a dense open subset U of

the maximal spectrum of A such that the closed �bers over the points of U have property

P: we say that almost all closed �bers have P in this case. It is true that the generic �ber

has P if and only if almost all closed �bers have P for the following properties:

(1) smoothness

(2) normality

(3) being reduced

(4) the Cohen-Macaulay property

(5) the Gorenstein property

(6) equidimensionality

Let x

1

; : : : ; x

n

2 R, let u 2 R and I = (x

1

; : : : ; x

n

)R. It is also true that (the image

of) u is nonzero (or not in the expansion of I) in the generic �ber if and only if this is

true for almost all closed �bers, and that if x

1

; : : : ; x

n

generate a proper ideal of height
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n in the generic �ber then the images of the x's generate a proper ideal of height n in

almost all closed �bers, which will be reduced and equidimensional, but not necessarily

domains. (ConsiderZ[x; y]=(x

2

+ y

2

): whether the �ber modulo p is a domain depends on

the residue of p modulo 4. This kind of behavior can be remedied by adjoining a square

root i of �1 to Z, after which one has non-domain behavior for all �bers over Z[i].) There

is a detailed and essentially self-contained exposition of results on comparison of �bers in

[HH6], x(2.3).

The idea behind our tight closure theory in equal characteristic zero is to formulate the

de�nition so that comparison of �bers \works" a priori, by virtue of the de�nition.

In the example that we are studying, it should turn out that z

2

is in the tight closure

of (x; y)R because, roughly speaking, when one \drops down" or \descends" to the �nitely

generated Z-subalgebra of R, call it R

Z

, generated by x; y and z over Z (here, R

Z

�

=

Z[X;Y;Z]=(X

3

+ Y

3

+ Z

3

)), then for almost every closed �ber of Z! R

Z

, i.e., modulo

all but �nitely many positive prime integers p, the image of z

2

modulo p is in the tight

closure of IR

Z

=pR

Z

in R

Z

=pR

Z

. (Fix p 6= 3. The rest of this parenthetical remark is

carried through entirely modulo p, but we continue to write x; y and z for the images of

the variables. It is enough to see that x(z

2q

) 2 I

[q]

= (x

q

; y

q

) for all q = p

e

. Let � =Z=pZ

and let the subscript

�

indicate the result of tensoring with �. We can write 2q = 3h+ r

where h is a nonnegative integer and 0 � r � 2. Note that 1, z; z

2

is a free basis for R

�

over �[x; y] = T , so that every element has a unique representation as �

0

+ �

1

z+ �

2

z

2

with

the �

i

2 T . Then x(z

2

)

q

becomes x(z

3

)

h

z

r

= x(x

3

+ y

3

)

h

z

r

, and this will be in (x

q

; y

q

)

provided that for all choices of nonnegative i; j with i+ j = h, we have that at least one of

the exponents in x

3i+1

y

3j

is at least q. But if both exponents are at most q � 1, we have

that 3i+ 1 + 3j � 2q � 2 or 3h+ 1 � 2q � 2 = 3h+ r � 2, contradicting r � 2.)

We leave it as an exercise for the reader to verify that z is not in the tight closure of

(x; y)R and that z

2

is not in the integral closure of (x; y)R. Also, show that the ideal

generated by x and y is tightly closed in the ring (Z=pZ)[X;Y;Z]=(X

2

+Y

3

+Z

5

) precisely

for those primes p such that p � 7.

3. A general de�nition for tight closure Let S be a locally excellent Noetherian

ring containing the rationals. Keeping the example of the preceding section in mind, we

want to give the general de�nition of when an element u of S is in the tight closure of an

ideal J of S.

De�nition (3.1). The element u is in the tight closure J

�

of J if there exists a �nitely

generated Z-subalgebra R

Z

of S containing u such that, with I

Z

= J \ R

Z

, one has that,

for all but at most �nitely many closed �bers R

�

of Z! R

Z

, the image u

�

of u in R

�

is

in the (characteristic p) tight closure of the image of I

�

in R

�

.

We should make several remarks here. Once one has a choice of subalgebra R

Z

that

enables one to see that u is in the tight closure of J , every larger choice works as well: this

is a consequence of persistence properties for tight closure in characteristic p. Thus, in the

above de�nition, instead of saying that \there exists a �nitely generatedZ-subalgebra : : : "

we could have said \for every su�ciently large �nitely generated Z-subalgebra : : : ." For
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simplicity we have given the de�nition only for ideals. But there is no di�culty extending

the de�nition to the case of modules. As in the positive characteristic case, the de�nitions

are set up so that an element u of the Noetherian module M is in the tight closure of

N � M if and only if the image of u in M=N is in the tight closure of 0 in M=N . If we

map a �nitely generated free R-module G = R

h

ontoM and replace N by its inverse image

in G and u by an element of G that maps to u, then we reduce the problem of de�ning

tight closure to the case where the ambient module is G = R

h

. The de�nition in this case

is essentially the same as in the case of ideals.*

It is also worth noting in dealing with �nitely generatedZ-algebras in this context that,

after localizing at one nonzero integer a, one may assume that all of the modules, algebras,

etc. that one is considering are free over the localized base A =Z

a

. This is a special case

of the lemma of generic freeness. Even when one has a cokernel of a map of Z-algebras,

it is possible to localize and assume that cokernel is free. This means that for almost all

closed �bers, an injection of �nitely generated Z-algebras stays injective when one passes

to the �ber (i.e., works modulo the corresponding prime integer p). The following strong

form of generic freeness, developed in [HR], Lemma (8.1), p. 146, su�ces for our needs

here.

Lemma (3.2) (generic freeness). Let A be a Noetherian domain, let R be a �nitely

generated A-algebra, let S be a �nitely generated R-algebra, let W be a �nitely generated

S-module, letM be a �nitely generated R-submodule of W and let N be a �nitely generated

A-submodule of W . Let V =W=(M +N). Then there exists an element a 2 A�f0g such

that V

a

is free over A

a

. �

The very important special case where R = S and M;N are both 0, has been known

much longer (this case may be found in [Mat], x22.) In most cases where one uses generic

freeness, the 
atness of the module, algebra, etc. under consideration would su�ce.

Note that, for example, since one may localize to make R

Z

=I

Z


at, it follows that

I

�

! R

�

is an injection for almost all �bers.

4. Basic properties We shall use h i to indicate the image of a module under

a map: which map should be obvious from the context. The most frequent use of this

notation is when N � M are S-modules, S

0

is an S-algebra, and hS

0




S

N i denotes the

image of S

0




S

N in S

0




S

M .

*For the intrepid reader we comment brie
y on the other notions of tight closure in the ideal case. If

one is considering algebras over a �eld K of characteristic 0, in the de�nition of

�K

one replaces R

Z

by

an a�ne Z-algebra R

A

� R, where A is a suitably large a�ne Z-subalgebra of K, and then one considers

what happens for almost all closed �bers of A ! R

A

. The largest notion, big equational tight closure,

denoted

�EQ

, is governed by what happens in rings of the form C

Q

that have local maps to the complete

local domains of R, where C is an a�neZ-algebra and Q is a prime ideal meetingZin (0). For every prime

integer p > 0 let B(p) be the localization of C=pC at the multiplicative system of all nonzerodivisors on

C=(Q + pC). For a ring of the form C

Q

, an element u 2 C

Q

, and an ideal I � C

Q

, one de�nes u to be in

I

�EQ

if for almost all prime integers p > 0 the image of u in B(p) is in the characteristic p tight closure of

IB(p) in B(p). If R is an L-algebra for some �eld L and K � L is a sub�eld then I

�K

� I

�L

. I

�

, which

is I

�Q

, is contained in I

�EQ

, and if R is a K-algebra then I

�K

is between them. Modules are treated in

an entirely similar way.
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The following result states many of the basic properties of tight closure in equal char-

acteristic zero. The proof is given in x3.2 of [HH6]. The idea is generally to pass to

consideration of one (or more) �nitely generated Z-algebras, and then deduce the result

from a corresponding result in characteristic p by considering what happens for almost all

�bers.

Theorem (4.1) (basic properties of tight closure in characteristic zero). Let S be

a locally excellent Noetherian algebra containing Q. Let N

0

;N � M be �nitely generated

S-modules. Let u 2M and let v be the image of u in M=N . Let I be an ideal of S. Unless

otherwise indicated,

�

indicates tight closure in M .

(a) N

�

is a submodule of M containing N .

(b) u 2 N

�

M

if and only if v 2 0

�

M=N

.

(c) If N � N

0

�M then N

�

M

� N

0�

M

and N

�

N

0

� N

�

M

.

(d) (N

�

)

�

= N

�

.

(e) (N \N

0

)

�

� N

�

\N

0�

.

(f) (N +N

0

)

�

= (N

�

+N

0�

)

�

.

(g) (IN)

�

M

=

�

(I

�

R

)N

�

M

�

�

M

.

(h) (N :

M

I)

�

M

� N

�

:

M

I (respectively, (N :

S

N

0

)

�

� N

�

:

S

N

0

). Hence, if N = N

�

then

(N :

M

I)

�

= N :

M

I (respectively, (N :

S

N

0

)

�

= N :

S

N

0

).

(i) If N

i

�M

i

are �nitely many �nitely generated S-modules and we identify N = �

i

N

i

with its image in M = �

i

M

i

then the obvious injection �

i

N

�

i

M

i

,!M maps �

i

N

�

i

M

i

isomorphically onto N

�

M

.

(j) (Persistence of tight closure) Let S ! S

0

be a ring homomorphism. Let u 2 N

�

M

.

Then 1
 u 2 hS

0




S

N i

�

S

0




S

M

over S

0

.

(k) (Persistence of tight closure: second version). Let S ! S

0

be as in (j), let u 2 N

�

M

,

and let V � W be �nitely generated S

0

-modules. Suppose also that there is an S-

homomorphism �:M !W such that �(N) � V . Then �(u) 2 V

�

W

.

(l) (Irrelevance of nilpotents) If J is the nilradical of S, then J � (0)

�

, and so J � I

�

for all ideals I of S. Consequently, JM � N

�

. Moreover, if N denotes the image of

N in M=JM , then N

�

is the inverse image in M of the tight closure N

�

M=JM

, which

may be computed either over S or over S

red

(= S=J).

(m) Let p

(1)

; : : : ; p

(s)

be the minimal primes of S and let S

(i)

= R=p

(i)

. Let M

(i)

=

S

(i)




S

M and let N

(i)

be the image of S

(i)




S

N in M

(i)

. Let u

(i)

be the image of u

in M

(i)

. Then u 2 N

�

if and only if u

(i)

2 (N

(i)

)

�

in M

(i)

over S

(i)

; 1 � i � s.

(n) If R = �

h

i=1

R

i

is a �nite product and M = �

i

M

i

and N = �

i

N

i

are the corresponding

product decompositions of M , N , respectively, then u = (u

1

; : : : ; u

h

) 2M is in N

�

M

over R if and only if for all i, 1 � i � h, u

i

2 N

i

�

M

i

. �

The next result, which is essentially Theorem (3.4.1) of [HH6], shows that the notion of

characteristic zero tight closure we are using can be tested after passing to the complete

local domains of R. Some discussion of the ideas in the proof is given following the

statement of the theorem.

Theorem (4.2). Let S be a locally excellent Noetherian algebra containing Q, and let

N �M be �nitely generated S-modules. Then the following three conditions on an element

u 2M are equivalent:
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(1) u 2 N

�

M

.

(2) For every maximal ideal m of S, if B is the quotient of the completion of S

m

by a

minimal prime, then the image of u in B 


S

M is in the tight closure of hB 


S

N i

working over B.

(3) For every prime ideal P of S, if B is the quotient of the completion of S

P

by a minimal

prime, then the image of u in B 


S

M is in the tight closure of hB 


S

Ni working

over B. �

The proof of this theorem depends on the fact that the Henselization of an excellent

local ring of equal characteristic 0 is an approximation ring, i.e., that whenever a �nite

system of polynomial equations over the ring has a solution in the completion it has a

solution in the Henselization and, hence, in a suitable �etale extension of the original ring.

This result, which generalizes [Ar1], can be deduced from general N�eron desingularization,

which asserts that an arbitrary regular (meaning 
at with geometrically regular �bers)

homomorphism of Noetherian rings is a �ltered inductive limit of smooth homomorphisms

(i.e., smooth of �nite type). This means that if R! S is regular and factors R! R

1

! S

with R

1

of �nite type over R then R

1

! S factors R

1

! S

1

! S where S

1

is smooth

over R. General N�eron desingularization has a somewhat complicated history and there

has been some disagreement concerning the correctness of what has been published. We

refer the reader to [Po1, 2], [Og], [And], and [Sp] for further discussion. The special cases

that we need here have been established independently in [Rot] and [ArR]. In particular,

a self-contained argument that excellent Henselian rings of equal characteristic zero are

approximation rings is given in [Rot].

To prove the most interesting implication in Theorem (4.2), namely, that (3) implies (1),

one uses the approximation result for the localized completion at every maximal ideal, and

then a kind of compactness argument to show that the element is in the tight closure after

descending to a faithfully 
at �etale extension of a �nitely generated (over Q) subalgebra of

the original ring. Characteristic p results then imply that the faithfully 
at �etale extension

is unnecessary.

Remark. The de�nition of tight closure given in [HH6] for the case where the ring is not

necessarily locally excellent forces the conclusion of Theorem (4.2) to hold: e.g., in the

ideal case an element u of the ring is de�ned to be in the tight closure of I if it is in the

tight closure (in the sense that we have already de�ned) of IB for every complete local

domain B of R.

5. Descent from the complete case and the Artin-Rotthaus theorem There

is a general strategy for proving results about tight closure: one �rst passes to the complete

local case (often, the case of a complete local domain). In the second step one passes to

the study of the �nitely generated Q- (and then Z-) subalgebras of that complete local

domain. The third step is to pass to closed �bers, using results comparing what happens

at the generic �ber with what happens for almost all closed �bers.

To prove results on capturing colons and phantom homology, which we shall treat in

the next two sections, one needs, at the second step, to pass to an a�ne Z-subalgebra of



8 MELVIN HOCHSTER

a complete local ring while preserving heights. The following result, which is essentially

Theorem (3.5.1) of [HH6], permits one to do this:

Theorem (5.1). Let K be a �eld of characteristic zero and let (S;m;L) be a complete

local ring that is a K-algebra. Assume that S is equidimensional and unmixed.

Suppose that R

0

is a subring of S that is �nitely generated as a K-algebra, and that we

are also given �nitely many sequences of elements fz

(i)

t

g in R

0

, each of which is part of a

system of parameters for S.

Then there is a �nitely generated K-algebra R such that the homomorphism R

0

,! S

factors R

0

,! R! S and such that the following conditions are satis�ed:

(1) R is biequidimensional.

(2) The image of each sequence fz

(i)

t

g

t

in R consists of parameters in the following sense:

each subsequence consisting of, say, � elements generates an ideal that has height �

modulo every minimal prime.

(3) If m is the contraction of m to R, then dimR

m

� depthR

m

= dimS � depth S. In

particular, R

m

is Cohen-Macaulay i� S is Cohen-Macaulay.

(4) If S is reduced (respectively, a domain) then so is R. �

(N.B. In general, dimR

m

is substantially bigger than dimS.)

Of course, K may be Q. Having passed to a �nitely generated Q-subalgebra, it is then

easy to descend further to a �nitely generated Z-subalgebra.

We shall not say very much about the proof of Theorem (5.1), except that one thinks of

the ring S as module-�nite over a complete regular local ring, and reduces the problem of

descending from S to that of descending from the complete regular local ring. The proof

is then completed by using the following result, which is another special case of general

N�eron desingularization. A self-contained proof is given by Artin and Rotthaus in [ArR].

Theorem (5.2). Let K be a �eld (or an excellent DVR). Let T = K[[x

1

; : : : ; x

n

]] be the

formal power series ring in n variables over K. Then every K-algebra homomorphism of

a �nitely generated K-algebra R to T factors R! S ! T , where the maps are K-algebra

homomorphisms and S is smooth (of �nite type) over K[x

1

; : : : ; x

n

]. Thus, S is regular

and x

1

; : : : ; x

n

is a regular sequence in S.

6. Further properties of tight closure We are now ready to establish a number

of important properties of characteristic 0 tight closure that parallel the properties of tight

closure in characteristic p.

Theorem (6.1). Let S be a regular Noetherian ring containing Q and let N � M be

�nitely generated S-modules. Then N

�

M

= N .

Sketch of the proof. One reduces to the case where (S;m;L) is a complete local domain.

If u 2 N

�

� N one can preserve this while replacing N by a submodule maximal with

respect to being disjoint from u. Passing to M=N , we may assume that N = 0, that M

is an essential extension of L, and the the socle generator u is in the tight closure of 0.

Then the injective hull of M is the same as the injective hull of the residue �eld, and so
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if x

1

; : : : ; x

n

is a regular system of parameters for S, we see that we may assume that M

embeds in S=(x

t

1

; : : : ; x

t

n

)S for t su�ciently large. Hence we may take u to be the image

of (x

1

� � � x

n

)

t�1

, since this element generates the socle. Thus, it will su�ce to show that

u = (x

1

� � � x

n

)

t�1

is not in the tight closure of (x

t

1

; : : : ; x

t

n

)S in S.

By Theorem (5.2) if there is an a�ne Q-algebra containing elements X

i

that map to

the x

i

and such that X

t�1

1

� � �X

t�1

n

is in the tight closure of (X

t

1

; : : : ; X

t

n

), there is also

one that is smooth over Q and in which the X's form a regular sequence. One can descend

to a Z

a

-subalgebra, where a is a nonzero integer. One now gets a contradiction from the

fact that the closed �bers are all regular rings. �

Let N �M be �nitely generated modules over a Noetherian ring S. We shall say that

u 2 M is in the regular closure N

reg

M

of N in M if for every regular ring T to which S

maps, u

T

2 hN

T

i (in M

T

). This is slightly di�erent from the notion considered in [HH1]

and [HH4], where it was required that S

�

map into T

�

(where the superscript

�

indicates

the set of elements of the ring not in any minimal prime). This regular closure is a priori

smaller than the one considered in [HH1] and [HH4] (although we do not know an example

where it is actually strictly smaller). This makes the following Corollary slightly stronger

than if it were stated for the notion of [HH1] and [HH4].

Corollary (6.2). Let S be a Noetherian ring containing Q. Let N � M be �nitely

generated S-modules. Then N

�

M

� N

reg

M

.

Proof. Let u 2 N

�

M

and suppose that S maps to a regular Noetherian ring T . By the

persistence of tight closure, after tensoring with T one has that the image of u is in

hT 


S

N i

�

T


S

M

= hT 


S

Ni (since T is regular). Thus, u 2 N

reg

M

. �

Corollary (6.3). Let S be a Noetherian ring containing Q. Let I be any ideal of S. Then

I

�

� I, the integral closure of I. Hence, all radical ideals of S and, in particular, all prime

ideals of S are tightly closed.

Proof. An element is in I if and only if it is in IV for all maps of R to discrete valuation

rings V , which shows that I

reg

� I, and we may apply (6.2) �

We refer to [HH1] and [Hu] for the background of the Brian�con-Skoda theorem.

Theorem (6.4) (tight closure Brian�con-Skoda theorem). Let S be a Noetherian

ring of equal characteristic zero and let I be an ideal of S generated by at most n elements.

Then for every k 2 N; I

n+k

� (I

k+1

)

�

. In particular, I

n

� I

�

.

Proof. Fix generators of I, say I = (u

1

; : : : ; u

n

). It is clear that if an element z is in

(u

1

; : : : ; u

n

)

n+k

then this remains true when S is replaced by a suitable a�neZ-subalgebra

containing z and u

1

; : : : ; u

n

. The equation that demonstrates integral dependence here

will continue to do so when we pass to closed �bers. The result is now immediate from

the de�nition of tight closure and the fact that the tight closure Brian�con-Skoda theorem

holds for all the closed �bers. The �nal statement is the case where k = 0. �
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Corollary (6.5). Let S be a Noetherian ring containing Q and let I be a principal ideal

of S. Then I

�

= I.

Proof. I

�

� I by Corollary (6.3) and the other inclusion follows from the generalized

Brian�con-Skoda theorem (6.4) in the case where n = 1 and k = 0. �

The following very important result is representative of a large class of results that assert

that manipulations of ideals generated by monomials in a �xed system of parameters yield

the same result as if the parameters formed a regular sequence (or were indeterminates),

up to tight closure.

Theorem (6.6) (tight closure captures colons). Let S be a locally excellent Noether-

ian ring containing Q. Let x

1

; : : : ; x

n

generate an ideal of height at least n modulo every

minimal prime of S. Then (x

1

; : : : ; x

n�1

)

�

:

S

x

n

S = (x

1

; : : : ; x

n�1

)

�

.

Sketch of the proof. Suppose that x

n

u 2 (x

1

; : : : ; x

n�1

)

�

. We must show that u 2

(x

1

; : : : ; x

n�1

)

�

. The hypothesis is preserved modulo minimal primes, and also by lo-

calization. Thus, we may assume that the ring is an excellent local domain. We may

then complete, and we are in the reduced, equidimensional case: the height condition will

still hold modulo every minimal prime, and so we may assume that S is a complete local

domain. The case where one of the x

i

is not in the maximal ideal is easy, and so we may

assume that the x

i

are part of a system of parameters.

Since x

n

u 2 (x

1

; : : : ; x

n�1

)

�

we know that there is an a�ne Q-subalgebra R of S

containing x

1

; : : : ; x

n�1

; x

n

, and u such that x

n

u 2

�

(x

1

; : : : ; x

n�1

)R

�

�

. By Theorem

(5.1), we can give a Q-algebra factorization R ! R

1

! S of R ! S such that R

1

is

a domain �nitely generated over Q and such that the images of x

1

; : : : ; x

n

generate a

proper ideal of height n in R

1

. We can then pass to an a�ne Z-subalgebra with the

same properties. Almost all closed �bers will be reduced, equidimensional, and have the

property that the images of the x

i

generate an ideal of height n, with the image of ux

n

still

in the characteristic p tight closure of the ideal generated by the images of x

1

; : : : ; x

n�1

,

and the result now follows from colon-capturing in characteristic p. �

We now de�ne a Noetherian ring containing Q to be weakly F-regular if every ideal is

tightly closed and F-rational if it is a product of domains in which every ideal of height n

generated by n elements is tightly closed. (These notions are considered in greater general-

ity in [HH6].) Thus, weakly F -regular implies F -rational. Exactly as in the characteristic

p case, over a weakly F-regular ring the tight closure of every submodule of a �nitely gen-

erated module is again tightly closed. The proof of the following important result is quite

similar to the characteristic p case, and is omitted.

Corollary (6.7). An F-rational ring is normal and, if it is locally excellent, then it is

Cohen-Macaulay. In particular, a weakly F-regular ring is normal and, if it is locally

excellent, then it is Cohen-Macaulay. �

(6.8) De�nition and discussion: purity. We say that a map of R-modules N ! M

is pure if W 


R

N !W 


R

M is injective for every R-module W . Since W may be equal

to R, this implies that N ! M is injective. If M=N is �nitely presented, then N ,! M
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is pure if and only if it splits. It follows that if R is Noetherian, N ,! M is pure if and

only if N ! M

0

splits for all M

0

� M containing the image of N such that M

0

=N is

�nitely generated. Cf. [HR], x6. We shall very often be interested in the condition that a

ring homomorphism R! S be pure (over R), in which case we shall say that R is a pure

subring of S. We are particularly interested in this condition when R is a Noetherian ring.

The condition that a ring homomorphism R! S be pure implies that every ideal of R is

contracted from S.

We now prove a considerable strengthening of the main result of [HR] on the Cohen-

Macaulay property for rings of invariants of linearly reductive groups G acting on regular

rings: the key point is that in the situations described in [HR], S is regular and the �xed

ring S

G

is a pure subring of S. The situation just below is therefore much more general.

Theorem (6.9) (generalized Hochster-Roberts theorem). Every pure subring of

an equicharacteristic regular ring is a Cohen-Macaulay ring (and normal: in fact, the

completion of each of its local rings is normal).

Proof. As in the proof for the characteristic p case (see, for example, x7 of [HR]) one can

reduce to the case where R is complete. The result now follows from (6.7) and (6.10)

below: the proof of (6.10) is left as an exercise. �

Proposition (6.10). If S is weakly F-regular and R is pure in S, then R is weakly F-

regular. �

Boutot has shown [Bou] that if an a�ne algebra S over a �eld of characteristic 0 has

rational singularities, and R is pure in S, then R has rational singularities. There is

a great deal of evidence that the property of having rational singularities is connected

with F-rationality. For example, in [Sm2] it is shown that if R

Z

has the property that

almost all �bers are F-rational (R is then said to have F-rational type; there is a similar

de�nition for weakly F-regular type), then K 


Z

R has rational singularities for any �eld

K of characteristic 0. It may be possible to characterize rational singularities along these

lines.

7. Phantom homology and homological theorems There has been a great

deal of work done on a family of problems that used to be known as the \local homological

conjectures." Many are now theorems: cf. [PS1,2], [Ho1,2], [Ro1{4], and [Du]. In this

section we consider some very general tight closure results that recover many of these

results, often in a greatly strengthened form.

Throughout this section let R be a locally excellent Noetherian ring which, for simplicity,

we assume is reduced and locally equidimensional. (The results stated here are valid more

generally: one wants the conditions we impose to hold modulo every minimal prime of R).

Let G

�

denote a �nite free complex over R, say 0 ! R

b

d

! � � � ! R

b

0

! 0, let �

i

denote

a matrix of the i th map, 1 � i � d, let r

i

be the determinantal rank of �

i

, and let I

i

be

the ideal generated by the size r

i

minors of �

i

(�

d+1

= 0 and r

d+1

= 0). Recall that G

�

satis�es the standard conditions on rank and height if for 1 � i � d, b

i

= r

i+1

+ r

i

and

ht I

i

� i. The complex G

�

is called phantom acyclic if the cycles in G

i

are contained in
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the tight closure of the boundaries in G

i

for i � 1. We refer to [HH1], [HH4], and [Hu]

for more detail. We then get the following analogues of characteristic p results: detailed

proofs are given in [HH6], although we shall make some comments on the proofs below.

Theorem (7.1) (phantom acyclicity criterion). With R and G

�

as above, if G

�

satis�es the standard conditions on rank and height then G

�

is phantom acyclic.

Sketch of the proof. The argument is very much like the proof of Theorem (6.6). One

reduces to the case where the ring is a complete local domain, and then descends to an

a�ne Q-algebra while preserving height conditions using Theorem (5.1). From there it is

easy to pass to an a�neZ-subalgebra, and then one uses the fact that the hypothesis holds

for almost all closed �bers and that the theorem holds in characteristic p to complete the

proof. �

This yields at once a very powerful result:

Theorem (7.2) (vanishing theorem for maps of Tor). Let R be an equicharacteristic

regular ring, let S a module-�nite extension of R that is torsion-free as an R-module (e.g.,

a domain), and let S ! T be any homomorphism to a regular ring. Then for every �nitely

generated R-module M , the map Tor

R

i

(M;S)! Tor

R

i

(M;T ) is 0 for all i � 1.

Sketch of the proof. One reduces to the case where T is complete local regular and then

to the case where R is complete and regular as well. A minimal free resolution G

�

of M

satis�es the standard conditions by the usual acyclicity criterion, and this is preserved

when when we pass to S 


R

G

�

, which, by (7.1) is then phantom acyclic: any given cycle

in degree i > 0 (representing a typical element of Tor

R

i

(M;S) ) is in the tight closure of

the boundaries. This is preserved when we tensor further and pass to T 


R

G

�

. Since T

is regular, it is weakly F-regular, and the result follows. �

The mixed characteristic version of (7.2) remains open. If it is true, it implies that reg-

ular rings are direct summands of their module-�nite extensions and that pure subrings of

regular rings are Cohen-Macaulay, both of which are open questions in mixed characteris-

tic. These issues are explored in [HH5] x4, where (7.2) is proved by in equal characteristic

by a di�erent method. Finally, we mention the following analogue of a characteristic p

result from [HH4] (6.5{6).

Theorem (7.3) (phantom intersection theorem). Let R and G

�

be as above, with

G

�

of length d, and suppose that the standard conditions on rank and height hold for G

�

.

Let z 2M = H

0

(G

�

) be any element whose annihilator in R has height > d, the length of

G

�

. Then z 2 0

�

M

. In consequence:

(1) if (R;m;K) is local, z cannot be a minimal generator of M .

(2) the image of z is 0 in H

0

(S 


R

G

�

) for any regular (or weakly F-regular) ring S to

which R maps.

Sketch of the proof. In proving that z 2 0

�

M

one �rst reduces to the case where R is a

complete local domain, and then uses (5.1) to descend �rst to a Q-algebra and then to a

Z-algebra while preserving the rank and height conditions. The result then follows from

the characteristic p version by passage to closed �bers. Part (1) then follows because mM
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is tightly closed in M (M=mM is a direct sum of copies of R=m, and m is tightly closed

in R), while part (2) is obvious. �

Theorem (7.3) is a strengthening of the \improved" new intersection theorem (discussed,

for example, in [Ho2]).

8. Questions There are many open questions concerning the behavior of tight

closure: we shall touch brie
y on only a few of them here, excluding those that depend

primarily on further progress in characteristic p. One obvious question is whether the

various notions of tight closure (

�Q

,

�K

, and

�EQ

: see the footnote on p. 5) agree when

they are de�ned.

We next ask whether an element of a complete equicharacteristic local domain R is

in the tight closure of an ideal I if and only if it is in IS for some big Cohen-Macaulay

algebra S for R. This is correct in characteristic p, and the \only if" part is correct in

equal characteristic 0, by Theorem (11.4) of [Ho3] (in fact, this part holds for

�EQ

). See

also Theorem (1.1) here.

For a�ne Q-algebras we ask whether being weakly F-regular and having weakly F-

regular type are the same, and whether being F-rational is the same as having F-rational

type. It is an open question for a�ne Q-algebras whether F-rational type is equivalent to

having rational singularities, and there is an analogous question (for which we have not

made the necessary de�nitions) for a�ne algebras over an arbitrary �eld. Cf. [Sm2].

In all the known examples where an ideal I of an a�ne Q-algebra is tightly closed, it

actually turns out that one can �nd I

Z

� R

Z

such that I

�

is tightly closed in R

�

for almost

all �bers. We do not know whether this is always the case. We also do not know whether

the image of an element can be in the tight closure of I

�

for a dense (in the case of Zthis

simply means in�nite) set of closed �bers without being in the tight closure for almost all

closed �bers.

Last, but certainly not least, is the problem of whether there is a theory with similar

properties to tight closure that is valid in mixed characteristic: good enough, for example,

to prove the vanishing conjecture for maps of Tor (itself, an important open question).
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