Problem Set #2

Math 615, Winter 2014 Due: February 21

1. Let K be a field, let x, y be indeterminates, and let f be an element transcendental over K[x] in the maximal ideal of K[[x]] (e.g., over $\mathbb{C}[[x]]$ one could take f to be $e^x - 1$ or $\sin(x)$.) Let f_n be the sum of the terms of degree at most n in f. Let R = K[x, y], let m = (x, y), and let (S, \mathcal{M}) be the local ring (R_m, mR_m) , so that $\widehat{S} = K[[x, y]]$. Show that in S, the ideals $I_n = (y - f_n, x^{n+1})$ are decreasing and have intersection (0), but none of them is contained \mathcal{M}^2 . (In \widehat{S} , the intersection of the $I_n \widehat{S}$ is $(y - f) \widehat{S}$.) This shows that Chevalley's Lemma is not true for local rings that are not complete.

2. Let R be a universally catenary Noetherian domain, let $S \supseteq R$ be a module-finite domain extension of R, and let Q be a prime ideal of S. Let $P = Q \cap R$. Prove that P and Q have the same height. Note that R need not be normal.

3. Let R be a finitely generated \mathbb{N} -graded algebra over a local ring (A, m, K) with $R_0 = A$. Let J be the ideal $\bigoplus_{n=1}^{\infty} R_n$ generated by the homogeneous elements of positive degree. Let $\mathcal{M} = m + J$. Is it true that dim (R) = height (\mathcal{M}) ? Prove your answer. (We did this in class when A is a field.)

4. Assume the theorem that if (R, m) is a local ring of Krull dimension d and I is an m-primary ideal, then there is a polynomial in H(n) of degree d such that the length of $R/I^{n+1} = H(n)$ for all sufficiently large n.

Let $I \subseteq J$ be *m*-primary ideals in the local domain (R, m) of Krull dimension *d*. Show that if *J* is integral over *I*, the length of J^n/I^n agrees with a polynomial of degree at most d-1 for all sufficiently large *n*.

5. Let $R = K[x_1, \ldots, x_m]$ and $S = K[y_1, \ldots, y_n]$ be polynomial rings over a field K. Let I be an integrally closed ideal of R and let J be an integrally closed ideal of S. Prove that $I \otimes_K J \hookrightarrow R \otimes_K S = T$ is an integrally closed ideal of T.

6. Let $I = (f_1, \ldots, f_n)R$ be an ideal of a Noetherian domain R, where the f_i are nonzero. Let B_i denote the integral closure of the ring $R[f_1/f_i, \ldots, f_n/f_i]$, and assume that each B_i is Noetherian as well. Note that $IB_i = f_iB_i$. For each i, let V_{ij} be the finitely many discrete valuation rings obtained by localizing B_i at a minimal prime of f_iB_i . Show that for every $h \in \mathbb{N}, g \in \overline{I^h}$ if and only if $g \in I^h V_{ij}$ for all i, j. (That is, there exist finitely many injections $R \to V_{ij}$ of R into a discrete valuation ring that may be used to test integral closure for I and every power of I.)

Extra Credit 3. Let $1 \le t \le r \le s$ be integers and let x_{ij} , $1 \le i \le r$, $1 \le j \le s$, be indeterminates over a field K. Let $S = K[x_{ij} : 1 \le i \le r, 1 \le j \le s]$, let m be the ideal generated by all the x_{ij} , and let P be the ideal of $R = S_m$ generated generated by the 2×2 minors of the $r \times s$ matrix $X = (x_{ij})$. What is the analytic spread of P?

Extra Credit 4. Let R be a normal local domain of dimension 2 and let P be a height one prime ideal of R. Let S be the symbolic Rees algebra of P, that is, the subring of the polynomial ring R[t] spanned by all the elements $P^{(n)}t^n$ for $n \in \mathbb{N}$. Here, $P^{(n)} = P^n R_P \cap R$. One may also describe S as $R + Pt + P^{(2)}t^2 + \cdots + P^{(n)}t^n + \cdots$. Suppose that S is finitely generated over R. Prove that for some integer $n \geq 1$, $P^{(n)}$ its principal.