Problem Set #5

Math 615, Winter 2014 Due: Friday, April 18

Throughout, R and S are Noetherian domains of positive characteristic p.

1. Let S = K[W, X, Y, Z], a polynomial ring over a field K of characteristic p > 2, and let $R = S/(W^4 + X^4 + Y^4 + Z^4) = K[w, x, y, z]$. Let I = (w, x, y)R. Show that for all p > 2, $z^3 \in I^* - I$. For which p is it true that $(z^3)^p \in I^{[p]}$?

2. Let x_1, \ldots, x_n be indeterminates over a field K of characteristic p. Let d be a positive integer and let $R^{(d)}$ denote the subring of $K[x_1, \ldots, x_n]$ spanned over K by all forms whose degree is a nonnegative integer multiple of d. Let \mathcal{M}_d denote the homogeneous maximal ideal of $R^{(d)}$. Let t be a positive integer. What is the Hilbert-Kunz multiplicity of \mathcal{M}_d^t in $R^{(d)}$? Your answer should be a function of n, d, and t.

3. Let $R \subseteq S$ and suppose that there is an *R*-linear map $\theta : S \to R$ such that $\theta(1) \neq 0$. Prove that for every ideal *I* of *R*, $IS \cap R \subseteq I^*$.

4. Let $I \subseteq R$ be any ideal and let n > 0 be an integer. Show that $(I^*)^{[p^n]} \subseteq (I^{[p^n]})^*$.

5. Let $\tau(R)$ be defined as $\bigcap_{I \subseteq R} I :_R I^*$. Show from this definition that if $c \in \tau(R)$ and $f \in I^*$

for some I, then $cf^{p^n} \subseteq I^{[p^n]}$ for all $n \in \mathbb{N}$. (This shows that two possibly different notions of test ideal agree.) Thus, any nonzero element c_0 of $\tau(R)$ can be used in testing tight closure: if there exists $c \neq 0$ in R such that $cf^{p^n} \in I^{[p^n]}$ for all $n \gg 0$, then $c_0 f^{p^n} \in I^{[p^n]}$ for all $n \geq 0$.

6. Let $R \subseteq S$ and suppose that for all $I \subseteq R$, $IS \cap R = I$. Prove that $\tau(S) \cap R \subseteq \tau(S)$.

Extra Credit 9. Define the *Frobenius closure* I^{F} of $I \subseteq R$ to be the set of all elements $r \in R$ such that for some positive integer $n, r^{p^n} \in I^{[p^n]}$. Let $c \neq 0$ be an element of R and suppose that for every maximal ideal m of $R, c \in \mathrm{Rad}(\tau(R_m))$. Show that for every ideal I of $R, cI^* \subseteq I^{\mathrm{F}}$.

Extra Credit 10. Let R be a finitely generated N-graded Cohen-Macaulay domain of Krull dimension d over a field K of characteristic p > 0 with $R_0 = K$ such that every homogeneous system of parameters (i.e., d homogeneous elements of $\mathcal{M} = \bigoplus_{k=1}^{\infty} R_j$ that generate an ideal primary to \mathcal{M}) generates a tightly closed ideal. Let F_1, \ldots, F_d be a homogeneous system of parameters of R. Let G be a nonzero homogeneous element of R that is not $I = (F_1, \ldots, F_d)$. Prove that $\deg(G) \leq \sum_{h=1}^d \deg(F_h)$.