
TIGHT CLOSURE IN EQUAL CHARACTERISTIC,

BIG COHEN-MACAULAY ALGEBGRAS,

AND SOLID CLOSURE

by Melvin Hochster

Abstract. We �rst discuss joint work of Craig Huneke and the author, giving an overview of

the status of tight closure theory both in characteristic p and in equal characteristic 0, includ-

ing recently discovered interconnections with the existence of big Cohen-Macaulay algebras,

especially their existence in a weakly functorial sense. For example, either tight closure or

the functorial existence of big Cohen-Macaulay algebras can be used to prove that direct

summands of regular rings are Cohen-Macaulay in equal characteristic. Later we present

and explore a new notion, solid closure, de�ned a priori in all characteristics, even mixed

characteristic, but agreeing with tight closure in positive characteristic.

PROLOGUE

Let A be a complete local domain. We can de�ne an apparently frivolous closure

operation on ideals of A as follows. If a
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will have the desired e�ect. It is an incredibly subtle

problem to determine whether an element of A is in the closure of an ideal in this sense.

But is it important? Yes!!! Let V be the p-adic integers, where p is a positive prime

integer, and let A = V [x

2

; x

3

]. Let x

1

= p. Then it is not even known whether x
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is in the closure of the ideal (x
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). On the other hand, if A = K[[x
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]] with
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K a �eld, it is known that x

2

1

x

2

2

x

2

3

is not in the closure of (x

3

1

; x

3

2

; x

3

3

) if K has positive

characteristic p, but, by a very recent result of P. Roberts [Ro6], it is in the closure of the

ideal generated by the cubes when K has characteristic zero.

In the course of this paper I will explain how one is led to ask this apparently innocu-

ous, somewhat strange, but, in fact, quite di�cult and important question. There is a

concluding discussion in (6.8).

Problem for thought. Let f , g, h be three elements in a regular ring of dimension

two. Is it the case that (fgh)

2

must be in (f

3

; g

3

; h

3

)? What if the ring is C [[x; y]]? C [x; y]?

Must fgh be in (f

2

; g

2

; h

2

) in these rings?

1. INTRODUCTION

Except where otherwise indicated, all of the results on tight closure in equal characteris-

tic and the existence of big Cohen-Macaulay algebras discussed here are the fruit of a more

than six year collaboration of the author with Craig Huneke. The reader is referred to

[HH1-12], [AHH], [Hu1,3] for the detailed account, as well as to [Ab1-3], [FeW], [Fe], [Gla],

[Hu2], [Sm1-3], [Sw1-2], [Vel], [W2] and [Wil] for additional information and applications.

The results on solid algebras and solid closure discussed in x6 were developed by the author

in [Ho8] as part of a rather speculative assault on the problem of de�ning an analogue of

tight closure in mixed characteristic. The notion of solid closure does agree with the notion

of tight closure in characteristic p in good cases, and does make sense quite generally. It

has many of the right properties to be a good analogue of tight closure. By a recent result

of Paul Roberts [Ro6] it does not have the right properties in equal characteristic zero.

The question of whether it has the right properties in mixed characteristic remains open,

although Roberts' result is discouraging. In particular, if it could be proved that every

ideal of a regular local ring of mixed characteristic is solidly closed, the direct summand

conjecture, in a greatly strengthened form, would follow. This appears to be a di�cult

question. What we know at the moment is that ideals of regular rings are solidly closed

in positive characteristic, not necessarily so in equal characteristic zero, despite which, the

issue remains open in mixed characteristic.

We begin by summarizing the properties of tight closure in the equal characteristic case,

without even giving the de�nition. Later, we shall backtrack and give a de�nition. But

before we do that we explain brie
y how a number of applications are obtained from the

properties that we state.

This approach will enable us to see quickly the merits and defects of the theory of solid

closure when it is developed.

Before discussing the theory of solid closure we shall spend some time explaining how the

investigation of tight closure led to the discovery of the existence of big Cohen-Macaulay

algebras, and how the two theories intertwine.
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2. BASIC PROPERTIES OF TIGHT CLOSURE AND APPLICATIONS

For simplicity, we assume that given rings of characteristic p are localizations of �nitely

generated algebras over an excellent local ring (more generally, we may admit rings that

have a faithfully 
at extension such that the Frobenius endomorphism is �nite). We assume

that rings containing Q are locally excellent. These hypotheses are often unnecessary

but avoid many technicalities. Let us call a Noetherian ring R admissible if it is equal

characteristic and has the appropriate properties speci�ed above.

In [HH12] a notion of tight closure is developed for the class of Noetherian K-algebras,

where K is a given �eld of equal characteristic zero. This type of tight closure is denoted

�K

in [HH12].

We shall focus here on the notion that corresponds to the case K = Q, which is also

called equational tight closure in [HH12] and in is denoted there either by

�Q

or

�eq

. How-

ever, here we shall often simply denote it

�

.

Tight closure is an operation on submodules of �nitely generated modules de�ned over

any admissible base ring. We shall denote the tight closure of N in M by N

�

or N

�

M

. If

N = I is an ideal of R then M is understood to be R unless otherwise speci�ed: this is a

very important case. If N � M are R-modules and R ! S is a homomorphism we shall

write M

S

for S 


R

M and hN

S

i for the image of N

S

in M

S

. This is an abuse of notation

since hN

S

i depends on N ! M and not just on N . In the case when M is free, forming

hN

S

i is easily seen to be parallel to expanding an ideal of R to an ideal of S (which is the

case M = R).

By a complete local domain of R we mean a ring obtained by localizing R at a prime

ideal, completing, and then killing a minimal prime. We de�ne the minheight of I � R as

minfht I(R=P ) : P is a minimal prime of Rg. We write J for the integral closure of the

ideal J .

(2.1) Theorem (properties of tight closure). Let R, S be admissible rings, R! S a

homomorphism, and let N � M � Q be �nitely generated R-modules. Tight closures are

taken in M unless otherwise speci�ed. Let u denote an element of M , and I an ideal of

R.

(a) u 2 N

�

M

if and only if u+N 2 0

�

M=N

.

(b) N

�

M

� N

�

Q

; N

�

Q

�M

�

Q

; N

��

= N

�

.

(c) (Persistence of

�

.) If u 2 N then 1
 u 2 hN

S

i

�

M

S

.

(d) u 2 N

�

i� for every complete local domain B of R, 1
 u 2 hN

B

i

�

M

B

.

(e) If R is a regular ring, N

�

= N for all N �M .

(f) (Generalized Brian�con-Skoda theorem) If I has at most n generators then for all k 2 N,

(I

n+k

) � (I

k+1

)

�

.

(g) (Capturing colon ideals) If I = (x

1

; : : : ; x

n

)R is such that minheight I � n, and

I

n�1

= (x

1

; : : : ; x

n�1

)R, then I

n�1

:

R

x

n

R � I

�

n�1

. Better: I

�

n�1

:

R

x

n

R = I

�

n�1

.

(h) (Phantom acyclicity criterion) Suppose that R is reduced, that G

�

is a �nite free

complex of length n over R with rank G

i

= b

i

, and let r

i

=

P

j�i

(�1)

j�i

b

j

. If G

�

is

such that the rank of the i

th

map is r

i

for 1 � i � n and such that the minheight of

the ideal generated by the r

i

size minors of a matrix of the map G

i

! G

i�1

is at least
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i, then for all i � 1 the cycles in G

i

are in the tight closure of the boundaries. (We

say that G

�

is phantom acyclic in this case.)

(i) If S is a module-�nite extension of R then u 2 N

�

M

over R if and only if u 2 hN

S

i

�

M

S

over S. Moreover, the contraction of IS to R is contained in I.

Proof. The reader is referred to [HH12] for the characteristic zero assertions, especially

x(3.2), x(3.6) and, for (h), Chapter 4. For characteristic p see [HH4], x5 for (f), x8 for (a),

(b), (e), [HH9], x6 for (c), [HH8], [AHH] for (h), [HH4] x7 for (g) and (5.23) of [HH10] for

(i). Also, xx(1.4) - (1.6) in [HH12] give a summary of characteristic p theory. �

(Two comments on part (h). First, it is easy to generalize the result to complexes

consisting of projective modules that are locally free of constant rank. Second, in charac-

teristic p, if F

e

is the e

th

iterate of the Frobenius functor then F

e

(G

�

) is phantom acyclic

for all e if and only if the speci�ed conditions on the ranks and heights given above in (h)

hold. See [HH8].)

Assuming these properties for tight closure one gets many striking results. Let us call a

ring weakly F-regular if every ideal is tightly closed. Let us call a ring F-rational if every

ideal I generated by parameters (i.e., elements that are part of a system of parameters

in every local ring at a prime containing I) is tightly closed. It is not di�cult to show

that if R is weakly F -regular then every submodule of every �nitely generated module is

tightly closed. (In characteristic zero, one gets a notion for Noetherian K-algebras relative

to every �eld K. Here, we are working with the notion for K = Q.) R is called F-regular

if all of its local rings are weakly F-regular. F -rational, weakly F -regular, and F -regular

are known to be equivalent conditions if the ring is Gorenstein. Cf. [HH9], x4.

By the regular closure N

reg

of N �M we mean the set of all u 2M such that for every

map of R to a regular ring S, u

S

2 hN

S

i (in M

S

).

(2.2) Corollaries. Let R be an admissible ring of equal characteristic. Let N � M be

�nitely generated R-modules and let I be an ideal of R.

(a) N

�

� N

reg

(this is known to be strict: cf. [HH8], x5).

(b) I

�

� I

reg

� I (the latter since integral closure is tested by mapping to DVR's).

(c) Weakly F -regular rings are normal and Cohen-Macaulay. In fact, F -rational rings

are normal and Cohen-Macaulay.

(d) A direct summand (or a pure subring) of a weakly F -regular ring is weakly F -regular.

(e) A direct summand (or pure subring) of a regular ring is Cohen-Macaulay.

(f) A weakly F -regular ring is a direct summand of every module-�nite extension.

Proof. (a) is immediate from (2.1c,e). The �rst inclusion in (b) follows from (a), and the

second from the fact that u 2 I i� u 2 IV for every homomorphism from R to a discrete

valuation ring V . It follows from (b) and (2.1f) in the case n = 1; k = 0 that I

�

= I

if I is principal, and from this it follows easily that weakly F -regular rings are normal.

The Cohen-Macaulay property is then immediate from (2.1g). (d) is immediate from the

persistence of tight closure, and (e) follows at once from (c) and (d).

Part (f) follows from (i) and the results of [Ho4]: see x5 of [HH10] for details. (The

converse is true for locally excellent Gorenstein rings of characteristic p: see x6 of [HH10].

On the other, hand every normal ring containing Q is a direct summand of every module-

�nite extension, so that the converse is quite false in equal characteristic zero.) Of course,
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(f) may be viewed as a generalization of the fact that equicharacteristic regular rings are

direct summands of all their module-�nite extensions. �

Tight closure gives some rather important results in a more general form. See [BrS],

[LS], [LT], and [Sk] for background for the Brian�con-Skoda theorem. The result that

pure subrings of regular rings are Cohen-Macaulay has aroused a great deal of interest:

see [Bou], [HR1-2]. The original interest arose from studying the question, is the ring of

invariants of a linearly reductive linear algebraic group over a �eld K acting K-rationally

on a regular K-algebra Cohen-Macaulay.

The term \F -rational" is used because there is a strong connection between this notion

and the property of having rational singularities. Let us say that an a�ne K-algebra R

has P-type, where P is a certain property (e.g., weakly F -regular, F -rational, F -regular)

if it arises as K 


A

R

A

, where A is a �nitely generated Z-subalgebra of K, R is a �nitely

generated A-algebra, and for all maximal ideals � of A, with � = A=�, R

�

= � 


A

R

A

has property P. K. E. Smith has shown [Sm1,3] that a�ne K-algebras of F -rational type

have rational singularities. The converse is open (but true in the graded case in dimension

two: cf. [Fe].) I. Aberbach has shown [Ab3] that an admissible ring of characteristic p is

F -rational if and only if whenever M=N has �nite projective dimension then N

�

M

= N .

One also gets:

(2.3) Theorem (vanishing theorem for maps of Tor). Let A be a regular equichar-

acteristic domain, let R be module-�nite extension domain of A and let R ! S be any

map to a ring that is regular (or admissible and weakly F-regular). Then for any �nitely

generated A-module M and every i � 1, the map Tor

A

i

(M;R) ! Tor

A

i

(M;S) is zero.

Proof. Take a �nite free resolution G

�

ofM over A. One sees easily that, since G

�

satis�es

the criterion of [BuE], R 


A

G

�

satis�es the hypothesis of (2.1h), and so has phantom

homology (A ! R does not preserve depth but does preserve height). By the persistence

of tight closure the image z of a cycle in S 


A

G

�

is still in the tight closure of the

boundaries. But since S is weakly F -regular, z is now a boundary. �

This extremely powerful vanishing theorem becomes a very interesting conjecture in

mixed characteristic. The case where R is local and S is the residue �eld of R is equivalent

to the direct summand conjecture. The case where R is a direct summand of S easily

yields another proof that direct summands of regular rings are Cohen-Macaulay. See x4 of

[HH11] for a discussion. (Cf. [PS1-2], [Ho1-3, 5-7], [Ro1-5], [Du] and [EvG] for background

on these and other related questions.)

3. WHAT IS TIGHT CLOSURE IN CHARACTERISTIC p?

We next give the de�nition of tight closure in characteristic p. If R is a ring, let R

o

be

the set of elements of R not in any minimal prime. If I is an ideal of R, we say that an

element u 2 R is in the tight closure I

�

of I if there exists c 2 R

o

such that cu

p

e

2 I

[p

e

]

for all su�ciently large e 2 N. Here, I

[p

e

]

is generated by all the elements i

p

e

for i 2 I.

If we replace R by a free module M and I by a submodule N , we can make the same

de�nition: the (p

e

)

th

power of an element of M may be de�ned by taking (p

e

)

th

powers in
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each coordinate. In the general case, one may map a �nitely generated free module onto

M and work with it and inverse images for the submodule N and the element u in the free

module. The notion one gets is independent of how one chooses a free basis and of how

one maps a free module onto M . There is a coordinate-free treatment making use of the

Peskine-Szpiro or Frobenius functors of [PS1].

It turns out that one may test tight closure modulo minimal primes of R. In the reduced

case, one can choose the multiplier c so that cu

p

e

2 N

[p

e

]

for all e 2 N (even e = 0). In

the admissible case one can test tight closure in all the complete local domains of R, i.e.,

in all the rings obtained by localizing, completing, and killing a minimal prime.

Since this is the case it is of considerable interest to have alternative characterizations

of tight closure when R is a complete local domain (several of those stated below are, in

fact, valid under much weaker hypotheses). We give some of these characterizations in

Theorem (3.1): we shall discuss additional characterizations later. For simplicity we only

treat the case of the tight closure of an ideal of R: in all instances, there is an analogous

result for modules.

For a reduced ringR of characteristic p we shall write R

1

for

S

e2N

R

1=p

e

. For a domain

R, by R

+

, the absolute integral closure of R (cf. [Ar2]), we mean the integral closure of

R in an algebraic closure of its fraction �eld.

(3.1) Theorem. Let (R;m;K) be a complete local domain of characteristic p. Let I be

an ideal of R and let u 2 R. Then each of the following conditions, sometimes in the

presence of a supplementary hypothesis, is equivalent to the condition that u be in I

�

.

(a) Fix a discrete Z-valuation nonnegative on R and positive on m and extend it to a

valuation of R

+

to Q. Then there exist elements � 2 R

+

� f0g of arbitrarily small

order (i.e., value under the valuation) such that �u 2 IR

+

!

(b) Assume that I is m-primary. With J = I + uR, we have that

lim

e!1

`(R=J

[p

e

]

)

`(R=I

[p

e

]

)

= 1 !

(Here, \`" indicates length.)

(c) (K. E. Smith [Sm1,2].) Assume that I is generated by part of a system of parameters.

Then u 2 IR

+

!

(d) There exists a big Cohen-Macaulay algebra S for R such that u 2 IS !

(e) The element u is in the closure of I in the formal power series sense described in the

Prologue!

Proof and remarks. By and large we just supply references, but it is easy to see that

u 2 I

�

implies (a), for if we have c 6= 0 such that cu

p

e

2 I

[p

e

]

for all e � 0, then

taking (p

e

)

th

roots yields that (c

1=p

e

)u 2 IR

1=p

e

� IR

1

� IR

+

, and as e ! +1,

ord (c

1=p

e

) = (1=p

e

) ord c! 0. The converse is one of the main results of [HH6].

Part (b) is a consequence of Theorem (8.17) of [HH4] and the results of [Mo]: see the

discussion below. We want to comment here that this result really does characterize tight

closure in complete local domains of characteristic p, since an element is in the tight closure

of I � m if and only if it is in the tight closure of all m-primary ideals containing I.
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Part (c) was proved for ideals generated by at most three parameters in [HH11] and

in general in [Sm1,2] by a di�erent method. Whether tight closure in locally excellent

domains of characteristic p is, in general, simply the contracted expansion from R

+

is a

tantalizing question. It does reduce to the case of complete local domains. (One knows

that the contracted expansion from R

+

is contained in the tight closure by (2.1i).) This

question is open even in dimension 2.

Part (d) and the peculiar fact (e) are results that are obtained in [Ho8] from the per-

spective of solid closure: we shall discuss them again in x5 and x6 (cf. (5.6) and (6.7)). �

Let us write q = p

e

. When I is primary to m, `(R=I

[q]

) as a function of e is called

the Hilbert-Kunz function (cf. [Ku], [Mo], [HaMo]). (Again, \`" denotes length.) By a

result of [Mo], if dimR = d there is a positive real number C

I

such that for all q = p

e

,

`(R=I

[q]

) = C

I

q

d

+ O(q

d�1

). If dimR = 1 then C

I

is a positive integer. In general, C

I

is conjectured to be rational, but this is an open question even in dimension two! By

Theorem (8.17) of [HH4], when I � J are m-primary we have that J � I

�

i�

lim

e!1

`(J

[q]

=I

[q]

)

q

d

= 0;

which, by Monsky's result, is equivalent to the condition that C

I

= C

J

. This in turn is

equivalent to condition (b) above.

The behavior of the Hilbert-Kunz functions is quite surprising. For example, if R =

(Z=5Z)[[x

1

; x

2

; x

3

; x

4

]]=(G) where G =

P

4

i=1

x

4

i

, then

`(R=m

[5

e

]

) =

168

61

(5

e

)

3

�

107

61

(3

e

):

Cf. [HaMo]. See also [Ch].

We want to comment brie
y on the theory of strongly F -regular rings and the theory of

test elements in characteristic p. A reduced Noetherian ring R of characteristic p is called

strongly F -regular if R is F -�nite (i.e., R is module-�nite over the image F (R) = R

p

of the

Frobenius endomorphism) and for every d 2 R

o

there exists q = p

e

such that (equivalently,

for all su�ciently large q = p

e

) the inclusion of the cyclic R-module R � d

1=q

,! R

1=q

splits

as a map of R-modules. F -�nite Gorenstein rings are strongly F -regular if and only if they

are weakly F -regular. It is an open question whether an F -�nite weakly F -regular ring

must be strongly F -regular: cf. [Wil], where this is established in dimension less than or

equal to three.

J. Velez has developed an analogous theory for F -rational rings in characteristic p. See

[Vel].

An element c 2 R

o

is called a test element if whenever u 2 N

�

M

for some pair of �nitely

generated modules N � M (one may assume that M is free), cu

p

e

2 N

[p

e

]

for all e 2 N.

Thus, c may be used in all tight closure tests. A crucial point in the development of the

theory is that if R is F -�nite, reduced, and c 2 R

o

is such that R

c

is strongly F -regular

(in particular, if R

c

is regular) then c has a power that is a test element in R, in every

local ring of R, and in the completion of every local ring of R. A test element satisfying

this stronger condition is called completely stable. See x3 of [HH3] and x5 of [HH9]. In
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consequence, one can show that if R is admissible and reduced then every element c 2 R

o

such that R

c

is regular has a power that is a completely stable test element.

It is natural to study ideals generated by R-sequences that consist of test elements. The

issue arises in trying to prove the results of x6 of [HH10]. It was in this context that it

was �rst realized that:

(3.2) Theorem. Let I be an ideal of a local domain R such that I is generated by the

elements of a regular sequence consisting of test elements. Then IR

+

\R = I

�

.

(There is now a much better result: see (3.1c) and [Sm1,2].) The proof depended on an

Equational Lemma that was eventually published in [HH7], where the circle of ideas that

had arisen in [HH10] was used to prove the existence of big Cohen-Macaulay algebras. We

shall return to this subject in x5, but we �rst explain how to de�ne tight closure in equal

characteristic 0.

4. WHAT IS TIGHT CLOSURE IN EQUAL CHARACTERISTIC ZERO?

We begin by discussing a family of characteristic p examples. Suppose that we let

R = K[X;Y;Z]=(X

3

+ Y

3

+ Z

3

) = K[x; y; z], where K is a �eld of positive characteristic

p. We assume that p 6= 3. We want to observe that z

2

is in (x; y)

�

regardless of the value

of p. In fact, x(z

2

)

q

2 (x; y)

[q]

= (x

q

; y

q

) for all q, because if 2q = 3k + r where r 2 f1; 2g

we can rewrite xz

2q

as �x(x

3

+ y

3

)

k

z

r

and it turns out that xx

3i

y

3(k�i)

2 (x

q

; y

q

) for all

i, 0 � i � k, since (3i + 1) + (3k � 3i) = 3k + 1 � 2q � 1, so that one of the exponents is

at least q. This is an interesting example, because it turns out that z is not in the tight

closure of (x; y) but it is in the regular closure (and, of course, in the integral closure). See

x5 of [HH8].

We shall adopt the following conventions: If R

A

is an A-algebra, and M

A

is an A-

module, u

A

is in R

A

or M

A

, and A ! B is a homomorphism, we write R

B

, M

B

, u

B

for

B 


A

R

A

, B 


A

M

A

and 1 
 u

A

(in R

B

or M

B

, as the case may be), respectively. If

N

A

�M

A

we write hN

B

i for Im (N

B

!M

B

).

Now consider the Z-algebraR

Z

=Z[X;Y;Z]=(X

3

+Y

3

+Z

3

) =Z[x; y; z]. If we imagine

tight closure to be a geometric notion, then z

2

=1 2 R

Q

ought to be in the tight closure

of (x; y)R

Q

because it is true that the image of z

2

in R

Z=pZ

is in the tight closure of

(x; y)R

Z=pZ

for almost all the closed �bers (\almost all" means on a Zariski dense open

subset of Max SpecZhere): what happens at the generic �ber should be governed by what

happens on a Zariski dense open subset of the closed �bers.

This is exactly the viewpoint we take to de�ne K-tight closure over a �eld K of charac-

teristic zero. Suppose that we are given a domain A contained in K and �nitely generated

over Z, a ring R

A

�nitely generated over A, a pair of modules N

A

�M

A

, and an element

u

A

2 M

A

. If u

�

2 N

�

�

M

�

for almost all maximal ideals � of A (� = A=� will be a �nite

�eld), we decree that u

K

2 N

K

�

M

K

over R

K

. We require this not only for R

K

: we also

require that the image of u

K

in S


R

K

M

K

be in the tight closure, over S, of the image of

S 


R

K

N

K

in S 


R

K

M

K

for all Noetherian K-algebras S to which R

K

maps.

We note that the results of [Ar1], [ArR], and [Rot] play an important role in establishing

that this notion has the right properties. (When R is not necessarily admissible, we de�ne
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u

R

to be in N

R

�

M

R

if u

B

is in hN

B

i

�

M

B

in the sense above for all complete local domains

B of R.)

The theory we have been using here is

�Q

. We do not know whether

�K

and

�L

really

are di�erent when K � L: quite generally, N

�K

M

� N

�L

M

. There is yet another notion,

�EQ

, which we may describe brie
y as follows: let R be a local ring of a �nitely generated

Q-algebra, and write R as C

P

where C is a �nitely generated Z-algebra and P is a prime

disjoint from Z� f0g. Let N

C

�M

C

be �nitely generated C-modules and u

C

2M

C

. Let

B(p) be the localization of C=pC at the multiplicative system of nonzerodivisors in C=pC

on C=(P + pC). Then u

R

2 N

R

�EQ

M

R

if for almost all p, u

B(p)

2M

B(p)

�

N

B(p)

.

More generally, if S is admissible, we de�ne u 2 N

�EQ

M

if for every prime Q of S,

(S

Q

;M

Q

;N

Q

; u=1) may be obtained as S 


R

(R;M

R

;N

R

; u

R

) for some homomorphism

R ! S, where R is as above and u

R

2 N

R

�EQ

M

R

in the sense de�ned in the preceding

paragraph.

It turns out that if S is a Noetherian K-algebra, where K is a �eld of characteristic

0, then N

Q

� N

�K

� N

�EQ

when N � M are �nitely generated S-modules. We do not

know whether N

�Q

= N

�EQ

.

5. BIG COHEN-MACAULAY ALGEBRAS

We recall that M is a balanced big Cohen-Macaulay module for a local ring (R;m) if

every system of parameters for R is a regular sequence on M . (The term balanced is used

in [Sh].) This implies that mM 6=M . Henceforth we omit the term \balanced": by a big

Cohen-Macaulay module we always mean a balanced big Cohen-Macaulay module. It may

be the case that a big Cohen-Macaulay module M is also an R-algebra, in which case we

shall say that M is a big Cohen-Macaulay algebra for R.

As noted in the last paragraph of x3, the investigation of tight closures of parameter

ideals eventually lead to the following theorem, which is the main result of [HH7]. (Note:

R

+

is de�ned in the discussion preceding (3.1).)

(5.1) Theorem. Let R be an excellent local domain of characteristic p. Then R

+

is a

big Cohen-Macaulay algebra for R.

This is false in equal characteristic zero if the Krull dimension of R is at least three!

The applications of (5.1) are numerous. One gets a new equicharacteristic proof of

the Faltings connectedness theorem (cf. (6.8) of [HH7]). The result is used in [Ab1] to

show that if a �nite free complex G

�

over a reduced admissible local ring of characteristic p

satis�es the conditions of (2.1h) and is minimal (i.e., the entries of the matrices of the maps

are in the maximal ideal) then the ranks of the free modules occurring depend only on

what H

0

(G

�

) is (the complex is referred to as a �nite phantom free resolution of H

0

(G

�

)).

Note that the isomorphism class of such a complex is not uniquely determined by H

0

(G

�

).

See [Ab1]. (5.1) also implies that locally excellent rings of characteristic p that are direct

summands of all their module-�nite extensions are Cohen-Macaulay (this may actually

characterize F -regularity: it does for locally excellent Gorenstein rings, by Theorem (6.7)

of [HH10]): see x7 of [HH7]. Moreover, a graded version of (5.1) can be used to bound the
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numbers of generators of certain homogeneous primes (cf. x8 of [HH11]) and to give some

rather odd constraints on pairs of systems of parameters (cf. x9 of [HH11]).

But the point that we really want to focus on here is that (5.1) gives a weakly functorial

method of obtaining big Cohen-Macaulay algebras: if we have any map of domainsR! S,

one can extend it (not uniquely) to a map R

+

! S

+

. To see this, factor the map as the

composition of a surjection R � ImR and an inclusion ImR ,! S. It su�ces to solve

the problem for each map separately. In the case of an inclusion, R ,! S, note that an

algebraic closure of the fraction �eld of S will contain an algebraic closure of the fraction

�eld of R, which gives the result at once. In the case of a surjection, we may assume that

S = R=P with P prime. Since R

+

is integral over R it has a prime ideal Q lying over P .

Then S = R=P injects into R

+

=Q, and R

+

=Q is an integral extension of S such that every

monic polynomial factors into linear factors. This implies that R

+

=Q may be identi�ed

with S

+

.

Call a local homomorphism of local rings R! S permissible if the induced homomor-

phism h :

^

R!

^

S has the property that for every minimal prime q of

^

S such that dim

^

S=q =

dim

^

S, there is a minimal prime p of

^

R such that p � h

�1

(q) and dim

^

R=p = dim

^

R. One of

the main results of [HH11] uses the weak functoriality of R

+

, Theorem (5.1), and a rather

non-routine application of Artin approximation [Ar1] to show the following:

(5.2) Theorem. One may assign to every equicharacteristic local ring R a big Cohen-

Macaulay algebra B(R) in such a way that whenever R ! S is a permissible local homo-

morphism it extends to a homomorphism B(R)! B(S).

This yields at once a proof that direct summands (or pure subrings) of regular rings are

Cohen-Macaulay. Recall that R! S is pure if R 


R

M ! S 


R

M is injective for every

R-module M . This implies that for every ideal I of R, the contraction of IS to R is I.

(5.3) Corollary. If S is an equicharacteristic regular ring and R is pure in S, then R is

Cohen-Macaulay.

Sketch of proof. One can reduce easily to the case where R! S is local. Since S is regular,

B(S) is faithfully 
at over S, which implies that S is pure in B(S). Then R is pure in B(S).

Since we have R ! B(R) ! B(S) this implies that R is pure in B(R). Since a system of

parameters for R is a regular sequence in B(R), it is a regular sequence in R. �

Similarly:

(5.4) Theorem. If R is a domain module-�nite over an equicharacteristic regular ring

A and R ! S is a homomorphism to a regular ring, then for every �nitely generated

A-module M the map Tor

A

i

(M;R) ! Tor

A

i

(M;S) is zero for all i � 1.

Sketch of proof. (Cf. Theorem (4.1) of [HH11].) One reduces to the case where the rings are

local. Let � indicate Tor

A

i

(M; ). Then we have a factorization � (R)! � (S)! � (B(S)).

Since S is pure in B(S) (as before) it su�ces to show that the composite is zero. But

the map � (R) ! � (B(S)) also factors � (R) ! � (B(R)) ! � (B(S)). Since B(R) is a big

Cohen-Macaulay module for R, it is also a big Cohen-Macaulay module for A, and so 
at

over A. It follows that � (B(R)) = 0. �
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This result does not really depend on the fact that S is regular. It su�ces to know that

after localizing S at a maximal ideal, the ring one obtains is pure in a big Cohen-Macaulay

algebra to which a big Cohen-Macaulay algebra for R can be mapped.

To make this idea precise, we de�ne a 0

th

level big Cohen-Macaulay algebra for an

equicharacteristic local ring S to be the same as a big Cohen-Macaulay algebra. We

de�ne an (n + 1)

th

level big Cohen-Macaulay algebra C for S to be one such that every

permissible local homomorphismR! S extends to a map from some n

th

level big Cohen-

Macaulay algebra for R to C. We de�ne C to be an !

th

level big Cohen-Macaulay algebra

for S if it is an n

th

level big Cohen-Macaulay algebra for S for all n 2 N. We de�ne an

equicharacteristic Noetherian ring S to be weakly CM

n

-regular , where n 2 N [ !, if each

of its local rings at a maximal ideal is pure in an n

th

level big Cohen-Macaulay algebra. If

n = 0 this just means that S is Cohen-Macaulay. For n � 1 this notion is not transparent

but we do have:

(5.5) Theorem. The following results hold for equicharacteristic Noetherian rings:

(a) Theorem (5.4) remains valid if S, instead of being assumed regular, is instead assumed

to be pure in a �rst or higher level big Cohen-Macaulay algebra for S.

(b) A weakly CM

n

-regular ring for n � 1 is normal (and Cohen-Macaulay).

(c) An equicharacteristic local ring R is weakly CM

n

-regular if and only if it is pure in

B(R).

(d) If R is a locally excellent ring of characteristic p and R is weakly F -regular then R is

CM

!

-regular.

(e) If R is an a�ne K-algebra in which every ideal is tightly closed in the sense of

�K

,

then R is weakly CM

!

-regular.

Comments on the proof and references. For (a), the proof of Theorem (5.4) goes through

without essential change. See Theorem (4.12) of [HH11]. Part (b) is Theorem (4.9d) of

[HH11]. Part (c) is Proposition (5.5.e) of [HH11]. Parts (d) and (e) are parts (g) and (h)

of Theorem (4.9) of [HH11]. �

Further remarks. We want to emphasize here that once one realizes that there are two

similar vanishing theorems for maps of Tor, (5.5a) here and Theorem (2.3), one in which

S is assumed to be admissible and weakly F -regular, the other in which S is assumed

to be CM

n

-regular for some n � 1, it is obvious that there ought to be some connection

between the two properties. What is more, one starts to suspect that tight closure may

be a contracted expansion from some sort of big Cohen-Macaulay algebra! Parts (d) and

(e) above provide some evidence in this direction. Further evidence is provided by the

following result:

(5.6) Theorem. Let R be an excellent equicharacteristic local ring. Let N �M be �nitely

generated R-modules and let u 2M .

(a) Suppose that

^

R is equidimensional and B = B(R). If u

B

2 hN

B

i then u 2 N

�

M

.

(b) If R has characteristic p and

^

R is a domain, then u 2 N

�

if and only if there exists

a big Cohen-Macaulay algebra B for R such that u

B

2 hN

B

i.

(c) If R is a complete local domain of characteristic 0 and u 2 N

�EQ

M

(in particular, if

u 2 N

�

M

) then there exists a big Cohen-Macaulay algebra B for R such that u

B

2

hN

B

i. (See also Theorem (6.6).)
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Proof. Part (a) is part of Theorem (5.12) of [HH11]. Part (b), which has already been

stated in a special case in Theorem (3.1d), is Theorem (11.1) of [Ho8]: it is proved from

the perspective of solid closure. Part (c) is the main part of Theorem (11.4) of [Ho8]. All

three arguments are lengthy and di�cult. �

It is a challenging problem to re�ne these results connecting various kinds of tight closure

with contracted expansions from big Cohen-Macaulay algebras. Notice that this circle of

ideas o�ers the possibility of characterizing tight closure in equal characteristic zero in a

way that does not make any reference to reduction to characteristic p.

Here is a tantalizing example.

(5.7) Example. Let R = K[[X;Y;Z]]=(X

3

+ Y

3

+ Z

3

) = K[[x; y; z]], where K is a �eld

of characteristic di�erent from 3. We have seen that in all cases, z

2

2 (x; y)

�

. What we

want to show here is that, as one might expect, in all cases, if B is any higher level Cohen-

Macaulay algebra for R (\higher" meaning level at least 1) then z

2

2 (x; y)B. (5.6a) then

implies, as we already know, that z

2

2 (x; y)

�

. Thus, we are establishing the converse of

(5.6a) in an example.

The trick is to take new variables s, t and form the subring

R

0

= K[[xs; ys; zs; xt; yt; zt]] � R[[s; t]]:

There is a local K-homomorphism of R

0

to R that sends the formal generators xs, ys, zs,

xt, yt, zt to x, y, z, x, y, z respectively. In R

0

, xs, yt, xt+ys is part of a system of parame-

ters: call these elements u, v, w. One has the relation (zs)(zt)(w) = (zt)(zt)u+(zs)(zs)v.

It follows that in any big Cohen-Macaulay algebra B

0

for R

0

, (zs)(zt) 2 (xs; yt)B

0

. But

some such B

0

maps to the �rst level or higher big Cohen-Macaulay algebra B for R, and

so z

2

2 (x; y)B, as claimed. �

We conclude this section with the following closely related result, which does not appear

elsewhere.

(5.8) Theorem. Let (R;m;K) be a local ring, let I be an ideal of R, and let u 2 R.

Suppose that there exists an integral extension T of R such that u 2 IT . Then for any

�rst or higher level big Cohen-Macaulay algebra S for R, u 2 IS.

In particular, if R is a domain, then if u 2 IR

+

it follows that u 2 IS for every higher

level big Cohen-Macaulay algebra S for R.

Proof. Let � denote either a �eld contained in R or else the localization of Zat the prime

pZ, where p is the residual characteristic of R. In either case, there is an obvious local

homomorphism � ! R. Let a

1

; : : : ; a

n

denote generators for I, and let x

1

; : : : ; x

n

be

indeterminates over �. Write u =

P

n

i=1

a

i

�

i

, where every �

i

is an element of T (hence,

integral over R). For every i choose an equation of integral dependence

g

i

(z

i

) = z

�(i)

i

+

�(i)�1

X

j=0

r

ij

z

j

i

= 0
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for �

i

over R, where the r

ij

2 R. Let v

ij

be new indeterminates, and let

G

i

(z

i

) = z

�(i)

i

+

�(i)�1

X

j=0

v

ij

z

j

i

in the polynomial ring W = �[x

i

; z

i

; v

ij

; t], where t is yet another indeterminate. There is

a homomorphism W ! T extending the map � ! R, and which sends the x

i

to the a

i

,

the v

ij

to the r

ij

, the z

i

to the �

i

, and t to 0. This homomorphism kills all the G

i

, and so

induces a homomorphism of V = W=(G

i

: i) to T . Let y =

P

n

i=1

z

i

x

i

. Note that y maps

to u under W ! T . The subring U = �[x

i

; y; v

ij

; t; z

i

t] of V therefore maps to R, and,

consequently, so does U

N

, where N is the contraction of the maximal ideal of R to U .

Let B = �[x

i

; y

ij

; t], which is regular, letM denote the contraction of the maximal ideal

of R to B, which contains the x

i

and t, and let C = B

M

, which is a regular local ring. Then

V is module-�nite over B, and the monomials z

�

1

1

� � � z

�

n

n

in the z's such that �

i

< �(i)

for all i are a free basis for V over B. Since B � U � V , the ring U is module-�nite and

torsion-free over B. It follows that U

N

is a localization of U

M

(which is semilocal) at an

ideal lying over MC. Here, U

M

is module-�nite and torsion-free over the regular local

ring C. The ideals of U

M

lying over MC are precisely the maximal ideals of U

M

, and

since C is normal and U

M

is torsion-free over C, we have going-down as well as going-up

holding for the inclusion C ,! U

M

. It follows that all the maximal ideals of U

M

have

the same height, equal to the dimension of C. Moreover, it follows that the image of any

system of parameters for C is a system of parameters in each of the local rings of U

M

at a

maximal ideal, and, hence, in particular, in U

N

. Since x

1

; : : : ; x

n

; t is a regular sequence

of B contained in M, it is part of a system of parameters for C and, hence, its image in

U

N

is part of a system of parameters for U

N

.

Now, the completion of U

M

with respect toMC will be the product of the completions

of its local rings at its maximal ideals, one of which will be (U

N

)

b

. Since U

M

is torsion-

free as a C-module, so is its (MC)-adic completion U as a

^

C-module, and it follows that

every nonzero

^

C-submodule of U has the same dimension as

^

C. This shows that (U

N

)

b

is

equidimensional (and has no embedded primes). It follows that U

N

! R is permissible,

and we have already seen that x

1

; : : : ; x

n

; t is part of a system of parameters in U

N

.

Since S is a �rst level big Cohen-Macaulay algebra for R, there exists a big Cohen-

Macaulay algebra B for U

N

such that U

N

! R ! S also factors U

N

! B ! S. In

U

N

we have the relation yt =

P

n

i=1

x

i

(z

i

t), by the de�nition of y =

P

n

i=1

x

i

z

i

. But

then, since x

1

; : : : ; x

n

; t is part of a system of parameters in U

N

, we must have that

y =

P

n

i=1

�

i

x

i

in B. When we then map further to S, we obtain that the image of u in S

is in (a

1

; : : : ; a

n

)S = IS, as required, since, under the map U

N

! R, y maps to u and x

i

to a

i

for all i. �

(5.9) Remark. There is a corresponding result for modules instead of ideals. One can

reduce to looking at submodules of �nitely generated free modules, where the statement

and proof are entirely similar.

(5.10) Concluding discussion. For simplicity, we assume that (R;m;K) is a complete local

domain of equal characteristic and consider only the case of ideals. Let I be an ideal of R

and let u 2 R.
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In characteristic p, we know that u 2 I

�

if and only u is in the expansion of I to a big

Cohen-Macaulay algebra for R. However, it need not be in the expansion of I to every big

Cohen-Macaulay algebra: R itself can be Cohen-Macaulay without having the property

that every ideal is tightly closed. Theorem (5.8) suggests the possibility that u 2 I if and

only if it is in the expansion of I to every �rst or higher level big Cohen-Macaulay algebra

for R. This will be the case if and only if it turns out that in characteristic p, I

�

= IR

+

\R.

Indeed, since R

+

is such an algebra, this statement forces I

�

to be contained in IR

+

\R.

On the other hand, Theorem (5.8) shows every element of IR

+

\ R is forced into the

expansion of I to every �rst or higher level big Cohen-Macaulay algebra.

It is possible that in equal characteristic zero, I

�eq

is simply what is in the contracted

expansion of I from every �rst or higher level big Cohen-Macaulay algebra. Theorem

(5.12) of [HH11] implies that any element that is in such a contracted expansion for all

�rst or higher level big Cohen-Macaulay algebras is in I

�eq

. (It actually shows this for a

speci�c ! level big Cohen-Macaulay algebra. This is also stated as Theorem (5.6a) here.)

Moreover, Theorem (11.4) of [Ho8] shows, at least, that every element of I

�eq

(and even of

I

�EQ

) is in the expansion of I to some big Cohen-Macaulay algebra: what we don't know

is whether requiring the algebra to be �rst or higher level automatically ensures that it is

\big enough." (This is stated as Theorem (5.6c) here.) Example (5.7) simply presents one

instance in which we can verify that this is, indeed, the case.

6. SOLID CLOSURE

In this section we shall discuss a closure operation de�ned in a characteristic-free manner

that coincides with tight closure for admissible rings of characteristic p.

(6.1) Solid modules and algebras: some basic properties. If R is a domain we call an

R-module M solid if Hom

R

(M;R) 6= 0. We call an R-algebra S solid if it is solid as an

R-module. In the case of a solid algebra it is always possible to choose a nonzero R-module

map h : S ! R such that h(1) 6= 0 ([Ho8], Proposition (2.1d)). One reason for the name

\solid" is that solid algebras tend not to adjoin fractions: if S is a solid R-algebra, a; b 2 R,

b 6= 0, and a 2 bS, then a=b is integral over R; if � is an element of a solid R-algebra and

� is algebraic over R, then � is integral over R ([Ho8], Proposition (2.9)).

Moreover, if R ! S is any homomorphism of domains with R Noetherian and M is a

solid R-module then S 


R

M is a solid S-module ([Ho8], Theorem (2.12)).

Also, it turns out that a module S over a complete local domain (R;m) of dimension d

is solid if and only if the highest local cohomology H

d

m

(S) 6= 0 (cf. [Ho8], Corollary (2.4)).

In consequence, a big Cohen-Macaulay algebra over a complete local domain is always

solid. On the other hand, so is any module-�nite extension algebra.

(6.2) Solid closure. Let R be a Noetherian ring, let N � M be �nitely generated R-

modules, and let u 2 M . We shall say that u 2 N

F

(or N

F

M

if greater precision is

needed), the solid closure of N in M , if for every complete local domain B of R, there

exists a solid B-algebra S such that u 2 hN

S

i. It su�ces to consider complete local

domains arising from completions at maximal ideals of R. (Note: the notation N

�

was

used for solid closure in a previous version of this manuscript.)
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(6.3) A connection with tight closure. It is easy to see that if R is a Noetherian domain

of characteristic p, I is an ideal, and u 2 IS for a solid R-algebra S, where u 2 R, then

u 2 I

�

. For we may choose an R-module map h : S ! R such that h(1) = c 6= 0, and the

fact that u 2 IS implies that u

q

2 I

[q]

S for all q = p

e

(we may apply Frobenius). Applying

h to both sides yields that cu

q

2 I

[q]

for all q. For complete local domains, the converse is

true: see Theorem (8.6) of [Ho8]. From this one can deduce:

(6.4) Theorem. If R is an admissible ring of characteristic p, N � M are �nitely gen-

erated R-modules, and u 2M , then u 2 N

�

if and only if u 2 N

F

.

Does the new notion coincide with one of the equal characteristic zero tight closure

notions already discussed? The answer was not known until recently, when a calculation

of Paul Roberts [Ro6] revealed that in the rings K[[x

1

; x

2

; x

3

]] and K[x

1

; x

2

; x

3

], where K

is a �eld of equal characteristic zero, one has that x

2

1

x

2

2

x

2

3

2 (x

3

1

; x

3

2

; x

3

3

)

F

. This means that

in equal characteristic zero, solid closure is \too big." See also (7.22-5) in [Ho8].

As for mixed characteristic, the verdict is not yet in concerning whether solid closure

gives the \right" notion or, at least, a su�ciently good notion, although Roberts' exam-

ple is discouraging. Note, however that (x

3

1

; x

3

2

; x

3

3

) (and every other ideal generated by

monomials in a polynomial ring over Z) is solidly closed. Cf. (13.1), (13.3) and (13.5-7)

of [Ho8].

Even if it should turn out that solid closure is too big in mixed characteristic, it is still

much smaller than integral closure, and so a result that asserts that a certain ideal is in the

solid closure of another is much sharper than the corresponding result for integral closure.

It remains possible that in any regular local ring of mixed characteristic, every ideal is

solidly closed. This is true in dimension two, but not known in dimension three or higher.

(As already mentioned, it is true for regular rings of characteristic p and false for regular

rings of equal characteristic zero of dimension 3.) Settling the issue for regular rings of

mixed characteristic is a primary target.

We next want to record some of the properties of solid closure. We follow the format of

Theorem (2.1), including the numbering of the parts.

(6.5) Theorem (properties of solid closure). Let R, S be Noetherian rings, R ! S

a homomorphism, and let N �M � Q be �nitely generated R-modules. Solid closures are

taken in M unless otherwise speci�ed. u denotes an element of M , and I an ideal of R.

(a) u 2 N

F

M

if and only if u+N 2 0

F

M=N

.

(b) N

F

M

� N

F

Q

; N

F

Q

�M

F

Q

; (N

F

)

F

= N .

(c) (Persistence of

F

.) If u 2 N

F

then 1
 u 2 hN

S

i

F

M

S

.

(d) u 2 N

F

i� for every complete local domain B of R, 1
 u 2 hN

B

i

F

M

B

.

(e) If R is a regular ring of dimension at most two or of characteristic p, N

F

= N for

all N �M . (Question: is this true for regular local rings of mixed characteristic?)

(f) (Generalized Brian�con-Skoda theorem) If R is equicharacteristic and I has at most

n generators then for all k 2 N, I

n+k

� (I

k+1

)

F

. (Question: is this true in all

Noetherian rings?)

(g) (Capturing colon ideals) If R is an equicharacteristic and locally excellent ring, I =

(x

1

; : : : ; x

n

)R is such that minheight I � n, and I

n�1

= (x

1

; : : : ; x

n�1

)R, then we
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have I

n�1

:

R

x

n

R � I

F

n�1

. (Question: is this true for local rings in mixed characteris-

tic and does one get the better result that I

F

n�1

:

R

x

n

R = I

F

n�1

in mixed characteristic?)

(h) The analogue of (2.1h) is valid for locally excellent rings of equal characteristic with

solid closure replacing tight closure.

(i) If S is a module-�nite extension of R then u 2 N

F

M

over R if and only if u

S

2

hN

S

i

F

M

S

over S. Moreover, the contraction of IS to R is contained in I

F

.

Proof. For (a), (b), (c), (d) we refer the reader to (5.3) and (5.6) of [Ho8]. Part (e) is

Theorem (7.20) of [Ho8], and (f), (g), (h) follow in characteristic p from corresponding

facts for tight closure and Theorem (6.4). In equal characteristic 0 they follow from

corresponding facts for tight closure and the comparison Theorem (6.6) below. (i) follows

from (5.9b) of [Ho8]. �

Wherever we have asked a question in the statement of Theorem (6.5) there is work to

be done. We now return to the problem of comparing solid closure in equal characteristic

zero with tight closure. Our main result along these lines is Theorem (11.4) of [Ho8] (part

of this was mentioned here earlier, as Theorem (5.6c)), which asserts:

(6.6) Theorem. Let R be any Noetherian ring containing Q. Let N � M be �nitely

generated R-modules and let u 2M .

(a) If R is a complete local domain and u 2 N

�EQ

M

(hence, if u 2 N

�

M

) then there is a

big Cohen-Macaulay algebra B over R such that u

B

2 hN

B

i.

(b) N

�EQ

M

� N

F

M

. Hence, N

�

M

� N

F

M

.

Remarks on the proof. A big Cohen-Macaulay algebra over a complete local domain is

automatically solid. Thus, (a) yields (b) at once when R is a complete local domain, and

the general case of (b) reduces to the complete local domain case. The proof of (a) is

lengthy. �

As mentioned earlier, the result of [Ro6] shows that, in general, the inclusionN

�EQ

M

�

N

F

M

is strict, since in equal characteristic zero every ideal of a regular ring is tightly closed

in the sense of

�EQ

, but not necessarily solidly closed.

(6.7) Back to the Prologue: a formal power series criterion. Let I = (a

1

; : : : ; a

n

) be an

ideal of a complete local domain R, and let a be any element of R. It is not hard to see that

if there is any solid R-algebra S such that a 2 IS, then it must be S = R[X

1

; : : : ;X

n

]=(F )

where F = a � a

1

X

1

� � � � � a

n

X

n

, because S maps to any other algebra T such that

a 2 IT and if S maps to T and T is solid then S is solid. We refer to S as a generic

forcing algebra. We can study the R-homomorphisms h : S ! R by considering instead

the formal power series in auxiliary variables y

i

obtained from h by letting

g

h

=

X

�2N

n

h(X

�

)y

�

2 R[[y

1

; : : : ; y

n

]];

where h(X

�

) represents the value of h on the image of X

�

1

1

� � �X

�

n

n

in S. Let f be the

power series

ay

1

� � � y

n

�

n

X

i=1

a

i

y

1

� � � y

i�1

y

i+1

� � � y

n
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(labeled (#) in the Prologue). It turns out not to be di�cult to see (cf. Theorem (9.3)

of [Ho8]) that g

h

corresponds to a homomorphism that kills the ideal (F ) if and only if

g

h

f is special in the sense that it does not contain a term in which all of the y

i

occur with

positive exponent. It then follows that a 2 I

F

if and only if f has a nonzero multiple that is

special. This gives yet another characterization of tight closure for complete local domains

of characteristic p. The examples considered in the Prologue really ask whether x

2

1

x

2

2

x

2

3

is in

the solid closure of (x

3

1

; x

3

2

; x

3

3

) in various regular local rings in which x

1

; x

2

; x

3

is a regular

system of parameters. The answer is not known for the �rst example (R = V [[x

2

; x

3

]])

mentioned in the Prologue, and is \no" (respectively, \yes") for K[[x

1

; x

2

; x

3

]] when the

�eld K has positive characteristic (respectively, characteristic zero).

Although we have discussed generic forcing algebras and the power series criterion only

for ideals, these do extend to pairs of modules. We refer the reader to x9 of [Ho8].

(6.8) Examples in regular rings, and an application of the Brian�con-Skoda theorem. On

the other hand, it is easy to see that x

1

x

2

x

3

is not in the solid closure of (x

2

1

; x

2

2

; x

2

3

) in the

ring K[[x

1

; x

2

; x

3

]] (where K has characteristic 0) using the persistence of solid closure.

Simply map K[[[x

1

; x

2

; x

3

]] ! K[[x; y]] so as to send x

1

, x

2

, x

3

to x + y, x � y, and xy,

respectively. If x

1

x

2

x

3

2 (x

2

1

; x

2

2

; x

2

3

)

F

we �nd that (x

2

+y

2

)(x

2

�y

2

)xy 2 (x

4

+y

4

; x

2

y

2

)

F

in

K[[x; y]], and since we know that every ideal is solidly closed in a regular ring of dimension

two, it follows that if x

1

x

2

x

3

2 (x

2

1

; x

2

2

; x

2

3

)

F

then (x

2

+ y

2

)(x

2

� y

2

)xy 2 (x

4

+ y

4

; x

2

y

2

)

in K[[x; y]], which is false. What is being used here is that f = x

2

+ y

2

, g = x

2

� y

2

,

h = xy gives an example where fgh =2 (f

2

; g

2

; h

2

) in K[[x; y]] when K has characteristic

zero. This answers the second part of the \Problem for thought" given at the end of the

Prologue.

It is tempting to try to use the same method to show that x

2

1

x

2

2

x

2

3

=2 (x

3

1

; x

3

2

; x

3

3

)

F

.

Thus, one winds up seeking f; g; h in a regular ring of dimension two such that f

2

g

2

h

2

=2

(f

3

; g

3

; h

3

). (This was the �rst part of the \Problem for thought" following the Prologue.)

But this is impossible! I don't know an elementary proof, but one can use the Brian�con-

Skoda theorem to show that in any regular ring of dimension two, f

2

g

2

h

2

2 (f

3

; g

3

; h

3

).

The issue is local. The ideal (f

3

; g

3

; h

3

) will have a minimal reduction (extend the residue

�eld if necessary: this will not a�ect any relevant issue) generated by at most two elements,

say, (u; v). Now, (fgh)

3

= f

3

g

3

h

3

shows that fgh is integral over (f

3

; g

3

; h

3

) and, hence,

over (u; v), so that the Brian�con-Skoda theorem implies that (fgh)

2

(which is in (u; v)

2

)

is in (u; v) � (f

3

; g

3

; h

3

). (We are using the version of [LS], which is valid for all regular

rings.) Similarly, in any regular ring of dimension at most d, the product of the d

th

powers

of any d+ 1 elements is in the ideal generated (d+ 1)

th

powers of those elements.

As mentioned earlier, whether x

2

1

x

2

2

x

2

3

2 (x

3

1

; x

3

2

; x

3

3

)

F

for a regular system of parameters

in a regular local ring of mixed characteristic remains open.

F F F

EPILOGUE: TWENTY QUESTIONS

We give here a list of twenty open questions, taken in part from a preliminary version

of [HH12], connected with tight closure theory.
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Throughout these questions, unless otherwise speci�ed, R is a locally excellent Noe-

therian ring and N �M are �nitely generated R-modules. K, L always denote �elds and

K � L. If R is local then it has maximal ideal m and residue �eld K.

If M = Coker (a

ij

), F

e

(M) = Coker (a

q

ij

) with q = p

e

.

1. Does tight closure commute with localization in characteristic p? In characteristic zero?

(Cf. [AHH] for a thorough discussion of the localization problem.)

2. Is it true that weakly F -regular rings are F -regular? This is known in the Goren-

stein case (and in dimension at most three, using the results of [Wil]), but is open in

characteristic p even if R is an a�ne algebra over an algebraically closed �eld.

3. If R is complete local, is there a positive constant integer b such that for all e 2 N, m

bp

e

kills H

0

m

(F

e

(M))? Is this true even when R is a complete local weakly F -regular ring

andM = R=I, where I is primary to a prime P such that dimR=P = 1? An a�rmative

answer to the second question would yield that weakly F -regular implies F -regular for

locally excellent rings R. (Cf. [AHH].)

4. In characteristic p, is every F -�nite weakly F -regular ring strongly F -regular? (Then

weakly F -regular would imply F -regular even without the hypothesis F -�nite.) This is

known:

(1) in the Gorenstein case and

(2) if dimR � 3 (cf. [Wil]).

5. Let R be a complete local Cohen-Macaulay domain and let J be an ideal of R that is

isomorphic as a module with a canonical module for R. Fix a system of parameters

x

1

; : : : ; x

n

for R. For every q = p

e

and every positive integer t let

�

e;t

: J

[q]

=(x

q

1

; : : : ; x

q

n

)! J

[q]

=(x

qt

1

; : : : ; x

qt

n

)

be the map induced by mutliplication by (x

1

� � �x

n

)

qt�q

on J

[q]

. Can one always choose

a system of parameters x

1

; : : : ; x

n

and a positive integer t

0

such that Ker �

e;t

is the same

for all t � t

0

? For �xed e, these kernels increase as t increases. Note that t

0

is to be

independent of e. This and related problems are studied in [Wil]. An a�rmative answer

in the special case where R is F -�nite and weakly F -regular would su�ce to show that

weakly F -regular is equivalent to strongly F -regular for F -�nite rings, and that weakly

F -regular is equivalent to F -regular for locally excellent rings of characteristic p.

6. Is the weakly F -regular locus open? (This is an open question for a�ne rings over

algebraically closed �elds both in characteristic p and characteristic 0.) This would

follow for algebras essentially of �nite type over an excellent local ring of characteristic

p if weakly F -regular F -�nite rings are strongly F -regular, because the strongly F -

regular locus is known to be open.

7. Suppose that R has characteristic p. Let T =

S

e

Ass (F

e

(M)=0

�

). Is T �nite? Does

it have only �nitely many maximal elements? An a�rmative answer would reduce the

question of whether tight closure commutes with localization to the case where R is

local and one is localizing at a prime P with dimR=P = 1. (Cf. [AHH].)

(A recent example of M. Katzman shows that S =

S

e

(AssF

e

(M)) need not have only

�nitely many maximal elements. Katzman has also shown that there is a polynomial
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ring C in one variable over a �eld of characteristic p, a �nitely generated C-algebra R,

and a �nitely generated R-module M such that there is no element c 2 C

o

such that

all the modules F

e

R

c

(M

c

) are torsion-free over C

c

.)

8. Is characteristic p tight closure for locally excellent domains the same as contraction from

R

+

? This is known for parameter ideals ([Sm1,2]). An a�rmative answer implies that

tight closure commutes with localization. This is an open question even in dimension

two.

9. Does weak F -regularity deform, i.e., if R is a local domain, x 6= 0 and R=xR is weakly

F -regular must R be weakly F -regular? (This is known when R is Gorenstein.)

10. Are a�ne K-algebras with rational singularities necessarily of F -rational type? (The

converse is true: [Sm1,3].) (This is known in the graded case in dimension two ([Fe])

but open in general even in dimension two.)

11. For a�ne algebras in characteristic 0, does weakly F -regular imply weakly F -regular

type? Does F -rational imply F -rational type? Are a�ne algebras with rational singu-

larities of F -rational type (the converse is known: [Sm1,3])?

12. Are direct summands (and pure subrings) of F -rational rings F -rational?

13. Let K have characteristic 0, let A be a �nitely generated Z-subalgebra of K, and let

(A;R

A

;M

A

;N

A

) be descent data for (K;R;M;N). Suppose that N is K-tightly closed

in M . Is it true that for almost all closed �bers, N

�

is tightly closed in M

�

?

14. Is tight closure over a complete local domain, in the equicharacteristic case (0 and

p), simply the contracted expansion from a higher level balanced big Cohen-Macaulay

algebra?

15. If R is an a�ne L-algebra, does N

�K

M

= N

�L

M

? More generally, if R is an arbitrary

Noetherian ring containing Q does N

�eq

M

= N

�EQ

M

? (It would su�ce to know this

when R is a local ring of a �nitely generated Q-algebra.)

16. If a 
at homomorphism of rings R ! S has an F -regular base R and geometrically

F -regular �bers, is S F -regular? This is known in good cases in characteristic p if the

�bers are geometrically regular. (Cf. [HH9].)

17. If R is excellent, reduced, characteristic p, and of �nite Krull dimension, does R have a

test element? (Cf. [Ab2].)

18. Under mild conditions on a characteristic p ring R (e.g., if R is reduced and �nitely

generated as an algebra over an excellent local ring) does formation of the ideal of test

elements commute with localization? With completion? With geometrically regular

base change (where geometrically regular means 
at with geometrically regular �bers)?

19. Let R be a characteristic p local ring such that one system of parameters generates a

tightly closed ideal. Is R F-rational? This is known ([HH9] x4) if R is equidimensional.

20. Is every ideal of a regular ring solidly closed in mixed characteristic? (The mixed

characteristic case implies the direct summand conjecture.) The question raised in the

prologue is really the question of whether (x

3

1

; x

3

2

; x

3

3

) is solidly closed in V [[x

2

; x

3

]].

Every ideal is solidly closed in regular rings of dimension at most two, even in mixed

characteristic.
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