
TIGHT CLOSURE THEORY

AND CHARACTERISTIC P METHODS

by Melvin Ho
hster

0. Introdu
tion

Unless otherwise spe
i�ed, the rings that we 
onsider here will be Noetherian rings R


ontaining a �eld. Frequently, we restri
t, for simpli
ity, to the 
ase of domains �nitely

generated over a �eld K. The theory of tight 
losure exists in mu
h greater generality,

and we refer the reader to [HH1{14℄ and [Ho1{3℄, as well as to the expository a

ounts

[Bru℄, [Hu1,2℄ and [Leu℄ (in this volume) for the development of the larger theory and

its appli
ations as well as dis
ussion of related topi
s su
h as the existen
e of big Cohen-

Ma
aulay algebras.

We shall give an introdu
tory overview of the theory of tight 
losure, whi
h has re
ently

played a primary role among 
hara
teristi
 p methods. We shall see that su
h methods


an be used even when the ring 
ontains a �eld of 
hara
teristi
 0.

Here, in reverse order, are several of the most important reasons for studying tight


losure theory, whi
h gives a 
losure operation on ideals and on submodules. We fo
us

mostly on the 
ase of ideals here, although there is some dis
ussion of modules. We shall

elaborate on the themes brought forth in the list below in the sequel.

11. Tight 
losure 
an be used to shorten diÆ
ult proofs of seemingly unrelated results.

The results turn out to be related after all. Often, the new results are stronger than

the original results.

10. Tight 
losure provides algebrai
 proofs of several results that 
an otherwise be proved

only in equal 
hara
teristi
 0, and whose original proofs depended on analyti
 te
h-

niques.
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9. In parti
ular, tight 
losure 
an be used to prove the Brian�
on-Skoda theorem on

integral 
losures of ideals in regular rings.

8. Likewise, tight 
losure 
an be used to prove that rings of invariants of linearly redu
tive

algebrai
 groups a
ting on regular rings are Cohen-Ma
aulay.

7. Tight 
losure 
an be used to prove several of the lo
al homologi
al 
onje
tures.

6. Tight 
losure 
an be used to \
ontrol" 
ertain 
ohomology modules: in parti
ular, one

�nds that the Ja
obian ideal kills them.

5. Tight 
losure implies several vanishing theorems that are very diÆ
ult from any other

point of view.

4. Tight 
losure 
ontrols the behavior of ideals when they are expanded to a module-�nite

extension ring and then 
ontra
ted ba
k to the original ring.

3. Tight 
losure 
ontrols the behavior of 
ertain 
olon ideals involving systems of param-

eters.

2. Tight 
losure provides a method of 
ompensating for the failure of ambient rings to

be regular.

1. If a ring is already regular, the tight 
losure is very small: it 
oin
ides with the ideal

(or submodule). This gives an extraordinarily useful test for when an element is in an

ideal in regular rings.

One way of thinking about many 
losure operations is to view them as arising from

ne
essary 
onditions for an element to be in an ideal. If the 
ondition fails, the element is

not in the ideal. If the 
ondition is not both ne
essary and suÆ
ient, then when it holds,

the element might be in the ideal, but it may only be in some larger ideal, whi
h we think

of as a kind of 
losure.

Tight 
losure in positive 
hara
teristi
 
an be thought of as arising from su
h a ne
essary

but not suÆ
ient 
ondition for ideal membership. One of the reasons that it is so useful

for proving theorems is that in some rings, the 
ondition is both ne
essary and suÆ
ient.

In parti
ular, that is true in regular rings. In 
onsequen
e, many theorems 
an be proved

about regular rings that are rather surprising. They have the following nature: one 
an

see that in a regular ring a 
ertain element is \almost" in an ideal. Tight 
losure permits

one to show that the element a
tually is in the ideal. This te
hnique works like magi
 on

several major results that seemed very diÆ
ult before tight 
losure 
ame along.

One has to go to some 
onsiderable trouble to get a similar theory working in rings

that 
ontain the rationals, but this has been done, and the theory works extremely well

for \ni
e" Noetherian rings like the ones that 
ome up in algebrai
 and analyti
 geometry.

It is still a mystery how to 
onstru
t a similar theory for rings that do not 
ontain a

�eld. This is not a matter of thinking about anything pathologi
al. Many 
onje
tures



TIGHT CLOSURE THEORY AND CHARACTERISTIC P METHODS 3


ould be resolved if one had a good theory for domains �nitely generated as algebras over

the integers.

Before pro
eeding to talk about tight 
losure, we give some examples of ne
essary and/or

suÆ
ient 
onditions for membership in an ideal. The ne
essary 
onditions lead to a kind

of 
losure.

(1) A ne
essary 
ondition for r 2 R to be in the ideal I is that the image of r be in IK

for every homomorphism of R to a �eld K. This is not suÆ
ient: the elements that satisfy

the 
ondition are pre
isely the elements with a power in I, the radi
al of I.

(2) A ne
essary 
ondition for r 2 R to be in the ideal I is that the image of r be in IV

for every homomorphism of R to a valuation ring V . This is not suÆ
ient: the elements

that satisfy the 
ondition are pre
isely the elements in I, the integral 
losure of I. If R

is Noetherian, one gets the same integral 
losure if one only 
onsiders Noetherian dis
rete

valuation rings V . There are many alternative de�nitions of integral 
losure.

(3) If R has positive prime 
hara
teristi
 p let S

e

denote R viewed as an R-algebra via

the e th iteration F

e

of the Frobenius endomorphism F (thus, S

e

= R, but the stru
tural

homomorphism R ! S

e

= R sends r to r

p

e

). A ne
essary 
ondition that r 2 I is that

for some integer e, r

p

e

2 IS

e

. Note that when S

e

is identi�ed with R, IS

e

be
omes the

ideal generated by all elements i

p

e

for i 2 I. This ideal is denoted I

[p

e

℄

. This 
ondition is

not suÆ
ient for membership in I. The 
orresponding 
losure operation is the Frobenius


losure I

F

of I: it 
onsists of all elements r 2 R su
h that r

p

e

2 I

[p

e

℄

for some nonnegative

integer e. (Note: on
e this holds for on
e 
hoi
e of e, it holds for all larger 
hoi
es.) E.g.,

in K[x; y; z℄ = K[X; Y; Z℄=(X

3

+ Y

3

+ Z

3

), if K has 
hara
teristi
 2 (quite expli
itly, if

K = Z

2

= Z=2Z) then with I = (x; y), we have that z

2

2 I

F

� I. In fa
t, (z

2

)

2

2 I

[2℄

=

(x

2

; y

2

) here, sin
e z

4

= z

3

z = �(x

3

+ y

3

)z 2 (x

2

; y

2

).

Finally, here is a test for ideal membership that is suÆ
ient but not ne
essary. It was

used in the �rst proof of the Brian�
on-Skoda theorem, and we want to mention it, although

easier proofs by analyti
 methods are available now.

(4) Skoda's analyti
 
riterion. Let 
 be a pseudo
onvex open set in C

n

and � a

plurisubharmoni
 fun
tion

1

on 
. Let f and g

1

; : : : ; g

k

be holomorphi
 fun
tions on


. Let 
 = (jg

1

j

2

+ � � � + jg

k

j

2

)

1=2

. Let X be the set of 
ommon zeros of the g

j

. Let

1

We won't explain these terms from 
omplex analysis here: the de�nitions are not so 
riti
al for us,

be
ause in the appli
ation to the Brian�
on-Skoda theorem, whi
h we dis
uss later, we work in the ring

of germs of holomorphi
 fun
tions at, say, the origin in 
omplex n-spa
e, C

n

(

�

=


onvergent power series

C fz

1

; : : : ; z

n

g) | we 
an pass to a smaller, pseudo
onvex neighborhood; likewise, � be
omes unimportant.
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d = maxfn; k � 1g. Let � denote Lebesgue measure on C

n

. Skoda's 
riterion asserts that

if one has either that for some real � > 1,

Z


�X

jf j

2




2�d+2

e

��

d� < +1;

or if one has that

Z


�X

jf j

2




2d

�

1 + � log(
)

�

e

��

d� < +1;

then there exist h

1

; : : : ; h

k

holomorphi
 on 
 su
h that f =

P

k

j=1

h

j

g

j

. Hilbert's Null-

stellensatz states that if f vanishes at the 
ommon zeros of the g

j

then f 2 Rad I where

I = (g

1

; : : : ; g

k

). The �niteness of any of the integrals above 
onveys the stronger infor-

mation that, in some sense, f is \small" whenever all the g

j

are \small" (or the integrand

will be too \large" for the integral to 
onverge), and we get the stronger 
on
lusion that

g 2 I.

1. Reasons for thinking about tight 
losure

We give here �ve results valid in any 
hara
teristi
 (i.e., over any �eld) that 
an be

proved using tight 
losure theory. The tight 
losure proofs are remarkably simple, at

least in the main 
ases. The terminology used in the following 
losely related theorems is

dis
ussed brie
y after their statements.

Theorem 1.1 (Ho
hster-Roberts). Let S be a regular ring that is an algebra over the

�eld K, and let G be a linearly redu
tive algebrai
 group over K a
ting on S. Then the

ring of invariants R = S

G

is a Cohen-Ma
aulay ring.

Theorem 1.1

o

(Ho
hster-Huneke). If R is a dire
t summand (as an R-module) of a

regular ring S 
ontaining a �eld, then R is Cohen-Ma
aulay.

Theorem (1.1

o

) implies Theorem (1.1). Both apply to many examples from 
lassi-


al invariant theory. Re
all that an algebrai
 group (i.e., a Zariski 
losed subgroup of

GL(n;K)) is 
alled linearly redu
tive if every representation is 
ompletely redu
ible. In


hara
teristi
 0, these are the same as the redu
tive groups and in
lude �nite groups,

produ
ts of GL(1; K) (algebrai
 tori), and semi-simple groups. Over C su
h a group is

the 
omplexi�
ation of 
ompa
t real Lie group. A key point is that when a linearly re-

du
tive algebrai
 group a
ts on a K-algebra S, if S

G

is the ring of invariants or �xed ring

fs 2 S : g(s) = s for all g 2 Gg there is a 
anoni
al retra
tion map map S ! S

G

, 
alled

the Reynolds operator, that is S

G

-linear. Thus, R = S

G

is a dire
t summand of S as an

R-module.

In parti
ular, if S is a polynomial ring over a �eld K and G is a linearly redu
tive

linear algebrai
 group a
ting on S

1

, the ve
tor spa
e of 1-forms of S, and, hen
e, all of S
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(the a
tion should be an appropriate one, i.e., determined by a K-morphism of G into the

automorphisms of the ve
tor spa
e S

1

), then the �xed ring S

G

is a Cohen-Ma
aulay ring

R. What is a Cohen-Ma
aulay ring? The issue is lo
al: for a lo
al ring the 
ondition means

that some (equivalently, every) system of parameters is a regular sequen
e. In the graded


ase the Cohen-Ma
aulay 
ondition has the following pleasant interpretation: when R is

represented as a �nitely generated module over a graded polynomial subring A , R is free

over A. This is a very restri
tive and useful 
ondition on R, espe
ially in higher dimension.

The Cohen-Ma
aulay 
ondition is very important in interse
tion theory. Noti
e that sin
e

moduli spa
es are frequently 
onstru
ted as quotients of smooth varieties by a
tions of

redu
tive groups, Theorem 1.1 implies the Cohen-Ma
aulay property for many moduli

spa
es.

Theorem 1.1 was �rst proved by a 
ompli
ated redu
tion to 
hara
teristi
 p > 0 [HR℄.

Boutot [Bou℄ gave a shorter proof for aÆne algebras in 
hara
teristi
 0 using resolution of

singularities and the Grauert-Riemens
hneider vanishing theorem. The tight 
losure proof

of Theorem 1.1

o

is the simplest in many ways.

Theorem 1.2 (Brian�
on-Skoda theorem). Let R be a regular ring and I an ideal of

R generated by n elements. Then I

n

� I.

We gave one 
hara
terization of what u 2 J means earlier. It turns out to be equivalent

to require that there be an equation

u

h

+ j

1

u

h�1

+ � � �+ j

h

= 0

su
h that every j

t

2 J

t

, 1 � t � h. We shall give a third 
hara
terization later.

Theorem 1.2 was �rst proved by analyti
 te
hniques: 
f. (4) of the Introdu
tion. See

[BrS℄ and [Sk℄: in the latter paper the analyti
 
riteria needed were proved. The �rst

algebrai
 proofs were given in [LT℄ (for a very important spe
ial 
ase) and [LS℄. There are

several instan
es in whi
h tight 
losure 
an be used to prove results that were �rst proved

either by analyti
 te
hniques or by results like the Kodaira vanishing theorem and related


hara
teristi
 0 vanishing theorems in algebrai
 geometry. Cf. [HuS℄ for a dis
ussion of the


onne
tion with the Kodaira vanishing theorem.

Theorem 1.3 (Ein-Lazarsfeld-Smith 
omparison theorem). Let P be a prime ideal

of 
odimension h in a regular ring. Then P

(hn)

� P

n

for every integer n.

This was most unexpe
ted. The original proof, valid in 
hara
teristi
 0, ultimately

depends on resolution of singularities and deep vanishing theorems, as well as a theory

of asymptoti
 multiplier ideals. Cf. [ELS℄. The tight 
losure proof [HH14℄ permits one to

extend the results to 
hara
teristi
 p as well as re
overing the 
hara
teristi
 0 result. There

are other 
onne
tions between tight 
losure theory and the theory of multiplier ideals: 
f.

[Sm3℄, [Ha2℄, and [HaY℄.
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Theorem 1.4 (Ho
hster-Huneke). Let R be a redu
ed equidimensional �nitely gen-

erated K-algebra, where K is algebrai
ally 
losed. Let f

1

; : : : ; f

h

be elements of R that

generate an ideal I of 
odimension (also 
alled height) h mod every minimal prime of

R. Let J be the Ja
obian ideal of R over K. Then J annihilates the Koszul 
ohomology

H

i

(f

1

; : : : ; f

h

;R) for all i < h, and hen
e the lo
al 
ohomology H

i

I

(R) for i < h.

This result is a 
onsequen
e of phantom homology theory, test element theory for tight


losure, and the Lipman-Sathaye Ja
obian theorem [LS℄, all of whi
h we will des
ribe

eventually. If

R

�

=

K[x

1

; : : : ; x

n

℄=(f

1

; : : : ; f

m

)

has 
odimension r in A

n

K

, then J is the ideal of R generated by the images of the size r

minors of the Ja
obian matrix (�f

j

=�x

j

), and de�nes the non-smooth (over K) lo
us in

Spe
 R. The ideal J � R turns out to be independent of whi
h presentation of R one


hooses.

Here is a more geometri
ally 
avored 
orollary.

Corollary 1.5. Let R be a �nitely generated graded domain of dimension n+ 1 over an

algebrai
ally 
losed �eld K, so that X = Proj (R) is a proje
tive variety of dimension n

over an algebrai
ally 
losed �eld K. Let g denote a homogeneous element of the Ja
obian

ideal J � R of degree d (so that g gives a global se
tion of O

X

(d) ). Then for 1 � j � n�1,

the map H

j

(X; O

X

(t))! H

j

(X; O

X

(t+ d)) indu
ed by multipli
ation by g is 0.

The reason that this is a Corollary of Theorem 1.4 is that for j � 1, if we let M =

L

t2Z

H

j

(X;O

X

(t)), then M is isomorphi
 (as an R-module) with H

j+1

m

(R) whi
h may

be viewed as an R-module. We may repla
e m by the ideal generated by a homogeneous

system of parameters, sin
e the two have the same radi
al. Then Theorem 1.4 implies that

the Ja
obian ideal of R kills M for 1 � j � n� 1. Cf. also Corollary 8.3 of x8.

2. The de�nition of tight 
losure in positive 
hara
teristi
 p

One of our guidelines towards a heuristi
 feeling for when an element u of a Noetherian

ring R should be viewed as \almost" in an ideal I � R will be this: if R has a module-�nite

extension S su
h that u 2 IS then u is \almost" in I.

Noti
e that if R is a normal domain (i.e., integrally 
losed in its �eld of fra
tions)


ontaining the rational numbers and S is a module-�nite extension, then IS \ R = I, so

that for normal rings 
ontaining Q we are not allowing any new elements into the ideal.

One 
an see this as follows. By �rst killing a minimal prime ideal of S disjoint from

R � f0g we may assume that S is a domain. Let L ! L

0

be the 
orresponding �nite

algebrai
 extension of fra
tion �elds, and suppose it has degree d. Let tr

L

0

=L

denote �eld

tra
e. Then

1

d

tr

L

0

=L

: S ! R gives an R-linear retra
tion when R is normal. This implies
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that IS \R = I for every ideal I of R. (We only need the invertibility of the single integer

d in R for this argument.)

The situation for normal domains of positive 
hara
teristi
 is very di�erent, where it

is an open question whether the elements that are \almost" in an ideal in this sense may


oin
ide with the tight 
losure in good 
ases. Our de�nition of tight 
losure may seem

unrelated to the notion above at �rst, but there is a 
lose 
onne
tion.

For simpli
ity we start with the 
ase of ideals in Noetherian domains of 
hara
teristi


p > 0. Re
all that in 
hara
teristi
 p the Frobenius endomorphism F = F

R

on R maps

r to r

p

, and is a ring endomorphism. When R is redu
ed, we denote by R

1=p

e

the ring

obtained by adjoining p

e

th roots for all elements of R: it is isomorphi
 to R, using the

e th iterate of its Frobenius endomorphism with the image restri
ted to R. Re
all that in a

ring of positive 
hara
teristi
 p, when q = p

e

, we denote by I

[q℄

the ideal of R generated by

all q th powers of elements of I. It is easy to see that this ideal is generated by q th powers

of generators of I. Noti
e that it is mu
h smaller, typi
ally, than the ordinary power I

q

.

I

q

is generated by all monomials of degree q in the generators of I, not just q th powers of

generators.

De�nition 2.1. Let R be a Noetherian domain of 
hara
teristi
 p > 0, let I be an ideal

of R, and let u be an ideal of R. We say that u 2 R is in the tight 
losure I

�

of I in R if

there exists an element 
 2 R�f0g su
h that for all suÆ
iently large q = p

e

, we have that


u

q

2 I

[q℄

.

It is equivalent in the de�nition above to say \for all q" instead of \for all suÆ
iently

large q". We want to dis
uss why this 
ondition should be thought of as pla
ing u \almost"

in I in some sense. Let I = (f

1

; : : : ; f

h

)R. Note that for every large q = p

e

one has


u

q

= r

1q

f

q

1

+ � � � r

hq

f

q

h

and if we take q th roots we have




1=q

u = r

1=q

1q

f

1

+ � � � r

1=q

hq

f

h

;

an equation that holds in the ring S

q

= R[


1=q

; r

1=q

iq

: 1 � i � h℄. S is a module-�nite

extension of R. But this is not quite saying that u is in IS: rather, it says that 


1=q

u is

in IS. But for very large q, for heuristi
 purposes, one may think of 


1=q

as being 
lose to

1: after all, the exponent is approa
hing 0. Thus, u is multiplied into IS

q

in a sequen
e

of module-�nite extensions by elements that are getting 
loser and 
loser to being a unit,

in a vague heuristi
 sense. This may provide some motivation for the idea that elements

that are in the tight 
losure of an ideal are \almost" in the ideal.

It is ironi
 that tight 
losure is an extremely useful te
hnique for proving theorems about

regular rings, be
ause it turns out that in regular rings the tight 
losure of any ideal I is
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simply I itself. In some sense, the reason that tight 
losure is so useful in regular rings is

that it gives a 
riterion for being in an ideal that, on the fa
e of it, is 
onsiderably weaker

than being in the ideal. We shall return to this point later.

We may extend the de�nition to Noetherian rings R of positive prime 
hara
teristi
 p

that are not ne
essarily integral domains in one of two equivalent ways:

(1) De�ne u to be in I

�

if the image of u in R=P is in the tight 
losure of I(R=P ) in R=P

for every minimal prime P of R.

(2) De�ne u to be in I

�

if there is an element 
 2 R and not in any minimal prime of R

su
h that 
u

q

2 I

[q℄

for all q = p

e

� 0.

3. Basi
 properties of tight 
losure and the Brian�
on-Skoda theorem

The following fa
ts about tight 
losure in a Noetherian ring R of positive prime 
har-

a
teristi
 p are reasonably easy to verify from the de�nition.

(a) For any ideal I of R, (I

�

)

�

= I

�

.

(b) For any ideals I � J of R, I

�

� J

�

.

We shall soon need the following 
hara
terization of integral 
losure of ideals in Noe-

therian domains.

Fa
t 3.1. Let R be a Noetherian domain and let J be an ideal. Then u 2 R is in J if and

only if for some 
 2 R � f0g and every integer positive integer n, 
u

n

2 I

n

. It suÆ
es if


u

n

2 I

n

for in�nitely many values of n.

Comparing this with the de�nition of tight 
losure and using the fa
t that I

[q℄

� I

q

for

all q = p

e

, we immediately get

(
) For any ideal I of R, I

�

� I. In parti
ular, I

�

is 
ontained in the radi
al of I.

Less obvious is the following theorem that we will prove later.

Theorem 3.1. If R is regular, every ideal of R is tightly 
losed.

Assuming this fa
t for a moment, we 
an prove the following result:

Theorem 3.2 (tight 
losure form of the Brian�
on-Skoda theorem in 
hara
ter-

isti
 p). Let I = (f

1

; : : : ; f

n

)R be an ideal of a regular ring R of 
hara
teristi
 p > 0.

Then I

n

� I. When R is not ne
essarily regular, it is still true that I

n

� I

�

.

Proof. Assuming Theorem 3.1 for the moment, we need only 
he
k the �nal assertion. It

suÆ
es to work modulo ea
h minimal prime of R in turn, so we may assume that R is a

domain. Then u 2 I

n

implies that for some nonzero 
, 
u

m

2 (I

n

)

m

for all m. Restri
ting

m = q = p

e

we �nd that 
u

m

2 I

nq

� I

[q℄

for all q, sin
e a monomial in n elements of

degree nq must have a fa
tor in whi
h one of the elements is raised to the q th power. �

Why is every ideal in a regular ring tightly 
losed? We �rst need the following:
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Fa
t 3.3. If R is regular of positive 
hara
teristi
 p then the Frobenius endomorphism is


at.

This 
an be shown as follows: the issue is lo
al on R. In the lo
al 
ase it suÆ
es to

prove it for the 
ompletion

b

R be
ause R!

b

R is faithfully 
at. We have therefore redu
ed

to 
onsidering the 
ase R

�

=

K[[x

1

; : : : ; x

n

℄℄. The Frobenius map is then isomorphi
 with

the ring in
lusion K

p

[[x

p

1

; : : : ; x

p

n

℄℄ � K[[x

1

; : : : ; x

n

℄℄. Letting K

p

= k, we may fa
tor

this map as k[[x

p

1

; : : : ; x

p

n

℄℄ � k[[x

1

; : : : ; x

n

℄℄ � K[[x

1

; : : : ; x

n

℄℄. The �rst extension is

free on the monomials x

h

1

1

� � �x

h

n

n

with 0 � h

i

< p for all i. The 
atness of the se
ond

map (for any �eld in
lusion k � K) may be seen as follows: sin
e K is 
at (in fa
t, free)

over k, K[x

1

; : : : ; x

n

℄ is 
at over k[x

1

; : : : ; x

n

℄. This is preserved when we lo
alize at the

maximal ideal generated by the x 's in the larger ring and its 
ontra
tion (also generated

by the x 's) to the smaller ring. Finally, it is further preserved when we 
omplete both

lo
al rings. �

Re
all that for an ideal I of R and element u 2 R, I : u = fr 2 R : ur 2 Ig. This may

thought of as the annihilator in R of the image of u in R=I.

Fa
t 3.4. If f : R! S is 
at, I � R and u 2 R, then IS :

S

f(u) = (I :

R

u)S.

To see why, note the exa
t sequen
e (I : u)=I ! R=I ! R=I where the map is multi-

pli
ation by u. Applying S


R

preserves exa
tness, from whi
h the stated result follows.

Corollary 3.5. If R is regular of positive 
hara
teristi
, I is any ideal, and u 2 R, then

I

[q℄

: u

q

= (I : u)

[q℄

for all q = p

e

.

The point is that sin
e F : R ! R is 
at, so is its e th iterate F

e

. If S denotes R

viewed as an R-algebra via F

e

then IS = I

[p

e

℄

when we \remember" that S is R. With

this observation, Corollary 3.5 follows from Fa
t 3.4.

Proof of Theorem 3.1. We 
an redu
e to the 
ase where R is a domain. If 
 6= 0 and


u

q

2 I

[q℄

for all q = p

e

, then 
 2

T

q

I

[q℄

: u

q

=

T

q

(I : u)

[q℄

�

T

q

(I : u)

q

. Sin
e the

interse
tion is not 0, we must have that I : u = R, i.e., that u 2 R. �

We also want to mention here the following very useful fa
t: tight 
losure 
aptures


ontra
ted extensions from module-�nite extensions.

Theorem 3.6. Let S be a domain module-�nite over R and let I be an ideal of R. Then

IS \R � I

�

.

Proof. S 
an be embedded in a �nitely generated free R-module. One of the proje
tion

maps ba
k to R will be nonzero on the identity element of S. That is, there is an R-linear

map f : S ! R that sends 1 2 S to 
 2 R� f0g. If u 2 IS \ R, then u

q

2 I

[q℄

S for all q.

Applying f to both sides yields that 
u

q

2 I

q

. �



10 MELVIN HOCHSTER

Although we have not yet given the de�nitions the analogous fa
t holds for submodules

of free modules, and 
an even be formulated for arbitrary submodules of arbitrary modules.

4. Dire
t summands of regular rings are Cohen-Ma
aulay

Elements x

1

; : : : ; x

n

in a ring R are 
alled a regular sequen
e on an R-module M if

(x

1

; : : : ; x

n

)M 6= M and x

i+1

is not a zerodivisor on M=(x

1

; : : : ; x

i

)M , 0 � i < n. A

sequen
e of indeterminates in a polynomial or formal power series ring R, with M = R (or

a nonzero free R-module) is an example. We shall make use of the following fa
t:

Fa
t 4.1. Let A be a polynomial ring over a �eld K, say A = K[x

1

; : : : ; x

d

℄ or let A be a

regular lo
al ring in whi
h x

1

; : : : ; x

d

is a minimal set of generators of the maximal ideal.

Then a �nitely generated nonzero A-module M (assumed graded in the �rst 
ase) is A-free

if and only if x

1

; : : : ; x

d

is a regular sequen
e on M . Thus, a module-�nite extension ring

R (graded if A is a polynomial ring) of A is Cohen-Ma
aulay if and only if x

1

; : : : ; x

d

is

a regular sequen
e on R.

The following two lemmas make the 
onne
tion between tight 
losure and the Cohen-

Ma
aulay property.

Proposition 4.2. Let S be a module-�nite domain extension of the domain R (torsion-

free is suÆ
ient) and let x

1

; : : : ; x

d

be a regular sequen
e in R. Suppose 0 � k < d and

let I = (x

1

; : : : ; x

k

)R. Then IS :

S

x

k+1

� (IS)

�

in S.

Thus, if every ideal of S is tightly 
losed, and x

1

; : : : ; x

d

is a regular sequen
e in R, it

is a regular sequen
e in S.

Proof. Be
ause S is a torsion-free R-module there is an an element 
 of R � f0g that

multiplies S into an R-free submodule G

�

=

R

h

of S. (This is really all we need about S.)

Suppose that ux

k+1

2 IS. Raise both sides to the q = p

e

power to get u

q

x

q

k+1

2 I

[q℄

S.

Multiply by 
 to get (
u

q

)x

q

k+1

2 I

[q℄

G. Be
ause the x

j

form a regular sequen
e on G, so

do their q th powers, and we �nd that 
u

q

2 I

[q℄

S = (IS)

[q℄

. Sin
e this holds for all q = p

e

,

we are done. �

Proposition 4.3. Let R be a domain module-�nite over a regular lo
al ring A or N-

graded and module-�nite over a polynomial ring A. Suppose that R is a dire
t summand

of a regular ring S as an R-module. Then R is Cohen-Ma
aulay (i.e., A-free).

Proof. Let x

1

; : : : ; x

d

be as in Fa
t 4.1. The result 
omes down to the assertion that

x

1

; : : : ; x

d

is a regular sequen
e on R. By Proposition 4.2, it suÆ
es to show that every

ideal of R is tightly 
losed. But if J is an ideal of R and u 2 R is in J

�

, then it is 
lear

that u 2 (JS)

�

= JS, sin
e S is regular, and so u 2 JS \ R = J , be
ause R is a dire
t

summand of S. �
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Pushing this idea a bit further, one gets a full proof of Theorem 1.1. We need to extend

the notion of tight 
losure to equal 
hara
teristi
 0, however. This is ta
kled in x6.

5. The Ein-Lazarsfeld-Smith 
omparison theorem

We give here the 
hara
teristi
 p proof of (1.3), and we shall even allow radi
al ideals,

with h taken to be the largest height of any minimal prime. For a prime ideal P , P

(N)

,

the N th symboli
 power, is the 
ontra
tion of P

N

R

P

to R. When I is a radi
al ideal with

minimal primes P

1

; : : : ; P

k

and W = R �

S

j

P

j

, we may de�ne P

(N)

either as

T

j

P

(N)

j

or as the 
ontra
tion of I

N

(W

�1

R) to R.

Suppose that I 6= (0) is radi
al ideal. If u 2 I

(hn)

, then for every q = p

e

we 
an

write q = an + r where a � 0 and 0 � r � n � 1 are integers. Then u

a

2 I

(han)

and

I

hn

u

a

� I

hr

u

a

� I

(han+hr)

= I

(hq)

. We now 
ome to a key point: we 
an show that

(�) I

(hq)

� I

[q℄

. To see this, note that be
ause the Frobenius endomorphism is 
at for

regular rings, I

[q℄

has no asso
iated primes other than the minimal primes of I, and it

suÆ
es to 
he
k (�) after lo
alizing at ea
h minimal prime P of I. But after lo
alization,

I has at most h generators, and so ea
h monomial of degree hq in these generators is a

multiple of the q th power of at least one of the generators. This 
ompletes the proof of

(�). Taking n th powers gives that I

hn

2

u

an

� (I

[q℄

)

n

= (I

n

)

[q℄

, and sin
e q � an, we have

that I

hn

2

u

q

� (I

n

)

[q℄

for �xed h and n and all q. Let d be any nonzero element of I

hn

2

.

The 
ondition that du

q

2 (I

n

)

[q℄

for all q says pre
isely that u is in the tight 
losure of I

n

in R. But in a regular ring, every ideal is tightly 
losed, and so u 2 I

n

, as required. �

6. Extending the theory to aÆne algebras in 
hara
teristi
 0

In this se
tion we dis
uss brie
y how to extend the results of tight 
losure theory to

�nitely generated algebras over a �eld K of 
hara
teristi
 zero. There is a good theory

with essentially the same properties as in positive 
hara
teristi
. Cf. [HH12℄, [Ho3℄.

Suppose that we have a �nitely generatedK-algebra R. We may think of R as having the

form K[x

1

; : : : ; x

n

℄=(f

1

; : : : ; f

m

) for �nitely many polynomials f

j

. An ideal I � R 
an

be given by spe
ifying �nitely many polynomials g

j

2 T = K[x

1

; : : : ; x

n

℄ that generate

it, and an element u of R 
an be spe
i�ed by giving a polynomial h that maps to. We 
an

then 
hoose a �nitely generated Z-subalgebra B of K that 
ontains all of the 
oeÆ
ients

of the f

j

, the g

j

and of h. We 
an form a ring R

B

= B[x

1

; : : : ; x

n

℄=(f

1

; : : : ; f

m

) and we


an 
onsider the ideal I

B

of the R

B

generated by the images of the g

j

in R

B

. It turns out

that after lo
alizing B at one nonzero element we 
an make other pleasant assumptions:

that I

B

� R

B

� R, that R

B

and R

B

=I

B

are B-free (the lemma of generi
 freeness), and

that tensoring with K over B 
onverts I

B

� R

B

to I � R. Moreover, h has an image in

R

B

� R that we may identify with u.
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We then de�ne u to be in the tight 
losure of I in R provided that for all maximal Q

in a dense open subset of the maximal spe
trum of B, with � = B=Q, the image of u in

R

�

= � 


B

R

B

is in the 
hara
teristi
 p tight 
losure of I

�

= IR

�

| this makes sense

be
ause B=Q will be a �nite �eld.

This de�nition turns out to be independent of the 
hoi
es of B R

B

, I

B

, et
.

Here is one very simple example. Let R = K[x; y; z℄=(x

3

+ y

3

+ z

3

) where K is any

�eld of 
hara
teristi
 0, e.g., the 
omplex numbers, let I = (x; y) and u be the image of

z

2

. In this 
ase we may take B = Z, R

Z

= Z[x; y; z℄=(x

3

+ y

3

+ z

3

) and I

Z

= (x; y)R

Z

.

Then z

2

is in the 
hara
teristi
 0 tight 
losure of (x; y)R be
ause for every prime integer

p 6= 3 (these 
orrespond to the maximal ideals of Z, the image of z

2

is in the 
hara
teristi


p tight 
losure of (x; y)(Z=pZ)[x; y; z℄=(x

3

+ y

3

+ z

3

). Take 
 = x, for example. One 
an


he
k that 
(z

2

)

q

2 (x

q

; y

q

)(R

Z

=pR

Z

) for all q = p

e

. Write 2q = 3k + a, a 2 f1; 2g, and

use that xz

2

q = �x(x

3

+ y

3

)

k

z

a

. Ea
h term in x(x

3

+ y

3

)

k

has the form x

3i+1

y

3j

where

3i+ 3j = 3k � 2q � 2. Sin
e (3i+ 1) + 3j � 2q � 1, at least one of the exponents is � q.

7. Test elements

In this se
tion we again study the 
ase of rings of 
hara
teristi
 p > 0. Let R be a

Noetherian domain. We shall say that an element 
 2 R�f0g is a test element if for every

ideal I of R, 
I

�

� I. An equivalent 
ondition is that for every ideal I and element u of

R, u 2 I

�

if and only if 
u

q

2 I

[q℄

for every q = p

e

� 1. The reason that this holds is

the easily veri�ed fa
t that if u 2 I

�

, then u

q

� (I

[q℄

)

�

for all q. Thus, an element that

is known to be a test element 
an be used in all tight 
losure tests. A priori the element

used in tight 
losure tests for whether u 2 I

�

in the de�nition of tight 
losure 
an vary

with both I and u. The test elements together with 0 form an ideal 
alled the test ideal.

Test elements are known to exist for domains �nitely generated over a �eld. Any element

d 6= 0 su
h that R

d

is regular turns out to have a power that is a test element. We won't

prove this here.

We will explain, however, why the Ja
obian ideal of a domain �nitely generated over

an algebrai
ally 
losed �eld is 
ontained in the test ideal, whi
h is one of the ingredients

of Theorem 1.4. The dis
ussion of the results on test elements needed for Theorem 1.4 is


ontinued in the next se
tion.

Here is a useful result that leads to existen
e theorems for test elements.

Theorem 7.1. Let R be a Noetherian domain module-�nite over a regular domain A of


hara
teristi
 p > 0, and suppose that the extension of fra
tion �elds is separable. Then:

(a) There are elements d 2 A� f0g su
h that dR

1=p

� R[A

1=p

℄.

(b) For any d as in part (a), if 
 = d

2

then (�) 
R

1=q

� R[A

1=q

for all q. Let R

q

= R[A

1=q

℄:
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(
) Any element 
 6= 0 of R that satis�es the 
ondition (�) of part (b) is a test element

for R.

Thus, R has test elements.

Proof. If we lo
alize at all nonzero elements of A we are in the 
ase where A is a �eld and

R is a separable �eld extension. This is well-known and is left as an exer
ise for the reader.

It follows that R

1=p

=R[A

1=p

℄, whi
h we may think of as a �nitely generated A

1=p

-module,

is a torsion module. But then it is killed by an element of A

1=p

� f0g and, hen
e, by an

element of A� f0g.

For part (b) note we note that sin
e dR

1=p

� R[A

1=p

℄, we have that d

1=q

R

1=pq

�

R

1=q

[A

1=pq

℄ for all q = p

e

. Thus,

d

1+1=p

R

1=p

2

� d(d

1=p

R

1=p

2

) � d(R

1=p

[A

1=p

2

℄) � R[A

1=p

℄[A

1=p

2

℄ = R[A

1=p

2

℄:

Continuing in this way, one 
on
ludes easily by indu
tion that

d

1+1=p+���+1=p

e�1

R

1=p

e

� R[A

1=p

e

℄:

Sin
e 2 > 1 + 1=p+ � � � 1=p

e�1

for all p � 2, we obtain the desired result.

Finally, suppose that 
 satis�es 
ondition (�). It suÆ
es to show that for all I and

u 2 I

�

, that 
u 2 I. But if u 2 I

�

we 
an 
hoose a 2 A � f0g (all nonzero elements of R

have nonzero multiples in A) su
h that au

q

2 I

[q℄

for all q = p

e

. Taking q th roots gives

a

1=q

u 2 IR

1=q

for all q. Multiplying by 
 gives that a

1=q


u 2 IR[A

1=q

℄ = IR

q

for all q,

and so a

1=q

2 IR

q

:

R

q


u for all q. It is not hard to show that R


A

A

1=q

�

=

R[A

1=q

℄ here.

(The obvious map is onto, and sin
e R is torsion-free over A and A

1=q

is A-
at, R


A

A

1=q

is torsion-free over, so that we 
an 
he
k inje
tivity after lo
alizing at A � f0g, and we

thus redu
e to the 
ase where A is a �eld and R is a �nite separable extension �eld, where

the result is the well-known linear disjointness of separable and purely inseparable �eld

extensions.) The 
atness of Frobenius for A means pre
isely that A

1=q

is 
at over A, so

that R

q

is 
at over R; this is simply a base 
hange. Thus, IR

q

:

R

q


u = (I :

R


u)R

q

�

(I :

R


u)R

1=q

. Hen
e, for all q = p

e

, a

1=q

2 JR

1=q

, where J = I :

R


u. This shows that

a 2 J

[q℄

for all q. Sin
e a 6= 0, we must have that J is the unit ideal, i.e., that 
u 2 I.

The same argument works essentially without 
hange when I is a submodule of a free

module instead of an ideal. �

8. Test elements using the Lipman-Sathaye theorem

This se
tion des
ribes some material from Se
tion (1.4) of [HH12℄.

For the moment, we do not make any assumption on the 
hara
teristi
. Let T � R

be a module-�nite extension, where T is a Noetherian domain, R is torsion-free as a T -

module and the extension is generi
ally smooth. Thus, if K is the fra
tion �eld of T and
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L = K 


T

R is the total quotient ring of R then K �! L is a �nite produ
t of separable

�eld extensions of K. The Ja
obian ideal J (R=T ) is de�ned as the 0 th Fitting ideal of

the R-module of K�ahler R-di�erentials 


R=T

, and may be 
al
ulated as follows: write

R

�

=

T [X

1

; : : : ; X

n

℄=P and then J (R=T ) is the ideal generated in R by the images of

all the Ja
obian determinants �(g

1

; : : : ; g

n

)=�(X

1

; : : : ; X

n

) for n-tuples g

1

; : : : ; g

n

of

elements of P . Moreover, to generate J (R=T ) it suÆ
es to take all the n-tuples of g

i

from

a �xed set of generators of P .

Now suppose in addition that T is regular. Let R

0

be the integral 
losure of R in

L, whi
h is well known to be module-�nite over T (the usual way to argue is that any

dis
riminant multiplies it into a �nitely generated free T -module). Let J = J (R=T ) and

J

0

= J (R

0

=T ). The result of Lipman and Sathaye ([LS℄, Theorem 2, p. 200) may be stated

as follows:

(8.1) Theorem (Lipman-Sathaye). With notation as above (in parti
ular, there is no

assumption about the 
hara
teristi
, and T is regular), suppose also that R is an integral

domain. If u 2 L is su
h that uJ

0

� R

0

then uJR

0

� R. In parti
ular, we may take u = 1,

and so JR

0

� R. �

This property of \
apturing the normalization" will enable us to produ
e test elements.

(8.2) Corollary (existen
e of test elements via the Lipman-Sathaye theorem). If

R is a domain module-�nite over a regular domain A of 
hara
teristi
 p su
h that the

extension of fra
tion �elds is separable, then every element 
 of J = J (R=A) is su
h that


R

1=q

� A

1=q

[R℄ for all q, and, in parti
ular, 
R

1

� A

1

[R℄. Thus, if 
 2 J \ (R� f0g),

it is a test element.

Proof. Sin
e A

1=q

[R℄

�

=

A

1=q




A

R, the image of 
 is in J (A

1=q

[R℄=A

1=q

), and so the

Lipman-Sathaye theorem implies that 
 multiplies the normalization S of A

1=q

[R℄ into

A

1=q

[R℄. Thus, it suÆ
es to see that R

1=q

is 
ontained in S. Sin
e it is 
learly integral over

A

1=q

[R℄ (it is obviously integral over R), we need only see that the elements of R

1=q

are in

the total quotient ring of A

1=q

[R℄, and for this purpose we may lo
alize at A

o

= A� f0g.

Thus, we may repla
e A by its fra
tion �eld and assume that A is a �eld, and then R is

repla
ed by (A

o

)

�1

R, whi
h is a separable �eld extensions. Thus, we 
ome down to the fa
t

that if A � R is a �nite separable �eld extension, then the inje
tion A

1=q




A

R! R

1=q

(the

map is an inje
tion be
ause separable and purely inseparable �eld extensions are linearly

disjoint) is an isomorphism, whi
h is immediate by a degree argument. �

(8.3) Corollary (more test elements via the Lipman-Sathaye theorem). Let K

be a �eld of 
hara
teristi
 p and let R be a d-dimensional geometri
ally redu
ed (i.e., the

ring stays redu
ed even when one tensors with an inseparable extension of K | this is

automati
 if K is perfe
t) domain over K that is �nitely generated as a K-algebra. Let
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R = K[x

1

; : : : ; x

n

℄=(g

1

; : : : ; g

r

) be a presentation of R as a homomorphi
 image of a

polynomial ring. Then the (n� d)� (n� d) minors of the Ja
obian matrix (�g

i

=�x

j

) are


ontained in the test ideal of R, and remain so after lo
alization and 
ompletion. Thus,

any element of the Ja
obian ideal generated by all these minors that is in R�f0g is a test

element.

Proof. We pass to K(t)


K

R, if ne
essary, where K(t) is a simple trans
endental extension

of K, to guarantee that the �eld is in�nite. Our hypothesis remains the same, the Ja
obian

matrix does not 
hange, and, sin
e K(t)


K

R is faithfully 
at over R, it suÆ
es to 
onsider

the latter ring. Thus, we may assume without loss of generality that K is in�nite. The


al
ulation of the Ja
obian ideal is independent of the 
hoi
e of indeterminates. We are

therefore free to make a linear 
hange of 
oordinates, whi
h 
orresponds to 
hoosing an

element of G = GL(n;K) � K

n

2

to a
t on the one-forms of K[x

1

; : : : ; x

n

℄. For a dense

Zariski open set U of G � K

n

2

, if we make a 
hange of 
oordinates 
orresponding to an

element 
 2 U � G then, for every 
hoi
e of d of the (new) indeterminates, if A denotes

the K-subalgebra of R that these d new indeterminates generate, the two 
onditions listed

below will hold:

(1) R will be module-�nite over A (and the d 
hosen indeterminates will then, per for
e,

be algebrai
ally independent) and

(2) R will be generi
ally smooth over A.

We may 
onsider these two statements separately, for if ea
h holds for a dense Zariski

open subset of G we may interse
t the two subsets. The �rst statement follows from

the standard \linear 
hange of variable" proofs of the Noether normalization theorem for

aÆne K-algebras (these may be used whenever the ring 
ontains an in�nite �eld). For the

se
ond, we want ea
h d element subset, say, after renumbering, x

1

; : : : ; x

d

, of the variables

to be a separating trans
enden
e basis for the fra
tion �eld L of R over K. (The fa
t that

R is geometri
ally redu
ed over K implies that L is separably generated over K.) By, for

example, Theorem 5.10 (d) of [Ku℄, a ne
essary and suÆ
ient 
ondition for x

1

; : : : ; x

d

to be

a separating trans
enden
e basis is that the di�erentials of these elements dx

1

; : : : ; dx

d

in 


L=K

�

=

L

d

be a basis for 


L=K

as an L-ve
tor spa
e. Sin
e the di�erentials of the

original variables span 


L=K

over L, it is 
lear that the set of elements of G for whi
h all d

element subsets of the new variables have di�erentials that span 


L=K


ontains a Zariski

dense open set.

Now suppose that a suitable 
hange of 
oordinates has been made, and, as above, let

A be the ring generated over K by some set of d of the elements x

i

. Then the n� d size

minors of (�g

i

=�x

j

) involving the n� d 
olumns of (�g

i

=�x

j

) that 
orrespond to variables

not 
hosen as generators of A pre
isely generate J (R=A). R is module-�nite over A by

the general position argument, and sin
e it is equidimensional and redu
ed, it is likewise
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torsion-free over A, whi
h is a regular domain. It is generi
ally smooth likewise, be
ause of

the general position of the variables. The result is now immediate from (8.2): as we vary

the set of d variables, every n� d size minor o

urs as a generator of some J (R=A) �

9. Tight 
losure for submodules

In this se
tion we make some brief remarks on how to extend the theory of tight 
losure

to submodules of arbitrary modules.

Let R be a Noetherian ring of positive prime 
hara
teristi
 p and let G be a free R-

module with a spe
i�ed free basis u

j

, whi
h we allow to be in�nite. Then we may de�ne

an a
tion of the Frobenius endomorphism F and its iterates on G very simply as follows:

if g =

P

t

i=1

r

i

u

j

i

(where the j

i

are distin
t) we let F

e

(g), whi
h we also denote g

p

e

, be

P

t

i=1

r

p

e

i

u

j

i

. Thus, we are simply letting F a
t (as it does on the ring) on all the 
oeÆ
ients

that o

ur in the representation of an element of G in terms of the free basis. If N � G

is a submodule, we let N

[p

e

℄

denote the submodule of G spanned by all the elements g

p

e

for g 2 N . We then de�ne an element x 2 G to be in N

�

if there exists 
 2 R

o

su
h that


x

p

e

2 N

[p

e

℄

for all e� 0.

More generally, if M is any R-module, N is a submodule, and we want to determine

whether x 2 M is in the tight 
losure N

�

of N in M , we 
an pro
eed by mapping a free

module G ontoM , taking an element g 2 G that maps to x, letting H be the inverse image

of N in G, and letting x be in N

�

M

pre
isely when g 2 H

�

G

, where we are using subs
ripts

to indi
ate the ambient module. This de�nition turns out to be independent of the 
hoi
e

of free module G mapping onto M , and of the 
hoi
e of free basis for G.

I believe that there are many important questions about the behavior of tight 
losure

for modules that are not �nitely generated over the ring, espe
ially for Artinian modules

over lo
al rings. See question 3. of the next se
tion.

However, for the rest of this se
tion we restri
t attention to the 
ase of �nitely generated

modules. The theory of test elements for tight 
losure of ideals extends without 
hange to

the generality of modules.

In order to prove the result of Theorem 1.4 one may make use of a version of the

phantom a
y
li
ity theorem. We �rst re
all the result of [BE℄ 
on
erning when a �nite free


omplex over a Noetherian ring R is a
y
li
. Suppose that the 
omplex is

0! R

b

n

! � � � ! R

b

0

! 0

and that r

i

is the (determinantal) rank of the matrix �

i

giving the map from R

b

i

! R

b

i�1

,

0 � i � n + 1, where b

n+1

is de�ned to be 0. The result of [BE℄ is that the 
omplex is

a
y
li
 if and only if
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(1) for 0 � i � n, b

i

= r

i+1

+ r

i

(2) for 1 � i � n, the depth of the ideal J

i

generated by the r

i

size minors of �

i

is at

least i (this is automati
 if the ideal generated by the minors is the unit ideal; by


onvention, the unit ideal has depth +1).

A 
omplex 0! G

n

! � � � ! G

0

! 0 is said to be phantom a
y
li
 if for all i � 1, one

has that the kernel Z

i

of G

i

! G

i�1

is in the tight 
losure of the module of boundaries

B

i

(the image of G

i+1

in G

i

) in G

i

. Note that this implies that Z

i

=B

i

is killed by the test

ideal.

Consider the following weakening of 
ondition (2) above:

(2

o

) for 1 � i � n, the height of the ideal J

i

generated by the r

i

size minors of �

i

is at

least i (this is automati
 if the ideal generated by the minors is the unit ideal; by


onvention, the unit ideal has height +1).

We then have:

Theorem 9.1 (phantom a
y
li
ity 
riterion). Let R be a redu
ed biequidimensional

Noetherian ring of 
hara
teristi
 p > 0. A �nite free 
omplex as above is phantom a
y
li


provided that 
onditions (1) and (2

o

) hold.

We refer the reader to [HH4℄ and [HH8℄ for detailed treatments where the result is

established in mu
h greater generality and a partial 
onverse is proved, and to [Ab℄ for the

further development of the 
losely related notion of �nite phantom proje
tive dimension.

Note that in a domain, 
ondition (2

o

) simply says that every J

i

has height at least i:

this repla
es the subtle and diÆ
ult notion of \depth" by the mu
h more tra
table notion

of \height" (or \
odimension").

Theorem 1.4 is simply the result of applying the phantom a
y
li
ity 
riterion to a Koszul


omplex. The 
onditions (1) and (2) are easy to verify. Therefore, the higher homology is

killed by the test ideal, whi
h 
ontains the Ja
obian ideal.

There is another point of view that is very helpful in understanding the phantom a
y
li
-

ity theorem. It involves the main result of [HH5℄. If R is a domain, let R

+

denote the

integral 
losure of R in an algebrai
 
losure of its fra
tion �eld, whi
h is a maximal integral

extension of R that is a domain. It is unique up to non-unique isomorphism. The theorem

of [HH5℄ is that every system of parameters of R is a regular sequen
e in R

+

: thus, R

+

is a big Cohen-Ma
aulay algebra for R (and for any module-�nite extension domain of

R, all of whi
h are embeddable in R

+

. Suppose that one has a 
omplex that satis�es

the hypothesis of the phantom a
y
li
ity 
riterion. When one tensors with R

+

it a
tu-

ally be
omes a
y
li
: heights be
ome depths in R

+

, and one may apply a generalization

to the non-Noetherian 
ase of the a
y
li
ity 
riterion of [BE℄ presented in great detail in
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[Nor℄. One may use this to see that any 
y
le be
omes a boundary after tensoring with

a suÆ
iently large but module-�nite extension of R. The fa
t that the 
y
les are in the

tight 
losure of the boundaries is now analogous to the fa
t that when an ideal I � R is

expanded and then 
ontra
ted from a module-�nite extension S of R, IS \ R � I

�

: 
f.

Theorem 3.6.

Finally, we want to mention the vanishing theorem for maps of Tor. Let A � R ! S

be maps of rings of 
hara
teristi
 p, where A is regular, R is module-�nite and torsion-free

over A, and S is any regular ring. The map R ! S is arbitrary here: it need not be

inje
tive nor surje
tive. Let M be any R-module.

(9.2) Theorem (the vanishing theorem for maps of Tor). With assumptions as just

above, the maps Tor

A

i

(M; R)! Tor

A

i

(M; S) are 0 for all i � 1.

Sket
h of proof. One may easily redu
e to the 
ase where S is 
omplete lo
al and then to

the 
ase where A is 
omplete lo
al. By a dire
t limit argument one may redu
e to the 
ase

where M is �nitely generated over A. Then M has a �nite free resolution over A, whi
h

satis�es the hypothesis of the 
hara
terization of a
y
li
 
omplexes given in [BE℄. When

we tensor with R over A we get a free 
omplex over R that satis�es the phantom a
y
li
ity

theorem: every 
y
le is in the tight 
losure of the boundaries. Taking its homology gives

the Tor

A

i

(M; R). Now when we tensor S, every module is tightly 
losed, so the 
y
les


oming from the 
omplex over R are now boundaries, whi
h gives the desired result. �

Cf. [HH4℄, [HH8℄, the dis
ussion in [HH11℄, and [Rang℄. This is an open question in

mixed 
hara
teristi
. This vanishing result is amazingly powerful. In the 
ase where S is

simply a �eld, it implies the dire
t summand 
onje
ture, i.e., that regular rings are dire
t

summands of their module-�nite extensions. In the 
ase where S is regular and R is a

dire
t summand of S it implies that R is Cohen-Ma
aulay. Both questions are open in

mixed 
hara
teristi
. The details of these impli
ations are given in [HH11℄. In [Rang℄, it

is shown, somewhat surprisingly, that the vanishing theorem for maps of Tor is a
tually

equivalent to the following question about splitting: let R be a regular lo
al ring, let S

be a module-�nite extension, and suppose that P is a height one prime ideal of S that


ontra
ts to xR, where x is a regular parameter in R. Then xR is a dire
t summand of S

as an R-module.

10. Further thoughts and questions

What we have said about tight 
losure so far is only the tip of an i
eberg. Here are

some major open questions.

1. Does tight 
losure 
ommute with lo
alization under mild assumptions on the ring?

This is not known to be true even for �nitely generated algebras over a �eld. Aspe
ts of

the problem are dis
ussed in [AHH℄, [HH13℄, and [Vr1℄.
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2. Under mild 
onditions, if a ring has the property that every ideal is tightly 
losed,

does that 
ontinue to hold when one lo
alizes? This is not known for �nitely generated

algebras over a �eld, nor for 
omplete lo
al rings. An aÆrmative answer to 1. would imply

an aÆrmative answer to 2.

Rings su
h that every ideal is tightly 
losed are 
alled weakly F-regular. The word

\weakly" is omitted if this property also holds for all lo
alizations of the ring. Weakly

F-regular rings are Cohen-Ma
aulay and normal under very mild 
onditions | this holds

even if one only assumes that ideals generated by parameters are tightly 
losed (this weaker

property is 
alled F-rationality and is 
losely related to the notion of rational singularities;


f. [Ha1℄, [Sm2℄, [Vel℄, [En℄). Both of the 
onditions of weak F-regularity and F-rationality

tend to imply that the singularities of the ring are in some sense good. However, the theory

is 
ompli
ated: 
f. [HaW℄. It is worth noting that weak F-regularity does not deform [Si℄,

and that dire
t summands of F-rational rings are not ne
essarily F-rational [Wat℄. See also

[HaWY1,2℄. Weak F-regularity is established for some important 
lasses of rings (those

de�ned by the vanishing of the minors of �xed size of a matrix of indeterminates, and

homogeneous 
oordinate rings of Grassmannians) in [HH10℄, Theorem 7.14.

3. Let M be an Artinian module over, say, a 
omplete redu
ed lo
al ring with a perfe
t

residue �eld. Let N be a submodule ofM , Is it true that u 2 N

�

M

if and only if there exists

Q with N � Q �M with Q=N of �nite length su
h that u 2 N

�

Q

? This is true in a graded

version and for isolated singularities [LySm1,2℄; other 
ases are established in [Elit℄.

For any domain R, let R

+

denote the integral 
losure of R in an algebrai
 
losure of its

fra
tion �eld. This is unique up to non-unique isomorphism, and may be thought of as a

\largest" domain extension of R that is integral over R.

4. For an ex
ellent lo
al domain R, is an element r 2 R in the tight 
losure of I if

and only if it is in IS for some module-�nite extension domain of R? It is equivalent to

assert that for su
h a lo
al domain R, I

�

= IR

+

\ R. This is known for ideals generated

by part of a system of parameters: 
f. [Sm1℄. It is known that IR

+

\ R � I

�

. For some

results on homogeneous 
oordinate rings of ellipti
 
urves, see the remarks following the

next question.

It is known in 
hara
teristi
 p that for a 
omplete lo
al domain R, and element u 2 R

is in I

�

if and only if it is in IB \R for some big Cohen-Ma
aulay algebra extension ring

B of R: 
f. x11 of [Ho1℄.

It is worth mentioning that there is an intimate 
onne
tion between tight 
losure and

the existen
e of big Cohen-Ma
aulay algebras B over lo
al rings (R;m), i.e., algebras B

su
h that mB 6= B and every system of parameters for R is a regular sequen
e on B.

Tight 
losure ideas led to the proof in [HH7℄ that if R is an ex
ellent lo
al domain of
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hara
teristi
 p then R

+

is a big Cohen-Ma
aulay algebra. Moreover, for 
omplete lo
al

rings R, it is known [Ho1℄, x11, that u 2 I

�

if and only if R has a big Cohen-Ma
aulay

algebra B su
h that u 2 IB.

5. Is there an e�e
tive way to 
ompute tight 
losures? The answer is not known even

for ideals of 
ubi
al 
ones, i.e., of rings of the form K[X; Y; Z℄=(X

3

+Y

3

+Z

3

) in positive


hara
teristi
 di�erent from 3. However, in 
ones over ellipti
 
urves, tight 
losure agrees

with plus 
losure (i.e., with IR

+

\R) for homogeneous ideals I primary to the homogeneous

maximal ideal : 
f. [Bren1,2℄. For ideals that are not homogeneous, the question raised in

4. is open even for su
h rings. When the 
hara
teristi
 of K is 
ongruent to 2 mod 3, it

is even possible that tight 
losure agrees with Frobenius 
losure in these rings. Cf. [M
D℄

and [Vr2℄.

6. How 
an one extend tight 
losure to mixed 
hara
teristi
? By far the most intriguing

result along these lines is due to Ray Heitmann [Heit℄, who has proved that if (R;m) is

a 
omplete lo
al domain of dimension 3 and mixed 
hara
teristi
 p, then every Koszul

relation on parameters in R

+

is annihilated by multipli
ation by arbitrarily small positive

rational powers of p (i.e., by p

1=N

for arbitrarily large integers n). This implies that regular

lo
al rings of dimension 3 are dire
t summands of their module-�nite extension rings.

Heitmann's result 
an be used to prove the existen
e of big Cohen-Ma
aulay algebras in

dimension 3: 
f. [Ho5℄. Other possibilities are explored in [Ho4℄ and [HoV℄.
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