
TIGHT CLOSURE THEORY

AND CHARACTERISTIC P METHODS

by Melvin Hohster

0. Introdution

Unless otherwise spei�ed, the rings that we onsider here will be Noetherian rings R

ontaining a �eld. Frequently, we restrit, for simpliity, to the ase of domains �nitely

generated over a �eld K. The theory of tight losure exists in muh greater generality,

and we refer the reader to [HH1{14℄ and [Ho1{3℄, as well as to the expository aounts

[Bru℄, [Hu1,2℄ and [Leu℄ (in this volume) for the development of the larger theory and

its appliations as well as disussion of related topis suh as the existene of big Cohen-

Maaulay algebras.

We shall give an introdutory overview of the theory of tight losure, whih has reently

played a primary role among harateristi p methods. We shall see that suh methods

an be used even when the ring ontains a �eld of harateristi 0.

Here, in reverse order, are several of the most important reasons for studying tight

losure theory, whih gives a losure operation on ideals and on submodules. We fous

mostly on the ase of ideals here, although there is some disussion of modules. We shall

elaborate on the themes brought forth in the list below in the sequel.

11. Tight losure an be used to shorten diÆult proofs of seemingly unrelated results.

The results turn out to be related after all. Often, the new results are stronger than

the original results.

10. Tight losure provides algebrai proofs of several results that an otherwise be proved

only in equal harateristi 0, and whose original proofs depended on analyti teh-

niques.
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9. In partiular, tight losure an be used to prove the Brian�on-Skoda theorem on

integral losures of ideals in regular rings.

8. Likewise, tight losure an be used to prove that rings of invariants of linearly redutive

algebrai groups ating on regular rings are Cohen-Maaulay.

7. Tight losure an be used to prove several of the loal homologial onjetures.

6. Tight losure an be used to \ontrol" ertain ohomology modules: in partiular, one

�nds that the Jaobian ideal kills them.

5. Tight losure implies several vanishing theorems that are very diÆult from any other

point of view.

4. Tight losure ontrols the behavior of ideals when they are expanded to a module-�nite

extension ring and then ontrated bak to the original ring.

3. Tight losure ontrols the behavior of ertain olon ideals involving systems of param-

eters.

2. Tight losure provides a method of ompensating for the failure of ambient rings to

be regular.

1. If a ring is already regular, the tight losure is very small: it oinides with the ideal

(or submodule). This gives an extraordinarily useful test for when an element is in an

ideal in regular rings.

One way of thinking about many losure operations is to view them as arising from

neessary onditions for an element to be in an ideal. If the ondition fails, the element is

not in the ideal. If the ondition is not both neessary and suÆient, then when it holds,

the element might be in the ideal, but it may only be in some larger ideal, whih we think

of as a kind of losure.

Tight losure in positive harateristi an be thought of as arising from suh a neessary

but not suÆient ondition for ideal membership. One of the reasons that it is so useful

for proving theorems is that in some rings, the ondition is both neessary and suÆient.

In partiular, that is true in regular rings. In onsequene, many theorems an be proved

about regular rings that are rather surprising. They have the following nature: one an

see that in a regular ring a ertain element is \almost" in an ideal. Tight losure permits

one to show that the element atually is in the ideal. This tehnique works like magi on

several major results that seemed very diÆult before tight losure ame along.

One has to go to some onsiderable trouble to get a similar theory working in rings

that ontain the rationals, but this has been done, and the theory works extremely well

for \nie" Noetherian rings like the ones that ome up in algebrai and analyti geometry.

It is still a mystery how to onstrut a similar theory for rings that do not ontain a

�eld. This is not a matter of thinking about anything pathologial. Many onjetures
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ould be resolved if one had a good theory for domains �nitely generated as algebras over

the integers.

Before proeeding to talk about tight losure, we give some examples of neessary and/or

suÆient onditions for membership in an ideal. The neessary onditions lead to a kind

of losure.

(1) A neessary ondition for r 2 R to be in the ideal I is that the image of r be in IK

for every homomorphism of R to a �eld K. This is not suÆient: the elements that satisfy

the ondition are preisely the elements with a power in I, the radial of I.

(2) A neessary ondition for r 2 R to be in the ideal I is that the image of r be in IV

for every homomorphism of R to a valuation ring V . This is not suÆient: the elements

that satisfy the ondition are preisely the elements in I, the integral losure of I. If R

is Noetherian, one gets the same integral losure if one only onsiders Noetherian disrete

valuation rings V . There are many alternative de�nitions of integral losure.

(3) If R has positive prime harateristi p let S

e

denote R viewed as an R-algebra via

the e th iteration F

e

of the Frobenius endomorphism F (thus, S

e

= R, but the strutural

homomorphism R ! S

e

= R sends r to r

p

e

). A neessary ondition that r 2 I is that

for some integer e, r

p

e

2 IS

e

. Note that when S

e

is identi�ed with R, IS

e

beomes the

ideal generated by all elements i

p

e

for i 2 I. This ideal is denoted I

[p

e

℄

. This ondition is

not suÆient for membership in I. The orresponding losure operation is the Frobenius

losure I

F

of I: it onsists of all elements r 2 R suh that r

p

e

2 I

[p

e

℄

for some nonnegative

integer e. (Note: one this holds for one hoie of e, it holds for all larger hoies.) E.g.,

in K[x; y; z℄ = K[X; Y; Z℄=(X

3

+ Y

3

+ Z

3

), if K has harateristi 2 (quite expliitly, if

K = Z

2

= Z=2Z) then with I = (x; y), we have that z

2

2 I

F

� I. In fat, (z

2

)

2

2 I

[2℄

=

(x

2

; y

2

) here, sine z

4

= z

3

z = �(x

3

+ y

3

)z 2 (x

2

; y

2

).

Finally, here is a test for ideal membership that is suÆient but not neessary. It was

used in the �rst proof of the Brian�on-Skoda theorem, and we want to mention it, although

easier proofs by analyti methods are available now.

(4) Skoda's analyti riterion. Let 
 be a pseudoonvex open set in C

n

and � a

plurisubharmoni funtion

1

on 
. Let f and g

1

; : : : ; g

k

be holomorphi funtions on


. Let  = (jg

1

j

2

+ � � � + jg

k

j

2

)

1=2

. Let X be the set of ommon zeros of the g

j

. Let

1

We won't explain these terms from omplex analysis here: the de�nitions are not so ritial for us,

beause in the appliation to the Brian�on-Skoda theorem, whih we disuss later, we work in the ring

of germs of holomorphi funtions at, say, the origin in omplex n-spae, C

n

(

�

=

onvergent power series

C fz

1

; : : : ; z

n

g) | we an pass to a smaller, pseudoonvex neighborhood; likewise, � beomes unimportant.
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d = maxfn; k � 1g. Let � denote Lebesgue measure on C

n

. Skoda's riterion asserts that

if one has either that for some real � > 1,

Z


�X

jf j

2



2�d+2

e

��

d� < +1;

or if one has that

Z


�X

jf j

2



2d

�

1 + � log()

�

e

��

d� < +1;

then there exist h

1

; : : : ; h

k

holomorphi on 
 suh that f =

P

k

j=1

h

j

g

j

. Hilbert's Null-

stellensatz states that if f vanishes at the ommon zeros of the g

j

then f 2 Rad I where

I = (g

1

; : : : ; g

k

). The �niteness of any of the integrals above onveys the stronger infor-

mation that, in some sense, f is \small" whenever all the g

j

are \small" (or the integrand

will be too \large" for the integral to onverge), and we get the stronger onlusion that

g 2 I.

1. Reasons for thinking about tight losure

We give here �ve results valid in any harateristi (i.e., over any �eld) that an be

proved using tight losure theory. The tight losure proofs are remarkably simple, at

least in the main ases. The terminology used in the following losely related theorems is

disussed briey after their statements.

Theorem 1.1 (Hohster-Roberts). Let S be a regular ring that is an algebra over the

�eld K, and let G be a linearly redutive algebrai group over K ating on S. Then the

ring of invariants R = S

G

is a Cohen-Maaulay ring.

Theorem 1.1

o

(Hohster-Huneke). If R is a diret summand (as an R-module) of a

regular ring S ontaining a �eld, then R is Cohen-Maaulay.

Theorem (1.1

o

) implies Theorem (1.1). Both apply to many examples from lassi-

al invariant theory. Reall that an algebrai group (i.e., a Zariski losed subgroup of

GL(n;K)) is alled linearly redutive if every representation is ompletely reduible. In

harateristi 0, these are the same as the redutive groups and inlude �nite groups,

produts of GL(1; K) (algebrai tori), and semi-simple groups. Over C suh a group is

the omplexi�ation of ompat real Lie group. A key point is that when a linearly re-

dutive algebrai group ats on a K-algebra S, if S

G

is the ring of invariants or �xed ring

fs 2 S : g(s) = s for all g 2 Gg there is a anonial retration map map S ! S

G

, alled

the Reynolds operator, that is S

G

-linear. Thus, R = S

G

is a diret summand of S as an

R-module.

In partiular, if S is a polynomial ring over a �eld K and G is a linearly redutive

linear algebrai group ating on S

1

, the vetor spae of 1-forms of S, and, hene, all of S
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(the ation should be an appropriate one, i.e., determined by a K-morphism of G into the

automorphisms of the vetor spae S

1

), then the �xed ring S

G

is a Cohen-Maaulay ring

R. What is a Cohen-Maaulay ring? The issue is loal: for a loal ring the ondition means

that some (equivalently, every) system of parameters is a regular sequene. In the graded

ase the Cohen-Maaulay ondition has the following pleasant interpretation: when R is

represented as a �nitely generated module over a graded polynomial subring A , R is free

over A. This is a very restritive and useful ondition on R, espeially in higher dimension.

The Cohen-Maaulay ondition is very important in intersetion theory. Notie that sine

moduli spaes are frequently onstruted as quotients of smooth varieties by ations of

redutive groups, Theorem 1.1 implies the Cohen-Maaulay property for many moduli

spaes.

Theorem 1.1 was �rst proved by a ompliated redution to harateristi p > 0 [HR℄.

Boutot [Bou℄ gave a shorter proof for aÆne algebras in harateristi 0 using resolution of

singularities and the Grauert-Riemenshneider vanishing theorem. The tight losure proof

of Theorem 1.1

o

is the simplest in many ways.

Theorem 1.2 (Brian�on-Skoda theorem). Let R be a regular ring and I an ideal of

R generated by n elements. Then I

n

� I.

We gave one haraterization of what u 2 J means earlier. It turns out to be equivalent

to require that there be an equation

u

h

+ j

1

u

h�1

+ � � �+ j

h

= 0

suh that every j

t

2 J

t

, 1 � t � h. We shall give a third haraterization later.

Theorem 1.2 was �rst proved by analyti tehniques: f. (4) of the Introdution. See

[BrS℄ and [Sk℄: in the latter paper the analyti riteria needed were proved. The �rst

algebrai proofs were given in [LT℄ (for a very important speial ase) and [LS℄. There are

several instanes in whih tight losure an be used to prove results that were �rst proved

either by analyti tehniques or by results like the Kodaira vanishing theorem and related

harateristi 0 vanishing theorems in algebrai geometry. Cf. [HuS℄ for a disussion of the

onnetion with the Kodaira vanishing theorem.

Theorem 1.3 (Ein-Lazarsfeld-Smith omparison theorem). Let P be a prime ideal

of odimension h in a regular ring. Then P

(hn)

� P

n

for every integer n.

This was most unexpeted. The original proof, valid in harateristi 0, ultimately

depends on resolution of singularities and deep vanishing theorems, as well as a theory

of asymptoti multiplier ideals. Cf. [ELS℄. The tight losure proof [HH14℄ permits one to

extend the results to harateristi p as well as reovering the harateristi 0 result. There

are other onnetions between tight losure theory and the theory of multiplier ideals: f.

[Sm3℄, [Ha2℄, and [HaY℄.
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Theorem 1.4 (Hohster-Huneke). Let R be a redued equidimensional �nitely gen-

erated K-algebra, where K is algebraially losed. Let f

1

; : : : ; f

h

be elements of R that

generate an ideal I of odimension (also alled height) h mod every minimal prime of

R. Let J be the Jaobian ideal of R over K. Then J annihilates the Koszul ohomology

H

i

(f

1

; : : : ; f

h

;R) for all i < h, and hene the loal ohomology H

i

I

(R) for i < h.

This result is a onsequene of phantom homology theory, test element theory for tight

losure, and the Lipman-Sathaye Jaobian theorem [LS℄, all of whih we will desribe

eventually. If

R

�

=

K[x

1

; : : : ; x

n

℄=(f

1

; : : : ; f

m

)

has odimension r in A

n

K

, then J is the ideal of R generated by the images of the size r

minors of the Jaobian matrix (�f

j

=�x

j

), and de�nes the non-smooth (over K) lous in

Spe R. The ideal J � R turns out to be independent of whih presentation of R one

hooses.

Here is a more geometrially avored orollary.

Corollary 1.5. Let R be a �nitely generated graded domain of dimension n+ 1 over an

algebraially losed �eld K, so that X = Proj (R) is a projetive variety of dimension n

over an algebraially losed �eld K. Let g denote a homogeneous element of the Jaobian

ideal J � R of degree d (so that g gives a global setion of O

X

(d) ). Then for 1 � j � n�1,

the map H

j

(X; O

X

(t))! H

j

(X; O

X

(t+ d)) indued by multipliation by g is 0.

The reason that this is a Corollary of Theorem 1.4 is that for j � 1, if we let M =

L

t2Z

H

j

(X;O

X

(t)), then M is isomorphi (as an R-module) with H

j+1

m

(R) whih may

be viewed as an R-module. We may replae m by the ideal generated by a homogeneous

system of parameters, sine the two have the same radial. Then Theorem 1.4 implies that

the Jaobian ideal of R kills M for 1 � j � n� 1. Cf. also Corollary 8.3 of x8.

2. The de�nition of tight losure in positive harateristi p

One of our guidelines towards a heuristi feeling for when an element u of a Noetherian

ring R should be viewed as \almost" in an ideal I � R will be this: if R has a module-�nite

extension S suh that u 2 IS then u is \almost" in I.

Notie that if R is a normal domain (i.e., integrally losed in its �eld of frations)

ontaining the rational numbers and S is a module-�nite extension, then IS \ R = I, so

that for normal rings ontaining Q we are not allowing any new elements into the ideal.

One an see this as follows. By �rst killing a minimal prime ideal of S disjoint from

R � f0g we may assume that S is a domain. Let L ! L

0

be the orresponding �nite

algebrai extension of fration �elds, and suppose it has degree d. Let tr

L

0

=L

denote �eld

trae. Then

1

d

tr

L

0

=L

: S ! R gives an R-linear retration when R is normal. This implies
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that IS \R = I for every ideal I of R. (We only need the invertibility of the single integer

d in R for this argument.)

The situation for normal domains of positive harateristi is very di�erent, where it

is an open question whether the elements that are \almost" in an ideal in this sense may

oinide with the tight losure in good ases. Our de�nition of tight losure may seem

unrelated to the notion above at �rst, but there is a lose onnetion.

For simpliity we start with the ase of ideals in Noetherian domains of harateristi

p > 0. Reall that in harateristi p the Frobenius endomorphism F = F

R

on R maps

r to r

p

, and is a ring endomorphism. When R is redued, we denote by R

1=p

e

the ring

obtained by adjoining p

e

th roots for all elements of R: it is isomorphi to R, using the

e th iterate of its Frobenius endomorphism with the image restrited to R. Reall that in a

ring of positive harateristi p, when q = p

e

, we denote by I

[q℄

the ideal of R generated by

all q th powers of elements of I. It is easy to see that this ideal is generated by q th powers

of generators of I. Notie that it is muh smaller, typially, than the ordinary power I

q

.

I

q

is generated by all monomials of degree q in the generators of I, not just q th powers of

generators.

De�nition 2.1. Let R be a Noetherian domain of harateristi p > 0, let I be an ideal

of R, and let u be an ideal of R. We say that u 2 R is in the tight losure I

�

of I in R if

there exists an element  2 R�f0g suh that for all suÆiently large q = p

e

, we have that

u

q

2 I

[q℄

.

It is equivalent in the de�nition above to say \for all q" instead of \for all suÆiently

large q". We want to disuss why this ondition should be thought of as plaing u \almost"

in I in some sense. Let I = (f

1

; : : : ; f

h

)R. Note that for every large q = p

e

one has

u

q

= r

1q

f

q

1

+ � � � r

hq

f

q

h

and if we take q th roots we have



1=q

u = r

1=q

1q

f

1

+ � � � r

1=q

hq

f

h

;

an equation that holds in the ring S

q

= R[

1=q

; r

1=q

iq

: 1 � i � h℄. S is a module-�nite

extension of R. But this is not quite saying that u is in IS: rather, it says that 

1=q

u is

in IS. But for very large q, for heuristi purposes, one may think of 

1=q

as being lose to

1: after all, the exponent is approahing 0. Thus, u is multiplied into IS

q

in a sequene

of module-�nite extensions by elements that are getting loser and loser to being a unit,

in a vague heuristi sense. This may provide some motivation for the idea that elements

that are in the tight losure of an ideal are \almost" in the ideal.

It is ironi that tight losure is an extremely useful tehnique for proving theorems about

regular rings, beause it turns out that in regular rings the tight losure of any ideal I is
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simply I itself. In some sense, the reason that tight losure is so useful in regular rings is

that it gives a riterion for being in an ideal that, on the fae of it, is onsiderably weaker

than being in the ideal. We shall return to this point later.

We may extend the de�nition to Noetherian rings R of positive prime harateristi p

that are not neessarily integral domains in one of two equivalent ways:

(1) De�ne u to be in I

�

if the image of u in R=P is in the tight losure of I(R=P ) in R=P

for every minimal prime P of R.

(2) De�ne u to be in I

�

if there is an element  2 R and not in any minimal prime of R

suh that u

q

2 I

[q℄

for all q = p

e

� 0.

3. Basi properties of tight losure and the Brian�on-Skoda theorem

The following fats about tight losure in a Noetherian ring R of positive prime har-

ateristi p are reasonably easy to verify from the de�nition.

(a) For any ideal I of R, (I

�

)

�

= I

�

.

(b) For any ideals I � J of R, I

�

� J

�

.

We shall soon need the following haraterization of integral losure of ideals in Noe-

therian domains.

Fat 3.1. Let R be a Noetherian domain and let J be an ideal. Then u 2 R is in J if and

only if for some  2 R � f0g and every integer positive integer n, u

n

2 I

n

. It suÆes if

u

n

2 I

n

for in�nitely many values of n.

Comparing this with the de�nition of tight losure and using the fat that I

[q℄

� I

q

for

all q = p

e

, we immediately get

() For any ideal I of R, I

�

� I. In partiular, I

�

is ontained in the radial of I.

Less obvious is the following theorem that we will prove later.

Theorem 3.1. If R is regular, every ideal of R is tightly losed.

Assuming this fat for a moment, we an prove the following result:

Theorem 3.2 (tight losure form of the Brian�on-Skoda theorem in harater-

isti p). Let I = (f

1

; : : : ; f

n

)R be an ideal of a regular ring R of harateristi p > 0.

Then I

n

� I. When R is not neessarily regular, it is still true that I

n

� I

�

.

Proof. Assuming Theorem 3.1 for the moment, we need only hek the �nal assertion. It

suÆes to work modulo eah minimal prime of R in turn, so we may assume that R is a

domain. Then u 2 I

n

implies that for some nonzero , u

m

2 (I

n

)

m

for all m. Restriting

m = q = p

e

we �nd that u

m

2 I

nq

� I

[q℄

for all q, sine a monomial in n elements of

degree nq must have a fator in whih one of the elements is raised to the q th power. �

Why is every ideal in a regular ring tightly losed? We �rst need the following:
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Fat 3.3. If R is regular of positive harateristi p then the Frobenius endomorphism is

at.

This an be shown as follows: the issue is loal on R. In the loal ase it suÆes to

prove it for the ompletion

b

R beause R!

b

R is faithfully at. We have therefore redued

to onsidering the ase R

�

=

K[[x

1

; : : : ; x

n

℄℄. The Frobenius map is then isomorphi with

the ring inlusion K

p

[[x

p

1

; : : : ; x

p

n

℄℄ � K[[x

1

; : : : ; x

n

℄℄. Letting K

p

= k, we may fator

this map as k[[x

p

1

; : : : ; x

p

n

℄℄ � k[[x

1

; : : : ; x

n

℄℄ � K[[x

1

; : : : ; x

n

℄℄. The �rst extension is

free on the monomials x

h

1

1

� � �x

h

n

n

with 0 � h

i

< p for all i. The atness of the seond

map (for any �eld inlusion k � K) may be seen as follows: sine K is at (in fat, free)

over k, K[x

1

; : : : ; x

n

℄ is at over k[x

1

; : : : ; x

n

℄. This is preserved when we loalize at the

maximal ideal generated by the x 's in the larger ring and its ontration (also generated

by the x 's) to the smaller ring. Finally, it is further preserved when we omplete both

loal rings. �

Reall that for an ideal I of R and element u 2 R, I : u = fr 2 R : ur 2 Ig. This may

thought of as the annihilator in R of the image of u in R=I.

Fat 3.4. If f : R! S is at, I � R and u 2 R, then IS :

S

f(u) = (I :

R

u)S.

To see why, note the exat sequene (I : u)=I ! R=I ! R=I where the map is multi-

pliation by u. Applying S


R

preserves exatness, from whih the stated result follows.

Corollary 3.5. If R is regular of positive harateristi, I is any ideal, and u 2 R, then

I

[q℄

: u

q

= (I : u)

[q℄

for all q = p

e

.

The point is that sine F : R ! R is at, so is its e th iterate F

e

. If S denotes R

viewed as an R-algebra via F

e

then IS = I

[p

e

℄

when we \remember" that S is R. With

this observation, Corollary 3.5 follows from Fat 3.4.

Proof of Theorem 3.1. We an redue to the ase where R is a domain. If  6= 0 and

u

q

2 I

[q℄

for all q = p

e

, then  2

T

q

I

[q℄

: u

q

=

T

q

(I : u)

[q℄

�

T

q

(I : u)

q

. Sine the

intersetion is not 0, we must have that I : u = R, i.e., that u 2 R. �

We also want to mention here the following very useful fat: tight losure aptures

ontrated extensions from module-�nite extensions.

Theorem 3.6. Let S be a domain module-�nite over R and let I be an ideal of R. Then

IS \R � I

�

.

Proof. S an be embedded in a �nitely generated free R-module. One of the projetion

maps bak to R will be nonzero on the identity element of S. That is, there is an R-linear

map f : S ! R that sends 1 2 S to  2 R� f0g. If u 2 IS \ R, then u

q

2 I

[q℄

S for all q.

Applying f to both sides yields that u

q

2 I

q

. �
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Although we have not yet given the de�nitions the analogous fat holds for submodules

of free modules, and an even be formulated for arbitrary submodules of arbitrary modules.

4. Diret summands of regular rings are Cohen-Maaulay

Elements x

1

; : : : ; x

n

in a ring R are alled a regular sequene on an R-module M if

(x

1

; : : : ; x

n

)M 6= M and x

i+1

is not a zerodivisor on M=(x

1

; : : : ; x

i

)M , 0 � i < n. A

sequene of indeterminates in a polynomial or formal power series ring R, with M = R (or

a nonzero free R-module) is an example. We shall make use of the following fat:

Fat 4.1. Let A be a polynomial ring over a �eld K, say A = K[x

1

; : : : ; x

d

℄ or let A be a

regular loal ring in whih x

1

; : : : ; x

d

is a minimal set of generators of the maximal ideal.

Then a �nitely generated nonzero A-module M (assumed graded in the �rst ase) is A-free

if and only if x

1

; : : : ; x

d

is a regular sequene on M . Thus, a module-�nite extension ring

R (graded if A is a polynomial ring) of A is Cohen-Maaulay if and only if x

1

; : : : ; x

d

is

a regular sequene on R.

The following two lemmas make the onnetion between tight losure and the Cohen-

Maaulay property.

Proposition 4.2. Let S be a module-�nite domain extension of the domain R (torsion-

free is suÆient) and let x

1

; : : : ; x

d

be a regular sequene in R. Suppose 0 � k < d and

let I = (x

1

; : : : ; x

k

)R. Then IS :

S

x

k+1

� (IS)

�

in S.

Thus, if every ideal of S is tightly losed, and x

1

; : : : ; x

d

is a regular sequene in R, it

is a regular sequene in S.

Proof. Beause S is a torsion-free R-module there is an an element  of R � f0g that

multiplies S into an R-free submodule G

�

=

R

h

of S. (This is really all we need about S.)

Suppose that ux

k+1

2 IS. Raise both sides to the q = p

e

power to get u

q

x

q

k+1

2 I

[q℄

S.

Multiply by  to get (u

q

)x

q

k+1

2 I

[q℄

G. Beause the x

j

form a regular sequene on G, so

do their q th powers, and we �nd that u

q

2 I

[q℄

S = (IS)

[q℄

. Sine this holds for all q = p

e

,

we are done. �

Proposition 4.3. Let R be a domain module-�nite over a regular loal ring A or N-

graded and module-�nite over a polynomial ring A. Suppose that R is a diret summand

of a regular ring S as an R-module. Then R is Cohen-Maaulay (i.e., A-free).

Proof. Let x

1

; : : : ; x

d

be as in Fat 4.1. The result omes down to the assertion that

x

1

; : : : ; x

d

is a regular sequene on R. By Proposition 4.2, it suÆes to show that every

ideal of R is tightly losed. But if J is an ideal of R and u 2 R is in J

�

, then it is lear

that u 2 (JS)

�

= JS, sine S is regular, and so u 2 JS \ R = J , beause R is a diret

summand of S. �
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Pushing this idea a bit further, one gets a full proof of Theorem 1.1. We need to extend

the notion of tight losure to equal harateristi 0, however. This is takled in x6.

5. The Ein-Lazarsfeld-Smith omparison theorem

We give here the harateristi p proof of (1.3), and we shall even allow radial ideals,

with h taken to be the largest height of any minimal prime. For a prime ideal P , P

(N)

,

the N th symboli power, is the ontration of P

N

R

P

to R. When I is a radial ideal with

minimal primes P

1

; : : : ; P

k

and W = R �

S

j

P

j

, we may de�ne P

(N)

either as

T

j

P

(N)

j

or as the ontration of I

N

(W

�1

R) to R.

Suppose that I 6= (0) is radial ideal. If u 2 I

(hn)

, then for every q = p

e

we an

write q = an + r where a � 0 and 0 � r � n � 1 are integers. Then u

a

2 I

(han)

and

I

hn

u

a

� I

hr

u

a

� I

(han+hr)

= I

(hq)

. We now ome to a key point: we an show that

(�) I

(hq)

� I

[q℄

. To see this, note that beause the Frobenius endomorphism is at for

regular rings, I

[q℄

has no assoiated primes other than the minimal primes of I, and it

suÆes to hek (�) after loalizing at eah minimal prime P of I. But after loalization,

I has at most h generators, and so eah monomial of degree hq in these generators is a

multiple of the q th power of at least one of the generators. This ompletes the proof of

(�). Taking n th powers gives that I

hn

2

u

an

� (I

[q℄

)

n

= (I

n

)

[q℄

, and sine q � an, we have

that I

hn

2

u

q

� (I

n

)

[q℄

for �xed h and n and all q. Let d be any nonzero element of I

hn

2

.

The ondition that du

q

2 (I

n

)

[q℄

for all q says preisely that u is in the tight losure of I

n

in R. But in a regular ring, every ideal is tightly losed, and so u 2 I

n

, as required. �

6. Extending the theory to aÆne algebras in harateristi 0

In this setion we disuss briey how to extend the results of tight losure theory to

�nitely generated algebras over a �eld K of harateristi zero. There is a good theory

with essentially the same properties as in positive harateristi. Cf. [HH12℄, [Ho3℄.

Suppose that we have a �nitely generatedK-algebra R. We may think of R as having the

form K[x

1

; : : : ; x

n

℄=(f

1

; : : : ; f

m

) for �nitely many polynomials f

j

. An ideal I � R an

be given by speifying �nitely many polynomials g

j

2 T = K[x

1

; : : : ; x

n

℄ that generate

it, and an element u of R an be spei�ed by giving a polynomial h that maps to. We an

then hoose a �nitely generated Z-subalgebra B of K that ontains all of the oeÆients

of the f

j

, the g

j

and of h. We an form a ring R

B

= B[x

1

; : : : ; x

n

℄=(f

1

; : : : ; f

m

) and we

an onsider the ideal I

B

of the R

B

generated by the images of the g

j

in R

B

. It turns out

that after loalizing B at one nonzero element we an make other pleasant assumptions:

that I

B

� R

B

� R, that R

B

and R

B

=I

B

are B-free (the lemma of generi freeness), and

that tensoring with K over B onverts I

B

� R

B

to I � R. Moreover, h has an image in

R

B

� R that we may identify with u.
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We then de�ne u to be in the tight losure of I in R provided that for all maximal Q

in a dense open subset of the maximal spetrum of B, with � = B=Q, the image of u in

R

�

= � 


B

R

B

is in the harateristi p tight losure of I

�

= IR

�

| this makes sense

beause B=Q will be a �nite �eld.

This de�nition turns out to be independent of the hoies of B R

B

, I

B

, et.

Here is one very simple example. Let R = K[x; y; z℄=(x

3

+ y

3

+ z

3

) where K is any

�eld of harateristi 0, e.g., the omplex numbers, let I = (x; y) and u be the image of

z

2

. In this ase we may take B = Z, R

Z

= Z[x; y; z℄=(x

3

+ y

3

+ z

3

) and I

Z

= (x; y)R

Z

.

Then z

2

is in the harateristi 0 tight losure of (x; y)R beause for every prime integer

p 6= 3 (these orrespond to the maximal ideals of Z, the image of z

2

is in the harateristi

p tight losure of (x; y)(Z=pZ)[x; y; z℄=(x

3

+ y

3

+ z

3

). Take  = x, for example. One an

hek that (z

2

)

q

2 (x

q

; y

q

)(R

Z

=pR

Z

) for all q = p

e

. Write 2q = 3k + a, a 2 f1; 2g, and

use that xz

2

q = �x(x

3

+ y

3

)

k

z

a

. Eah term in x(x

3

+ y

3

)

k

has the form x

3i+1

y

3j

where

3i+ 3j = 3k � 2q � 2. Sine (3i+ 1) + 3j � 2q � 1, at least one of the exponents is � q.

7. Test elements

In this setion we again study the ase of rings of harateristi p > 0. Let R be a

Noetherian domain. We shall say that an element  2 R�f0g is a test element if for every

ideal I of R, I

�

� I. An equivalent ondition is that for every ideal I and element u of

R, u 2 I

�

if and only if u

q

2 I

[q℄

for every q = p

e

� 1. The reason that this holds is

the easily veri�ed fat that if u 2 I

�

, then u

q

� (I

[q℄

)

�

for all q. Thus, an element that

is known to be a test element an be used in all tight losure tests. A priori the element

used in tight losure tests for whether u 2 I

�

in the de�nition of tight losure an vary

with both I and u. The test elements together with 0 form an ideal alled the test ideal.

Test elements are known to exist for domains �nitely generated over a �eld. Any element

d 6= 0 suh that R

d

is regular turns out to have a power that is a test element. We won't

prove this here.

We will explain, however, why the Jaobian ideal of a domain �nitely generated over

an algebraially losed �eld is ontained in the test ideal, whih is one of the ingredients

of Theorem 1.4. The disussion of the results on test elements needed for Theorem 1.4 is

ontinued in the next setion.

Here is a useful result that leads to existene theorems for test elements.

Theorem 7.1. Let R be a Noetherian domain module-�nite over a regular domain A of

harateristi p > 0, and suppose that the extension of fration �elds is separable. Then:

(a) There are elements d 2 A� f0g suh that dR

1=p

� R[A

1=p

℄.

(b) For any d as in part (a), if  = d

2

then (�) R

1=q

� R[A

1=q

for all q. Let R

q

= R[A

1=q

℄:
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() Any element  6= 0 of R that satis�es the ondition (�) of part (b) is a test element

for R.

Thus, R has test elements.

Proof. If we loalize at all nonzero elements of A we are in the ase where A is a �eld and

R is a separable �eld extension. This is well-known and is left as an exerise for the reader.

It follows that R

1=p

=R[A

1=p

℄, whih we may think of as a �nitely generated A

1=p

-module,

is a torsion module. But then it is killed by an element of A

1=p

� f0g and, hene, by an

element of A� f0g.

For part (b) note we note that sine dR

1=p

� R[A

1=p

℄, we have that d

1=q

R

1=pq

�

R

1=q

[A

1=pq

℄ for all q = p

e

. Thus,

d

1+1=p

R

1=p

2

� d(d

1=p

R

1=p

2

) � d(R

1=p

[A

1=p

2

℄) � R[A

1=p

℄[A

1=p

2

℄ = R[A

1=p

2

℄:

Continuing in this way, one onludes easily by indution that

d

1+1=p+���+1=p

e�1

R

1=p

e

� R[A

1=p

e

℄:

Sine 2 > 1 + 1=p+ � � � 1=p

e�1

for all p � 2, we obtain the desired result.

Finally, suppose that  satis�es ondition (�). It suÆes to show that for all I and

u 2 I

�

, that u 2 I. But if u 2 I

�

we an hoose a 2 A � f0g (all nonzero elements of R

have nonzero multiples in A) suh that au

q

2 I

[q℄

for all q = p

e

. Taking q th roots gives

a

1=q

u 2 IR

1=q

for all q. Multiplying by  gives that a

1=q

u 2 IR[A

1=q

℄ = IR

q

for all q,

and so a

1=q

2 IR

q

:

R

q

u for all q. It is not hard to show that R


A

A

1=q

�

=

R[A

1=q

℄ here.

(The obvious map is onto, and sine R is torsion-free over A and A

1=q

is A-at, R


A

A

1=q

is torsion-free over, so that we an hek injetivity after loalizing at A � f0g, and we

thus redue to the ase where A is a �eld and R is a �nite separable extension �eld, where

the result is the well-known linear disjointness of separable and purely inseparable �eld

extensions.) The atness of Frobenius for A means preisely that A

1=q

is at over A, so

that R

q

is at over R; this is simply a base hange. Thus, IR

q

:

R

q

u = (I :

R

u)R

q

�

(I :

R

u)R

1=q

. Hene, for all q = p

e

, a

1=q

2 JR

1=q

, where J = I :

R

u. This shows that

a 2 J

[q℄

for all q. Sine a 6= 0, we must have that J is the unit ideal, i.e., that u 2 I.

The same argument works essentially without hange when I is a submodule of a free

module instead of an ideal. �

8. Test elements using the Lipman-Sathaye theorem

This setion desribes some material from Setion (1.4) of [HH12℄.

For the moment, we do not make any assumption on the harateristi. Let T � R

be a module-�nite extension, where T is a Noetherian domain, R is torsion-free as a T -

module and the extension is generially smooth. Thus, if K is the fration �eld of T and
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L = K 


T

R is the total quotient ring of R then K �! L is a �nite produt of separable

�eld extensions of K. The Jaobian ideal J (R=T ) is de�ned as the 0 th Fitting ideal of

the R-module of K�ahler R-di�erentials 


R=T

, and may be alulated as follows: write

R

�

=

T [X

1

; : : : ; X

n

℄=P and then J (R=T ) is the ideal generated in R by the images of

all the Jaobian determinants �(g

1

; : : : ; g

n

)=�(X

1

; : : : ; X

n

) for n-tuples g

1

; : : : ; g

n

of

elements of P . Moreover, to generate J (R=T ) it suÆes to take all the n-tuples of g

i

from

a �xed set of generators of P .

Now suppose in addition that T is regular. Let R

0

be the integral losure of R in

L, whih is well known to be module-�nite over T (the usual way to argue is that any

disriminant multiplies it into a �nitely generated free T -module). Let J = J (R=T ) and

J

0

= J (R

0

=T ). The result of Lipman and Sathaye ([LS℄, Theorem 2, p. 200) may be stated

as follows:

(8.1) Theorem (Lipman-Sathaye). With notation as above (in partiular, there is no

assumption about the harateristi, and T is regular), suppose also that R is an integral

domain. If u 2 L is suh that uJ

0

� R

0

then uJR

0

� R. In partiular, we may take u = 1,

and so JR

0

� R. �

This property of \apturing the normalization" will enable us to produe test elements.

(8.2) Corollary (existene of test elements via the Lipman-Sathaye theorem). If

R is a domain module-�nite over a regular domain A of harateristi p suh that the

extension of fration �elds is separable, then every element  of J = J (R=A) is suh that

R

1=q

� A

1=q

[R℄ for all q, and, in partiular, R

1

� A

1

[R℄. Thus, if  2 J \ (R� f0g),

it is a test element.

Proof. Sine A

1=q

[R℄

�

=

A

1=q




A

R, the image of  is in J (A

1=q

[R℄=A

1=q

), and so the

Lipman-Sathaye theorem implies that  multiplies the normalization S of A

1=q

[R℄ into

A

1=q

[R℄. Thus, it suÆes to see that R

1=q

is ontained in S. Sine it is learly integral over

A

1=q

[R℄ (it is obviously integral over R), we need only see that the elements of R

1=q

are in

the total quotient ring of A

1=q

[R℄, and for this purpose we may loalize at A

o

= A� f0g.

Thus, we may replae A by its fration �eld and assume that A is a �eld, and then R is

replaed by (A

o

)

�1

R, whih is a separable �eld extensions. Thus, we ome down to the fat

that if A � R is a �nite separable �eld extension, then the injetion A

1=q




A

R! R

1=q

(the

map is an injetion beause separable and purely inseparable �eld extensions are linearly

disjoint) is an isomorphism, whih is immediate by a degree argument. �

(8.3) Corollary (more test elements via the Lipman-Sathaye theorem). Let K

be a �eld of harateristi p and let R be a d-dimensional geometrially redued (i.e., the

ring stays redued even when one tensors with an inseparable extension of K | this is

automati if K is perfet) domain over K that is �nitely generated as a K-algebra. Let
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R = K[x

1

; : : : ; x

n

℄=(g

1

; : : : ; g

r

) be a presentation of R as a homomorphi image of a

polynomial ring. Then the (n� d)� (n� d) minors of the Jaobian matrix (�g

i

=�x

j

) are

ontained in the test ideal of R, and remain so after loalization and ompletion. Thus,

any element of the Jaobian ideal generated by all these minors that is in R�f0g is a test

element.

Proof. We pass to K(t)


K

R, if neessary, where K(t) is a simple transendental extension

of K, to guarantee that the �eld is in�nite. Our hypothesis remains the same, the Jaobian

matrix does not hange, and, sine K(t)


K

R is faithfully at over R, it suÆes to onsider

the latter ring. Thus, we may assume without loss of generality that K is in�nite. The

alulation of the Jaobian ideal is independent of the hoie of indeterminates. We are

therefore free to make a linear hange of oordinates, whih orresponds to hoosing an

element of G = GL(n;K) � K

n

2

to at on the one-forms of K[x

1

; : : : ; x

n

℄. For a dense

Zariski open set U of G � K

n

2

, if we make a hange of oordinates orresponding to an

element  2 U � G then, for every hoie of d of the (new) indeterminates, if A denotes

the K-subalgebra of R that these d new indeterminates generate, the two onditions listed

below will hold:

(1) R will be module-�nite over A (and the d hosen indeterminates will then, per fore,

be algebraially independent) and

(2) R will be generially smooth over A.

We may onsider these two statements separately, for if eah holds for a dense Zariski

open subset of G we may interset the two subsets. The �rst statement follows from

the standard \linear hange of variable" proofs of the Noether normalization theorem for

aÆne K-algebras (these may be used whenever the ring ontains an in�nite �eld). For the

seond, we want eah d element subset, say, after renumbering, x

1

; : : : ; x

d

, of the variables

to be a separating transendene basis for the fration �eld L of R over K. (The fat that

R is geometrially redued over K implies that L is separably generated over K.) By, for

example, Theorem 5.10 (d) of [Ku℄, a neessary and suÆient ondition for x

1

; : : : ; x

d

to be

a separating transendene basis is that the di�erentials of these elements dx

1

; : : : ; dx

d

in 


L=K

�

=

L

d

be a basis for 


L=K

as an L-vetor spae. Sine the di�erentials of the

original variables span 


L=K

over L, it is lear that the set of elements of G for whih all d

element subsets of the new variables have di�erentials that span 


L=K

ontains a Zariski

dense open set.

Now suppose that a suitable hange of oordinates has been made, and, as above, let

A be the ring generated over K by some set of d of the elements x

i

. Then the n� d size

minors of (�g

i

=�x

j

) involving the n� d olumns of (�g

i

=�x

j

) that orrespond to variables

not hosen as generators of A preisely generate J (R=A). R is module-�nite over A by

the general position argument, and sine it is equidimensional and redued, it is likewise
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torsion-free over A, whih is a regular domain. It is generially smooth likewise, beause of

the general position of the variables. The result is now immediate from (8.2): as we vary

the set of d variables, every n� d size minor ours as a generator of some J (R=A) �

9. Tight losure for submodules

In this setion we make some brief remarks on how to extend the theory of tight losure

to submodules of arbitrary modules.

Let R be a Noetherian ring of positive prime harateristi p and let G be a free R-

module with a spei�ed free basis u

j

, whih we allow to be in�nite. Then we may de�ne

an ation of the Frobenius endomorphism F and its iterates on G very simply as follows:

if g =

P

t

i=1

r

i

u

j

i

(where the j

i

are distint) we let F

e

(g), whih we also denote g

p

e

, be

P

t

i=1

r

p

e

i

u

j

i

. Thus, we are simply letting F at (as it does on the ring) on all the oeÆients

that our in the representation of an element of G in terms of the free basis. If N � G

is a submodule, we let N

[p

e

℄

denote the submodule of G spanned by all the elements g

p

e

for g 2 N . We then de�ne an element x 2 G to be in N

�

if there exists  2 R

o

suh that

x

p

e

2 N

[p

e

℄

for all e� 0.

More generally, if M is any R-module, N is a submodule, and we want to determine

whether x 2 M is in the tight losure N

�

of N in M , we an proeed by mapping a free

module G ontoM , taking an element g 2 G that maps to x, letting H be the inverse image

of N in G, and letting x be in N

�

M

preisely when g 2 H

�

G

, where we are using subsripts

to indiate the ambient module. This de�nition turns out to be independent of the hoie

of free module G mapping onto M , and of the hoie of free basis for G.

I believe that there are many important questions about the behavior of tight losure

for modules that are not �nitely generated over the ring, espeially for Artinian modules

over loal rings. See question 3. of the next setion.

However, for the rest of this setion we restrit attention to the ase of �nitely generated

modules. The theory of test elements for tight losure of ideals extends without hange to

the generality of modules.

In order to prove the result of Theorem 1.4 one may make use of a version of the

phantom ayliity theorem. We �rst reall the result of [BE℄ onerning when a �nite free

omplex over a Noetherian ring R is ayli. Suppose that the omplex is

0! R

b

n

! � � � ! R

b

0

! 0

and that r

i

is the (determinantal) rank of the matrix �

i

giving the map from R

b

i

! R

b

i�1

,

0 � i � n + 1, where b

n+1

is de�ned to be 0. The result of [BE℄ is that the omplex is

ayli if and only if
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(1) for 0 � i � n, b

i

= r

i+1

+ r

i

(2) for 1 � i � n, the depth of the ideal J

i

generated by the r

i

size minors of �

i

is at

least i (this is automati if the ideal generated by the minors is the unit ideal; by

onvention, the unit ideal has depth +1).

A omplex 0! G

n

! � � � ! G

0

! 0 is said to be phantom ayli if for all i � 1, one

has that the kernel Z

i

of G

i

! G

i�1

is in the tight losure of the module of boundaries

B

i

(the image of G

i+1

in G

i

) in G

i

. Note that this implies that Z

i

=B

i

is killed by the test

ideal.

Consider the following weakening of ondition (2) above:

(2

o

) for 1 � i � n, the height of the ideal J

i

generated by the r

i

size minors of �

i

is at

least i (this is automati if the ideal generated by the minors is the unit ideal; by

onvention, the unit ideal has height +1).

We then have:

Theorem 9.1 (phantom ayliity riterion). Let R be a redued biequidimensional

Noetherian ring of harateristi p > 0. A �nite free omplex as above is phantom ayli

provided that onditions (1) and (2

o

) hold.

We refer the reader to [HH4℄ and [HH8℄ for detailed treatments where the result is

established in muh greater generality and a partial onverse is proved, and to [Ab℄ for the

further development of the losely related notion of �nite phantom projetive dimension.

Note that in a domain, ondition (2

o

) simply says that every J

i

has height at least i:

this replaes the subtle and diÆult notion of \depth" by the muh more tratable notion

of \height" (or \odimension").

Theorem 1.4 is simply the result of applying the phantom ayliity riterion to a Koszul

omplex. The onditions (1) and (2) are easy to verify. Therefore, the higher homology is

killed by the test ideal, whih ontains the Jaobian ideal.

There is another point of view that is very helpful in understanding the phantom ayli-

ity theorem. It involves the main result of [HH5℄. If R is a domain, let R

+

denote the

integral losure of R in an algebrai losure of its fration �eld, whih is a maximal integral

extension of R that is a domain. It is unique up to non-unique isomorphism. The theorem

of [HH5℄ is that every system of parameters of R is a regular sequene in R

+

: thus, R

+

is a big Cohen-Maaulay algebra for R (and for any module-�nite extension domain of

R, all of whih are embeddable in R

+

. Suppose that one has a omplex that satis�es

the hypothesis of the phantom ayliity riterion. When one tensors with R

+

it atu-

ally beomes ayli: heights beome depths in R

+

, and one may apply a generalization

to the non-Noetherian ase of the ayliity riterion of [BE℄ presented in great detail in
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[Nor℄. One may use this to see that any yle beomes a boundary after tensoring with

a suÆiently large but module-�nite extension of R. The fat that the yles are in the

tight losure of the boundaries is now analogous to the fat that when an ideal I � R is

expanded and then ontrated from a module-�nite extension S of R, IS \ R � I

�

: f.

Theorem 3.6.

Finally, we want to mention the vanishing theorem for maps of Tor. Let A � R ! S

be maps of rings of harateristi p, where A is regular, R is module-�nite and torsion-free

over A, and S is any regular ring. The map R ! S is arbitrary here: it need not be

injetive nor surjetive. Let M be any R-module.

(9.2) Theorem (the vanishing theorem for maps of Tor). With assumptions as just

above, the maps Tor

A

i

(M; R)! Tor

A

i

(M; S) are 0 for all i � 1.

Sketh of proof. One may easily redue to the ase where S is omplete loal and then to

the ase where A is omplete loal. By a diret limit argument one may redue to the ase

where M is �nitely generated over A. Then M has a �nite free resolution over A, whih

satis�es the hypothesis of the haraterization of ayli omplexes given in [BE℄. When

we tensor with R over A we get a free omplex over R that satis�es the phantom ayliity

theorem: every yle is in the tight losure of the boundaries. Taking its homology gives

the Tor

A

i

(M; R). Now when we tensor S, every module is tightly losed, so the yles

oming from the omplex over R are now boundaries, whih gives the desired result. �

Cf. [HH4℄, [HH8℄, the disussion in [HH11℄, and [Rang℄. This is an open question in

mixed harateristi. This vanishing result is amazingly powerful. In the ase where S is

simply a �eld, it implies the diret summand onjeture, i.e., that regular rings are diret

summands of their module-�nite extensions. In the ase where S is regular and R is a

diret summand of S it implies that R is Cohen-Maaulay. Both questions are open in

mixed harateristi. The details of these impliations are given in [HH11℄. In [Rang℄, it

is shown, somewhat surprisingly, that the vanishing theorem for maps of Tor is atually

equivalent to the following question about splitting: let R be a regular loal ring, let S

be a module-�nite extension, and suppose that P is a height one prime ideal of S that

ontrats to xR, where x is a regular parameter in R. Then xR is a diret summand of S

as an R-module.

10. Further thoughts and questions

What we have said about tight losure so far is only the tip of an ieberg. Here are

some major open questions.

1. Does tight losure ommute with loalization under mild assumptions on the ring?

This is not known to be true even for �nitely generated algebras over a �eld. Aspets of

the problem are disussed in [AHH℄, [HH13℄, and [Vr1℄.
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2. Under mild onditions, if a ring has the property that every ideal is tightly losed,

does that ontinue to hold when one loalizes? This is not known for �nitely generated

algebras over a �eld, nor for omplete loal rings. An aÆrmative answer to 1. would imply

an aÆrmative answer to 2.

Rings suh that every ideal is tightly losed are alled weakly F-regular. The word

\weakly" is omitted if this property also holds for all loalizations of the ring. Weakly

F-regular rings are Cohen-Maaulay and normal under very mild onditions | this holds

even if one only assumes that ideals generated by parameters are tightly losed (this weaker

property is alled F-rationality and is losely related to the notion of rational singularities;

f. [Ha1℄, [Sm2℄, [Vel℄, [En℄). Both of the onditions of weak F-regularity and F-rationality

tend to imply that the singularities of the ring are in some sense good. However, the theory

is ompliated: f. [HaW℄. It is worth noting that weak F-regularity does not deform [Si℄,

and that diret summands of F-rational rings are not neessarily F-rational [Wat℄. See also

[HaWY1,2℄. Weak F-regularity is established for some important lasses of rings (those

de�ned by the vanishing of the minors of �xed size of a matrix of indeterminates, and

homogeneous oordinate rings of Grassmannians) in [HH10℄, Theorem 7.14.

3. Let M be an Artinian module over, say, a omplete redued loal ring with a perfet

residue �eld. Let N be a submodule ofM , Is it true that u 2 N

�

M

if and only if there exists

Q with N � Q �M with Q=N of �nite length suh that u 2 N

�

Q

? This is true in a graded

version and for isolated singularities [LySm1,2℄; other ases are established in [Elit℄.

For any domain R, let R

+

denote the integral losure of R in an algebrai losure of its

fration �eld. This is unique up to non-unique isomorphism, and may be thought of as a

\largest" domain extension of R that is integral over R.

4. For an exellent loal domain R, is an element r 2 R in the tight losure of I if

and only if it is in IS for some module-�nite extension domain of R? It is equivalent to

assert that for suh a loal domain R, I

�

= IR

+

\ R. This is known for ideals generated

by part of a system of parameters: f. [Sm1℄. It is known that IR

+

\ R � I

�

. For some

results on homogeneous oordinate rings of ellipti urves, see the remarks following the

next question.

It is known in harateristi p that for a omplete loal domain R, and element u 2 R

is in I

�

if and only if it is in IB \R for some big Cohen-Maaulay algebra extension ring

B of R: f. x11 of [Ho1℄.

It is worth mentioning that there is an intimate onnetion between tight losure and

the existene of big Cohen-Maaulay algebras B over loal rings (R;m), i.e., algebras B

suh that mB 6= B and every system of parameters for R is a regular sequene on B.

Tight losure ideas led to the proof in [HH7℄ that if R is an exellent loal domain of
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harateristi p then R

+

is a big Cohen-Maaulay algebra. Moreover, for omplete loal

rings R, it is known [Ho1℄, x11, that u 2 I

�

if and only if R has a big Cohen-Maaulay

algebra B suh that u 2 IB.

5. Is there an e�etive way to ompute tight losures? The answer is not known even

for ideals of ubial ones, i.e., of rings of the form K[X; Y; Z℄=(X

3

+Y

3

+Z

3

) in positive

harateristi di�erent from 3. However, in ones over ellipti urves, tight losure agrees

with plus losure (i.e., with IR

+

\R) for homogeneous ideals I primary to the homogeneous

maximal ideal : f. [Bren1,2℄. For ideals that are not homogeneous, the question raised in

4. is open even for suh rings. When the harateristi of K is ongruent to 2 mod 3, it

is even possible that tight losure agrees with Frobenius losure in these rings. Cf. [MD℄

and [Vr2℄.

6. How an one extend tight losure to mixed harateristi? By far the most intriguing

result along these lines is due to Ray Heitmann [Heit℄, who has proved that if (R;m) is

a omplete loal domain of dimension 3 and mixed harateristi p, then every Koszul

relation on parameters in R

+

is annihilated by multipliation by arbitrarily small positive

rational powers of p (i.e., by p

1=N

for arbitrarily large integers n). This implies that regular

loal rings of dimension 3 are diret summands of their module-�nite extension rings.

Heitmann's result an be used to prove the existene of big Cohen-Maaulay algebras in

dimension 3: f. [Ho5℄. Other possibilities are explored in [Ho4℄ and [HoV℄.
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