
Math 615, Winter 2015 Problem Set #1: Solutions

1. Consider the K-algebra map K[U, V,W ] � K[x2, xy, y3] such that U, V,W are sent to
x2, x3, xy, respectively. The irreducible polynomial V 6−U3W 2 is in the kernel, which must
be a height one prime, since the target ring is a domain of dimension 2. The map is degree
preserving if U, V,W have degrees 2, 2, 3, respectively. By a class result, the Poincaré series
of the polynomial ring is 1/(1 − t2)(1 − t2)(1 − t3). Since the generator of the ideal has
degree 12, by a class result the Poincaré series of the quotient is (1−t12)/(1−t2)2(1−t3) =
(1− t3)(1 + t3)(1 + t6)/(1− t)2(1 + t)2(1− t3) = (1 + t)(1− t+ t2)(1 + t6)/(1− t)3(1 + t)2 =
(1− t+ t2)(1+ t6)/(1− t)3(1+ t). For degree n = 6k, k ≥ 1, one has all monomials in x and
y of degree n, except xyn−2, xyn−1: one may check k = 1 easily and then use induction
on k. Thus, the Hilbert function for 6|n is n + 1 − 2 = n − 1, and if the Hilbert function
were eventually polynomial, it would agree with n − 1 for all n � 0. But this is false for
all n = 6k + 5, since xn, xyn−1, and yn are all missing from the ring.

2. Use induction on n. The case n = 1 is clear: if x1m1 = 0, then m1 = 0, while A1 = (0).
It suffices to show that if n ≥ 2 and (∗)

∑n
j=1 xjmj = 0, then mi ∈ AiM . If i = n this

follows at once from the definition of a possibly improper regular sequence. If i < n, then we
have mn =

∑n−1
j=1 xjuj , and we may rewrite the given relation as

∑n−1
j=1 xj(mj+xnuj) = 0.

By the induction hypothesis, mi + xnui ∈ BiM , where Bi is generated by the elements
xj for j 6= i and 1 ≤ j ≤ n− 1. Since xn ∈ Ai ⊇ Bi, mi ∈ AiM . �

3. If r, s 6= 0 in R and rs = 0, then, since
⋂∞
n=1 I

n = (0), we can choose integers a, b ∈ N
such that r ∈ Ia − Ia+1 and s ∈ Ib − Ib+1 (here, I0 := R). Then [r] ∈ Ia/Ia+1 and
[s] ∈ Ib/Ib+1 are nonzero elements of grI(R) whose product is 0, a contradiction. �

4. Let K be any field and let M = R = K[X]/(X2 − 1) ∼= K + Kx, where X is an
indeterminate over K and x is its image. This ring is Z/2Z-graded if we let R0 = K and
R1 = Kx, where Z2 = {0, 1}. Then (x − 1) is an associated prime (in fact, a minimal
prime) of 0 that is not homogeneous.

5. First consider the problem for the map of polynomial rings T0 = K[x, y, z] → K[t]
obtained by restriction. We first study the K-algebra map of polynomial rings K[x, z]→
K[t] obtained by sending x 7→ t15, z 7→ t9. The image is a one-dimensional domain, so the
kernel must be a height one prime, and contains x3 − z5. Since the latter is irreducible,
we have that A = K[x, z]/(x3 − z5) ∼= K[t15, t9] = B. We next observe that y3 − (t15)2

is prime in B[y]. To see this, it suffices to sow that this is the contraction of the prime
y − t10 from K[t][y]. Suppose g(y) ∈ B[y] is in the contraction. We can use the division
algorithm to divide by y3 − (t15)2 over B[y]. The remainder will be of degree at most 2
in y, say by2 + cy + d where b, c, d ∈ B and vanish for y = t10, i.e., bt20 + ct10 + d = 0.
We want to show that b = c = d = 0. If not, there is a nonzero relation on t20, t10, and 1
over B, and by taking homogeneous components we get a homogeneous relation in which
each coefficient is 0 or th with of the form 15r + 9s. It d = 0, we have that t10 = −c/b.
Otherwise, at least one of the terms bt20, ct10 has the same degree as d, and we find that
t10 or t20 is the ratio of two powers of t in B. This is not possible, since all powers of t in
B are divisible by 3. It follows the K[x, y, z]/P0, where P0 = (x2 − y3, x3 − z5)K[x, y, z]
is a domain that maps onto R0 = K[t15, t10, t9], and both have dimension 1. Hence, they



are equal. Now one may complete with respect to the respective homogeneous maximal
ideals to get the required isomorphism in the complete case.
IfM is maximal in the ring S, SM/(M)SnM]congS/mn, since the latter has a unique max-
imal ideal and so elements of S−M are already invertible. It follows that grMSM(SM) ∼=
grMS are isomorphic as graded rings. Hence, it suffices to study grm0

R0 for R0 =

K[t15, t10, t9] with m0 = (t15, t10.t9), which is ∼= B/vB where B = K[t15u, t10u, t9u, v] ⊆
K[t, u, 1/u] and v = 1/u, using the class fact that grI(A) ∼= A[Iu, v]/(v). Thus, we
seek generators for the relations on the four monomials t15u, t10u, t9u, v = 1/u, i.e.,
generators for the kernel Q of the map K[X,Y, Z, V ] � B. This prime Q contains
X2−V Y 3, X3−V 2Z5, Y 9−V Z10, and XY 3−V Z5. Any other relation can be rewritten
mod these as one that is linear in X or does not involve X and if X occurs the exponent on
Y in that term is at most 2. In any relation, the sum of the coefficients of the monomials
that map a to given monomial in K[t, u, 1/u] must be 0. Hence, every relation is a linear
combination of relations that are the difference of two monomials in X,Y, Z, V that map
to the same monomial in K[t, u, u−1]. Since Q is a prime not containing any of X,Y, Z, V ,
in looking for generators we may assume that we have the difference of two monomials
with no common factor. We cannot have one of the two monomials be V s, since the other
would map to an element of nonnegative degree in u. If X,Y occur in one monomial, the
other must involve Z. Since we may assume that the exponent on X is 1 and the exponent
on Y is 1 or 2, the degree in t is 15 + 10 or 15 + 20, which is impossible, since the degree
in t of any power of Z is a multiple of 9. Therefore, if X occurs, it is with a power of Z,
and we must have a power of Y in the other term. If the exponents on Y and Z are a
and b, we have 10a = 9b + 15 so that b = 5k with k odd. Then b = 10h + 5, h ≥ 0. and
a = 9k + 6. If h = 0 we have V Y 6 − Z5X. If h = 1 we have Y 15 − Z15X. If h ≥ 2 we
have Y 9k+6 − V h−1Z10k+5, which can be obtained from Y 15 ≡ Z15X by multiplying by
the result of raising both sides of Y 9 = V Z10 to the h− 1 power and multiplying. Finally,
if X does not occur, Y and Z must occur in the two terms with exponents 9k and 10k to
make the degrees in t match, and that forces V to occur with exponent k, so that what
we get is Y 9k−V kZ10k, k ≥ 1. All of these relations are multiples of Y 9−V Z10. We may
now kill V in the generators for Q to see that grµ(R) ∼= K[X,Y, Z]/(X2, Y 9, XY 3, XZ5).

6. Let F , G be the graded Hilbert polynomials of R, S, respectively, whose respective
degrees are d − 1, d′ − 1, and whose respective leading coefficients are e/(d − 1)! and
e′/(d′ − 1)! if d, d′ ≥ 1. The Hilbert polynomial of R©s K S is clearly FG, whose degree
d+d′−2 (which shows that the Krull dimension is d+d′−1) and whose leading coefficient
is c = ee′/(d− 1)!(d′ − 1)!. Hence, the multiplicity of the Segre product is (d+ d′ − 2)!c =(
d+d′−2
d−1

)
ee′. The Hilbert polynomial of R(h) is clearly F (hn), whose leading coefficient is

hd−1/(d−1)!, and so the multiplicity is hd−1. If R or S has dimension 0, so does the Segre
product. The multiplicity of R©s K S in the case of dimension 0 is dimK(R©s K S) and is
not determined by the specified data; neither is the multiplicity of R(h) if dim (R) = 0.
To study T , if P,Q are two integer valued functions on N, let P ∗ Q denote denote the
function whose value on n is

∑n
i=0 P (i)Q(n − i). This is a new integer valued function

on N and the operation ∗ is bilinear. If P and Q are the graded Hilbert functions of
R, S, respectively, it is immediate that P ∗ Q is the graded Hilbert function of R ⊗K S.
Note that P = F + δ and Q = G + ε, where δ, ε are functions that are eventually



zero, and P ∗ Q = F ∗ G + F ∗ ε + δ ∗ G + δ ∗ ε. Note that because K[x1, . . . , xd] ⊗K
K[x1, . . . , xd′ ∼= K[x1, . . . , xd+d′ ], we have that if Cd(n) =

(
n+d−1
d−1

)
and Cd′(n) =

(
n+d′−1
d′−1

)
then Cd ∗ C − d′ = Cd+d′ . The functions Cd(n) are a Q-basis for the polynomials in n
over Q as d varies in N, since Cd has is the unique element of this family of degree d. Since
F , G have the same highest degree terms as eCd and e′Cd′ , respectively, F ∗G has highest
degree term ee′Cd+d′ . Note that F ∗ ε is a sum of polynomials of the same degree as F
whose leading coefficient is the sum of the values of ε multiplied by the leading coefficient
of F , while δ ∗ ε is eventually 0. It follows that if neither dimension is 0, the multiplicity
of T is ee′. This is true in all cases. If d 6= 0 while d′ = 0, the coefficients of G = ε are
all positive, and their sum if the multiplicity of S, and the argument for d = 0, d′ 6= 0 is
similar. The check is likewise straightforward if d = d′ = 0.

EC1. The intersection multiplicity e is 7 if char(K) 6= 2 and 6 if the char(K) = 2.
Completing the ring does not affect the length. Assume char(K) 6= 2. Then K[[x, y]]
contains a square roots ±u ∈ K[[x]] for 1+x where u = 1+ 1

2x+· · · . −F = (y−xu)(y+xu),
and y−xu, y+xu are prime in K[[x, y]] (both quotients are K[[x]]). The images g, h of G
are x3 ± (xu)3 + (xu)4 = x3(1± u3 + xu4). If g corresponds to +, its lowest degree term
is 2x3 and g = x3v where v ∈ K[[x]] is unit. h = x3(1− (1 + 3/2x+ · · · ) + x(1 + · · · )) =
x3(− 1

2x + · · · ) which is x4w where w ∈ K[[x]] is a unit. Hence, each of y − xu, G and
y + xu,G is a regular sequence, and, by Problem #2. above, a = y − xu and b = y + xu
are nonzerodivisors in A = K[[x, y]]/G. In general, if a, b are nonzerodivisors in A, then
0 → aA/abA → A/abA → A/aA → 0 is exact, and since aA/abA ∼= A/bA, we have that
(†) `(A/abA) = `(A/aA)+`(A/bA). Hence, `

(
K[[x.y]]/(F,G)

)
= `(A/abA) = `(A/aA)+

`(A/bA) = `(K[[x, y]]/(y − ux,G)) + `(K[[x, y]]/(y + ux,G). These are `
(
K[[x]]/(g)

)
=

`
(
K[[x]]/(x3)

)
= 3 and `

(
K[[x]]/(h)

)
= `
(
K[[x]]/(x4)

)
= 4. Hence, e = 3 + 4 = 7.

If char(K) = 2, let z = x + y. Then x = z + y. The ring is K[[z, y]], F = z2 + y3, and
G = (y+z)3 +y3 +y4 = y3 +y2z+yz2 +z3 +y3 +y4 = y2z+yz2 +y3 +y4 = y2z+y3 +yF ,
so that (F,G) = (z2+y3, y2z+y3). Then y2z+y3 = yy(y+z). The the elements y, y, y+z
are prime, all with quotient K[[z]], and the respective images of z2 + y3 are z2, z2, and
z2(1 + z). The iterated use of (†) from the previous paragraph yields that the length of
K[[x, y]]/(F,G) = K[[z, y]]/

(
yy(y+ z), z2 + y3

)
is the sum of the three lengths one obtains

when kills z2, z2, z2(2 + z) respectively in K[[z]]. Thus, e = 2 + 2 + 2 = 6.

EC2. Let the degrees of the generators be a1, . . . , as, let L be a common multiple of
a1, . . . , as and let Li = L/ai. Let h = sL. We show R(h) is standard. by proving that all
monomials in the generators of degree kh, k ≥ 1, are products of such monomials of degree
h. If the exponents on the generators are m1, . . . ,ms, then (∗) a1b1 + · · · + asbs = kh.
By induction on k, it suffices to show that if k > 1 we can find c1, . . . , cs ∈ N such that
0 ≤ ci ≤ bi and a1c1+· · ·+ascs = h: we can then factor the given monomial as one in which
the exponents are the ci and another in which the sum of the exponents is (k−1)h. Divide
both sides of (∗) by L to obtain b1

L1
+ · · ·+ bs

Ls
= ks. Let qi = b biLi

c, so that bi
Li

= qi+fi with
0 ≤ fi < 1. Then the sum of the fi is at most s, and so the sum of the qi ∈ N is at least
(k − 1)s ≥ s. We may therefore decrease some of the qi to nonnegative integers ri whose
sum is s. Take ci = riLi ≤ qiLi ≤ bi, and

∑s
i=1 ciai =

∑s
i=1 riLiai =

∑
i riL = sL = h,

as required. �


