Math 615, Winter 2014 Due: Monday, March 30

Problem Set #3

1. Let R be a ring and M an R-module. If $\underline{x}^- = x_1, \ldots, x_{n-1} \in R, y \in R$, and $z \in R$, show there is a long exact sequence

$$\cdots \to H_i(\underline{x}^-, y; M) \to H_i(\underline{x}^-, yz; M) \to H_i(\underline{x}^-, z; M) \to \cdots$$

Deduce that if R is local, M is finitely generated, and all three are defined, then $\chi(\underline{x}^-, yz; M) = \chi(\underline{x}^-, y; M) + \chi(\underline{x}^-, z; M)$. (Spectral sequences are not needed for this.)

2. Consider a map ϕ of complexes $B_{\bullet} \to A_{\bullet}$, so that $\phi_p : B_p \to A_p$, and let C_{\bullet} be the total complex of the double complex D_{pq} whose 0 th row is A_{\bullet} , i.e., $D_{p0} = A_p$, whose first row is B_{\bullet} , i.e., $D_{p1} = B_p$, and who other rows are 0, where the map $B_p \to A_p$ is $(-1)^p \phi_p$. Consider the spectral sequence obtained by filtering D_{pq} by columns. Show that E_{p0}^2 is the homology of the row of cokernels Coker (ϕ_{\bullet}) , and E_{p1}^2 is the homology of the row of kernels, Ker (ϕ_{\bullet}) , while all other E_{pq}^2 are 0. Show that there is a long exact sequence

$$\cdots \to H_{n-1}\big(\operatorname{Coker}(\phi_{\bullet})\big) \to H_n(C_{\bullet}) \to H_n\big(\operatorname{Ker}(\phi_{\bullet})\big) \to H_{n-2}\big(\operatorname{Coker}(\phi_{\bullet})\big) \to \cdots$$

3. Let A_{\bullet} be a finite complex $0 \to A_n \to \cdots \to A_0 \to 0$ of flat *R*-modules over the ring *R* such that $H_j(A_{\bullet})$ is annihilated by $I_j \subseteq R, 0 \leq j \leq n$. Let *M* be an arbitrary *R*-module. Show that the product ideal $\prod_{i=0}^{s} I_j$ annihilates $H_s(A_{\bullet} \otimes M)$.

4. Let K[s,t] be polynomial over the field K, and let R be the local ring of $K[s^4, s^3t, st^3, t^4] \subseteq K[s,t]$ at the graded maximal ideal. Determine the Koszul homology modules of R with respect to system of parameters $x = s^4$, $y = t^4$, including their lengths. Determine $\chi(x, y; R)$. Is R Cohen-Macaulay?

5. Let R be a finitely generated standard N-graded algebra over a field K (so that $R_0 = K$ and R is generated by its 1-forms). Let m be the homogeneous maximal ideal in R. Assume that $x_1, \ldots, x_d \in [R]_1$ is a homogeneous system of parameters, where $d \ge 2$. Let $S = R \bigotimes_K K[y, z]$ be the Segre product of R with a polynomial ring in two variables over K. Note that dim(S) is dim(R) + 1 by the solution to Problem **6.** of the first problem set. (a) Show that S is isomorphic with the Rees ring R[mt] of R with respect m.

(a) Show that S is isomorphic with the nees ring R[mi] of R with respect m.

(b) Show that $x_1z, x_1y - x_2z, \ldots, x_iy - x_{i+1}z, \ldots, x_{d-1}y - x_dz, x_dy$ is a homogeneous system of parameters for S.

6. Let (A, m) be an Artin local ring, and $x_1, x_2 \in m$. Does $H_1(x_1, x_2; A)$ need at least two generators? Prove your answer.

Extra Credit 5. Keep the notation of Problem 5. above. Show that if $R = K[x_1, \ldots, x_d]$ is polynomial, then S is Cohen-Macaulay. Also show that if $R = K[X_1, \ldots, X_n]/(F)$, where X_1, \ldots, X_n are indeterminates, F is monic as a polynomial in X_n of degree r, so that the images of X_1, \ldots, X_{n-1} form a homogeneous system of parameters, and $r \ge n$, then S is not Cohen-Macaulay.

Extra Credit 6. Let x_1, \ldots, x_s be a regular sequence in R and $I = (x_1, \ldots, x_s)$. Let \mathcal{F}_{\bullet} denote a left flat complex all of whose homology is killed by I. Show that for all i, there is a surjection $H_{i+s}(R/I \otimes_R \mathcal{F}_{\bullet}) \twoheadrightarrow H_i(\mathcal{F}_{\bullet})$.