Problem Set #1

Math 615, Winter 2016 Due: Wednesday, February 3

If you submit more than six problems, the additional problems will count as Extra Credit.

- 1. Let $\gamma > 1$ be an irrational real number. Consider the monomial order $>_{\gamma}$ on $K[x_1, x_2]$ defined by letting $W_{\gamma}(x_1^{a_1}x_2^{a_2}) = \gamma a_1 + a_2$ and defining $\mu' >_{\gamma} \mu$ precisely if $W(\mu') > W(\mu)$. Show that if $\gamma \neq \gamma'$, then $>_{\gamma}$ is different from $>_{\gamma'}$. Thus, there are at least 2^{\aleph_0} monomial orders on $K[x_1, x_2]$.
- 2. Let $\gamma_1 > \gamma_2 > \cdots > \gamma_n = 1$ be $n \geq 2$ positive real numbers linearly independent over the rational numbers \mathbb{Q} . Let $W(x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}) = \sum_{j=1}^n \gamma_i a_i$, and define a monomial order on $K[x_1, \ldots, x_n]$ by $\mu' > \mu$ precisely if $W(\mu') > W(\mu)$.
- (a) Show that for any monomial $\mu \neq 1$ and any monomial μ' , there exists an integer k > 0 such that $\mu^k > \mu'$. Explain why this shows that > cannot coincide with lexicographic order.
- (b) Show that there are monomials μ and μ' such that $\deg(\mu') < \deg(\mu)$ but $\mu' > \mu$. (This shows that > cannot coincide with homogeneous lexicographic order, nor with reverse lexicographic order.)
- 3. Find minimal sets of generators for the relations on
- (a) x_1^2, x_2^3, x_3^5
- (b) $x_1^{19}x_2^8$, $x_1^{11}x_2^{12}$
- (c) x_1x_2 , x_2x_3 , x_3x_4 , x_4x_5 , ..., $x_{n-1}x_n$, where $n \ge 3$.
- 4. Fix a monomial order for a polynomial ring R over a field K. Let I be a homogeneous ideal of R. Show that the initial ideal of I is generated by the initial terms of the homogeneous elements of I.
- 5. Let $R = K[x_1, x_2, x_3]$, a polynomial ring over the field K. with the monomial order given by reverse lexicographic order.
- (a) Let $g_1 = x_1x_2 + x_3^2$ and $g_2 = x_2^2 + x_1x_3$. Use the Buchberger algorithm to determine a Gröbner basis for $I = (g_1, g_2)R$.
- (b) Let $h_1 = x_1^2 + x_2x_3$ and $h_2 = x_2^2 + x_1x_3$. Use the Buchberger algorithm to determine a Gröbner basis for $J = (h_1, h_2)R$.

[Note: the K-automorphism of R that sends x_1 , x_2 , x_3 to x_3 , x_2 , x_1 , respectively, carries g_1 and g_2 to h_1 and h_2 . Thus, the ideals in parts (a) and (b) are "the same" modulo renumbering of the variables.]

6. Let F be free R-module with ordered basis e_1, \ldots, e_s over a polynomial ring $R = K[x_1, \ldots, x_n]$, where K is a field. Let g_1, \ldots, g_r be elements of $F - \{0\}$. Suppose that for two indices $i \neq j$, g_i and g_j have the property that all of their terms involve the same element e_t of the basis (this is automatic if F = R), and that their initial terms $c_i\mu_i e_t$ and $c_j\mu_j e_t$, where $c_i, c_j \in K - \{0\}$ and μ_i, μ_j are monomials in R, are relatively prime, i.e., $GCD(\mu_i, \mu_j) = 1$. Prove that there is a standard expression for $G_{ij} = c_j\mu_j g_i - c_i\mu_i g_j$ for division with respect to g_1, \ldots, g_r such that the remainder h_{ij} is 0.

- 7. Let $R = K[x_1, ..., x_N]$, where $N = \binom{n+1}{2} + n + 1 = \binom{n+2}{2}$, and define f_k for $1 \le k \le n$ as follows. Let $m = \binom{k+1}{2}$ and let $f_k = (x_m + x_{m+k+1})x_{m+1}x_{m+2} \cdots x_{m+k}$. For example, $f_1 = (x_1 + x_3)x_2$, $f_2 = (x_3 + x_6)x_4x_5$, $f_3 = (x_6 + x_{10})x_7x_8x_9$, etc. Let $I = (f_1, ..., f_n)R$. Using hlex, find generators for in(I) and find a reduced Gröbner basis for I.
- 8. Let $R = K[x_1, \ldots, x_{2n}]$ be the polynomial ring in 2n variables over K. Let P be the ideal generated by the 2×2 minors of the matrix

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ x_{n+1} & x_{n+2} & \cdots & x_{2n} \end{pmatrix}.$$

Determine in(P) and a Gröbner basis for P using homogeneous lexicographic order.