Math 615, Winter 2016

Problem Set #2 Solutions

1. For any monomial order on R, when $f, g \in R - \{0\}$, $\operatorname{in}(fg) = \operatorname{in}(f)\operatorname{in}(g) \Rightarrow \operatorname{in}(f^k) = (\operatorname{in}(f))^k$. If $f \in \operatorname{Rad}(I)$ then $f^k \in I$ for some k, and $(\operatorname{in}(f))^k = \operatorname{in}(f^k) \in \operatorname{in}(I)$, which is radical, and so $\operatorname{in}(f) \in \operatorname{in}(I)$. Hence $\operatorname{in}(I) \subseteq \operatorname{in}(\operatorname{Rad}(I)) \subseteq \operatorname{in}(I) \Rightarrow \operatorname{in}(I) = \operatorname{in}(\operatorname{Rad}(I))$ and so $\operatorname{Rad}(I) = I$. \Box

2. $I_{\Sigma} \subseteq P \in \text{Spec}(R) \Rightarrow P$ meets each non-face $\tau \subseteq \{x_1, \ldots, x_n\}$: $\prod_{x_i \in \tau} x_i \in I_{\Sigma} \subseteq P$. Conversely, if $\tau \subseteq \{x_1, \ldots, x_n\}$ meets every non-face, τ generates a prime $\supseteq I_{\Sigma}$. Hence, minimal primes of I_{Σ} correspond to and are generated by minimal sets $\tau \subseteq \{x_1, \ldots, x_n\}$ that meet every non-face of Σ . If $\tau \subseteq \{x_1, \ldots, x_n\}$ generates a prime, $\sigma = \{x_1, \ldots, x_n\} - \tau$ must be a face: the product of the x_i in it is $\neq 0$ even in the quotient. Also, if $\sigma \in \Sigma$, then $\sigma' = \{x_1, \ldots, x_n\} - \sigma$ must meet every non-face $\tau: \tau \cap \sigma' = \emptyset \Rightarrow \tau \subseteq \sigma$. It follows at once that the minimal primes of I_{Σ} correspond bijectively with the maximal faces of Σ . \Box

3. (a) Let $\mathfrak{P}_R(z) = \sum_{i=0}^{\infty} a_i z_i$ and $\mathfrak{P}_S(z) = \sum_{j=0}^{\infty} b_j z^j$ By the definition of multiplication for power series, the coefficient of z^n in the product is $\sum_{i+j=n}^n a_i b_j$, where $i, j \in \mathbb{N}$, and since $\dim_K(R_i \otimes_K S_j) = a_i b_j$, the result follows. Since $K[x_1, \ldots, x_n]$ is the iterated tensor product of the rings $R_i = K[x_i]$, and $\mathfrak{P}_{R_i}(z) = \sum_{t=0}^{\infty} (z^{m_i})^t = 1/(1-z^{m_i})$, (b) follows. \Box

4. (a) Consider $0 \to M \xrightarrow{x} M$. If M is flat (respectively, faithully flat), it remains exact (respectively, its exactness is not affected) after applying $S \otimes_R _$. Then (b) follows: by (a), each x_{i+1} is a nonzerodivisor on $M_i = M/(x_1, \ldots, x_i)M$ iff it is a nonzerodivisor on $W_i = S \otimes_R M_i \cong (S \otimes_R M)/(x_1, \ldots, x_i)(S \otimes_R M)$; moreover, $M_n \neq 0 \iff W_n \neq 0$ by faithful flatness. \Box (c) is clear, since $L \otimes_K _$ preserves module-finiteness (the same generators work), and module-finite (or even integral) extensions preserve dimension. (d) is immediate from (c), the fact that F_1, \ldots, F_n is a homogeneous system of parameters iff R is module-finite over the polynomial ring $K[F_1, \ldots, F_n]$, the faithful flatness of L over K, the definition of the Cohen-Macaulay property, and part (b).

5. The quotient of $R/(x_1, x_2) \cap (x_3, x_4) = R/(x_1x_3, x_1x_4, x_2x_3, x_2x_4)$ by each minimal prime has dimension 2, and so dim (R/I) = 2. Mod $(x_1 - x_3, x_2 - x_4)$, we obtain $K[x_1, x_2]/(x_1^2, x_1x_2, x_2^2)$, which is 0-dimensional. Hence, $x_1 - x_3, x_2 - x_4$ is a homgeneous system of parameters. Mod $(x_1 - x_3) R/I$ becomes $K[x_1, x_2, x_4]/(x_1^2, x_1x_4, x_1x_2, x_2x_4)$, The image of $x_2 - x_4$ is a zerodivisor, since it kills the image of x_1 , which is nonzero because it has too small a degree to be in (x_1^2, x_1x_2, x_2^2) . \Box

6. Since intersection distributes over sum for monomial ideals, $IT \cap JT$ is the sum of the ideals $\mu T \cap \nu T$ where μ and ν are monomial generators of I and J, respectively. Since μ and ν involve disjoint sets of variables, every $\mu T \cap \nu T = \mu \nu T$. Hence, $IT \cap JT = IJT$. We have a short exact sequence $(*) \quad 0 \to T/((IT) \cap (JT)) \to T/IT \bigoplus T/JT \to T/(I+J)T \to 0$, where the maps preserve degree. The leftmost nonzero term is T/IJT. Now $T/IT \cong (R/I) \otimes_K S$ and so, by Problem 3., $\mathfrak{P}(T/IT) = \frac{F(z)}{(1-z)^r}$. Similarly, $\mathfrak{P}(T/JT) = \frac{G(z)}{(1-z)^n}$. Also, $T/(I+J)T \cong (R/I) \otimes (S/J)$ and so $\mathfrak{P}_{T/(I+J)T}(z) = F(z)G(z)$. The alternating sum of the Hilbert-Poincaré series of the terms in the exact sequence (*) is zero. \Box

7. (a) Order the variables in the matrix such that for each positive integer $h \ge 2$, the variables x_{ij} such that i+j=h+1 are smaller than the variables such i+j=h. We refer to the variables x_{ij} such that h+1 as being on the h th antidiagonal. The expansion of the $k \times k$ minor in the upper left corner contains a term that is, up to sign, the product G_k of the variables on the k th antidiagonal. Any other product occurring in the expansion of any other symmetrically placed $k \times k$ minor contains a variable x_{ij} such that i + j > k, which will be smaller in revlex. Hence, given that the coefficients of the symmetrically placed minors are all nonzero, the initial term of the sum F_k is, up to multiplication by a scalar, G_k . Since the G_k are relatively prime in pairs, it follows from the Buchberger algorithm that G_1, \ldots, G_k generate the initial ideal of $I_k := (F_1, \ldots, F_k)$ for $1 \le h \le n$. Since the G_k are square-free, they generate a radical ideal, and, hence, so do the F_k . Since G_{k+1} is a product of variables not occurring in Gh for $h \leq k, G_1, \ldots, G_n$ is a regular sequence. To see that F_{k+1} is a nonzerodivisor mod I_k , suppose that $HF_{k+1} \in (F_1, \ldots, F_k) = I_k$. Divide H by F_1, \ldots, F_k . This will give a remainder H_0 with no term in (G_1, \ldots, G_k) . But $in(H_0F_{k+1}) = in(H_0)G_{k+1} \in (G_1, \ldots, G_k)$, and so $in(H_0) \in (G_1, \ldots, G_k)$, a contradiction unless $H_0 = 0$. \square

(b) Since the ideal is known to be radical, it suffices to show that the algebraic set it defines is irreducible, The coefficients of the characteristic polynomial of an $n \times n$ matrix vanish iff the matrix is nilpotent. An upper triangular matrix with all entries 0 on the main diagonal is nilpotent, and by using Jordan form, a matrix is nilpotent iff it is similar to a an upper triangular matrix with zero entries on the main diagonal. That is, V(I) is the image of the map described in the statement of the problem. Since GL(n, K) is a nonempty open set in \mathbb{A}^{n^2} , it is a variety, while $M \cong \mathbb{A}^{n(n-1)/2}$. Since the product of two varieties over an algebraically closed field is a variety, and the image of an irreducible set under a continuous map is irreducible, it follows that V(I) is irreducible. \Box

8. I corresponds to the simplicial complex whose edges are

$$\{x_1, x_2\}, \ldots, \{x_i, x_{i+1}\}, \ldots, \{x_{n-1}, x_n\}.$$

This simplicial complex corresponds to a closed line segment L. It's dimension is one, and so the Krull dimension of the ring is 2. The minimal primes are given by the complements of the maximal faces: there are n - 1 of these, P_1, \ldots, P_{n-1} , where P_i is generated by all of the variables except $\{x_i, x_{i+1}\}$. Note that the quotient by any minimal prime P_i is $\cong K[x_i, x_{i+1}]$, which again proves that the dimension of the quotient is 2. Let f be the sum of the x_i for i even and let g be the sum of the x_i for i odd. As we multiply f(resp., g) by the even (resp., the odd) numbered variables we obtain all the squares of the even (resp., odd) numbered variables. Therefore, m is nilpotent mod (I_n, f, g) and f, g is a homogeneous system of parameters for $S_n := R/I_n$. The Cohen-Macaulay property for this ring follows immediately from Reisner's criterion: the reduced simplicial cohomology of Lwith coefficients in any field is 0, and the links are 0-dimensional, so there is no condition (the top dimension for each link is 0). However, we give a direct proof by induction on n that f, g is a regular sequence. Note that when n = 2 the ring is simply $K[x_1, x_2]$. Here, $f = x_2$ and $g = x_1$. (When n = 2, the ring is $K[x_1, x_2, x_3]/(x_1x_3)$ and it is correct that $x_1 + x_3$ and x_2 is a regular sequence, but the inductive argument below makes it

(*)
$$0 \to R/I_n \to R/P_1 \oplus R/J \to R/(P_1 + J) \to 0.$$

All of P_2, \ldots, P_n contain x_1 . Since all of these are monomial ideals, intersection distributes over sum, and $J = (x_1) + J_1$ where J_1 is the intersection of the primes Q_2, \dots, Q_{n-1} generated by the variables in $\{x_2, \ldots, x_n\}$ with x_i and x_{i+1} omitted for $2 \le i \le n-1$. Let q_i be the prime of $K[x_2, \ldots, x_n]$ generated by all the variables except x_i and x_{i+1} , $2 \leq i \leq n$. Then $R/J \cong K[x_2, \ldots, x_n]/J_0$, where J_0 is the intersection of q_2, \ldots, q_n . Then $R/J \cong K[x_1, \ldots, x_{n-1}]/I_{n-1} = S_{n-1}$ by shifting the numbering of the variables by 1, and the images of f and g give the corresponding elements, up to order, in S_{n-1} . Hence, f, g is a regular sequence on R/J, and this is also true for $R/P_1 \cong K[x_1, x_2]$. Note also that f is a nonzerodivisor on $R/(P_1 + J)$, since the denominator ideal is the same as the intersection of the $P_1 + P_j$ for $j \ge 2$, and $P_1 + P_2$ is generated by all variables except x_2 while the $P_1 + P_j$ for j > 2 are generated by all the x_i . Thus, the denominator $P_1 + J$ is the same as $P_1 + P_2$, and the quotient is $K[x_2]$. Thus, f is a nonzerodivisor on all three modules, so that the sequence (*) remains exact when we tensor with R/fR. This yields an injection $0 \to R/(I_n + fR) \to R/(P_1 + fR) \oplus R/(J + fR)$. Since f, gis a regular sequence on each of R/P_1 and R/J, it follows that g is a nonzerodivisor on $R/(P_1 + fR) \oplus R/(J + fR)$, and, hence, on its submodule $R/(I_n + fR)$.