Math 615, Winter 2016 Problem Set #3 Solutions

1. The map $R \to \hat{R}$ is a flat local map, and the closed fiber K is Cohen-Macaulay. By a class theorem, \hat{R} is Cohen-Macaulay if and only if R is Cohen-Macaulay. \Box

2. By induction on the number of variables, it suffices to prove the result when n = 1, i.e., that R[[x]] is Cohen-Macaulay, and it will suffice to show that for every maximal ideal \mathcal{M} of this ring, that $R[[x]]_{\mathcal{M}}$ is Cohen-Macalay. Note that \mathcal{M} contains x, since otherwise $Rx + \mathcal{M}$ is the unit ideal, i.e., contains 1, and we would have have that 1 = rx + u with $r \in R$, and $u \in \mathcal{M}$. But u = 1 - rx cannot be in $c\mathcal{M}$, since it has inverse $1 + rx + r^2x^2 + \cdots + r^tx^t + \cdots$. Once we kill x, which is a nonzerodivisor, the dimension and depth both drop by 1, and \mathcal{M}/xR must be a maximal ideal m in $R[[x]]/xR \cong R$. Then $R[[x]]_{\mathcal{M}}/(x) \cong R_m$, which is Cohen-Macaulay, and contains a system of parameters f_1, \ldots, f_d that is a regular sequence. It follows that x, f_1, \ldots, f_d is system of parameters that is a regular sequence in R[[x]]. \Box

3. (a) Identify M' with its image in M. If the depth of M' or M'' is 0, there is nothing to prove. If both are positive, I is not contained in any associated prime of M or M'. Hence, it is not contained in the union of all these associated primes, and we can choose an element x of I that is not a zerodivisor on M' or on M''. Then if x kills an element $m \in M$, it must kill the image of m in M'', which implies that the image of m in M'' is 0. But then $m \in M'$, a contradiction. Thus, x is a nonzerodivisor on all three modules, and the isomorphic sequence of submodules $0 \to xM' \to xM \to xM'' \to 0$ is exact. It follows that $0 \to M'/xM' \to M/xM \to M''/xM'' \to 0$ is exact as well, and the result now follows by induction on depth_IM'. \Box

(b) If depth_I(M'') = 0 choose $u \in M$ whose image in M'' is killed by I. Then choose any nonzerodivisor $f \in I$ on M. Then f is a nonzerodivisor on $M' \subseteq M$, and $fu \in M'$, since I kills the image of u in $M'' \cong M/M'$. However, $fu \notin fM'$ or else $u \in M'$. But $I(fu) = f(Iu) \subseteq fM'$, so that the image of fu in M'/fM' is a nonzero element killed by I. It follows that f is a maximal regular sequence M'. We complete the proof by induction on $d = \text{depth}_I M''$. If d > 0 then all three depths are positive. We can choose $x \in I$ avoiding all three sets of associated primes. It then follows as in part (a) that $0 \to M'/xM' \to M/xM \to M''/xM'' \to 0$ is exact, with all three depths decreased by 1, and the result is immediate by induction on depth_I(M'). \Box

4. We have depth_mR = n. By Problem 3, each time we take a graded module of syzygies M_1 of M, if depth_mM < n then depth_m $M_1 = \text{depth}_m M + 1$. The result is immediate from the given characterization of free modules. \Box

5. (a) Let f = r/s, $r \in R$, $s \in R - \{0\}$, be invariant. Let $t = \prod_{g \in G - \{e\}} g(s)$, so that st is the product of elements in an orbit and is in R^G . Then f = rt/st, and since f, st are fixed by G, so is rt = f(st). Hence $rt \in R^G$ and $f \in \operatorname{frac}(R^G)$. \Box

(b) Part (a) takes care of the case where K is finite. If K is infinite, $R^G = K$: a polynomial is fixed by G iff all the monomials in it are fixed by G, and G fixes no monomial except 1. Hence, frac $(R^G) = K$. But $y/x \in \mathcal{F}^G$.

(c) $R^G = R \cap \mathcal{F}^G$, both of which are integrally closed, and so R^G is as well. \Box

(d) The map $\rho : r \mapsto (1/h) \sum_{g \in G} g(r)$ sends $R \to R^G$: the sum of the elements in the orbit of R is clearly mapped to itself by every $g_0 \in G$. If $a \in R^G$, $\rho(ar) = a\rho(r)$ since g(ar) = g(a)g(r) = ag(r) for all $g \in G$, and the map clearly preserves sums. Every $a \in R^G$ maps to (1/h)(ha) = a, and so ρ is the required splitting. \Box

(e) If $S = R \oplus W$, we have that $S_m = R_m \oplus W_m$ for every maximal ideal of R. Hence, we may assume that (R, m) is local. Note that if S is a product of R-algebras, say $S = S_1 \times \cdots \times S_k$, where e_i denotes the idempotent with i th coordinate 1 and other coordinates 0, then $1 = e_1 \oplus \cdots \oplus e_k$. Moreover, we may also write $S = S_1 \oplus \cdots \oplus S_k$. Let $\theta : S \to R$ be the R-linear retraction. Then $\sum_{i=1}^k \theta(e_i) = 1$, and so at least one of $\theta(e_i) = u \notin m$, and u is a unit of R. The restriction of θ to $S_i = e_i S$ gives an R-linear map of S_i to R that sends e_i to u, and so multiplying by u^{-1} we obtain an R-linear retraction of S_i to R. Since S is Cohen-Macaulay, so is every S_j . Therefore, we may assume without loss of generality that S is not a product.

Note that S/mS is module-finite over R/mR and therefore 0-dimensional. Thus, the primes of S lying over m are maximal. Also, if Q is maximal in S, $R/(Q \cap R) \to S/Q$ is an injection into a field and is module-finite. Thus, $R/(Q \cap R)$ is a field, and so $Q \cap R = m$. If m consists entirely of zerodivisors on S, it is contain in the union of the associated primes of S, and so is contained in one of them. Since S is Cohen-Macaulay, this associated prime Q must be a minimal prime of S. Thus, Q is a minimal prime of S that lies over m, and so it is also a maximal ideal of S. This means that $\{Q\}$ is both open and closed: every maximal ideal is a closed point, and Spec $(S) - \{Q\}$ is the union of the finitely many closed sets $V(P_i)$ as P_i runs through the minimal primes of S distinct from Q. Thus, S has the form $S_1 \times A$ where A is zero-dimensional. Since S is not a product, this can only happen if S = A, and then R is zero-dimensional and, hence, Cohen-Macaulay.

We have now completed the proof in the case where the depth of S on m is 0. Otherwise, we can choose $x \in m$ that is a nonzerodivisor in S. Then S/xS is Cohen-Macaulay, R/xR splits from S/xS, and it follows by induction that R/xR is Cohen-Macaulay. Since R is local and $x \in m$ is not a zerodivisor, it follows that R is Cohen-Macaulay. \Box

6. It is easy to see that an elementary row or column operation does not affect the ideal generated by the $t \times t$ minors of the matrix. With $x = x_{mn}$ invertible, we may subtract x_{in}/x times the bottom row from the *i*th row, $1 \leq i \leq m-1$. Then x_{ij} changes to $y_{ij} = x_{ij} - x_{in}x_{nj}/x$, $1 \leq i \leq m-1$, $1 \leq j \leq n-1$, while the bottom row is unchanged and the last column becomes 0 except for the bottom entry x. We may then subtract x_{mj}/x times the last column from the *j*th column, $1 \leq j \leq n-1$, and multiply the last row by 1/x. The matrix has become $\begin{pmatrix} Y & 0 \\ 0 & 1 \end{pmatrix}$ in block form, where $Y = (y_{ij})$ is $(m-1) \times (n-1)$. The $t \times t$ minors that involve 1 correspond bijectively to the t-1 size minors of Y, and each, up to sign, equals one of them. Those that do not involve 1 are obviously in $I_{t-1}(Y)$: expand by minors with respect one row or column. Hence, $I_{t-1}(Y)K[X]_x = I_t(X)K[X]_x$. The y_{ij} together with the variables x_{mj} , $1 \leq j \leq n$, x_{in} , $1 \leq i \leq n-1$ are algebraically independent over K and together with $1/x = 1/x_{mn}$ generate $K[X]_x$. So $K[X]_x$ is S_x where S is the polynomial ring in the x_{nj} and x_{in} over K[Y]. The claim follows. \Box

7. We show the 2×2 minors are a Gröbner basis using the Buchberger criterion. Thus,

the initial ideal is generated by products of pairs of elements on the "back" diagonals: the back diagonal consists of the two elements not on the main diagonal. Since the ideal is graded and x_{mn} is not on a back diagonal, it is not a zerodivisor on the initial ideal, and so is not a zerodivisor on $I_2(X)$. With notation as in 5., one wants to show that $I_1(Y)$ is prime, which is clear: it is generated by a subset of the variables. It remains to apply the Buchberger criterion. If the two minors involve 4 columns or 4 rows, the back diagonals do not overlap, and so the initial terms are relatively prime. If the minors lie in a 2×3 (resp., 3×2) submatrix, the check is the same as in 6. of Problem Set #1: if x is the other variable in the column (resp., row) of the common element of the back diagonals, one gets $\pm x$ times the third 2×2 minor. Let $\Delta_{ab,ij} = x_{ai}x_{bj} - x_{aj}x_{bi}$. We may assume the 2 minors lie in rows indexed a < b < c and columns indexed i < j < k, all needed, and that their back diagonals meet in one element. There are five cases not already covered: the pairs of back diagonals (each written as a product) are: (1) $x_{ci}x_{bj}$, $x_{ci}x_{ak}$, (2) $x_{ci}x_{aj}$, $x_{ci}x_{bk}$, (3) $x_{bj}x_{ci}$, $x_{bj}x_{ak}$, (4) $x_{ak}x_{bj}$, $x_{ak}x_{ci}$, and (5) $x_{ak}x_{bi}$, $x_{ak}x_{cj}$. The 5 checks, all similar, are:

(1)
$$x_{ak}\Delta_{bc,ij} - x_{bj}\Delta_{ac,ik} = -x_{bi}\Delta_{ac,jk} - x_{ck}\Delta_{ab,ij}.$$
(2)
$$x_{bk}\Delta_{ac,ij} - x_{aj}\Delta_{bc,ik} = -x_{ai}\Delta_{bc,jk} + x_{ck}\Delta_{ab,ij}.$$

(3)
$$x_{ak}\Delta_{bc,ij} - x_{ci}\Delta_{ab,jk} = x_{aj}\Delta_{bc,ik} - x_{bi}\Delta_{ac,jk}.$$

(4)
$$x_{ci}\Delta_{ab,jk} - x_{bj}\Delta_{ac,ik} = -x_{aj}\Delta_{bc,ik} - x_{ck}\Delta_{ab,ij}.$$

(5) $x_{cj}\Delta_{ab,ik} - x_{bi}\Delta_{ac,jk} = -x_{ai}\Delta_{bc,jk} + x_{ck}\Delta_{ab,ij}.$

The initial terms of righthand products don't cancel, so these are standard epxressions. \Box

8. (a) Suppose one has an infinite strictly decreasing sequence of finite sets. The largest elements are non-increasing and so must be eventually stable. Call the stable value a_1 . Recursively, suppose that for $i \leq k$ the *i*th largest elements are eventually stable with stable value a_i . From the point where all are stable on, the k + 1 st largest elements are non-increasing and so eventually stable as well, say with stable value a_{k+1} . The recursion yields an infinite strictly decreasing sequence $a_1 > \cdots > a_k > \cdots$, a contradiction. \Box

(b) At each step in the process, the set of monomials in the current remainder decreases in the sense of part (a), and so the process must terminate. \Box