
Math 615, Winter 2016 Problem Set #3 Solutions

1. The map R → R̂ is a flat local map, and the closed fiber K is Cohen-Macaulay. By a

class theorem, R̂ is Cohen-Macaulay if and only if R is Cohen-Macaulay. �

2. By induction on the number of variables, it suffices to prove the result when n = 1, i.e.,
that R[[x]] is Cohen-Macaulay, and it will suffice to show that for every maximal idealM of
this ring, that R[[x]]M is Cohen-Macalay. Note thatM contains x, since otherwise Rx+M
is the unit ideal, i.e., contains 1, and we would have have that 1 = rx+ u with r ∈ R, and
u ∈M. But u = 1−rx cannot be in cM , since it has inverse 1+rx+r2x2+ · · ·+rtxt+ · · · .
Once we kill x, which is a nonzerodivisor, the dimension and depth both drop by 1, and
M/xR must be a maximal ideal m in R[[x]]/xR ∼= R. Then R[[x]]M/(x) ∼= Rm, which is
Cohen-Macaulay, and contains a system of parameters f1, . . . , fd that is a regular sequence.
It follows that x, f1, . . . , fd is system of parameters that is a regular sequence in R[[x]]. �

3. (a) Identify M ′ with its image in M . If the depth of M ′ or M ′′ is 0, there is nothing
to prove. If both are positive, I is not contained in any associated prime of M or M ′.
Hence, it is not contained in the union of all these associated primes, and we can choose
an element x of I that is not a zerodivisor on M ′ or on M ′′. Then if x kills an element
m ∈M , it must kill the image of m in M ′′, which implies that the image of m in M ′′ is 0.
But then m ∈M ′, a contradiction. Thus, x is a nonzerodivisor on all three modules, and
the isomorphic sequence of submodules 0→ xM ′ → xM → xM ′′ → 0 is exact. It follows
that 0→M ′/xM ′ →M/xM →M ′′/xM ′′ → 0 is exact as well, and the result now follows
by induction on depthIM

′. �

(b) If depthI(M ′′) = 0 choose u ∈ M whose image in M ′′ is killed by I. Then choose
any nonzerodivisor f ∈ I on M . Then f is a nonzerodivisor on M ′ ⊆ M , and fu ∈ M ′,
since I kills the image of u in M ′′ ∼= M/M ′. However, fu /∈ fM ′ or else u ∈ M ′. But
I(fu) = f(Iu) ⊆ fM ′, so that the image of fu in M ′/fM ′ is a nonzero element killed
by I. It follows that f is a maximal regular sequence M ′. We complete the proof by
induction on d = depthIM

′′. If d > 0 then all three depths are positive. We can choose
x ∈ I avoiding all three sets of associated primes. It then follows as in part (a) that
0 → M ′/xM ′ → M/xM → M ′′/xM ′′ → 0 is exact, with all three depths decreased by 1,
and the result is immediate by induction on depthI(M ′). �

4. We have depthmR = n. By Problem 3, each time we take a graded module of syzygies
M1 of M , if depthmM < n then depthmM1 = depthmM + 1. The result is immediate
from the given characterization of free modules. �

5. (a) Let f = r/s, r ∈ R, s ∈ R − {0}, be invariant. Let t =
∏

g∈G−{e} g(s), so that st

is the product of elements in an orbit and is in RG. Then f = rt/st, and since f , st are
fixed by G, so is rt = f(st). Hence rt ∈ RG and f ∈ frac (RG). �

(b) Part (a) takes care of the case where K is finite. If K is infinite, RG = K: a polynomial
is fixed by G iff all the monomials in it are fixed by G, and G fixes no monomial except 1.
Hence, frac (RG) = K. But y/x ∈ FG.

(c) RG = R ∩ FG, both of which are integrally closed, and so RG is as well. �
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(d) The map ρ : r 7→ (1/h)
∑

g∈G g(r) sends R → RG: the sum of the elements in the

orbit of R is clearly mapped to itself by every g0 ∈ G. If a ∈ RG, ρ(ar) = aρ(r) since
g(ar) = g(a)g(r) = ag(r) for all g ∈ G, and the map clearly preserves sums. Every a ∈ RG

maps to (1/h)(ha) = a, and so ρ is the required splitting. �

(e) If S = R ⊕W , we have that Sm = Rm ⊕Wm for every maximal ideal of R. Hence,
we may assume that (R,m) is local. Note that if S is a product of R-algebras, say
S = S1 × · · · × Sk, where ei denotes the idempotent with i th coordinate 1 and other
coordinates 0, then 1 = e1 ⊕ · · · ⊕ ek. Moreover, we may also write S = S1 ⊕ · · · ⊕ Sk.

Let θ : S → R be the R-linear retraction. Then
∑k

i=1 θ(ei) = 1, and so at least one of
θ(ei) = u /∈ m, and u is a unit of R. The restriction of θ to Si = eiS gives an R-linear map
of Si to R that sends ei to u, and so multiplying by u−1 we obtain an R-linear retraction
of Si to R. Since S is Cohen-Macaulay, so is every Sj . Therefore, we may assume without
loss of generality that S is not a product.

Note that S/mS is module-finite over R/mR and therefore 0-dimensional. Thus, the
primes of S lying over m are maximal. Also, if Q is maximal in S, R/(Q∩R)→ S/Q is an
injection into a field and is module-finite. Thus, R/(Q∩R) is a field, and so Q∩R = m. If
m consists entirely of zerodivisors on S, it is contain in the union of the associated primes
of S, and so is contained in one of them. Since S is Cohen-Macaulay, this associated prime
Q must be a minimal prime of S. Thus, Q is a minimal prime of S that lies over m, and
so it is also a maximal ideal of S. This means that {Q} is both open and closed: every
maximal ideal is a closed point, and Spec (S)−{Q} is the union of the finitely many closed
sets V (Pi) as Pi runs through the minimal primes of S distinct from Q. Thus, S has the
form S1 ×A where A is zero-dimensional. Since S is not a product, this can only happen
if S = A, and then R is zero-dimensional and, hence, Cohen-Macaulay.

We have now completed the proof in the case where the depth of S on m is 0. Otherwise,
we can choose x ∈ m that is a nonzerodivisor in S. Then S/xS is Cohen-Macaulay, R/xR
splits from S/xS, and it follows by induction that R/xR is Cohen-Macaulay. Since R is
local and x ∈ m is not a zerodivisor, it follows that R is Cohen-Macaulay. �

6. It is easy to see that an elementary row or column operation does not affect the ideal
generated by the t × t minors of the matrix. With x = xmn invertible, we may subtract
xin/x times the bottom row from the i th row, 1 ≤ i ≤ m − 1. Then xij changes to
yij = xij−xinxnj/x, 1 ≤ i ≤ m−1, 1 ≤ j ≤ n−1, while the bottom row is unchanged and
the last column becomes 0 except for the bottom entry x. We may then subtract xmj/x
times the last column from the j th column, 1 ≤ j ≤ n − 1, and multiply the last row by

1/x. The matrix has become

(
Y 0
0 1

)
in block form, where Y = (yij) is (m−1)× (n−1).

The t × t minors that involve 1 correspond bijectively to the t − 1 size minors of Y , and
each, up to sign, equals one of them. Those that do not involve 1 are obviously in It−1(Y ):
expand by minors with respect one row or column. Hence, It−1(Y )K[X]x = It(X)K[X]x.
The yij together with the variables xmj , 1 ≤ j ≤ n, xin, 1 ≤ i ≤ n − 1 are algebraically
independent over K and together with 1/x = 1/xmn generate K[X]x. So K[X]x is Sx

where S is the polynomial ring in the xnj and xin over K[Y ]. The claim follows. �

7. We show the 2 × 2 minors are a Gröbner basis using the Buchberger criterion. Thus,
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the initial ideal is generated by products of pairs of elements on the “back” diagonals: the
back diagonal consists of the two elements not on the main diagonal. Since the ideal is
graded and xmn is not on a back diagonal, it is not a zerodivisor on the initial ideal, and
so is not a zerodivisor on I2(X). With notation as in 5., one wants to show that I1(Y ) is
prime, which is clear: it is generated by a subset of the variables. It remains to apply the
Buchberger criterion. If the two minors involve 4 columns or 4 rows, the back diagonals
do not overlap, and so the initial terms are relatively prime. If the minors lie in a 2 × 3
(resp., 3×2) submatrix, the check is the same as in 6. of Problem Set #1: if x is the other
variable in the column (resp., row) of the common element of the back diagonals, one gets
±x times the third 2×2 minor. Let ∆ab,ij = xaixbj−xajxbi. We may assume the 2 minors
lie in rows indexed a < b < c and columns indexed i < j < k, all needed, and that their
back diagonals meet in one element. There are five cases not already covered: the pairs
of back diagonals (each written as a product) are: (1) xcixbj , xcixak, (2) xcixaj , xcixbk,
(3) xbjxci, xbjxak, (4) xakxbj , xakxci, and (5) xakxbi, xakxcj . The 5 checks, all similar, are:

(1) xak∆bc,ij − xbj∆ac,ik = −xbi∆ac,jk − xck∆ab,ij .
(2) xbk∆ac,ij − xaj∆bc,ik = −xai∆bc,jk + xck∆ab,ij .
(3) xak∆bc,ij − xci∆ab,jk = xaj∆bc,ik − xbi∆ac,jk.
(4) xci∆ab,jk − xbj∆ac,ik = −xaj∆bc,ik − xck∆ab,ij .
(5) xcj∆ab,ik − xbi∆ac,jk = −xai∆bc,jk + xck∆ab,ij .

The initial terms of righthand products don’t cancel, so these are standard epxressions. �

8. (a) Suppose one has an infinite strictly decreasing sequence of finite sets. The largest
elements are non-increasing and so must be eventually stable. Call the stable value a1.
Recursively, suppose that for i ≤ k the i th largest elements are eventually stable with
stable value ai. From the point where all are stable on, the k + 1 st largest elements are
non-increasing and so eventually stable as well, say with stable value ak+1. The recursion
yields an infinite strictlly decreasing sequence a1 > · · · > ak > · · · , a contradiction. �

(b) At each step in the process, the set of monomials in the current remainder decreases
in the sense of part (a), and so the process must terminate. �


