Math 615, Winter 2016 Problem Set #3 Solutions

1. The map R — R is a flat local map, and the closed fiber K is Cohen-Macaulay. By a
class theorem, R is Cohen-Macaulay if and only if R is Cohen-Macaulay. [J

2. By induction on the number of variables, it suffices to prove the result when n =1, i.e.,
that R[[z]] is Cohen-Macaulay, and it will suffice to show that for every maximal ideal M of
this ring, that R[[z]]m is Cohen-Macalay. Note that M contains z, since otherwise Rz +.M
is the unit ideal, i.e., contains 1, and we would have have that 1 = rx +u with » € R, and
u € M. But u = 1 —rx cannot be in cM, since it has inverse 1 +rx+7r2x2+- - +rizt 4. ...
Once we kill z, which is a nonzerodivisor, the dimension and depth both drop by 1, and
M /xR must be a maximal ideal m in R[[z]]/xR = R. Then R[[z]|m/(z) = R,,, which is
Cohen-Macaulay, and contains a system of parameters f1, ..., fg that is a regular sequence.
It follows that x, fi, ..., fq is system of parameters that is a regular sequence in R[[z]]. O

3. (a) Identify M’ with its image in M. If the depth of M’ or M" is 0, there is nothing
to prove. If both are positive, I is not contained in any associated prime of M or M’.
Hence, it is not contained in the union of all these associated primes, and we can choose
an element x of I that is not a zerodivisor on M’ or on M". Then if z kills an element
m € M, it must kill the image of m in M”, which implies that the image of m in M" is 0.
But then m € M’, a contradiction. Thus, x is a nonzerodivisor on all three modules, and
the isomorphic sequence of submodules 0 — M’ — M — xM"” — 0 is exact. It follows
that 0 — M'/xM" — M/xM — M" /xM" — 0 is exact as well, and the result now follows
by induction on depth;M’. O

(b) If depth;(M") = 0 choose u € M whose image in M” is killed by I. Then choose
any nonzerodivisor f € I on M. Then f is a nonzerodivisor on M’ C M, and fu € M’,
since I kills the image of u in M"” = M/M’. However, fu ¢ fM’ or else u € M'. But
I(fu) = f(Iu) C fM’, so that the image of fu in M'/fM’ is a nonzero element killed
by I. It follows that f is a maximal regular sequence M’. We complete the proof by
induction on d = depth; M”. If d > 0 then all three depths are positive. We can choose
x € I avoiding all three sets of associated primes. It then follows as in part (a) that
0— M'/xeM' — M/xM — M"/xM" — 0 is exact, with all three depths decreased by 1,
and the result is immediate by induction on depth;(M’). O

4. We have depth,, R = n. By Problem 3, each time we take a graded module of syzygies
M, of M, if depth,,M < n then depth,, M; = depth,, M + 1. The result is immediate
from the given characterization of free modules. [J

5. (a) Let f =r/s, 7 € R, s € R— {0}, be invariant. Let t = [[ cq_(.y 9(s), so that st

is the product of elements in an orbit and is in R“. Then f = rt/st, and since f, st are
fixed by G, so is rt = f(st). Hence 7t € RY and f € frac (R®). O

(b) Part (a) takes care of the case where K is finite. If K is infinite, R = K: a polynomial
is fixed by G iff all the monomials in it are fixed by GG, and G fixes no monomial except 1.
Hence, frac (R) = K. But y/z € F¢.

(c) R = RN F%, both of which are integrally closed, and so RY is as well. [J
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(d) The map p : 7 — (1/h) > o g(r) sends R — RE: the sum of the elements in the

orbit of R is clearly mapped to itself by every go € G. If a € R®, p(ar) = ap(r) since
g(ar) = g(a)g(r) = ag(r) for all g € G, and the map clearly preserves sums. Every a € R®
maps to (1/h)(ha) = a, and so p is the required splitting. O

(e) If S = R@® W, we have that S,, = R,, ® W,, for every maximal ideal of R. Hence,
we may assume that (R,m) is local. Note that if S is a product of R-algebras, say
S = 851 X --- X Sk, where e; denotes the idempotent with 7th coordinate 1 and other
coordinates 0, then 1 = e; ® --- @ ex. Moreover, we may also write S = S1 @ --- P Sk.
Let 6 : S — R be the R-linear retraction. Then Zle O(e;) = 1, and so at least one of
O(e;) = u ¢ m, and u is a unit of R. The restriction of 6 to S; = ¢;5 gives an R-linear map
of S; to R that sends e; to u, and so multiplying by u~! we obtain an R-linear retraction
of S; to R. Since S is Cohen-Macaulay, so is every S;. Therefore, we may assume without
loss of generality that S is not a product.

Note that S/mS is module-finite over R/mR and therefore 0-dimensional. Thus, the
primes of S lying over m are maximal. Also, if @) is maximal in S, R/(QNR) — S/Q is an
injection into a field and is module-finite. Thus, R/(QNR) is a field, and so QN R = m. If
m consists entirely of zerodivisors on S, it is contain in the union of the associated primes
of S, and so is contained in one of them. Since S is Cohen-Macaulay, this associated prime
() must be a minimal prime of S. Thus, @) is a minimal prime of S that lies over m, and
so it is also a maximal ideal of S. This means that {Q} is both open and closed: every
maximal ideal is a closed point, and Spec (S) —{Q} is the union of the finitely many closed
sets V(P;) as P; runs through the minimal primes of S distinct from (. Thus, S has the
form S x A where A is zero-dimensional. Since S is not a product, this can only happen
if S = A, and then R is zero-dimensional and, hence, Cohen-Macaulay.

We have now completed the proof in the case where the depth of S on m is 0. Otherwise,
we can choose x € m that is a nonzerodivisor in S. Then S/xS is Cohen-Macaulay, R/xR
splits from S/xS, and it follows by induction that R/zR is Cohen-Macaulay. Since R is
local and = € m is not a zerodivisor, it follows that R is Cohen-Macaulay. [

6. It is easy to see that an elementary row or column operation does not affect the ideal
generated by the t x t minors of the matrix. With x = z,,,, invertible, we may subtract
Tin/x times the bottom row from the ith row, 1 < i < m — 1. Then xz;; changes to
Yij = Tij —TinTn;/z, 1 <i<m—1,1<j <n—1, while the bottom row is unchanged and
the last column becomes 0 except for the bottom entry xz. We may then subtract x,,;/x
times the last column from the jth column, 1 < j < n — 1, and multiply the last row by

1/z. The matrix has become in block form, where Y = (y;;) is (m—1) x (n—1).

Y O
0 1
The t x t minors that involve 1 correspond bijectively to the t — 1 size minors of Y, and
each, up to sign, equals one of them. Those that do not involve 1 are obviously in I;_1(Y):
expand by minors with respect one row or column. Hence, I;_1(Y)K[X], = [;(X)K[X]..
The y;; together with the variables x,,;, 1 < 7 < n, z;,, 1 <i < n — 1 are algebraically
independent over K and together with 1/z = 1/x,,, generate K[X],. So K[X], is S,
where S is the polynomial ring in the z,; and x;, over K[Y]. The claim follows. O

7. We show the 2 x 2 minors are a Grobner basis using the Buchberger criterion. Thus,



the initial ideal is generated by products of pairs of elements on the “back” diagonals: the
back diagonal consists of the two elements not on the main diagonal. Since the ideal is
graded and z,,, is not on a back diagonal, it is not a zerodivisor on the initial ideal, and
so is not a zerodivisor on I5(X). With notation as in 5., one wants to show that I;(Y") is
prime, which is clear: it is generated by a subset of the variables. It remains to apply the
Buchberger criterion. If the two minors involve 4 columns or 4 rows, the back diagonals
do not overlap, and so the initial terms are relatively prime. If the minors lie in a 2 x 3
(resp., 3 x 2) submatrix, the check is the same as in 6. of Problem Set #1: if x is the other
variable in the column (resp., row) of the common element of the back diagonals, one gets
+2 times the third 2 x 2 minor. Let Aypij = ©4iT; — Ta;Tri. We may assume the 2 minors
lie in rows indexed a < b < ¢ and columns indexed ¢ < j < k, all needed, and that their
back diagonals meet in one element. There are five cases not already covered: the pairs
of back diagonals (each written as a product) are: (1) Z¢i%pj, TeiTaks (2) Teiajs Teilbk,
(3) T Tciy TojTak, (4) TakThjs TakTei, a0d (5) TarTi, TakZej. The 5 checks, all similar, are:

(1> $akAbc,ij - xbjAac,ik = _xbiAac,jk: - xckAab,ij-
(2) xbkAac,ij - xajAbc,ik - _xaiAbc,jk + xckAab,ij-
(3) xakAbc,ij - xciAab,jk - xajAbc,ik - xbiAac,jk’-

(4) xciAab,jk - xbjAac,ik = _:BajAbc,ik: - xckAab,ij'
(5)  xejlapik — Tvilacjk = —Tailpe,jk + Teklab,ij-

The initial terms of righthand products don’t cancel, so these are standard epxressions. [J

8. (a) Suppose one has an infinite strictly decreasing sequence of finite sets. The largest
elements are non-increasing and so must be eventually stable. Call the stable value a;.
Recursively, suppose that for ¢ < k the ith largest elements are eventually stable with
stable value a;. From the point where all are stable on, the k 4 1st largest elements are
non-increasing and so eventually stable as well, say with stable value ag4;. The recursion
yields an infinite strictlly decreasing sequence a; > --- > aj > ---, a contradiction. [J

(b) At each step in the process, the set of monomials in the current remainder decreases
in the sense of part (a), and so the process must terminate. [



