Math 615, Winter 2016

Problem Set #4 Solutions

1. From 7. of Problem Set #3 with n = 3 and $x_{ij} = x_{i+j-1}$ the Δ_i are a Gröbner basis for hlex, and generating relations come from the checks in Buchberger's criterion: the ones coming from cases (1) and (2) of the Problem Set #3 Solutions are $x_{i1}\Delta_1 - x_{i2}\Delta_2 + x_{i3}\Delta_3 =$ 0 for i = 2, i = 1, resp., yield relations $\rho_i = (x_{i1}, -x_{i2}, x_{i3})$ for i = 1, 2. The third check is not needed here, but we have not proved this. It gives $x_{11}x_{22}\Delta_1 - x_{12}x_{23}\Delta_3 =$ $x_{12}x_{21}\Delta_1 - x_{13}x_{22}\Delta_2$; hence the relation $(\Delta_3, 0, -\Delta_1) = x_{22}\rho_1 - x_{11}\rho_2$. Thus, ρ_1 and ρ_2 generate. \Box

2. The Veronese subring contains the k th power of each generator, and so R is integral over over $R^{(k)}$. Since R is finitely generated over $K \subseteq R^{(k)}$, R is module-finite over $R^{(k)}$. This map is split: $\bigoplus_{j \neq 0 \mod k} [R]_j$ is a complement for $R^{(k0)}$ as a module over $R^{(k)}$. The result now follows from Problem 5.(e) of Problem Set #3. \Box

3. (a) Since L is free over $K, L \otimes_K R$ is free, and, in particular, faithfully flat over R. Hence, it suffices to show that the fibers over prime ideals P of R are Cohen-Macaulay, and these have the form $\kappa_P \otimes_R L$, where $\kappa_P = R_P/PR_P$ is a field finitely generated over K. Hence, κ_P is a finite algebraic extension of a pure transcendental extension $F = K(t_1, \ldots, t_n)$ of K. Now $T := F \otimes_K L$ is a localization of the polynomial ring $L[t_1, \ldots, t_n]$, and so is a Cohen-Macaulay F-algebra. Since κ_P is a module-finite extension of F, the fiber $\kappa_P \otimes_R L \cong \kappa_P \otimes_F (F \otimes_K L) = \kappa_P \otimes_F T$ is flat and module-finite over T, so that the fibers are now zero-dimensional and, hence, Cohen-Macaulay. \Box

(b) Since S is free over K, $R \otimes_K S$ is free over R. It therefore suffices to show that the fibers $\kappa_P \otimes_R (R \otimes_K S) \cong \kappa_P \otimes_K S$ are Cohen-Macaulay. This holds by part (a) (let S play the role of R, and let $L = \kappa_P$). \Box

4. Let $T = R \oplus M$, where M is an R-module, and $U = S \oplus N$, where N is an S-module. Then $T \otimes_K U \cong (R \otimes_K S) \oplus ((R \otimes_K N) \oplus (M \otimes_K S) \oplus (M \otimes_K N))$, where each of the four terms is an $(R \otimes_K S)$ -module. Hence, $R \otimes_K S$ is a direct summand of $T \otimes_K U$, which is a polynomial ring over K. \Box

5. Let $X' = X - x_{11}I$ and $Y' = Y - y_{11}I$. Then XY - YX = X'Y' - Y'X', and $K[X,Y] = K[X',Y'][x_{11},y_{11}]$. If we use $x'_{22} = x_{22} - x_{11}$ and $y'_{22} = y_{22} - y_{11}$, we have that $K[X,Y]/I_1(XY-YX) \cong (K[X',Y']/I_1(X'Y'-Y'X'))[x_{11},y_{11}]$. Here, X', Y' are matrices of indeterminates except that there are 0s in the upper left corners. But $I_1(X'Y'-Y'X')$ is $I_2(Z)$ where Z is the 2 × 3 matrix with rows x_{12}, x_{21}, x'_{22} and y_{12}, y_{21}, y'_{22} .

6. (a) Let f be any nonzero element of P. Then f is a nonzerodivisor in R_P , and so R_P has depth one if and only if R_P/fR_P has depth 0, i.e., if and only if PR_P is an associated prime of the ideal fR_P (equivalently, of the module R_P/fR_P). This is true if and only if P is an associated prime of the ideal fR (equivalently, of the module R/fR), since, quite generally, P is an associated prime of M if and only if PR_P is an associated prime of M_P over R_P . (If $R/P \to M$ is injective, this is preserved when one localizes at P.) Conversely, if u/w has annihilator PR_P , where $u \in M$ and $w \in R - P$, then, since 1/w is a unit, P(u/1) = 0 in M_P . This implies that for some $v \in R - P$, Pvu = 0 in M, and then P is the annihilator of vu.) \Box

(b) The intersection clearly contains R. Suppose $g, f \in R, f \neq 0$, and $g/f \notin R$. Since $g \notin fR$, if $\mathfrak{A}_1 \cap \cdots \cap \mathfrak{A}_h$ is a primary decomoposition of fR, we can choose \mathfrak{A}_i such that $g \notin \mathfrak{A}_i$. Let P be the radical of \mathfrak{A}_i , which is an associated prime of f. Then R_P has depth 1, and $g \notin \mathfrak{A}_i R_P$, so that $g \notin fR_P$ and $g/f \notin R_P$. \Box

7. (a) Let $f \in \mathbb{R}^H$ and suppose $f \in V \subseteq \mathbb{R}$ where V is finite-dimensional as a K-vector space and G-stable. We have a regular map $G \to V \times V$ via $\gamma \mapsto (\gamma(v), v)$. The inverse image of the diagonal $\Delta \subseteq V \times V$ is closed, and contains H. Since H is dense, it contains G. The fact that G maps into Δ implies that all of G fixes f. \Box

(b) Let \overline{H} be the closure of the unitary matrices H. We will show that \overline{H} is the general linear group G. Fix $h \in H$. Left multiplication by h is an automorphism of G as an algebraic set that stabilizes H. Hence, it stabilizes \overline{H} , and $H\overline{H} \subseteq \overline{H}$. Fix $g \in \overline{H}$. Then right multiplication by g^{-1} is an automorphism of G as an algebraic set and since $\overline{H}g^{-1}$ is a closed set containing H, it contains \overline{H} . Hence, $\overline{H}\overline{H} \subseteq \overline{H}$. Likewise, $g \mapsto g^{-1}$ is an automorphism of the algebraic set G that stabilizes H, and so it stabilizes \overline{H} . Hence, \overline{H} is a subgroup of G.

To show that $\overline{H} = G$, it suffices to show \overline{H} contains the diagonal and elementary matrices. Let D_1 be the set of diagonal matrices with an element of $\mathbb{C} - \{0\}$ in the 1, 1 spot and 1 elsewhere on the diagonal. Since the elements of absolute value 1 are Zariski dense in $\mathbb{C} - \{0\}$ (any infinite set is dense), \overline{H} contains D_1 , and similarly, all diagonal matrices such that diagonal entries are 1 except in one spot. Since \overline{H} is a group, \overline{H} contains all diagonal matrices. Since an elementary matrix is the direct sum of an identity matrix with a 2 × 2 matrix, whether the elementary matrices are in \overline{H} reduces to the case n = 2. Orthogonal matrices are unitary, and symmetric matrices are orthogonally conjugate to diagonal matrices. Thus, $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in \overline{H}$ and $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in \overline{H}$, so that $\begin{pmatrix} 1 & 0 \\ 0 & c^{-1} \end{pmatrix} A \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \in \overline{H}$, $c \neq 0$, and this is a typical upper triangular elementary matrix. Lower triangular elementary matrices can be obtained similarly. (Alternatively one may use the fact that every invertible matrix is the product of a unitary matrix and a Hermitian matrix.) \Box

8. (a) If f^2 , $f^3 \in R$ then $f^n \in R$ for all $n \geq 2$ in \mathbb{N} . Hence, $f^p \in R$, whence under $F: R \to R = S, F(f^3) \in F(f^2)S$. Since F is split, ideals are contracted, and we have that $f^3 \in f^2R$ so that $f \in R$. \Box

(b) If R is a polynomial ring over a perfect field K, a polynomial is a pth power iff all exponents are divisible by p. $F(R) \subseteq R$ has a complement the K-span of all monomials such that at least one exponent occurring is not divisible by p. Call the corresponding splitting ϕ . The same description, applied to monomials that are nonzero mod I, gives a splitting of $F(R/I) \to R/I$ when I is generated by square-free monomials. \Box

(c) G acts on monomials, and a K-basis for R^G consists of sums of orbits. One monomial in an orbit has all exponents divisible by p if and only if all the monomials occurring do. It follows that ϕ maps R^G into $F(R^G)$ and this implies that it splits $F(R^G) \subseteq R^G$. \Box