
Math 615, Winter 2016 Problem Set #4 Solutions

1. From 7. of Problem Set #3 with n = 3 and xij = xi+j−1 the ∆i are a Gröbner basis
for hlex, and generating relations come from the checks in Buchberger’s criterion: the ones
coming from cases (1) and (2) of the Problem Set #3 Solutions are xi1∆1−xi2∆2+xi3∆3 =
0 for i = 2, i = 1, resp., yield relations ρi = (xi1, −xi2, xi3) for i = 1, 2. The third
check is not needed here, but we have not proved this. It gives x11x22∆1 − x12x23∆3 =
x12x21∆1 − x13x22∆2; hence the relation (∆3, 0, −∆1) = x22ρ1 − x11ρ2. Thus, ρ1 and ρ2
generate. �

2. The Veronese subring contains the k th power of each generator, and so R is integral
over over R(k). Since R is finitely generated over K ⊆ R(k), R is module-finite over R(k).
This map is split:

⊕
j 6≡0 mod k[R]j is a complement for R(k0 as a module over R(k). The

result now follows from Problem 5.(e) of Problem Set #3. �

3. (a) Since L is free over K, L⊗KR is free, and, in particular, faithfully flat over R. Hence,
it suffices to show that the fibers over prime ideals P of R are Cohen-Macaulay, and these
have the form κP ⊗R L, where κP = RP /PRP is a field finitely generated over K. Hence,
κP is a finite algebraic extension of a pure transcendental extension F = K(t1, . . . , tn)
of K. Now T := F ⊗K L is a localization of the polynomial ring L[t1, . . . , tn], and so
is a Cohen-Macaulay F -algebra. Since κP is a module-finite extension of F , the fiber
κP ⊗R L ∼= κP ⊗F (F ⊗K L) = κP ⊗F T is flat and module-finite over T , so that the fibers
are now zero-dimensional and, hence, Cohen-Macaulay. �

(b) Since S is free over K, R ⊗K S is free over R. It therefore suffices to show that the
fibers κP ⊗R (R⊗K S) ∼= κP ⊗K S are Cohen-Macaulay. This holds by part (a) (let S play
the role of R, and let L = κP ). �

4. Let T = R ⊕M , where M is an R-module, and U = S ⊕N , where N is an S-module.
Then T ⊗K U ∼= (R⊗K S)⊕

(
(R⊗K N)⊕ (M ⊗K S)⊕ (M ⊗K N)

)
, where each of the four

terms is an (R⊗K S)-module. Hence, R⊗K S is a direct summand of T ⊗K U , which is a
polynomial ring over K. �

5. Let X ′ = X − x11I and Y ′ = Y − y11I. Then XY − Y X = X ′Y ′ − Y ′X ′, and
K[X,Y ] = K[X ′, Y ′][x11, y11]. If we use x′22 = x22−x11 and y′22 = y22− y11, we have that
K[X,Y ]/I1(XY−Y X) ∼=

(
K[X ′, Y ′]/I1(X ′Y ′−Y ′X ′)

)
[x11, y11]. Here, X ′, Y ′ are matrices

of indeterminates except that there are 0s in the upper left corners. But I1(X ′Y ′ − Y ′X ′)
is I2(Z) where Z is the 2× 3 matrix with rows x12, x21, x

′
22 and y12, y21, y

′
22.

6. (a) Let f be any nonzero element of P . Then f is a nonzerodivisor in RP , and so RP

has depth one if and only if RP /fRP has depth 0, i.e., if and only if PRP is an associated
prime of the ideal fRP (equivalently, of the module RP /fRP ). This is true if and only if
P is an associated prime of the ideal fR (equivalently, of the module R/fR), since, quite
generally, P is an associated prime of M if and only if PRP is an associated prime of MP

over RP . (If R/P →M is injective, this is preserved when one localizes at P .) Conversely,
if u/w has annihilator PRP , where u ∈ M and w ∈ R − P , then, since 1/w is a unit,
P (u/1) = 0 in MP . This implies that for some v ∈ R − P , Pvu = 0 in M , and then P is
the annihilator of vu.) �
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(b) The intersection clearly contains R. Suppose g, f ∈ R, f 6= 0, and g/f /∈ R. Since
g /∈ fR, if A1 ∩ · · · ∩ Ah is a primary decomoposition of fR, we can choose Ai such that
g /∈ Ai. Let P be the radical of Ai, which is an associated prime of f . Then RP has depth
1, and g /∈ AiRP , so that g /∈ fRP and g/f /∈ RP . �

7. (a) Let f ∈ RH and suppose f ∈ V ⊆ R where V is finite-dimensional as a K-vector
space and G-stable. We have a regular map G → V × V via γ 7→

(
γ(v), v). The inverse

image of the diagonal ∆ ⊆ V × V is closed, and contains H. Since H is dense, it contains
G. The fact that G maps into ∆ implies that all of G fixes f . �

(b) Let H be the closure of the unitary matrices H. We will show that H is the general
linear group G. Fix h ∈ H. Left multiplication by h is an automorphism of G as an
algebraic set that stabilizes H. Hence, it stabilizes H, and HH ⊆ H. Fix g ∈ H. Then
right multiplication by g−1 is an automorphism of G as an algebraic set and since Hg−1

is a closed set containing H, it contains H. Hence, HH ⊆ H. Likewise, g 7→ g−1 is an
automorphism of the algebraic set G that stabilizes H, and so it stabilizes H. Hence, H
is a subgroup of G.

To show that H = G, it suffices to show H contains the diagonal and elementary matrices.
Let D1 be the set of diagonal matrices with an element of C − {0} in the 1, 1 spot and
1 elsewhere on the diagonal. Since the elements of absolute value 1 are Zariski dense in
C−{0} (any infinite set is dense), H contains D1, and similarly, all diagonal matrices such
that diagonal entries are 1 except in one spot. Since H is a group, H contains all diagonal
matrices. Since an elementary matrix is the direct sum of an identity matrix with a 2× 2
matrix, whether the elementary matrices are in H reduces to the case n = 2. Orthogo-
nal matrices are unitary, and symmetric matrices are orthogonally conjugate to diagonal
matrices. Thus,

(
1 1
1 0

)
∈ H and A =

(
1 1
1 0

)(
0 1
1 0

)
=
(
1 1
0 1

)
∈ H, so that

(
1 0
0 c−1

)
A
(
1 0
0 c

)
∈ H,

c 6= 0, and this is a typical upper triangular elementary matrix. Lower triangular elemen-
tary matrices can be obtained similarly. (Alternatively one may use the fact that every
invertible matrix is the product of a unitary matrix and a Hermitian matrix.) �

8. (a) If f2, f3 ∈ R then fn ∈ R for all n ≥ 2 in N. Hence, fp ∈ R, whence under
F : R→ R = S, F (f3) ∈ F (f2)S. Since F is split, ideals are contracted, and we have that
f3 ∈ f2R so that f ∈ R. �

(b) If R is a polynomial ring over a perfect field K, a polynomial is a p th power iff all
exponents are divisible by p. F (R) ⊆ R has a complement the K-span of all monomials
such that at least one exponent occurring is not divisible by p. Call the corresponding
splitting φ. The same description, applied to monomials that are nonzero mod I, gives a
splitting of F (R/I)→ R/I when I is generated by square-free monomials. �

(c) G acts on monomials, and a K-basis for RG consists of sums of orbits. One monomial
in an orbit has all exponents divisible by p if and only if all the monomials occurring do.
It follows that φ maps RG into F (RG) and this implies that it splits F (RG) ⊆ RG. �


