1. From 7. of Problem Set $\# 3$ with $n=3$ and $x_{i j}=x_{i+j-1}$ the Δ_{i} are a Gröbner basis for hlex, and generating relations come from the checks in Buchberger's criterion: the ones coming from cases (1) and (2) of the Problem Set \#3 Solutions are $x_{i 1} \Delta_{1}-x_{i 2} \Delta_{2}+x_{i 3} \Delta_{3}=$ 0 for $i=2, i=1$, resp., yield relations $\rho_{i}=\left(x_{i 1},-x_{i 2}, x_{i 3}\right)$ for $i=1,2$. The third check is not needed here, but we have not proved this. It gives $x_{11} x_{22} \Delta_{1}-x_{12} x_{23} \Delta_{3}=$ $x_{12} x_{21} \Delta_{1}-x_{13} x_{22} \Delta_{2}$; hence the relation $\left(\Delta_{3}, 0,-\Delta_{1}\right)=x_{22} \rho_{1}-x_{11} \rho_{2}$. Thus, ρ_{1} and ρ_{2} generate.
2. The Veronese subring contains the k th power of each generator, and so R is integral over over $R^{(k)}$. Since R is finitely generated over $K \subseteq R^{(k)}, R$ is module-finite over $R^{(k)}$. This map is split: $\bigoplus_{j \neq 0 \bmod k}[R]_{j}$ is a complement for $R^{(k 0}$ as a module over $R^{(k)}$. The result now follows from Problem 5.(e) of Problem Set $\# 3$.
3. (a) Since L is free over $K, L \otimes_{K} R$ is free, and, in particular, faithfully flat over R. Hence, it suffices to show that the fibers over prime ideals P of R are Cohen-Macaulay, and these have the form $\kappa_{P} \otimes_{R} L$, where $\kappa_{P}=R_{P} / P R_{P}$ is a field finitely generated over K. Hence, κ_{P} is a finite algebraic extension of a pure transcendental extension $F=K\left(t_{1}, \ldots, t_{n}\right)$ of K. Now $T:=F \otimes_{K} L$ is a localization of the polynomial ring $L\left[t_{1}, \ldots, t_{n}\right]$, and so is a Cohen-Macaulay F-algebra. Since κ_{P} is a module-finite extension of F, the fiber $\kappa_{P} \otimes_{R} L \cong \kappa_{P} \otimes_{F}\left(F \otimes_{K} L\right)=\kappa_{P} \otimes_{F} T$ is flat and module-finite over T, so that the fibers are now zero-dimensional and, hence, Cohen-Macaulay.
(b) Since S is free over $K, R \otimes_{K} S$ is free over R. It therefore suffices to show that the fibers $\kappa_{P} \otimes_{R}\left(R \otimes_{K} S\right) \cong \kappa_{P} \otimes_{K} S$ are Cohen-Macaulay. This holds by part (a) (let S play the role of R, and let $L=\kappa_{P}$).
4. Let $T=R \oplus M$, where M is an R-module, and $U=S \oplus N$, where N is an S-module. Then $T \otimes_{K} U \cong\left(R \otimes_{K} S\right) \oplus\left(\left(R \otimes_{K} N\right) \oplus\left(M \otimes_{K} S\right) \oplus\left(M \otimes_{K} N\right)\right)$, where each of the four terms is an $\left(R \otimes_{K} S\right)$-module. Hence, $R \otimes_{K} S$ is a direct summand of $T \otimes_{K} U$, which is a polynomial ring over K.
5. Let $X^{\prime}=X-x_{11} \boldsymbol{I}$ and $Y^{\prime}=Y-y_{11} \boldsymbol{I}$. Then $X Y-Y X=X^{\prime} Y^{\prime}-Y^{\prime} X^{\prime}$, and $K[X, Y]=K\left[X^{\prime}, Y^{\prime}\right]\left[x_{11}, y_{11}\right]$. If we use $x_{22}^{\prime}=x_{22}-x_{11}$ and $y_{22}^{\prime}=y_{22}-y_{11}$, we have that $K[X, Y] / I_{1}(X Y-Y X) \cong\left(K\left[X^{\prime}, Y^{\prime}\right] / I_{1}\left(X^{\prime} Y^{\prime}-Y^{\prime} X^{\prime}\right)\right)\left[x_{11}, y_{11}\right]$. Here, X^{\prime}, Y^{\prime} are matrices of indeterminates except that there are 0s in the upper left corners. But $I_{1}\left(X^{\prime} Y^{\prime}-Y^{\prime} X^{\prime}\right)$ is $I_{2}(Z)$ where Z is the 2×3 matrix with rows $x_{12}, x_{21}, x_{22}^{\prime}$ and $y_{12}, y_{21}, y_{22}^{\prime}$.
6. (a) Let f be any nonzero element of P. Then f is a nonzerodivisor in R_{P}, and so R_{P} has depth one if and only if $R_{P} / f R_{P}$ has depth 0 , i.e., if and only if $P R_{P}$ is an associated prime of the ideal $f R_{P}$ (equivalently, of the module $R_{P} / f R_{P}$). This is true if and only if P is an associated prime of the ideal $f R$ (equivalently, of the module $R / f R$), since, quite generally, P is an associated prime of M if and only if $P R_{P}$ is an associated prime of M_{P} over R_{P}. (If $R / P \rightarrow M$ is injective, this is preserved when one localizes at P.) Conversely, if u / w has annihilator $P R_{P}$, where $u \in M$ and $w \in R-P$, then, since $1 / w$ is a unit, $P(u / 1)=0$ in M_{P}. This implies that for some $v \in R-P, P v u=0$ in M, and then P is the annihilator of $v u$.)
(b) The intersection clearly contains R. Suppose $g, f \in R, f \neq 0$, and $g / f \notin R$. Since $g \notin f R$, if $\mathfrak{A}_{1} \cap \cdots \cap \mathfrak{A}_{h}$ is a primary decomoposition of $f R$, we can choose \mathfrak{A}_{i} such that $g \notin \mathfrak{A}_{i}$. Let P be the radical of \mathfrak{A}_{i}, which is an associated prime of f. Then R_{P} has depth 1 , and $g \notin \mathfrak{A}_{i} R_{P}$, so that $g \notin f R_{P}$ and $g / f \notin R_{P}$.
7. (a) Let $f \in R^{H}$ and suppose $f \in V \subseteq R$ where V is finite-dimensional as a K-vector space and G-stable. We have a regular map $G \rightarrow V \times V$ via $\gamma \mapsto(\gamma(v), v)$. The inverse image of the diagonal $\Delta \subseteq V \times V$ is closed, and contains H. Since H is dense, it contains G. The fact that G maps into Δ implies that all of G fixes f.
(b) Let \bar{H} be the closure of the unitary matrices H. We will show that \bar{H} is the general linear group G. Fix $h \in H$. Left multiplication by h is an automorphism of G as an algebraic set that stabilizes H. Hence, it stabilizes \bar{H}, and $H \bar{H} \subseteq \bar{H}$. Fix $g \in \bar{H}$. Then right multiplication by g^{-1} is an automorphism of G as an algebraic set and since $\bar{H} g^{-1}$ is a closed set containing H, it contains \bar{H}. Hence, $\bar{H} \bar{H} \subseteq \bar{H}$. Likewise, $g \mapsto g^{-1}$ is an automorphism of the algebraic set G that stabilizes H, and so it stabilizes \bar{H}. Hence, \bar{H} is a subgroup of G.
To show that $\bar{H}=G$, it suffices to show \bar{H} contains the diagonal and elementary matrices. Let D_{1} be the set of diagonal matrices with an element of $\mathbb{C}-\{0\}$ in the 1,1 spot and 1 elsewhere on the diagonal. Since the elements of absolute value 1 are Zariski dense in $\mathbb{C}-\{0\}$ (any infinite set is dense), \bar{H} contains D_{1}, and similarly, all diagonal matrices such that diagonal entries are 1 except in one spot. Since \bar{H} is a group, \bar{H} contains all diagonal matrices. Since an elementary matrix is the direct sum of an identity matrix with a 2×2 matrix, whether the elementary matrices are in \bar{H} reduces to the case $n=2$. Orthogonal matrices are unitary, and symmetric matrices are orthogonally conjugate to diagonal matrices. Thus, $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) \in \bar{H}$ and $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in \bar{H}$, so that $\left(\begin{array}{ll}1 & 0 \\ 0 & c^{-1}\end{array}\right) A\left(\begin{array}{ll}1 & 0 \\ 0 & c\end{array}\right) \in \bar{H}$, $c \neq 0$, and this is a typical upper triangular elementary matrix. Lower triangular elementary matrices can be obtained similarly. (Alternatively one may use the fact that every invertible matrix is the product of a unitary matrix and a Hermitian matrix.)
8. (a) If $f^{2}, f^{3} \in R$ then $f^{n} \in R$ for all $n \geq 2$ in \mathbb{N}. Hence, $f^{p} \in R$, whence under $F: R \rightarrow R=S, F\left(f^{3}\right) \in F\left(f^{2}\right) S$. Since F is split, ideals are contracted, and we have that $f^{3} \in f^{2} R$ so that $f \in R$.
(b) If R is a polynomial ring over a perfect field K, a polynomial is a p th power iff all exponents are divisible by $p . F(R) \subseteq R$ has a complement the K-span of all monomials such that at least one exponent occurring is not divisible by p. Call the corresponding splitting ϕ. The same description, applied to monomials that are nonzero $\bmod I$, gives a splitting of $F(R / I) \rightarrow R / I$ when I is generated by square-free monomials.
(c) G acts on monomials, and a K-basis for R^{G} consists of sums of orbits. One monomial in an orbit has all exponents divisible by p if and only if all the monomials occurring do. It follows that ϕ maps R^{G} into $F\left(R^{G}\right)$ and this implies that it splits $F\left(R^{G}\right) \subseteq R^{G}$.
