Math 615, Winter 2016 Problem Set #4 Solutions

1. From 7. of Problem Set #3 with n = 3 and z;; = ;4+j—1 the A; are a Grobner basis
for hlex, and generating relations come from the checks in Buchberger’s criterion: the ones
coming from cases (1) and (2) of the Problem Set #3 Solutions are x;; A1 —x;0As+x;3A3 =
0 for i = 2, i = 1, resp., yield relations p; = (z;1, —i2, x;3) for i = 1, 2. The third
check is not needed here, but we have not proved this. It gives x11220A1 — x12223A3 =
12021 A1 — x13T22A9; hence the relation (As, 0, —A;) = x92p1 — x11p2. Thus, p; and ps
generate. [

2. The Veronese subring contains the kth power of each generator, and so R is integral
over over R®). Since R is finitely generated over K C R R is module-finite over R(*).
This map is split: €,-0 mea x[£2; is & complement for R0 as a module over R*®). The
result now follows from Problem 5.(e) of Problem Set #3. O

3. (a) Since L is free over K, L&k R is free, and, in particular, faithfully flat over R. Hence,
it suffices to show that the fibers over prime ideals P of R are Cohen-Macaulay, and these
have the form kp @ L, where kp = Rp/PRp is a field finitely generated over K. Hence,
kp is a finite algebraic extension of a pure transcendental extension F' = K(ty, ... ,t,)
of K. Now T := F ®x L is a localization of the polynomial ring L[ty, ... ,t,], and so
is a Cohen-Macaulay F'-algebra. Since kp is a module-finite extension of F', the fiber
kpQrL = kpQp (F®RK L) =kp®pT is flat and module-finite over T, so that the fibers
are now zero-dimensional and, hence, Cohen-Macaulay. [

(b) Since S is free over K, R ® S is free over R. It therefore suffices to show that the
fibers kp ®r (R®K S) = kp @k S are Cohen-Macaulay. This holds by part (a) (let S play
the role of R, and let L = kp). O

4. Let T = R® M, where M is an R-module, and U = S @& N, where N is an S-module.
Then T@x U = (R®K S)® (R®kx N)® (M ®k S) ® (M ®k N)), where each of the four
terms is an (R ® g S)-module. Hence, R®x S is a direct summand of T'® U, which is a
polynomial ring over K. [J

5. Let X' = X —apyl and Y =Y —y;I. Then XY —YX = XY —Y'X' and
K[X,Y] = K[X'",Y'][z11,y11]. If we use xhy = 290 — 211 and yhy = Y22 — y11, we have that
KX, Y]/L(XY-YX) = (KX Y/ (X'Y'-Y'X"))[#11,y11]. Here, X', Y are matrices
of indeterminates except that there are Os in the upper left corners. But I (XY’ — Y’ X’)
is Io(Z) where Z is the 2 x 3 matrix with rows x19, x21, 25y and y12, yo1, Yho-

6. (a) Let f be any nonzero element of P. Then f is a nonzerodivisor in Rp, and so Rp
has depth one if and only if Rp/fRp has depth 0, i.e., if and only if PRp is an associated
prime of the ideal fRp (equivalently, of the module Rp/fRp). This is true if and only if
P is an associated prime of the ideal fR (equivalently, of the module R/ fR), since, quite
generally, P is an associated prime of M if and only if PRp is an associated prime of Mp
over Rp. (If R/P — M is injective, this is preserved when one localizes at P.) Conversely,
if u/w has annihilator PRp, where u € M and w € R — P, then, since 1/w is a unit,
P(u/1) =0 in Mp. This implies that for some v € R — P, Pvu = 0 in M, and then P is
the annihilator of vu.) O
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(b) The intersection clearly contains R. Suppose g, f € R, f # 0, and g/f ¢ R. Since
g ¢ fR,if Ay N--- N2y is a primary decomoposition of fR, we can choose ; such that
g ¢ ;. Let P be the radical of 2;, which is an associated prime of f. Then Rp has depth
1,and g ¢ A;Rp, so that g ¢ fRp and g/f ¢ Rp. O

7. (a) Let f € R and suppose f € V C R where V is finite-dimensional as a K-vector
space and G-stable. We have a regular map G — V x V via v — (7(v), v). The inverse
image of the diagonal A C V' x V is closed, and contains H. Since H is dense, it contains
G. The fact that G maps into A implies that all of G fixes f. 0O

(b) Let H be the closure of the unitary matrices H. We will show that H is the general
linear group G. Fix h € H. Left multiplication by h is an automorphism of G as an
algebraic set that stabilizes H. Hence, it stabilizes H, and HH C H. Fix ¢ € H. Then
right multiplication by ¢~! is an automorphism of G as an algebraic set and since Hg™*
is a closed set containing H, it contains H. Hence, H H C H. Likewise, g — ¢~ ! is an
automorphism of the algebraic set G that stabilizes H, and so it stabilizes H. Hence, H
is a subgroup of G.

To show that H = G, it suffices to show H contains the diagonal and elementary matrices.
Let D; be the set of diagonal matrices with an element of C — {0} in the 1, 1 spot and
1 elsewhere on the diagonal. Since the elements of absolute value 1 are Zariski dense in
C — {0} (any infinite set is dense), H contains D;, and similarly, all diagonal matrices such
that diagonal entries are 1 except in one spot. Since H is a group, H contains all diagonal
matrices. Since an elementary matrix is the direct sum of an identity matrix with a 2 x 2
matrix, whether the elementary matrices are in H reduces to the case n = 2. Orthogo-

nal matrices are unitary, and symmetric matrices are orthogonally conjugate to diagonal

matrices. Thus, G (1)) € H and A = (} (1)) ((1) (1)) = ((1) 1) € H, so that (é CEI)AG) 2) € H,
¢ # 0, and this is a typical upper triangular elementary matrix. Lower triangular elemen-
tary matrices can be obtained similarly. (Alternatively one may use the fact that every

invertible matrix is the product of a unitary matrix and a Hermitian matrix.) O

8. (a) If f2, f2 € R then f* € R for all n > 2 in N. Hence, f? € R, whence under
F:R— R=S,F(f%) € F(f*)S. Since F is split, ideals are contracted, and we have that
f2e f?Rsothat fe R. O

(b) If R is a polynomial ring over a perfect field K, a polynomial is a pth power iff all
exponents are divisible by p. F(R) C R has a complement the K-span of all monomials
such that at least one exponent occurring is not divisible by p. Call the corresponding
splitting ¢. The same description, applied to monomials that are nonzero mod I, gives a
splitting of F'(R/I) — R/I when I is generated by square-free monomials. [

(c) G acts on monomials, and a K-basis for R consists of sums of orbits. One monomial
in an orbit has all exponents divisible by p if and only if all the monomials occurring do.
It follows that ¢ maps RY into F(RY) and this implies that it splits F((RY) C R¢. O



