Problem Set #5

Math 615, Fall 2016 Due: Friday, April 15

1. Let R be a Noetherian domain of prime characteristic p > 0, $I, J \subseteq R$, and let $f \in R$. (a) Show that if I is tightly closed, then $I :_R J$ is tightly closed.

(b) Show that if $f \neq 0$ and $g \in (f)^*$, then g/f is integral over R. (You may assume the fact that the integral closure of R is an intersection of Noetherian discrete valuation rings.) (c) Show that if R is integrally closed, then $(fI)^* = f(I^*)$.

2. Let (R, m, K) be a Cohen-Macaulay ring of dimension n. Let $\underline{x} = x_1, \ldots, x_n$ and $\underline{y} = y_1, \ldots, y_n$ be two systems of parameters. Let $\mathfrak{A}_{\underline{x}}$ be the annihilator of m in $R/(\underline{x})R$, with similar notation for y and other systems of parameters.

(a) If n = 1, prove that multiplication by y_1 on the numerators induces an injective map $R/x_1R \to R/x_1y_1R$ that carries $\mathfrak{A}_{x_1} \cong \mathfrak{A}_{x_1y_1}$. Hence, by symmetry, $\mathfrak{A}_{x_1} \cong \mathfrak{A}_{y_1}$.

(b) Show that $\mathfrak{A}_{\underline{x}} \cong \mathfrak{A}_{\underline{y}}$ in general. (You may use that any two systems of parameters are joined by a finite chain in which consecutive systems differ in only one element.)

(c) If $y_i = x_i^{t_i}$ with $t_i \ge 1$ for $1 \le i \le n$, show that the map $R/(\underline{x})R \to R/(\underline{y})R$ induced by multiplication by $x_1^{t_1-1} \cdots x_n^{t_n-1}$ on numerators induces an injection that carries $\mathfrak{A}_{\underline{x}} \cong \mathfrak{A}_{\underline{y}}$. [dim $_K(\mathfrak{A}_{\underline{x}})$ is independent of the choice of \underline{x} and is called the *type* of the Cohen-Macaulay local ring R. A Cohen-Macaulay local ring of type one is called *Gorenstein*.]

3. Let (R, m, K) be a Cohen-Macaulay local domain of prime characteristic p > 0. Let x_1, \ldots, x_n be a system of parameters. Suppose that $(x_1, \ldots, x_n)R$ is tightly closed. Prove that for every system of parameters y_1, \ldots, y_n , the ideal $(y_1, \ldots, y_n)R$ is tightly closed.

4. Let $\underline{x}^- = x_1, \ldots, x_{n-1} \in R$. Let M be any R-module. Show that there is a long exact sequence of Koszul homology a typical part of which is

$$\cdots \to H_{i+1}(\underline{x}^-, z; M) \to H_i(\underline{x}^-, y; M) \to H_i(\underline{x}^-, yz; M) \to H_i(\underline{x}^-, z; M) \to \cdots$$

[Suggestion: reduce to the situation where R is replaced by $B = A[X_1, \ldots, X_{n-1}, Y, Z]$ and make use of a short exact sequence of B-modules.]

5. Let R be be the local ring $K[[x, y]]/(x^2, xy)$ where x and y are formal power series indeterminates, and K is a field. Let m denote the maximal ideal of R. Determine the minimal modules of syzygies of K = R/m as a module over R: show that each is a direct sum of copies of K and m. Determine, for all i, the dimension of $\operatorname{Tor}_i^R(K, K)$ as a vector space over K.

6. Let R be the ring $K[x^2, xy, y^2] \subseteq K[x, y] = S$. Then $S = R \oplus M$, where M is the R-submodule xR + yR of S generated by x and y. Note that M is isomorphic as a module to both $(x^2, xy)R$ and to $(xy, y^2)R$. Show that all of the minimal modules of syzygies of M are isomorphic to M, and determine the modules $\operatorname{Tor}_i^R(M, M)$ for all $i \geq 1$.

7. (a) Let (A, m) be a local ring and let $\underline{x} = x_1, \ldots, x_n \in m$ generate a primary ideal. For any finitely generated A-module M, define $\chi(\underline{x}; M) = \sum_{i=0}^{n} (-1)^i \ell(H_i(\underline{x}; M))$. Show that if $0 \to M' \to M \to M'' \to 0$ is exact, then $\chi(\underline{x}, M) = \chi(\underline{x}; M') + \chi(\underline{x}, M'')$. (b) Prove that if $n \ge 2$ and M has finite length, then $\chi(\underline{x}; M) = 0$.

(c) Prove that if (R, m) is an Artin ring and $x_1, x_2 \in M$, then $H_1(x_1, x_2; R)$ is never a cyclic module over R, i.e., requires at least two generators.

8. Fix $n \ge 2$ and integers $a_1, \ldots, a_n > 0$. Let K be a field of characteristic p > 0 (p will vary) and let $f = x_1^{a_1} + \cdots + x_n^{a_n}$. Let $R = K[x_1, \ldots, x_n]/(f)$, and let $I = (x_1, \ldots, x_{n-1})R$. Let $\alpha = \frac{1}{a_1} + \cdots + \frac{1}{a_n}$. Show that if $\alpha \le 1$, then $x_n^{a_n-1}$ is in the tight closure I^* of I. Show that if $\alpha > 1$ then for all sufficiently large primes p, the element $x_n^{a_n-1} \notin I^*$.