
Math 615, Winter 2016 Problem Set #5 Solutions

1. (a) If u ∈ (I :R J)∗, there exists c 6= 0 in R such that for all q � 0, cuq ∈ (I :R J)[q] ⊆
I [q] :R J [q]. Hence, if j ∈ J , for all q � 0, jq(cuq) = c(ju)q ∈ I [q], so that ju ∈ I∗ = I.
Since this holds for all j ∈ J , u ∈ I :R J . �

(b) If this is false, we can find a Noetherian discrete valuation ring V ⊇ R such that
f/g /∈ V . Since, in V , f ∈ (gV )∗, it will suffice to show that gV is tightly closed. If
g = 0 this is clear. Otherwise, choose cd 6= 0 such that cfq ∈ gqV for all q � 0. Then
ord (c) + q ord (f) ≥ q ord (g) and ord (f) ≥ ord (f) − ord (c)/q for all q � 0. It follows
that ord (f) ≥ ord (g), as required. �

(c) If f = 0, this is clear. Assume f 6= 0. (fI)∗ ⊆ (fR)∗ = fR by (b). But if r ∈ R,
fr ∈ (fI)∗ iff for some nonzero c and all q � 0, c(fr)q ∈ (fI)[q] = fqI [q], i.e., crq ∈ I [q].
Thus, fr ∈ (fI)∗ iff r ∈ I∗, and the result follows. �

2. (a) We omit the subscript 1. Multiplcation by y carries R isomorphically onto yR
(since y is a nonzerodivisor) and xR ⊆ R isomorphically onto xyR. Hence, the map induced
by multiplication by y carries R/xR isomorphically on yR/xyR ⊆ R/xyR. In particular,
the specified map is an injection, and must take Ax = AnnR/xRm into Axy = AnnR/xyRm.
Suppose u in R is such that mu ⊆ xyR, and u is its image in R/xyR. Then xu ∈ xyR,
and since x is a nonzerodivisor, u ∈ yR. Hence, u ∈ AnnyR/xyRm, and the isomorphism
R/xR ∼= yR/xyR shows that u must be the image of an element of Ax. �

(b) Using the parenthetical comment, we may reduce the problem at once to the case where
the two systems are the same except for one element. Since the order of the parameters
is not relevant, we may assume that the systems are x1, . . . , xn−1, x and x1, . . . , xn−1y.
The issue is unaffected if we replace R by R = R/(x1, . . . , xn−1)R and x, y their images
in R, each of which is a parameter for the one-dimensional Cohen-Macaulay ring R. The
result is then immediate from part (a). �

(c) It suffices to prove the result when all the tj except ti are equal to one: one may then
apply that result n times, one time for each xj , to obtain the desired fact. We may proceed
by placing xj last in the sequence, and working modulo the other elements of the sequence,
as in part (b), to reduce to the case where n = 1. The result then follows from taking x

to be the image of xj and y to be x
tj−1
j . �

3. As in Problem 2., it suffices to consider the case where the two systems of parameters
are the same except for one element, and one can compare each of I = x1, . . . , xn−1, x and
x1, . . . , xn−1, y with J = x1, . . . , xn−1, xy. If an m-primary ideal I is not tightly closed,
let u be an element of the tight closure not in I. Then either mu ⊆ I, are we can choose
z1 ∈ m such that z1u /∈ I, while it is still true that z1u ∈ I∗. Repeating this process finitely
many times, we can find an element u ∈ I∗ − I such that mu ⊆ I: the process cannot
continue more than N steps, where mN ⊆ I. Thus, I fails to be tightly closed if and only
if there is an element of I :R m that is in I∗ − I. By the result of Problem 2., we have a
bijection between (I : m)/I and (J : m)/I induced by multiplication by y. Thus, it suffices
to show for u ∈ I : m that u ∈ I∗ if and only if yu ∈ J∗. But c(yu)q ∈ (xq1, . . . , x

q
n−1, x

qyq)
iff cuq ∈ (xq1, . . . , x

q
n−1, x

qyq) : yq = (xq1, . . . , x
q
n−1, x

q) (one may check this working mod
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A = (xq1, . . . , x
q
n−1), where it follows from the fact that x and y are both nonzero divisors

mod A), and the result is now immediate.

4. As in the bracketed suggestion, there is a short exact sequence

0→ B/(X1, . . . , Xn−1, Z)
f−→ B/(X1, . . . , Xn−1, Y Z)

g−→ B/(X1, . . . , Xn−1, Y )→ 0

where g is the quotient surjection and f is induced by multiplication by Y on the nu-
merators. Note that each ideal in a denominator is generated by a regular sequence
in B. If C = B/(X1, . . . , Xn−1) ∼= Z[X,Y ], this is simply the short exact sequence
0→ C/ZC → C/Y ZC → C/Y C → 0 that one gets by noting that Y C/Y ZC ∼= C/ZC.

Now apply ⊗B M . The long exact sequence for Tor gives the required result, once one
notes that for each quotient, the Koszul complex gives a free resolution, so that every Tor
in the long exact sequence can be viewed instead as a Koszul homology module.

5. If we take minimal generators for A and minimal generators for B, together they give
minimal generators for A ⊕ B, and we find that a minimal module of syzygies for A ⊕ B
can be obtained as the direct sum of minimal modules of syzygies for A and B.

The first minimal module of syzgies of K is m. To obtain the second minimal module of
syzygies, note that ax+ by = 0 implies that a and b are both in m (or else x and y are not
minimal generators of m. But m kills x, so that this is equivalent to a ∈ m and by = 0, and
then b ∈ xR ∼= K. Thus, the second module of syzygies is m⊕K. Suppose that we have
shown the i th module of syzygies is isomorphic to Kai ⊕mbi . Then the i+ 1 st module of
syzygies is ma

i ⊕ (K ⊕m)bi ∼= Kbi ⊕mai+bi . It follows by a straightforward induction on i
that the minimal i th module of syzgies of K is Kfi−1⊕mfi , where fi is the i th Fibonacci
number, determined recursively by the rules f0 = f1 = 1 and fi+1 = fi + fi−1 for i ≥ 1.
The rank of the i th free module in a minimal resolution is the same as the least number of
generators of the i th module of syzgies, which fi−1+2fi = fi−1+fi+fi = fi+1+fi = fi+2,
and this is the same as the dimension of TorRi (K,K) as K-vector space.

6. If we map R ⊕ R � M so that (r, s) 7→ rx + sy the kernel consists of {(r, s) ∈ R2 :
rx+ sy = 0}. This implies that in K[x, y], (r, s) is a multiple of v = (y,−x), which implies
that the kernel is (Rx+Ry)v ∼= M It follows that all the minimal modules of syzygies are
∼= M , and that the resolution has the form · · · → R2 A−→ R2 A−→ R2 → · · · → R2 A−→> R2 →
M → 0, where the matrix of A is w(x y), i.e., has columns xw and yw, where w is the

transpose of v, i.e., v written as a column. Thus, for i ≥ 1, TorRi (M,M) ∼= Ker (h)/Im (h),

where h is the map M2 →M2 induced by A.

(
a
b

)
∈M2 is in the kernel iff xa+yb = 0, i.e.,

it is an element of M2 that has the form cw, where c ∈ R. The image of M2 is all elements
of the form w(xm1 + ym2) where m1,m2 ∈ xR+ yR, and this yields w(x2, xy, y2)R. The

quotient is a copy of K spanned by the image of w, so that TorRi (M, M) ∼= K, i ≥ 1.

7. (a) This follows from taking the alternating sum of all the lengths in the long exact
sequence for Koszul homology (there are only finitely many nonzero terms). �

(b) By part (a), this reduces to the case where M = K. If any of the xi is a unit, then
all the Koszul homology vanishes, since the xi kill the Koszul homology. Therefore, we
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may assume that all the xi are in the maximal ideal, so that their action on K is the same
as multiplication by 0, the 0 map. Hence, if n ≥ 1 (not just 2), the Koszul homology
for K is identical with the Koszul complex, and the alternating sum of the lengths is∑n
j=0(−1)j

(
n
j

)
, which is the same as

(
1 + (−1)

)n
= 0. �

(c) Let hi be the length of Hi(x1, x2;A). By part (a), h1 = h0 +h2. Since h2 is the length
of annihilator of (x1, x2) in A, it is positive. Thus, h1 > h0. If h1 is cyclic, it would be a
homomorphic image of A/(x1, x2), which has length h0, since it is a cyclic module killed
by x1 and x2. Thus, h0 ≤ h1, a contradiction. �

8. The issue is whether we can choose c ∈ R − {0} such that c(xan−1n )q ∈ I [q] =
(xa1q1 , . . . , x

an−1q
n−1 )R for all q = pe � 0. Let a = an. If we write q = sa− r with 1 ≤ r < a,

so that s/q = 1/a+r/aq with r/a < 1. we can rewrite this as c(xann )q−sxrn ∈ I [q], and since
1, xn, . . . , x

a−1
n is a free basis for R over the polynomial subring T = K[x1, . . . , xn−1] and

xann is the same, up to sign, as g = xa11 + · · · + x
an−1

n−1 ∈ T , this is equivalent to whether
we can choose c ∈ R − {0} such cgq−s ∈ Iq := (xq1, . . . , x

q
n−1)T for all q > 0. Note that

I [q] = IqR. Suppose that we take c = 1 if α < 1 and if α = 1 we take c = xd11 · · ·x
dn
n−1

where the di are chosen so that r/a <
∑n−1
i=1 di/ai. First suppose α ≤ 1. For every

partition q − s = b1 + · · · + bn−1, if any di + aibi ≥ q we have that the corresponding
term in the multinomial expansion of cgn−s is in I [q]. Otherwise, bi < q/ai, and then

q − s =
∑n−1
i=1 bi <

∑n−1
i=1 (q/ai − di/ai), and then 1 ≤ s/q −

∑n−1
i=1 di/ai)/q +

∑n−1
i=1 1/ai.

1 ≤ (r/a−
∑
di/ai)(1/q) +α. If α < 1, this will be false for q � 0. c = 1 this will be false

for all q, since the first term on the right is negative. It remains to show that we cannot
choose c for α > 1 and p � 0. in fact, we shall show this whenever p > (n + 2)/(α − 1)
and 4an, which we assume from now on.

We may replace K by its algebraic closure: if there is no value of c that works in the larger
domain, there is clearly no value that works in the original ring. We may assume that
p � 0 does not divide any ai, and, in particular, we may assume that p > an. We next
show that if c ∈ R−{0} and cuq ∈ J [q], then we can take replace c by x2a−2n and the same
statement holds. Let T = K[x1, . . . , xn−1]. Since R is integral over T , the element c has a
multiple in T −0 (the constant coefficient of a least degree monic polynomial over T that c
satisfies), and so we may assume without lost of generality that c ∈ T . The monomials in

x
1/p
1 , . . . , x

1/p
n with all exponents at most p−1 form a free basis for T 1/p over T . Since xn is

a separable element over the fraction field of T , the same monomials span a free R-module
G1 ⊆ R1/p (in fact, G1 is a ring, and is the same as R[T 1/p], although we won’t use this).

We next note that xa−1n multiplies R1/p into G1. It suffices to show that xa−1n x
i/p
n ∈ G1 for

0 ≤ i ≤ p− 1, i.e., that ((xn)1/p
)ap−p+i) ∈ G1, 0 ≤ i ≤ p− 1. Since (x

1/p
n )a ∈ G1 (it is the

p th root of xan, which is equal to an element of T ), and (x
1/p
n )p = xn ∈ G1, it is enough to

show that each ap − p + i is in the semigroup generated by a and p. Since p is invertible
mod a, one the elements 0, p, 2p . . . , (a− 1)p has the same residue as i mod a− 1, say jp,
and then ap− p+ i− jp is a nonnegative multiple of a, say k, which yields the result since
ap− p+ i = jp+ ak.

Let Ge denote the R-span of the set Me of monomials in x
1/pe

1 , . . . , x
1/pe

n−1 such that every

exponent occurring in the monomial is at most pe − 1. (Again, Ge = R[B1/pe ].) Exactly
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as in the case n = 1, Gn is R-free on these generators. Let

γe = (a− 1)(1 + 1/p+ 1/p2 + · · ·+ 1/pe−1).

We next show by induction on n that xγen R
1/pe ⊆ Ge. We have already proved the case

where e = 1. Assuming the result for a certain e, we may take p th roots to obtain that

x
γe/p
n R1/pe is in the R1/p-span of the monomials {µ1/p : µ ∈Me}. If we multiply by xa−1n ,

we obtain that x
a−1+(γe/p)
n R1/pe+1

is the R-span of the monomials {νµ1/p : ν ∈ M1, µ ∈
Me} = Me+1, since we may replacing each xnR

1/p by the R-span of the ν ∈ M1 using
the result for e = 1. Since a − 1 + (γe/p) = γe+1, the result follows. Since γe < 2 for

all e, we can conclude that for all q = pe, x
2(a−1)
n R1/q ⊆ Ge, a free R-module. We write

d = x
2(a−1)
n for brevity.

Now suppose that cuq ∈ J [q] for all q � 0, where c ∈ B − {0}. Let q′ = pe
′
. Then

cuqq
′ ∈ (J [q])[q

′] for all q′ � 0, and c1/q
′
uq ∈ J [q]R1/q′ . This yields c1/q

′
duq ∈ J [q]Ge′

for all q′ � 0, since dR1/q′ ⊆ Ge′ , and so c1/q
′ ∈ J [q]G′e :Ge′ du

q for all q′. Note that

c1/q
′ ∈ Ge′ because c ∈ T . Because Ge′ is R-free, this is the same as (J [q] :R duq)Ge

which is contained in (J [q] :R duq)R1/q′ . Taking q′ th powers, we find that for all q′ � 0,

c ∈ (J [q] :R du)[q
′]. Since c 6= 0, this is a contradiction unlessJ [q] :R duq = R (in a

Noetherian domain, the intersection of the powers of a proper ideal is 0, since any element
will also be in all the powers of the maximal ideal of the local domain obtained by localizing
at a maximal ideal that contains it). But this means that duq ∈ J [q].
Hence, if there is an choice of c 6= 0 such that c(xa−1n )q ∈ I [q] for all q � 0, we may take c

to x
2(a−1)
n . That is we need only show that we cannot have cx

(a−1)(q+2)
n ∈ I [q] for q � 0.

We have (a − 1)(q + 2) = a(q + 2) − (q + 2). Write q + 2 = va − r, where 0 ≤ r ≤ a − 1.
Then the issue is whether (xan)q−v+2xrn ∈ I [q], and, as earlier, this is equivalent to asking
whether gq−v+2 ∈ (xqa11 , . . . , xqann−1)B =: Iq. To prove this does not hold, it suffices to
show that there is a positive integer s ≥ q − v + 2 and integers s1, . . . , sn−1 ∈ N such
that siai < q for 1 ≤ i ≤ n − 1, s1 + · · · + sn−1 = s, and the multinomial coefficient(

s
s1, ... ,sn−1

)
is not divisible by p. If these conditions hold, then gs is not in I [q], for the

multinomial expansion of gs will have an
(

s
s1, ... ,sn−1

)∏n−1
i=1 (xaii )si term that is not in Iq.

Since s ≥ q − v + 2, we also have that gq−v+2 /∈ Iq, as required.
We shall choose all of the si to have the form tip

e−1 where 0 ≤ ti ≤ p− 1 and, moreover,
t = t1 + · · ·+ tn−1 ≤ p−1. Let t = d(q−v+2)/pe−1)e, and let wi = b(p/ai)c < p/ai. First
observe that t is at most one more than (q − v + 2)/pe−1 = p + 2/pe+1 − v/pe−1, where
v = (q+1+r)/a, so that v/pe−1 = (p/a)+(1+r)/pe−1a. Thus, t ≤ 1+p−p/a+2/pe−1 +
(1 + r)/pe−1a ≤ (1− 1/a)p+ 1 + 3/pe−1, which is smaller than p provided p/a > 4.
Note that ai(wip

e−1) < ai(p/ai)p
e−1 = q, and that wpe−1 ≥ q − v + 2. We do not have

that t = w1 + · · · + wn−1, but we have, in fact, that w1 + · · · + wn−1 ≥ t. To see this,
note that t ≤

(
q − v + 2)/pe−1

)
+ 1 and that wi ≥ (p/ai) − 1. Hence, it will suffice if

(
∑n
i=1 p/ai)−(n−1) ≥ p+1−(v−2)/pe−1. But v = (q+2+r)/a, so, after we divide by p,

this comes down to the inequality −(n−1)/p+
∑n−1
i=1 1/ai ≥ 1+(1/p)−(q+2+r)/aq+2/q.

This becomes
∑n−1
i=1 1/ai ≥ (n−1)/p+1+(1/p)−(2+r)/aq+2/q. The right hand side is at

most n/p+2/q ≤ (n+2)p Hence, if p ≥ (n+2)/(α−1), we have that the w1+· · ·+wn−1 ≤ w.
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Therefore, by decreasing the wi suitably, we can choose nonnegative integers ti such that
ti ≤ wi and

∑n−1
i=1 ti = t.

We now take si = tip
e−1 and s = tpe−1. The argument will be complete if we can show that

the multinomial coefficient
(

s
s1, ... ,sn−1

)
does not vanish. This is true because it is equal to

the multinomial coefficient
(

t
t1, ... ,tn−1

)
. One can see this by expanding (z1 + · · ·+ zn−1)tp

e

in two ways: on the one hand, the coefficient of zt1p
e−1

1 · · · ztn−1p
e−1

n−1 is
(

s
s1, ... ,sn−1

)
. On

the other hand, we can think of the expansion as ((z1 + · · ·+ zn−1)t)p
e−1

, which gives the

coefficient of the required term as
(

t
t1, ... ,tn−1

)pe−1

, which is the same as
(

t
t1, ... ,tn−1

)
. But

now we can see that this does not vanish, simply because t < p. �


