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Throughout these lectures, unless otherwise indicated, all rings are commutative, asso-
ciative rings with multiplicative identity and ring homomorphisms are unital, i.e., they are
assumed to preserve the identity. If R is a ring, a given R-module M is also assumed to
be unital, i.e., 1 ·m = m for all m ∈ M . We shall use N, Z, Q, and R and C to denote
the nonnegative integers, the integers, the rational numbers, the real numbers, and the
complex numbers, respectively.

Our focus is very strongly on Noetherian rings, i.e., rings in which every ideal is finitely
generated. Our objective will be to prove results, many of them very deep, that imply that
many questions about arbitrary Noetherian rings can be reduced to the case of finitely
generated algebras over a field (if the original ring contains a field) or over a discrete
valuation ring (DVR), by which we shall always mean a Noetherian discrete valuation
domain. Such a domain V is characterized by having just one maximal ideal, which is
principal, say pV , and is such that every nonzero element can be written uniquely in the
form upn where u is a unit and n ∈ N. The formal power series ring K[[x]] in one variable
over a field K is an example in which p = x. Another is the ring of p-adic integers for
some prime p > 0, in which case the prime used does, in fact, generate the maximal ideal.

One can make this sort of reduction in steps as follows. First reduce to the problem to
the local case. Then complete, so that one only needs to consider the problem for complete
local rings.

We shall study Henselian rings and the process of Henselization. We shall give numer-
ous characterizations of Henselian rings. In good cases, the Henselization consists of the
elements of the completion algebraic over the original ring. The next step is to “approxi-
mate” the complete ring in the sense of writing it as a direct limit of Henselian rings that
are Henselizations of local rings of finitely generated algebras over a field or DVR. But
this is done in a “good” way, where many additional conditions are satisfied. The result
needed is referred to as Artin approximation.

We are not yet done. Henselizations are constructed as direct limits of localized étale
extensions, and so we are led to study étale and other important classes of ring extensions,
such as smooth extensions and unramified extensiions. (The étale extensions are the
extensions that are both smooth and unramified.) There is a beautiful structure theory for
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these classes of extensions. Because étale extensions are finitely generated algebras, one
can take the fourth step, which is to replace the Henselian ring by a ring that is finitely
generated over a field or DVR. Carrying out these ideas in detail will take up a large
portion of these notes.

Étale extensions have numerous applications to geometry: they are used to remedy the
fact that the implicit function theorem does not hold in the allgebraic context in the same
sense that it is does when working with C∞ or analytic functions. As an example, we
shall later use the theory of étale extensions to establish a relationship that is not obvi-
ous between intersection multiplicities defined algebraically and intersection multiplicities
defined quite geometrically.

The structure theorems we want to prove depend on an algebraic result known as
Zariski’s Main Theorem, or ZMT. It has many applications in commutative algebra and
algebraic geometry.

In our formal treatment, we shall first prove Zariski’s Main Theorem, and then define
and analyze the structure of smooth, étale, and unramified homomorphisms. We shall dis-
cuss Henselization, Artin approximation, and applications in which one reduces questions
about arbitrary Noetherian rings to the case of algebras finitely generated over a field or
a discrete valuation ring (DVR).

Another tool that we introduce provides a method for reducing many questions about
finitely generated algebras over a field of characteristic 0 to corresponding questions for
finitely generated algebras over a field of characteristic p > 0: in fact to the case where
that field is finite! It may be surprising that one can do this: it turns out to be a very
powerful technique.

I do want to emphasize that the theory we build here shows that the study of finitely
generated algebras over a field or DVR is absolutely central to the study of arbitrary
Noetherian rings.

Before stating Zariski’s Main Theorem, we review some facts from commutative algebra
that we assume in the sequel. Following the review, we state the algebraic form of the
theorem, review some basic algebraic geometry, and then give a geometric version of ZMT.
We explain how to deduce the geometric version from the algebraic version, and then go
to work on the proof of the algebraic version, which is rather long and difficult.

A prime ideal of R is a a proper ideal such that R/P is an integral domain. The (0)
ideal is prime if and only if R is an integral domain. The unit ideal is never prime. The
set of prime ideals of R, denoted Spec (R) is a topological space in the Zariski topology,
which is characterized by the fact that a set of primes is closed if and only if it has the the
form V(I) = {P ∈ Spec (R) : I ⊆ P}. I may be any subset of R, but V(I) is unchanged by
replacing I by the ideal it generates, so that one may assume that I is an ideal. When I
is an ideal, V (I) is unchanged by replacing I by Rad (I) = {r ∈ R : for some integer n >
0, rn ∈ I}. The closed sets of Spec (R) are in bijective order-reversing correspondence with
the radical ideals of R. The closure of the point given by the prime ideal P is V(P ), so
that P is a closed point if and only if P is a maximal ideal of R. Note that Spec (R) is
not, in general, T1.
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If f ∈ R, Df denotes Spec (R) − V(Rf), the set of prime ideals of R not containing
f . The sets Df are a basis for the open sets of the Zariski topology on R. Note that
Dfg = Df ∪Dg.

Let h : R → S be a ring homomorphism. Then h∗ or Spec (h) denotes the map
Spec (S) → Spec (R) whose value on Q ∈ Spec (S) is the inverse image h−1(Q) under
h. This inverse image is also called the contraction of Q to R. Note that if R ⊆ S,
the contraction of Q to R is simply Q ∩ R. We assume some familiarity with categories
and functors. Spec is a contavariant functor from the category of commutative rings and
ring homomorphisms to the category of topological spaces and continuous maps. (Very
briefly, functors assign values to objects and morphisms in a category in such a way that
identity maps are preserved, and composition is either preserved or reversed. Functors
preserving composition are called covariant, while those reversing composition are called
contravariant.)

A multiplicative system W in a ring R is a subset that contains 1 is closed under
multiplication. The localization of R at W , denoted W−1R, is an R-algebra in which
every element of W becomes invertible. Every R-module M also has a localization at W ,
denoted W−1M , which is a W−1R-module. (W−1M may be defined as equivalence classes
of pairs (m,w) ∈M ×W where (m,w) is equivalent to (m′, w′) if there exists v ∈W such
that v(w′m − wm′) = 0. The equivalent class of (m,w) is denote m/w. W−1M and an
W−1R-module. Addition and multiplication by scalars are such that (m/w) + (m′/w′) =
(w′m + wm′)/(ww′), r(m/w) = (rm)/w, and (r/v)(m/w) = (rm)/((vw). There is an
R-linear map M → W−1M that sends m 7→ m/1. This map need not be injective. In
fact, the kernel consists of all elements m ∈ M such that wm = 0 for some w ∈ W .
These remarks include the case M = R. Note that W−1R is a ring, and the multiplication
satisfies (r/w)(r/w′) = (rr′)/(ww′). M → W−1M is injective if and only if no element
of W is a zerodivisor on M , i.e., multiplication by every w ∈ W gives an injective map
M →M .

Note also that a homomorphism R → S can be factored R → W−1R → S if and only
if the image of W in S consists entirely of units, in which case the factorization is unique.
This is referred to as the universal mapping property of localization. The notation MW is
used as an alternative to W−1M , but we will not use this notation in these notes.

There is a canonical isomorphism W−1R ⊗R M → W−1M such that (r/w) ⊗ m 7→
(rm)/w and, under the inverse isomorphism, m/w 7→ (1/w) ⊗ m. M 7→ W−1M is a
covariant exact functor from R-modules to W−1R-modules: if f : M → N , there is a
unique map W−1M →W−1N such that m/w 7→ f(m)/w.

If P is a prime ideal of R, W = R−P is a multiplicative system (this characterizes which
ideals are prime). In this case W−1R is denoted RP and is called the localization of R at
P . Likewise, W−1M is denoted MP . There is a canonical isomorphism of RP⊗R ∼= MP .

If S = W−1R, there is a bijective homeomorphism between Spec (W−1R) and

{P ∈ Spec (R) : W ∩ P = ∅}
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(with the inherited Zariski toipology from Spec (R). The maps send Q ∈ Spec (W−1R) to
its contraction to R, and P ∈ Spec (R) to its expansion PS to S. (For any homomorphism
R → S, if I is an ideal of R its expansion IS is the ideal of S generated by the image of
I.) Thus, there is bijection between the primes of W−1R and the primes of R that do not
meet W .

If R → S is surjective, then S ∼= R/I, where I is the kernel. In this case there is
a homeomorphism of Spec (R/I) with V(I) ⊆ Spec (R), again given by contraction and
expansion.

When S is an R-algebra and W is a multiplicative system in S, we have a definition for
W−1S: we may think of S as an R-module. This is canonically isomorphic with S-algebra
V −1S obtained by localizing S at the image of W . If P is a prime ideal and W = R− P ,
this gives an identification of RP /PRP with the fraction field of R/P . This field is often
denoted κP , but the notation is ambiguous, since it conceals the dependence on R.

IfW is a multiplicative system in R and I is an ideal of R, the R-algebras S = W−1(R/I)
and W−1R/IW−1R are canonically isomorphic. In this case we may put the facts above
together to conclude that Spec (S) → Spec (R) gives a homeomorphism of Spec (S) with
the set of prime ideals of R that contain I and are disjoint from W (in the inherited Zariski
topology from Spec (R).

Let h : R → S be a ring homomorphism and let f = Spec (h) be the continuous map
Spec (S) → Spec (R) given by contraction of prime ideals.. (Sometimes f is denote h∗.)
The set-theoretic fiber of f over a prime P is f−1(P ), i.e., the set of primes Q of S that
contract to P . The primes that contract to P are also said to lie over P . By taking I = P
and W = R − P , this set of primes may be identified with Spec (W−1)S/PS, for Q lies
over P if and only if it contains the image of P , and, hence, PS, and is disjoint from the
image of W . The ring

W−1(S/PS) ∼= (W−1S)/(PW−1S) ∼= κP ⊗R S
is called the scheme-theoretic fiber of R → S over P . This point of view enables one to
think of the set-theoretic fiber f−1(P ) as the space of prime ideals of the scheme-theoretic
fiber, (R− P )−1S/P (R− P )−1S ∼= κP ⊗R S.

A prime Q of S that lies over P in R is called isolated in its fiber or isolated in the fiber
over P if it is both maximal and minimal among primes lying over P . In particular, if Q is
the unique prime lying over P then it is isolated in its fiber. We shall return to this notion
soon and explain the use of the word “isolated” here, but we first want to state Zariski’s
Main Theorem, which we sometimes abbreviate ZMT.

We next want to recall the notion of integral dependence of elements. If R ⊆ S we say
that an element s ∈ S is integral over R if it is a root of some monic polynomial with
coefficients in R. In other words, s satsifies an equation of the form sn + rn−1s

n−1 + · · ·+
rjs

j + · · ·+ r1s+ r0 = 0 where n is a positive integer and the rj ∈ R. The set of elements
of S integral over R is a subring of S containing R called the integral closure of R in S. R
is said to be integrally closed in S if the integral closure of R in S is R, i.e., every element
of S integral over R is in R. An integral domain is called integrally closed or normal if it is
integrally closed in its fraction field. Every unique factorization domain (UFD) is normal.
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Theorem (Zariski’s Main Theorem). Suppose that R ⊆ R[θ1, . . . , θn] ⊆ S are com-
mutative rings and that R is integrally closed in S while S is integral over R[θ1, . . . , θn].
Let Q be a prime ideal of S that is isolated in its fiber over P ∈ Spec (R). Then there exists
an element f ∈ R− P such that the induced homomorphism Rf → Sf is an isomorphism.

We want to examine some consequences of this result, including a very important geo-
metric corollary, before we give the proof, which is difficult and lengthy.

We next review some basic algebraic geometry. Let K be an algebraically closed field.
For simplicity, at this point we shall restrict our attention primarily to closed algebraic sets
in some ANK . Let X be such a set. Unless otherwise specified, when we refer to “points of
X” we mean closed points. By a variety we mean a nonempty irreducible closed algebraic
set in some ANK . (As a scheme, a variety is reduced and irreducible.) We write K[X] for the
coordinate ring of the affine (closed) algebraic set X: it is the ring of regular functions from
X to K = A1

K . It is a finitely generated reduced K-algebra (and, up to isomorphism, all
such algebras occur). X is a variety iff K[X] is a domain. Note that the category of (closed)
affine algebraic sets over K and regular morphisms is anti-equivalent to the category of
finitely generated reduced K-algebras and K-algebra homomorphisms: essentially, these
are opposite categories. If X is a variety then the fraction field of K[X] is denoted K(X)
and is called the function field of X. Its elements may be regarded as regular functions
defined on some nonempty (equivalently, dense) open set in X, where two functions are
equivalent if they agree on the intersection of their domains, which will be another dense
open set. A morphism g : X → Y of varieties is called dominant if its image is dense. This
holds if and only if the induced map of K[Y ]→ K[X] is injective, for that map has kernel
containing I if and only if the image of g is contained V (I) ⊆ Y . A dominant map induces
a map of function fields K(Y ) → K(X), which is necessarily injective. By definition, the
variety Y is normal precisely when K[Y ] is normal, i.e., integrally closed in its field of
fractions K(Y ).

The following is a corollary of ZMT, and is also referred to as Zariski’s Main Theorem.
The restriction to affine varieties is not needed and is only made for simplicity. We shall
explain how the Corollary is deduced in detail later.

Corollary (Zariski’s Main Theorem). Let g : X → Y , be a morphism of affine va-
rieties as in the preceding discussion. If g is bijective on closed points, Y is normal, and
K(X) is separable over K(Y ), then g is an isomorphism.

We have not yet proved anything. We first want to discuss why some hypothesis other
than having g be bijective on closed points is needed.

Let Y be V (y3 − z2) in A2
K , which may also be described as the set {(λ2, λ3) : λ ∈ K}.

Then K[Y ] ∼= K[y, z]/(y3 − z2) ∼= K[x2, x3] ⊆ K[x]. Let X = A1
K . The map X → Y that

sends λ to (λ2, λ3) is bijective. It corresponds to the map K[Y ] = K[y, z]/(y3 − z2) ∼=
K[x2, x3] ⊆ K[x] ∼= K[X] that sends the images of y and z to x2 and x3, respectively. This
is an example of a bijective map of varieties that is not an isomorphism: the problem, in
some sense, is that K[Y ] is not normal — the element x is in its integral closure. Thus,
Y is not normal. Note that the map of varieties cannot be an isomorphism because the
corresponding map of K-algebras is not surjective, and therefore is not an isomorphism.
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Even when both varieties are normal, or even regular, the separability condition is
needed. Let K be an algebraically closed field of prime characteristic p > 0 and let
X = Y = A1

K . Let g : X → Y be the map sending λ 7→ λp. Since K is algebraically
closed it is perfect, and so the map is surjective and therefore bijective. This morphism
corresponds to the K-algebra map of rings K[x]→ K[x] sending x 7→ xp, or to the inclusion
K[xp] ⊆ K[x]. The map of rings is not surjective and so g is not an isomorphism. The
induced map of function fields is K(xp) ⊆ K(x), which is evidently not separable: that is
the problem.

We next want to note that ZMT is rather non-trivial even in very special cases: it implies
a key lemma that can be used to deduce Hilbert’s Nullstellensatz very quickly. Suppose
that in the statement of (the ring-theoretic form of) ZMT one assume that R = K ⊆ L = S
where K is an algebraic closed field and S is a field that is finitely generated as a K-algebra.
Then ZMT applies: K is integrally closed in L because it is algebraically closed in L. Take
P = (0) ⊆ K and Q = (0) ⊆ L as the two primes (of course, there are no other primes to
choose). Evidently Q is isolated in its fiber, since L has only one prime. Then there exists
f ∈ K − P such that Kf

∼= Lf . Since f 6= 0 it is already invertible in K and L, and so we
see that K = L. That is, a field finitely generated as an algebra over an algebraically closed
field K must be equal to K. This result is sometimes called Zariski’s lemma. However,
our proof of ZMT will not give a new proof of Hilbert’s Nullstellensatz: we make use of
Hilbert’s Nullstellensatz in the argument.

Lecture of January 6, 2017

We next want to explain the used of the word “isolated” in the expression “isolated in
its fiber.” A point x of a topological space X is called isolated if it is both open and closed
in X. The fiber, as a topological space, is the Spec of the ring A = κP ⊗R S, and so may
be thought of as a topological space. We want to make two observations:

(1) If a prime m is an isolated point of Spec (A), then m is both maximal and minimal
among the prime ideals of A.

(2) If A is Noetherian or, much more generally, if the prime ideal m is finitely generated,
then m is an isolated point of Spec (A) if and only if m is both maximal and minimal
in Spec (A).

To see this, first note that {m} is closed if and only if m is maximal. Now {m} is open
if and only if there exists f ∈ R such that mRf is the unique prime ideal of Rf : this is
the condition for D(f) = {m}. Since a prime has arbitrarily small open neighborhoods
of the form D(f), the set consisting of just that prime cannot be open unless it is equal
to D(f) for some choice of f . But if m = D(f) it must be minimal: any strictly smaller
prime would also be in D(f). Finally, suppose that m is both maximal and minimal and
that it is finitely generated, say by u1, . . . , uh. If we localize at m it becomes the only
prime of Rm, and so every uj has become nilpotent. This implies that for every j we can
choose fj ∈ R −m and Nj such that fju

Nj = 0. Let f = f1 · · · fh. In the ring Rf , every
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generator of m is nilpotent. Since m is maximal, it is the only prime ideal of Rf , and thus
{m} is open as well as closed.

Example Let K be any field and let X be the Cantor set. The ring A of locally cconstant
functions from X to K (these are the same as the continuous functions from X to K
with the discrete topology) is a zero-dimensional ring. Every prime ideal is maximal, and
corresponds to a point x ∈ X as the ideal of functions that vanish at x. Spec(A) is
homeomorphic with X. Every point in x in both maximal and minimal as a prime ideal
of A, but no point of X is isolated. Of course, A is not Noetherian.

Example Let K be an algebraically closed field and consider the map A2K → A2
K such

that for all a, b ∈ K, (a, b) 7→
(
a(b− 1), b(b− 1)

)
. The corresponding map of rings may be

thought of as the inclusion K[x(y − 1), y(y − 1)] ⊆ K[x, y]. Note that the ring on the left
is isomorphic with a polynomial ring in two variable

We next want to show how the geometric form of ZMT stated above follows from the
algebraic form. We need the following basic facts about the behavior of dominant maps of
varieties:

Lemma. Let g : X → Y be a dominant map of algebraic varieties, so that we have an
injection of domains K[Y ] ↪→ K[X]. Then:
(a) The transcendence degree of K(X) over K(Y ) is δ = dim (X)− dim (Y ).
(b) There is a dense open subset U of Y such that for every u ∈ U , the dimension of the

fiber g−1(u), thought of as a closed algebraic set in X, is δ = dim (X)− dim (Y ).
(c) If dim (Y ) = dim (X) then K(X) is a finite algebraic extension of K(Y ). Assume

also that K(X) is separable over K(Y ). Then there is a dense open set U ⊆ Y such
that for all u ∈ U , the fiber g−1(u) is a finite set of cardinality d = [K(X) : K(Y )].

Proof. Given any three fields K ⊆ F ⊆ G the transcendence degree of G over K is the
sum of the transcendence degree of F over K and the transcendence degree of G over F .
Part (a) follows from applying this to K ⊆ K(Y ) ⊆ K(X) along with the theorem that
the dimension of a variety over K is the transcendence degree of its function field over K.

To prove part (b), let R = K[Y ] ⊆ K[X] = S. Then S is a domain finitely generated
over the domain R, and by the Noether normalization theorem for domains, we may localize
at one nonzero element f ∈ R so that Sf is a module-finite extension of a polynomial ring
over R. The number of variables must be δ, the transcendence degree. Let U be the
open set corresponding to D(f) in Y . Thus, after replacing R and S by Rf and Sf ,
it suffices to show that if S is a module-finite domain extension of R[x1, . . . , xδ], then
all fibers over maximal ideals m of R have dimension δ. Since S/mS is module-finite
over (R/m)[x1, . . . , xδ] the dimension is at most δ. Since S has prime ideal Q lying over
mR[x1, . . . , xδ] by the lying over theorem, and we have S/mS � S/Q, while S/Q is a
module-finite extension domain of (R/m)]x1, . . . , xδ], we also have that the dimension is
at least δ.

It remains to consider part (c). We continue the notations from the proof of (b). The
first statement is immediate from (a) and the fact that S = K[X] is finitely generated
over K and, hence, over R = K[Y ]. We may localize at f ∈ R − {0} and so assume that
S is module-finite over R. Then K(Y ) ⊗R S = K(X). Choose a primitive element θ for
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K(X) over K(Y ): by multiplying by a suitable nonzero element in R, we may assume that
θ is in S. Let G be the minimal monic polynomial of θ over the fraction field of R. By
our hypothesis on the field extension, G will be separable over R. By inverting one more
element of R− {0} we may assume that the coefficients of G are in R. Note that S/R[θ],
as an R-module, is torsion. Therefore we may invert yet another element of R and assume
without loss of generality that S = R[θ], and then S ∼= R[x]/G.

Consider the roots of G in a suitably large extension field of the fraction field of R.
The product of the squares of their differences (the discriminant of G) is a symmetric
polynomial over Z in the roots of G, and therefore is expressible as a polynomial D over Z
in the coefficients of G, which, up to sign, are the elementary symmetric functions of the
roots. The discriminant is therefore a nonzero element of R. We localize at the discriminant
as well, and so we may assume that it is a unit of R. Note that each localization has the
effect of restricting our attention to a smaller dense open subset of Y .

The points of the fiber over a m, a maximal ideal of R, correspond to the maximal
ideals of (R/m)[x]/G, where G is simply the image of G modulo m. But R/m = K and
the discriminant of G is simply the image of the discriminant of G (one substitutes the
images of the coefficients of G into D), and so is not zero. It follows that the roots of G
are mutually distinct, and so the number of points in the finite fiber is precisely the degree
of G, which is the same as the degree of G and is equal to [K(Y ) : K(X)]. �

Proof of the geometric form of ZMT. We are now ready to deduce the geometric form
of ZMT from the algebraic form. The fact that the map g : X → Y is bijective implies
that it is dominant. Therefore, we may consider R = K[Y ] ⊆ K[X] = S. We want
to prove that R = S. Consider S/R as an R-module. If it is nonzero, then there is a
maximal ideal m of R such that (S/R)m 6= 0, and then Rm 6= Sm, where Sm is simply
(R − m)−1S. The bijectivity of the map shows that all set-theoretic fibers over closed
points consist of exactly one closed point. From part (b) of the preceding Lemma, we
must have dim (X) = dim (Y ), and then part (c) shows that the extension is algebraic
of degree 1, which means that K(X) = K(Y ): note that we are using separability here.
Since Rm is normal, it is integrally closed in Sm, for Sm is contained in the fraction field
of R. Since S is finitely generated over R, Sm is finitely generated over Rm. The fiber
Sm/mSm contains just one prime ideal, which is isolated in its fiber. Therefore we can
choose f ∈ Rm −mRm such that (Rm)f = (Sm)f . But since f is already invertible in Rm
and Sm, this implies that Rm = Sm, a contradiction. �

Lecture of January 9, 2017

We are now ready to begin the proof of the algebraic form of ZMT. We have that
Q ∈ Spec (S) is isolated in its fiber over P ∈ Spec (R), where R[θ1, . . . , θn] ⊆ S is integral,
while R is integrally closed in S. We shall used induction on n. If n = 0, then S is integral
over R, and since R is integrally closed in S, this implies that R = S, and we are done.

We postpone considering the case where n = 1. Instead, we assume this case for the
moment, and carry through the inductive step. This will reduce the problem to studying
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the case where n = 1. For this purpose let T denote the integral closure of R[θ1, . . . , θn−1]
in S. Let θ = θn. Note that S is integral over T [θ]. Let q = Q ∩ T . We want to
show that q is isolated in its fiber over R, which is the fiber over P , since it is clear that
q ∩ R = Q ∩ R = P . Suppose that we can do this. Then we can choose f ∈ R − P
such that Rf = Tf , by the induction hypothesis. Now Q is evidently isolated in its fiber
over q, since q lies over P in R, and this is preserved when we localize at f . Also, S is
integral over T [θ], and so Sf is integral over Tf [θ]. Thus, we can apply the case n = 1 to
conclude that there exists γ = Tf − qTf such that (Tf )γ = (Sf )γ . Now, Tf = Rf , and
it follows that qf = PRf , so that we may write γ = g/fh where g ∈ R − P . This gives
Rfg = (Rf )γ = (Tf )γ = (Sf )γ = Sfg, as required.

It remains to prove that q is isolated in its fiber over P .

We need the following result (think of S0 as R[θ1, . . . , θn]).

Lemma. Let R ⊆ T ⊆ S be rings. Let Q be a prime of S lying over P = Q ∩ R, and let
q = Q ∩ T .
(a) If Q is minimal in its fiber over P and u ∈ T − q is such that Tu = Su, then q is also

minimal in its fiber over P .
(b) If S is integral over S0, R ⊆ S0 ⊆ S with S0 finitely generated over R, and Q is

maximal in its fiber over P , then q is maximal in its fiber over P .
(c) If Q is isolated in its fiber over P , S is integral over a finitely generated R-subalgebra

S0, and there exists u ∈ T − q such that Tu = Su, then q is isolated in its fiber over
P .

Proof. To prove part (a) note that if q′ is strictly contained in q and q′ lies over P , we may
expand q′ to Tu = Su and then contract to S to obtain a prime Q′ of S strictly smaller
than Q and lying over P : we have a bijection between primes of T not containing u and
prime of S not containing u.

For part (b), first replace R, T , and S by their localizations at P . Thus, we may
assume that R is local with maximal ideal P . Then R/P ⊆ T/q ⊆ S/Q, and we also have
R/P ⊆ S0/q

′ ⊆ S/Q, where q′ = Q ∩ S0. The fact that Q is maximal in its fiber over P
implies that S/Q is a field. Since S/Q is integral over S0/q

′, S0/q
′ is also a field, and it is

finitely generated over R/P . It follows that S0/q
′ is a finite algebraic extension of R/P .

Now we get that S/Q is an algebraic extension of R/P . It now follows that T/q is a field,
and this means that q is maximal in its fiber.

Part (c) is simply the result of combining (a) and (b). �

We can now use this Lemma to to see that q as defined earlier is isolated in its fiber over
P . We have the hypothesis of part (b). The hypothesis of part (a) also holds, because we
may apply the case n = 1 to the inclusion T ⊆ S (Q is obviously isolated in its fiber over
q) to obtain u ∈ T − q such that Tu = Su). The result we need is now immediate from
part (c). This completes the reduction to the case where n = 1. �

For the remainder of the proof we shall be studying the case where R ⊆ R[θ] ⊆ S. R is
integrally closed in S, S is integral over R[θ], and Q, a prime of S, is isolated in its fiber
over P = Q∩R. We want to reduce to the case where S is actually module-finite over R[θ].
For this purpose it will suffice to find T module-finite over R[θ] such that R[θ] ⊆ T ⊆ S
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and q = Q ∩ T is isolated in its fiber over P . For once we have T as specified, if we know
the theorem in the module-finite case we can choose f ∈ R − P such that Rf = Tf ⊆ Sf .
Then Rf is integrally closed in Sf and Sf is integral over Tf = Rf together imply that
Rf = Sf . Quite generally, we are free to replace S by any ring T with R[θ] ⊆ T ⊆ S such
that Q ∩ T is minimal in its fiber: by the argument just given, if the desired result holds
for T then it holds for S.

Note that by part (b) of the Lemma above, we have that q is maximal in its fiber for any
choice of T with R[θ] ⊆ T ⊆ S. Thus, the problem is to choose T such that q is minimal in
its fiber. Thus, we want to find s0, s1, . . . , sh ∈ S such that with T = R[θ][s0, s1, . . . , sh],
q = Q ∩ T is minimal in its fiber over P . For this purpose we may replace R, S by RP ,
SP and θ by its image in SP . If we find elements s0/f0, s1/f1, . . . , sh/fh that work here,
where the sj ∈ S and the fj ∈ R − P , we may use s0, s1, . . . , sh, since the fj become

invertible in any case when we calculate the fiber. Let K = R/P . Let θ be the image of
θ in R[θ]/PR[θ] ∼= K[θ]. If θ satisfies a monic polynomial of positive degree over K, then
we may take T = R[θ]: the fiber is module-finite over K and, hence, zero-dimensional,
and so all primes of the fiber of T over P will be isolated in that case. Therefore, we may
assume without loss of generality that θ is transcendental over K. Q lies over a prime of
R[θ] that is maximal in its fiber, by part (b) of the Lemma above, and this prime will be
generated modulo PR[θ] by g(θ), where g is a monic polynomial over K. Lift g(θ) to an
element γ ∈ R[θ]. Then γ ∈ Q is nilpotent mod PSQ, since Q is minimal in its fiber.

Hence, we can choose s0 ∈ S−Q, a positive integer N , p1, . . . , ph ∈ P , and s1, . . . , sh ∈
S such that s0γ

N =
∑h
j=1 sjpj . Choose T = R[θ][s0, s1, . . . , sh]. We claim that q = Q∩T

is minimal in its fiber over P , for a smaller prime q0 that lies over P will not contain s0,
and so must contain γ. But then q and q0 contract to the same prime in R[θ], since there
is only one prime that contains P and γ, and since T is integral over R[θ] it follows that
q = q0.

Once we have replaced S by a module-finite extension of R[θ], we may again replace
R by RP and S by SP , and it suffices to see that RP = SP . For if these two are equal,
then for each of the finitely many generators of S over R we may choose fj multiplying
that generator into R with fj ∈ R − P . Let f be the product of the fj . Then Rf = Sf .
Henceforth we assume that R = (R, P, K) is quasi-local as well.

If A ⊆ B is module-finite the conductor of B in A is defined as {a ∈ A : Ba ⊆ A}. It is
readily checked to be an ideal of A and an ideal of B. It is also easy to see that it is the
largest ideal of A that is also an ideal of B, since any element a of such an ideal has the
property that Ba ⊆ A.

Throughout the rest of the proof of ZMT, let J be the conductor of S in R[θ]. The
remainder of the proof breaks up into two cases: one where J 6⊆ Q, which is easier, and
one where J ⊆ Q. The second case will require two preliminary results.

We first discuss the case where J 6⊆ Q. Let u ∈ J −Q. Then R[θ]u = Su, and by part
(a) of the Lemma of January 9, Q ∩R[θ] is isolated in its fiber over P . We may therefore
replace S by R[θ]: once we have the result for R[θ], the case of S follows, by the comment
at the end of the first paragraph of the preceding page.
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But then R[θ]/PR[θ] = K[θ] cannot be a polynomial ring in θ over K, for no prime
could then be isolated. It follows that there is a polynomial in θ with at least one coefficient
not in P whose value is in PR[θ]. Subtracting, we find that there is a polynomial in θ
over R that vanishes and has at least one coefficient not in P . Choose such a polynomial
of least degree d, and call it rdθ

n + rd−1θ
d−1 + · · · + r0. By multiplying the polynomial

by rd−1
d , we see that rdθ is integral over R and therefore in R. Thus, we may re-write the

polynomial as (rdθ + rd−1)θd−1 + · · · + r0, which has lower degree in θ. Therefore all of
its coefficients are in P , and we conclude that rdθ+ rd−1 ∈ P . If rd is a unit, we find that
θ ∈ R, as required. If rd ∈ P and rd−1 is a unit, we find that rd−1 ∈ PS, a contradiction,
since Q contains PS. This completes the proof for the case where J 6⊆ Q.

In the remaining and most difficult case, where J ⊆ Q, we shall show that Q cannot be
isolated in its fiber. We need two preliminary results.

Lemma. If R ⊆ R[θ] ⊆ S are domains with S integral over R[θ] and θ is transcendental
over R, then no prime ideal of S is isolated in its fiber.

Proof. Suppose that Q is isolated in its fiber over P = S∩R. Let S′ be the integral closure
of S in its fraction field. By the lying over theorem, there exists a prime ideal Q′ of S′

lying over Q. Q′ must also be isolated in its fiber over P : a prime Q′1 comparable to but
distinct from it lying over P would yield such a prime lying over P and comparable to but
distinct from Q when contracted to S (Q′1 cannot lie over Q: primes lying over the same
prime in an integral extension are mutually incomparable). Henceforth we assume that
S = S′ is integrally closed. It then contains an integral closure R′ of R in the fraction
field of R. Then Q will be isolated in its fiber over P ′ = Q∩R′: a comparable prime lying
over P ′ will automatically lie over P (note that P ′ ∩R ⊆ Q ∩R = P ). Therefore we may
replace R by R′ and R[θ] by R′[θ], and so assume that R is integrally closed. But now
both going up and going down hold between R[θ] and S, since R[θ] is again normal, and
it follows that Q ∩ R[θ] is also isolated in its fiber over P . We may consequently replace
S by R[θ]. But now we can see that no prime is isolated in its fiber, since the fiber over
P is the polynomial ring in one variable over a field, and there is no prime that is both
maximal and minimal. �

Lecture of January 11, 2017

We need one more preliminary result:

Lemma. If A ⊆ A[τ ] ⊆ B with B integral over A[τ ] and A integrally closed in B, and there
is a monic polynomial F with coefficients in A such that F (τ)B ⊆ A[τ ], then B = A[τ ].

Proof. Let b ∈ B be arbitrary. Then F (τ)b = G(τ) for some polynomial G with coefficients
in A, since F (τ)B ⊆ A[τ ]. By the division algorithm for monic polynomials we can write
G = QF +H, where H is either 0 or of degree smaller than that of F , and where Q and H
are polynomials with coefficients in A. Let c = b−Q(τ). It will suffice to show that c ∈ A,
and for this it will suffice to show that c is integral over A. Now F (τ)b = F (τ)(Q(τ)+c), but
F (τ)b = G(τ) = Q(τ)F (τ) +H(τ) as well, and so F (τ)c = H(τ). Since deg(H) < deg(F ),
this implies that τ/1 ∈ Bc is integral over the ring A′[1/c̃], where A′ denotes the image
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of A in Bc and c̃ is the image of c in Bc. Since B is integral over A[τ ], we have that Bc
is integral over A′[1/c̃], and, in particular, c̃ ∈ Bc is integral over A′[1/c̃]c. We may write
down an equation of integral dependence for c̃ over A′[1/c̃]. Each element of A′[1/c̃] can
be expressed as a polynomial in some degree M in c̃ with coefficients in A′ divided by c̃M ,
and we may multiply numerator and denominator by a power of c to increase M . Hence,
for some k we have an equation:

c̃ k +
k−1∑
j=0

αj(c̃)

c̃M
c̃ j = 0,

where every αj is a polynomial in c̃ of degree M with coefficients in A′. Multiplying by
c̃M yields:

c̃ k+M +
k−1∑
j=0

αj(c̃)c̃
j = 0.

The power of c̃ on the left has strictly higher degree than any power of c̃ in the summation.
This shows that c̃ is integral over A′. If we take the monic polynomial above over A′ that
c̃ satisfies and lift it to A[c], its value in B vanishes in Bc, and so is killed by a power of c.
Multiplying by this power of c yields a monic polynomial over A that is satisfied by c. �

Proof of Zariski’s Main Theorem: the finale. We shall now show that if J , the conductor
of S into R[t], is contained in Q that Q is not isolated in its fiber, which will complete the
proof of the theorem. Recall that R is integrally closed in S and that S is module-finite
over R[θ].

If J ⊆ Q we can choose a minimal prime q of J in S such that q ⊆ Q. Let p = q∩R. Let
t denote the image of θ in the ring S/q. Now, R/p ⊆ (R/p)[t] ⊆ S/q, and S/q is integral
over (R/p)[t]. The fact that Q is isolated in its fiber over P implies that Q/q is isolated in
its fiber over P/p ⊆ R/p. By the final Lemma in the Lecture Notes from January 11, this
means that t cannot be transcendental over R/p. We complete the proof by obtaining a
contradiction.

If t is algebraic over R/p, localize at p and consider the image τ of θ in Sp. We
then obtain a monic polynomial F0 with coefficients in Rp such that F0(τ) ∈ qSp. Since
q is a minimal prime of J , there exist a positive integer N and w ∈ S − q such that

w
(
F0(τ)

)N ∈ JSp. Replacing F0 by F = FN0 , we have F monic over Rp such that
wF (τ) ∈ JSp. We now apply the Lemma above with A = Rp and

B = Rp[τ, wSp] = Rp[τ ] + wSp ⊆ Sp.

Note that since F (τ)w ∈ JSp, we have that

F (τ)B ⊆ A[τ ] + JSpSp = A[τ ] + JSp ⊆ A[τ ],

since JS ⊆ R[θ]. Note also that A is integrally closed in B, because Rp is integrally
closed in Sp. The Lemma above now applies, and we can conclude that B = A[τ ], and
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so wSp ⊆ A[τ ]. Since S is module-finite over R[θ], this implies that for some element
g ∈ R − p, gwS ⊆ R[θ]. But g /∈ q and w /∈ q, and so gw /∈ q, while we have just shown
that gw ∈ J . This is a contradiction, since J ⊆ q by our choice of q. �

We next want to define smooth, étale, and unramified algebras. We first need to discuss
finitely presented algebras a bit. Let R be any commutative ring. An R-algebra S is
called finitely presented if it is finitely generated and for some set of R-algebra generators
s1, . . . , sn of S, the ideal of polynomial relations on s1, . . . , sn over R is a finitely gener-
ated ideal. In more detail, note that a choice of R-algebra generators s1, . . . , sn yields a
homomorphism of a polynomial ring R[X1, . . . , Xn]→ S that is surjective, and so we have
that S ∼= R[X1, . . . , Xn]/I, where I is the kernel. I is the ideal of polynomial relations
on s1, . . . , sn over R, and so we are requiring that I have some finite set of generators,
say F1, . . . , Fm. That is, S is finitely presented over R if and only if it has the form
R[X1, . . . , Xn]/(F1, . . . , Fm), where X1, . . . , Xn are indeterminates.

It is reasonable to ask what happens if one chooses a different finite set of algebra
generators for S over R. The answer is that the ideal of polynomial relations is still finitely
generated. It suffices to compare each set of generators with the union of the two sets, and
so we may assume that one set is contained in the other, say s1, . . . , sn and s1, . . . , sn+h.
By induction on h it suffices to consider the case where h = 1, i.e., to compare s1, . . . , sn
and s1, . . . , sn, s where s = sn+1. Since s is in the R-subalgebra generated by s1, . . . , sn
we can choose a polynomial F ∈ R[X1, . . . , Xn] such that s = F (s1, . . . , sn). Consider
the R-algebra map T = R[X1, . . . , Xn] � S such that Xj 7→ sj , 1 ≤ j ≤ n: let I be the
kernel. We extend this to T [X] so that X 7→ s. It is easy to verify that the new kernel is
J = IT [X] + (X − F )T [X]. Clearly, if I is finitely generated, so is J . On the other hand,
if J is finitely generated we use the fact that there is an algebra retraction T [X]→ T that
fixes T and maps X to F : the image of J under this map is clearly I, and so a finite set
of generators for J will map to a finite set of generators for I.

If S is finitely presented over R and T is finitely presented over S then T is finitely
presented over R. For suppose that

S ∼= R[X1, . . . , Xn]/(F1, . . . , Fm) and T ∼= S[Y1, . . . , Yk]/(G1, . . . , Gh).

Each Gj can be lifted to an element Hj of R[X1, . . . , Xn, Y1, . . . , Yk] by lifting every
coefficient to an element of R[X1, . . . , Xn] that maps to it. Then

T ∼= R[X1, . . . , Xn, Y1, . . . , Yk]/(F1, . . . , Fm, H1, . . . , Hh),

as required.

Finally, note that a localization of R at one (and, hence, at finitely many) elements is
finitely presented: Rf ∼= R[X]/(fX − 1). A localization (at any multiplicative system) of
a finitely presented R-algebra is called essentially finitely presented. If the multiplicative
system is finitely generated, the word “essentially” is not needed.

Let S be an R-algebra. Let (T, J) be a pair consisting of an R-algebra T and an ideal
J ⊆ T such that J2 = 0. Then there is an obvious map

ΘT,J : HomR−alg(S, T )→ HomR−alg(S, T/J)
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that sends f : S → T to its composition γ ◦f with the natural surjection γ : T � T/J . By
a smooth R-algebra S we mean a finitely presented R-algebra such that for all R-algebras
T and J ⊆ T with J2 = 0, the map ΘT,J is surjective. By an étale R-algebra S we mean a
finitely presented R-algebra such that for all R-algebras T and J ⊆ T with J2 = 0, the map
ΘT,J is bijective. By an unramified R-algebra S we mean a finitely presented R-algebra
such that for all R-algebras T and J ⊆ T with J2 = 0, the map ΘT,J is injective.

Thus, given an R-algebra map S → T/J with J2 = 0, if S is smooth over R it has at
least one lifting to an R-algebra map S → T . If S is étale, it has a unique such lifting. If
S is unramified it has at most one such lifting (but there may not be any lifting).

Note that some authors give these definitions while only requiring S to be essentially
finitely presented rather than finitely presented. This creates only small differences in the
theory and is convenient in certain ways, while adding a few complications in other ways.
Instead, we shall add the word “essentially” for this case and talk about maps that are
essentially smooth, essentially étale, or essentially unramified.

Our next objective is to give many other characterizations of these three properties.
These characterizations should offer deep insight into the nature of morphisms with these
properties.

We first need to review the notions of derivation and of the module of Kähler differ-
entials. A derivation of a ring R into an R-module M is a map D : R → M such that
for all f, g ∈ R, D(f + g) = D(f) + D(g) and D(fg) = fD(g) + gD(f). The kernel of
D is a subring of R: note that D(1 · 1) = 1D(1) + 1D(1) and so D(1) = D(1) + D(1)
and D(1) = 0. A derivation D always kills the image of Z in R. If R is an A-algebra
then a derivation D : R → M is A-linear if and only if the image of A is killed by
D. (If it is A-linear then D(a · 1) = aD(1) = 0, while if the image of A is killed then
D(af) = D

(
(a · 1)f

)
= (a · 1)D(f) + fD(a · 1) = aD(f) + f · 0 = aD(f).) An A-linear

derivation is also called an A-derivation. The set of A-derivations DerA(R, M) is an R-
submodule of the set of all derivations Der (R, M) of R into M . The module structure
may be described as follows: the value of D1 + D2 on f ∈ R is D1(f) + D2(f), and the
value of rD on f is rD(f).

There is a “universal” A-derivation from R into a specially constructed R-module ΩR/A.
We sketch the construction. Let W be the free R-module with a basis in {bf : f ∈ R}
in bijective correspondence with the elements of R. We want to kill a submodule of W
in such a way that the map that takes f ∈ R to the image of bf in the quotient of W
by this submodule is a derivation. We therefore kill the R-submodule of W spanned by
the elements bf+g − bf − bg and bfg − fbg − gbf for f, g ∈ R, and also brf − rbf for all
r ∈ R in the image of A and all f ∈ R. Let ΩR/A denote the quotient of W by the
span V of all these elements. It should be clear that the map d : R → ΩR/A that sends
f to the image of bf is an A-derivation. We therefore use df to denote the image of bf .
The map d : R → ΩR/A has the following universal property: given any A-derivation D
of R into an R-module M , there is a unique R-linear map T : ΩR/A → M such that
D = T ◦ d. Thus, every A-derivation arises from d, uniquely, by composition with an
R-linear map. (It is straightforward to check that the composition of an A-derivation with
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an R-linear map is an A-derivation.) Otherwise said, for every R-module M we have an
isomorphism HomR(ΩR/A, M) ∼= DerA(R, M). This is the universal mapping property
of d : R → ΩR/A. (Another way of thinking about this is to note that d : R → ΩR/A
represents the functor M 7→ DerA(R, M) in the category of R-modules.) This mapping
property determines d : R→ ΩR/a uniquely up to unique isomorphism.

The proof that every A-derivation D of R → M arises uniquely from an R-linear map
ΩR/A →M is straightforward. Given D, it is clear that if one composes the required linear
map with the quotient surjection W � ΩR/A, it must map bf 7→ D(f) for every f ∈ R.
This shows uniqueness. There is certainly a unique such map from W to M . All that
is needed is to show that it kills all the elements whose span V we took in constructing
ΩR/A as W/V . But these are killed precisely because D is an A-derivation. We shall have
a lot more to say about derivations and Kähler differentials, but at this point we want to
explain how to use them to characterize smooth, étale, and unramified homomorphisms.
The proof of the theorem we state next will occupy us for quite a while.

Theorem. Let S be a finitely presented R-algebra.
(a) If R contains the rationals, S is smooth over R if and only if S is flat over R and

ΩS/R is projective as an R-module.
(b) S is étale over R if and only if S is flat over R and ΩS/R is 0.
(c) S is unramified over R if and only if ΩS/R = 0.

In part (a), when R does not necessarily contain the rationals a supplementary condition
is needed: e.g., S is smooth over R if and only if for every maximal ideal Q of S lying over
P in R, (ΩS/R) is SQ-free of rank equal to the dimension of SQ/PSQ.

Lecture of January 13, 2017

It is obvious from the definition that a homomorphism is étale if and only if it is
both smooth and unramified, and that is also obvious from our characterizations using
differentials.

Note also that the composition of two smooth (respectively, étale, respectively, unram-
ified) homomorphisms is again smooth (respectively, étale, respectively, unramified). For
example, suppose that S2 is smooth over S1 and S1 is smooth over R. Given a map
S2 → T/J where J2 = 0 we have a composite map S1 → S2 → T/J which lifts to a map
S1 → T . Now, since T is an S1-algebra and S2 is smooth over S1 we can lift to a map
S2 → T . Likewise, given two R-algebra liftings of an R-algebra map S2 → T/J to two
maps S2 → T that are distinct, the induced maps S1 → S2 → T must also be distinct,
since S2 is unramified over S1. But these both lift the same R-algebra map S1 → T/J ,
contradicting the fact that S1 is unramified over R. The corresponding result for étale
maps is the consequence of putting these two results together.

We want to give a bit more feeling for derivations and modules of differentials. Note
that by a straightforward induction, if D is a derivation on R then

D(f1 f2 · · · fk) = f2 · · · fkD(f1) + · · ·+ f1 f2 · · · fk−1D(fk).
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A typical term in the sum is the product of all the fi except fj times D(fj). An immediate

consequence is that D(fk) = kfk−1D(f). It then follows that D(fk11 · · · f
kh
h ) is the sum of

the h terms of which a typical term is kjf
k1
1 · · · f

kj−1
j · · · fkhh D(fj). It also follows that the

value of an A-derivation D on a polynomial in f1, . . . , fh with coefficients in A is uniquely
determined by the values of D(f1), . . . , D(fh).

In the case of the a polynomial ring B[x] there is B-derivation
∂

∂x
(we use the partial

derivative notation because B may be a polynomial ring involving other variables) whose
value on F (x) is

F (x+ ∆)− F (x)

∆ ∆=0

where ∆ is a new indeterminate. For b ∈ B,
∂

∂x
(bxk) = kbxk−1.

The polynomial ring R over A in variables xi (there may be infinitely many) has a

derivation
∂

∂xi
for each variable xi: one may think of R as Bi[xi] where Bi = A[xj : j 6= i].

Then if R is an A-algebra, F ∈ A[X1, . . . , Xk] and f1, . . . , fk ∈ R, for any A-derivation
D we have that

D
(
F (f1, . . . , fk)

)
=

k∑
i=1

∂F

∂xi
(f1, . . . , fk)D(fi)

.

It follows that if we have elements fj that generate R over A then the elements dfj span
ΩR/A as an R-module. In particular, if R is a finitely generated A-algebra then ΩR/A is a
finitely generated R-module.

Given a polynomial ring R in variables xi over A, a derivation D of R into M is uniquely
determined by specifying values ui ∈ M for the variables xi, and it is straightforward to
check that there really is a derivation for each specified set of values {ui}i: it sends F to

∑
i

∂F

∂xi
ui.

This implies that for the polynomial ring R, ΩR/A is the free R-module on the dxi. This
is true whether the number of variables is finite or infinite.

Note that if we have an A-algebra homomorphism R→ S and an S-module M there is
an R-linear map DerA(S, M)→ DerA(R, M) (where M is thought of as an R-module via
restriction of scalars) that is simply induced by composition with the map R → S. This
implies that there is an R-linear map ΩR/A → ΩS/A sends df (this might more precisely
be denoted dR/Af) to df (which might more precisely be denoted dS/Af). Hence, there is
an S-linear map S ⊗R ΩR/A → ΩS/A.

Let I be an ideal of the A-algebra R. Given an A-derivation R/I →M we may compose
to get an A-derivation R � R/I → M . An A-derivation D : R → M arises in this way if
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and only if M is an (R/I)-module and D kills I. It follows that if we have an A-algebra
surjection R � S with kernel I, then ΩS/A = S ⊗R ΩR/A/Span {df : f ∈ I}. In the
denominator here, it suffices to kill the R-span of the dfj for a set of elements fj that
generate I (note that d(rfj) = rd(fj) + fjdr, and the second summand is 0 because I kills
M).

Any A-algebra R may be thought of as a polynomial ring T in variables xi modulo the
ideal generated by polynomials Fj : both i and j may vary in an infinite set here. It follows
that ΩR/A may be thought of as the free R-module on the dxi modulo the images of the

elements dFj calculated in ΩT/A, i.e., the images of the elements
∑
i
∂Fj

∂xi
dxi.

In the case of a finitely presented A-algebra R we may work with finitely many variables

xi and finitely many polynomials Fj , and then ΩR/A is the cokernel of the matrix
(∂Fj
∂xi

)
(each entry is replaced by its image in R). This matrix is called the Jacobian matrix. The
Jacobian matrix depends on a choice of generators and relations for R over A, but its
cokernel, ΩR/A, does not.

If R is an A-algebra, W is a multiplicative system in R, and D : R→M is a derivation,
then any derivation D : R → M induces a unique derivation W−1D : W−1R → W−1M
whose restriction to R is D. Since w(f/w) = f/1 for f ∈ R and w ∈ W , the extended

derivation, if there is one, D̃, must satisfy

D(f)/1 = D̃(f) = D̃
(
w(f/w)

)
−wD̃(f/w)+(f/w)D̃(w/1) = wD̃(f/w)+(f/w)

(
D(w)/1

)
.

We may multiply by 1/w to obtain

D̃(f/w) =
D(f)

w
− fD(w)

w2
=
wD(f)− fD(w)

w2
,

the usual quotient rule. This proves that there is at most one way to define D̃. It is
straightforward to check that if one takes this as the definition (one must check that if
f1/w1 = f2/w2 then one gets the same result from either of these representations) then one
does in fact get a derivation that extendsD. The remaining details are also straightforward.

It then follows easily from the universal mapping properties for the modules of differ-
entials and for localization that

ΩW−1R/A
∼= W−1ΩR/A.

Before proving the theorem we have already stated characterizing smooth, étale, and
unramified morphisms in terms of the behavior of differentials, we want to give some further
characterizations: the proofs of these results are likewise postponed for a while.

We need the notion of a geometrically regular algebra over a field. If K is a field, we say
that a Noetherian K-algebra R is geometrically regular if for every finite purely inseparable
extension L of K, the ring L⊗K R is regular. This implies that R is regular, and in equal
characteristic 0, it is equivalent to the condition that R be regular, since the only purely
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inseparable extension of K is K. Similarly, if K is algebraically closed or perfect, the
condition that a K-algebra be geometrically regular is, again, simply the condition that it
be regular. It turns out that if R is geometrically regular over K, then L⊗K R is regular
for every finite algebraic extension of K. In this generality, infinite field extensions L are
slightly problematic in that one may lose the Noetherian property.

However, when R is essentially of finite type over K, i.e., a localization of a finitely
generated K-algebra, the geometric regularity of R over K implies that L⊗K R is regular
for every field extension L of K. In this case it turns out that R is geometrically regular
provided that L⊗RK is regular for some field that contains a perfect closure of K (in char-
acteristic p, this is a maximal purely inseparable algebraic extension, gotten by adjoining
all pe th roots of all elements). In particular, if R is essentially of finite type over K, then
R is geometrically regular if and only if K⊗KR is regular, where K is an algebraic closure
of K.

Note the following example. Let R = k(t) be a field where k is a field characteristic
p > 0 and t is transcendental over k. Let K = K(tp) ⊆ R. K is a field, and R is a
regular, but it is not a geometrically regular K-algebra: k(t)⊗K R contains the nilpotent
t⊗ 1− 1⊗ t, whose p th power is 0.

We will eventually prove all of the statements about geometric regularity made above.
But we first want some additional characterizations of smooth, étale, and unramified mor-
phisms, of which the next is:

Theorem. Let S be a finitely presented R-algebra.
(a) S is smooth over R if and only if S is flat over R and for every prime P of R, the

fiber κP ⊗R S is geometrically regular over κP .
(b) S is étale over R if and only if S is flat over R and for every prime P of R, the fiber

κP ⊗R S is a finite product of finite separable algebraic field extensions of κP .

Note that a smooth algebra over a field K is the same as a finitely generated geomet-
rically regular algebra, while an étale algebra over a field K is the same thing as a finite
product of finite separable algebraic field extensions.

For varieties over the complex numbers C, étale has the following geometric interpreta-
tion: R→ S is étale means that the map of corresponding varieties is, locally, like an open
inclusion in a covering space with finite fibers. The interpretation of unramified is that
the geometric map is like a locally closed inclusion in a covering space with finite fibers.

In the algebraic setting we now give very down-to-earth characterizations of all these
notions. Let R be a ring and let x be an indeterminate over R. Let f be a monic polynomial
in x, and let g ∈ R[x] be such that f ′, the derivative of f with respect to x, is invertible in
R[x]g. It then turns out that (R[x]/fR[x])g is étale over R. Such an extension is called a
standard étale R-algebra. The following is a deep result characterizing étale and unramified
extensions:

Theorem. Let S be a finitely presented R-algebra. Then S is étale (respectively, unrami-
fied) over R if and only if for every prime ideal Q of S with contraction P to R there exist
b ∈ S −Q and a ∈ R − P such that Sb is isomorphic to a standard étale algebra over Ra
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(respectively, a homomorphic image by a finitely generated ideal of a standard étale algebra
over Ra).

The result just stated requires ZMT in the proof, and generalizes immensely that state-
ment that a finite separable algebraic field extension has a primitive element.

There is a similar result characterizing smooth homomorphisms:

Theorem. Let S be a finitely presented R-algebra. Then S is smooth over R if and only if
for every prime ideal Q of S with contraction P to R there exist b ∈ S −Q and a ∈ R−P
such that there is a factorization Ra → T → Sb, where T is a polynomial ring in finitely
many variables over Ra and T → Sb is étale.

If we are working with varieties over C then R → S is smooth means that, locally on
Spec (R) and Spec (S), the map factors as an open inclusion in a covering space with finite
fibers of the product of the base with AmC for some m.

Filling in the proofs of the results we have stated will be a considerable task.

Lecture of January 18, 2017

An R-algebra S is called formally smooth, respectively formally étale, respectively for-
mally unramified if for all R-algebras T and ideals J ⊆ T such that J2 = 0, the map ΘT,J

is surjective, respectively bijective, respectively injective. Evidently, in each case, the word
“formally” may be dropped, if the property of finite presentation for S over R is assumed
as well. If two homomorphisms f : R→ S and g : S → T are formally smooth (or formally
étale, or formally unramified), then their composition g◦f : R→ T has the same property.

Proposition. Let S be an R-algebra. If S is a polynomial ring over R, then S is formally
smooth, and it is smooth if the number of indeterminates is finite. If S = W−1R then S
is formally étale over R, and it is étale if W is finitely generated. If S = R/I then S is
formally unramified over R, and it is unramified if I is finitely generated.

Proof. For the result on polynomial rings, note that the values on the indeterminates xi
are elements ti of T/J , where ti is the image mod J of ti ∈ T . One may lift the map by
sending xi 7→ ti for all i. This does not use that J2 = 0.

Given a map of f : W−1R → T/J , one has a map of R → T/J , and this has a unique
lifting to a map R → T . The map W−1R → T that lifts f must extend this map, and
there is at most one map that does so: it exists if and only if every element of W maps
to a unit of T . But this is true, because every element of W maps to a unit of T/J , and
killing nilpotents does not affect the invertibility of elements.

Finally, if an R-algebra map R/I → T/J has two liftings to maps R/I → T , these
will induce, by composition with R→ R/I, distinct R-algebra maps R→ T , a contradic-
tion. �

We next note that if S is formally smooth, or étale, or unramified over R, and if R′ is
any R-algebra, then R′⊗RS is formally smooth, or étale, or unramified over R′. The same
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result holds with the word “formally” omitted, since if S is finitely presented over R then
R′ ⊗R S is finitely presented over R′: if S = R[x1, . . . , xn]/(F1, . . . , Fm) then R′ ⊗R S ∼=
R′[x1, . . . , xn]/(F ′1, . . . , F

′
m), where F ′j is the image of Fj in R′[x1, . . . , xn]. The point in

the proofs is that if T is an R′-algebra, then HomR′−alg(R′ ⊗R S, T ) ∼= HomR−alg(S, T )
as sets, and the same holds when T is replaced by T/J . The required results are then
immediate.

We shall say that δ : R→M , where M is an R-module, is a universal derivation for the
A-algebra R if for every derivation D : R→ N , where N is an R-module, there is a unique
R-linear map L : M → N such that D = L ◦ δ. We have already noted that d : R→ ΩR/A
is a universal derivation. If δ : R → M is another, the universal mapping properties give
unique R-linear maps L : ΩR/A →M and L′ : M → ΩR/A that are mutually inverse (e.g.,
L′ ◦ L is the unique map from ΩR/A to itself whose composition with d gives d, and so is
the identity). Note that δ = L ◦ d.

If S is an R-algebra, let I be the kernel of the map S⊗RS → S. The ideal I is generated
by elements of the form s⊗1−1⊗s. Now S⊗RS has two S-module structures coming from
the two maps of S into it (one structural morphism maps s to s ⊗ 1 and the other maps
s to 1⊗ s), and every ideal of S ⊗R S has these two S-module structures. In particular, I
and I2 have two S-module structures. However, we claim that on I/I2 these two S-module
structures agree. The reason is that

I/I2 =
(
S ⊗R S)/I

)
⊗S⊗RS I

is an
(
(S ⊗R S)/I

)
-module, and (S ⊗R S)/I = S. Notice that we have a map δ : S → I

such that for all s ∈ S, δ(s) = s ⊗ 1 − 1 ⊗ s. This map is easily seen to be R-linear. In
fact, it is an R-derivation of S → I/I2, since

sδ(t) + tδ(s) = s(t⊗ 1− 1⊗ t) + t(s⊗ 1− 1⊗ s).

In evaluating s(f ⊗ g) we may use either sf ⊗ g or f ⊗ sg. Thus, this expression becomes

st⊗ 1− s⊗ t+ s⊗ t− 1⊗ st = st⊗ 1− 1⊗ st = δ(st),

as required.

Theorem. With notation as just above, δ : S → I/I2 is a universal R-derivation on S,
and so ΩS/R ∼= I/I2 in such a way that ds corresponds to s⊗ 1− 1⊗ s.

Proof. Let S = K[Xi : i]/(Fj : j) be a presentation of S, where i and j are both permitted
to vary in index sets that may be infinite. We shall think of this as the copy of S on the
right in S ⊗R S. Let Yi be a new family of indeterminates indexed in the same way as
the Xi and let Gj = Fj(Y ) be the corresponding family of polynomials in the Yi, so that
S ∼= R[Y : i]/(Gj : j) as well, which we shall think of as the copy of S on the left in the
S ⊗R S. Then

S ⊗R S ∼= R[Xi, Yi : i]/(Fj , Gj : j).
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Let ∆i = Yi − Xi for every i. Then we may describe S ⊗R S using the indeterminates
Xi and ∆i, replacing Yi by Xi + ∆i for al i. We replace Gj = Fj(Y ) by Fj(X + ∆): we
use this notation to indicate that in Fj , every Xi has been replaced by Xi + ∆i. In this
presentation, if xi is the image of Xi in S, then δ(xi) is the image of Yi −Xi = ∆i. Thus,
the ideal I corresponds to the ideal generated by all the ∆i in

R[Xi, ∆i : i]/(Fj , Fj(X + ∆) : j).

By the multi-variable version of Taylor’s formula, for all j,

Fj(X + ∆) = Fj(X) +
∑
i

∂Fj
∂Xi

∆i + terms of degree 2 or more in the ∆i .

This leads to the result that

(S ⊗R S)/I2 ∼= R[Xi,∆i : i]/
(
(Fj : j) + (

∑
i

∂Fj
∂Xi

∆i : j) + (∆i : i)2
)
.

Since R[Xi : i]/(Fj : j) ∼= S, (S ⊗R S)/I2 may be identified with the free S module with

basis 1 together with the ∆i modulo the S-span of the relations
∑
i
∂Fj

∂Xi
∆i as j varies,

where each
∂Fj

∂Xi
is identified with its image in S. It follows that I/I2 may be identified

with quotient of the free S-module on the elements ∆i modulo the S-span of those same
relations, and we have already seen (see the fifth paragraph of the second page of the
Lecture Notes of January 13) that this module is isomorphic with ΩS/R in such a way that
∆i corresponds to dxi. �

Theorem. Let S be an R-algebra. Then S is formally unramified over R if and only if
ΩS/R = 0, and this is equivalent to the condition that, with I = Ker (S⊗R S � S), I = I2.

Proof. Since ΩS/R ∼= I/I2, it is obvious that ΩS/R = 0 if and only if I = I2. We work
with the latter condition.

We first show that if I = I2 then S is unramified over R. Suppose that I = I2 and also
suppose we have two R-algebra maps φ1 and φ2 of S → T that agree mod J , with J2 = 0.
This gives an R-algebra map S ⊗R S → T such that s⊗ t 7→ φ1(s)φ2(t). The fact that the
φi induce the same map to T/J implies that for all s ∈ S, s⊗ 1− 1⊗ s maps to 0 in T/J ,
and this implies that I maps into J . But then I = I2 maps into J2 = 0, and so I is killed.
Since s⊗ 1− 1⊗ s ∈ I maps to φ1(s)− φ2(s), it follows that φ1 = φ2.

Conversely, suppose that S is formally unramified over R. Then let T = (S ⊗R S)/I2,
and let J = I/I2 ⊆ T . We have two obvious R-algebra maps of S into S⊗RS (one sending
s to s ⊗ 1, and one sending s to 1 ⊗ s, and, hence, two obvious maps into T . Since the
two maps agree mod J , they agree. But this means that each element s⊗ 1− 1⊗ s is 0 in
T/I2, and since these elements generate I, we have that I ⊆ I2. since the other inclusion
is obvious, I = I2.
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Lecture of January 20, 2017

Proposition. Let R be a ring.
(a) If S = R[x]g/(f) where f is any polynomial whose derivative f ′ with respect to x is

invertible in S, then S is étale over R.
(b) More generally, if S = R[x1, . . . , xn]g/(f1, . . . , fn) is such that the image of the

Jacobian determinant det
(∂fj
∂xi

)
is invertible in S, then S is étale over R.

Proof. It is evident that (a) is a special case of (b) and it will suffice to prove (b). Suppose
that we are given a homomorphism φ : S → T/J where J2 = 0 and we seek a lifting to T .
Let yi ∈ T lift the values of the φ(xj), where xj is the image of Xj in S. Then we must
have that fj(y) ∈ J for every j, where y = y1, . . . , yn, and we also know that g(y) is a
unit of T , since it is a unit of T/J . Then we want to prove that there are unique elements
δi ∈ J such that fj(y + δ) = 0 for all j, where y + δ indicates y1 + δ1, . . . , yn + δn. By
Taylor’s formula with remainder, the fact that the δj will be chosen in J , and J2 = 0,
these equations are equivalent to the equations

fj(y) +
n∑
i=1

∂fj
∂xi x=y

δi = 0,

with the proviso that the δi ∈ J . Let J be the n× n matrix whose i, j entry is
∂fj
∂xi x=y

.

The determinant of this matrix is a unit, because that is true mod J , and so the matrix
is invertible. Let ∆ be a column vector whose entries are the unknown elements δi of J
that we seek, and let Γ be a column vector whose j th entry is fj(y) ∈ J . Thus, we seek to
solve J∆ = −Γ where ∆ has unknown entries in J , −Γ has entries in J , and the matrix
J is invertible. It is now clear that the unique solution is ∆ = −J−1Γ, and the entries of
the solution do happen to be in J . �

Note that part (a) has the desirable consequence that standard étale extensions are,
indeed, étale.

Corollary. A finite separable algebraic extension L of a field K is étale over K.

Proof. By the theorem on the primitive element, L = K[θ], where the monic minimal
polynomial f of θ is separable over L. This implies that the image of f ′ in L does not
vanish, and so is invertible. Thus L ∼= K[x]/(f) where f ′ is invertible in L. �

Proposition. If J is contained in the ideal of nilpotents of T , there is a bijection between
the idempotents of T and the idempotents of T/J induced by the quotient surjection T �
T/J .

Proof. Clearly, the image of an idempotent e ∈ T is idempotent in T/J . Suppose that
e′ ≡ e mod J . Then e− e′ is nilpotent, and hence so is e(e− e′), i.e., e = e2 ≡ ee′ mod J ,
and so e(1− e′) is nilpotent. But e and 1− e′ are both idempotent, and, hence, so is their
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product. It follows that e(1− e′) = 0, i.e., that e = ee′. But ee′ = e′ similarly. Thus, the
map on idempotents is injective.

It remains to show that it is surjective. Let e be an element whose image mod J is
idempotent and let f = 1 − e. Then e + f = 1 and enfn = 0 for some n. Expand
(e+ f)2n−1 by the binomial theorem. Each term is either a multiple of en or a multiple of
fn. The multiples of en include e2n−1 and other terms involving f , and similarly for the
multiples of fn. Thus,

1 = (e+ f)2n−1 = en(en−1 + fu) + fn(fn−1 + ev).

Let e′ = en(en−1 + fu) and f ′ = fn(fn−1 + ev). Then e′ + f ′ = 1, e′f ′ is a multiple of
enfn = 0, and, mod J , e′ ≡ e2n−1 + enfu ≡ e. Thus, e′ is an idempotent of T that lifts
e. �

Proposition. Let S1, . . . , Sn be R-algebras. Consider any of the following properties:
finite presentation, (formal) smoothness, being (formally) étale, or being (formally) un-
ramified. Then S = S1 × · · · × Sn has this property if and only if all of the Si have this
property.

Proof. By a straightforward induction it suffices to consider the case where n = 2. We
leave the property of finite presentation as an exercise. Once that is known, it suffices to
consider the properties of being formally smooth and formally unramified: the property
of being formally étale then follows. Note that giving a map S1 × S2 → T/J yields an
idempotent in T/J that lifts uniquely to an idempotent in T , and so T = T1×T2. We may
then write J = J1 × J2 where Ji is an ideal of Ti and J2

i = 0, i = 1, 2. The problem of
lifting a map is a componentwise problem, and so if both factors are smooth (respectively,
unramified) so is the product. Now suppose that S is smooth (respectively, unramified).
Let T1 be an S1-algebra and J1 an ideal such that J2

1 = 0. Let T = T1 × S2 with J2 = 0,
and let J = J1×J2. The problem of lifting maps S1 → T1/J to maps S1 → T is equivalent
to the problem of lifting maps S1 × S2 → T/J of the form φ× 1S2 to maps S1 × S2 → T .
It follows that if S is formally smooth (respectively, unramified), then so is S1, and the
argument for S2 is similar. �

We are aiming next to prove the following characterization of étale extensions of fields.

Theorem. Let K be a field and let R be a finitely generated K-algebra. The following
conditions are equivalent:
(a) R is étale over K.
(b) R is unramified over K.
(c) R is a finite product of finite separable algebraic field extensions of K.
(d) If L is an algebraic closure of K, then L⊗K R is K-isomorphic with a finite product

of copies of L.

We postpone the proof until we have established some preliminary results on modules
of differentials for field extensions. These results themselves need further preliminaries.

Let K ⊆ L be a field extension. A family of algebraically independent elements {xi}i
of L over K is called a separating transcendence basis for L over K if L is separable over
K(xi : i) ⊆ L. We need the following result of S. MacLane:
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Theorem. If K is algebraically closed or perfect of characteristic p > 0 and L is finitely
generated over K then L has a separating transcendence basis over K.

Proof. If F is a subfield of L, let F sep denote the separable closure of F in L. Choose a
transcendence basis x1, . . . , xn so as to minimize [L : L′] where L′ = K(x1, . . . , xn)sep.
Suppose that y ∈ L is not separable over K(x1, . . . , xn). Choose a minimal polynomial
F (z) for y over K(x1, . . . , xn). Then every exponent on z is divisible by p. Put each
coefficient in lowest terms, and multiply F (z) by a least common multiple of the denom-
inators of the coefficients. This yields a polynomial H(x1, . . . , xn, z) ∈ K[x1, . . . , xn][z]
such that the coefficients in K[x1, . . . , xn] are relatively prime, and such that the poly-
nomial is irreducible over K(x1, . . . , xn)[z]. By Gauss’s Lemma, this polynomial is ir-
reducible in K[x1, . . . , xn, z]. It cannot be the case that every exponent on every xj
is divisible by p, for if that were true, since the field is perfect, H would be a p th
power, and not irreducible. By renumbering the xi we may assume that xn occurs with
an exponent not divisible by p. Then the element xn is separable algebraic over the
field K(x1, . . . , xn−1, y), and we may use the transcendence basis x1, . . . , xn−1, y for L.
Note that xn, y ∈ K(x1, . . . , xn−1, y)sep = L′′, which is therefore strictly larger than
L′ = K(x1, . . . , xn)sep. Hence, [L : L′′] < [L : L′], a contradiction. �

Lemma. Let R be a ring.
(a) Let S be a direct limit of R-algebras Sj. Then ΩS/R may be viewed as the direct limit

of the modules ΩSj/R (or of the modules S ⊗Sj
ΩSj/R).

(b) Let S be an R-algebra and let T = S[Xi : i], a polynomial ring. Then

ΩT /R ∼= T ⊗S ΩS/R
⊕(⊕

i

TdXi

)
,

and the value of dT/R on F =
∑
µ∈M sµµ, where µ runs through some finite set of

monomials M in the Xi, is∑
µ∈M

µ⊗ dS/R(sµ) +
∑
i

∂F

∂xi
dXi.

Hence, if U = T/(Fj : j) then

ΩU/R ∼= U ⊗T ΩT/R/〈dT/R(Fj) : j〉,

where the brackets 〈 〉 indicate span over T .

Proof. (a) One may deduce this using universal mapping properties. Here is another
argument. Since S is the union of the images of the Sj , the images of the dsj , sj ∈ Sj ,
span ΩS/R. Each relation coming from addition, multiplication by a scalar in R, or the
product rule in some Sj continues to hold when we map to ΩS/R, while it is clear that
each such relation that holds in ΩS/R comes from one that holds in some Sj .

In part (b), the second statement is immediate from the first. The formula for dT/R is
forced by linearity and the product rule, and it is straightforward to verify that dT/R as
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defined is a derivation. (Note that in checking the product rule, one has that both sides
are bilinear. Therefore it suffices to check it when each of the two elements is the product
of an element of S with a monomial.) �

Lecture of January 23, 2017

Proposition. Let K ⊆ L be fields.
(a) If L = K(xi : i ∈ I) is a purely transcendental extension of K then ΩL/K is the free

L-module on the dxi.
(b) If L′ is a separable algebraic extension field of L, then ΩL′/K ∼= L′ ⊗L ΩL/K .
(c) If {xi : i ∈ I} is a separating transcendence basis for L/K, then ΩL/K is the free

L-module on the basis dxi.
(d) If K is perfect and L is finitely generated over K, then dim LΩL/K is the transcendence

degree of L over K.

Proof. Part (a) follows from the corresponding fact for polynomial rings together with the
fact that localization commutes with formation of the module of differentials.

For part (b), a direct limit argument enables us to reduce to the case of a finite separable
algebraic extension field L of K, and by the theorem on the primitive element, L′ =
L[x]/(f) where f is separable over L. Let f =

∑
t λtx

t. By part (b) of the final Lemma
from the Lecture Notes of January 20,

ΩL′/K ∼=
(
L′ ⊗L ΩL/K ⊕ L′dx

)
/L′dL[x]/Kf.

But
dL[x]/Kf =

∑
t

dL/K(λt)x
t + f ′dx.

Since the image of f ′ in L is invertible, the quotient is simply the isomorphic with the
module L′ ⊗L ΩL/K .

(c) is immediate from parts (a) and (b), while (d) is immediate from (c) and MacLane’s
theorem on the existence of separating transcendence bases. �

We are now ready prove the characterization of étale extensions of fields stated in the
Lecture Notes of January 20.

Proof of the theorem characterizing étale extensions of fields. We will prove that (c)⇒ (a)
⇒ (b)⇒ (d)⇒ (c). Note that since R is finitely generated over a field, it and its quotients
are finitely presented. For these rings, étale is equivalent to formally étale and unramified
is equivalent to formally unramified.

The fact that (c)⇒ (a) follows from the Corollary to the first Proposition of the Lecture
Notes of January 20 together with the Proposition from those same notes on behavior of
finite products, while (a) ⇒ (b) is immediate. To prove that (b) ⇒ (d), note that L⊗K R
is unramified over L, and so it will suffice to prove that a finitely generated algebra over
L is unramified if and only if it is isomorphic with a finite product of copies of L. We
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first claim that R must be zero-dimensional. If not, we may kill a minimal prime that is
contained in a maximal ideal that is different from it, and so obtain an unramified finitely
generated L-algebra that is a domain. The module of differentials of the fraction field
F has vector space dimension equal to the transcendence degree of F over L, which is
the Krull dimension of R. But this must be zero. Therefore F must be equal to L, a
contradiction.

Since R is zero-dimensional, it is a finite product of Artin local rings, and these may
be considered separately. To complete the argument, we show that if an Artin local ring
is a finitely generated L-algebra and is unramified, then it is ∼= L. The residue field must
be the image of L. If the maximal ideal is nonzero, we may kill m2 6= m to obtain an
example in which m2 = 0 but m 6= 0. We may now kill all but one element in a minimal
set of generators of m. The resulting ring has the form R = L[x]/x2. But then ΩR/L is the

cokernel over R of the matrix
(
2x
)
, and is not zero since the image of 2x is in the maximal

ideal of R, a contradiction. This concludes the proof that (b) ⇒ (d).

It remains only to show that (d) => (c). Suppose that L⊗KR is a finite product of copies
of L. Then R is a finite-dimensional vector space over K. Since it is module-finite over K,
it has Krull dimension zero. Since R ⊆ L ⊗K R (since L is free over K, this extension is
faithfully flat), we see that R is reduced. Then R is a finite product of reduced Artinian
local rings, each of which stays reduced when we apply L⊗K . It follows that each local
ring of R is a finite algebraic field extension K ′ of K such that L ⊗K K ′ is reduced. It
remains to show that K ′ is separable. Let θ ∈ K ′ have minimal polynomial f = f(x) over
K. Then L⊗K K[θ] ⊆ L⊗K K ′ is reduced, and L⊗K K[θ] ∼= L⊗K K[x]/(f) ∼= L[x]/(f)
is reduced, which implies that f is square-free in L[x], as required. �

The following is a variant of Zariski’s Main Theorem, and we shall refer to it as Zariski’s
Main Theorem.

Theorem (Zariski’s Main Theorem). Suppose that R ⊆ S and that S is finitely gen-
erated as an R-algebra. Let Q be a prime ideal of S that is isolated in its fiber over P , a
prime in R. Then there exists a module-finite extension R′′ of R with R ⊆ R′′ ⊆ S and
f ∈ R′′ −Q such that R′′f = Sf .

Proof. Let R′ be the integral closure of R in S and P ′ = Q ∩ R′. Then Q is isolated in
its fiber over P ′, and by the earlier version of ZMT, there exists f ∈ R′ − P ′ = R′ − Q
such that R′f = Sf . Hence, for each of the finitely many generators uj of S over R, we can

choose Nj such that fNjuj = vj/1 with vj ∈ R′. Let R′′ be the subring of R′ generated
by f and the vj . Clearly, R′f = Sf . �

Let P be a property of ring homomorphisms, and let R→ S be a ring homomorphism.
Let Q be a prime ideal of S lying over a prime P in R. We shall say that P holds near Q
or that R→ S has P near Q if there exist b ∈ S−Q and a ∈ R−P such that the image of
a in Sb is invertible (so that there is an induced map R-algebra map Ra → Sb: we say that
Ra → Sb is defined in this case) and such that Ra → Sb has property P. Thus, we may
talk about a homomorphism R→ S that is étale near Q, or smooth near Q, or unramified
near Q, or formally unramified near Q, and so forth.

The following result makes major inroads in classifying étale and unramified morphisms.
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Theorem. Let S be an R-algebra, and Q a prime ideal of S lying over P in R.

If S is finitely presented over R then R → S is unramified near Q if and only if there
exist a ∈ R − P and b ∈ S − Q such that Ra → Sb is defined and Sb is a homomorphic
image by a finitely generated ideal of a standard étale algebra over Ra.

If S is finitely generated over R then S is formally unramified near Q if and only if there
exist a ∈ R − P and b ∈ S − Q such that Ra → Sb is defined and Sb is a homomorphic
image of a standard étale algebra over Ra.

The proof involves Zariski’s Main Theorem, the theorem on the primitive element for
separable field extensions, our understanding of unramified homomorphisms when the base
ring is a field, Nakayama’s lemma, and additional trickery.

Before beginning the proof, we want to make several remarks. If R → S is finitely
presented so is R → Sb and, hence, Ra → Sb when it is defined. Likewise, if S is finitely
generated over R, then Sb is finitely generated over R and, hence, over Ra when Ra → Sb
is defined. Also note that if we have maps R → R′ → S such that R′ and S are finitely
presented over R, then S is finitely presented over R′. (Take finitely many generators and
relations for R′ over R. Include the images of these generators and relations in a finitely
many generators and relations for S over R. The additional generators and relations needed
give a finite presentation of S over R′.)

Note that we already know the “if” part of the theorem: a standard étale algebra is
unramified, and a quotient by an ideal is formally unramified and unramified if the ideal
is finitely generated. Thus, we need only be concerned with proving the “only if” part.

The result in the final paragraph may be paraphrased as follows: if S is finitely generated
over R it is formally unramified near Q if and only if it is a homomorphic image of a
standard étale algebra near Q. The result in the second paragraph may be paraphrased as
follows: if S is finitely presented over R, it is unramified near Q if and only if it is locally
a homomorphic image, by a finitely generated ideal, of a standard étale algebra.

The statement in the second paragraph is immediate from the statement in the final
paragraph: Sb will be finitely presented over the standard étale algebra, and therefore, if
it is a homomorphic image of it, the ideal must be finitely generated.

Thus, we need only prove the “only if” part of the statement in the final paragraph.

Lecture of January 25, 2017

Proof of the “only if” statement in the final paragraph of the theorem classifying unrami-
fied homomorphisms. Note first that if T is another finitely generated R algebra with an
element c ∈ T is such that Tc ∼= Sb where b /∈ Q, then we may study T instead of S:
Tc will have a prime ideal Q′Tc corresponding to QSb, where Q′ is a prime ideal of T
not containing c, and any localization of Sb at one element not in QSb corresponds to a
localization of Tc at one element not in QTc.

We next want to observe that we may replace R and S by RP and RP⊗RS = SP : this is
a base change, and the hypotheses still hold. If we know the case where R is quasilocal then



28

we know that for suitable elements α ∈ RP −PRP and β ∈ SP −QSP , we have that (SP )β
is a homomorphic image of a standard étale algebra over (RP )α, say of

(
(RP )α[x]

)
g
/(f),

where f is monic over (RP )α, g has coefficients in (RP )α, and f ′ is invertible in the
quotient. If we localize at the denominators in representations for α, β, the coefficients of
f and g, and elements needed to show the invertibility of f ′ in

(
(RP )α[x]

)
g
/(f) we get a

standard étale algebra over a ring of the form Ra, namely C = Ra[x]g/(f) that will map
to (SQ)β , where β may be assumed to be in S − Q. This map becomes onto if we invert
all elements of R − P . Thus, we can find a single a′ ∈ R − P such that the image of
Ca′ contains all of the generators in some finite set of generators for S over R, then map
Ca′ → Sa′β will be surjective.

Henceforth, we assume, as we may, that (R, P,K) is quasi-local. Let R denote the image
of R in S. Consider the fiber K → K ⊗ S = S′. This map is also formally unramified
near the prime Q′ corresponding to Q, which means that after localizing at one element b′

of S′ − Q′, we have an unramified map K → S′b′ , and so Spec (S′b′) is finite. This means
that Q is isolated in its fiber over P : it is obviously minimal, and for finitely generated
algebras over a field, maximal ideals contract to maximal ideals, and so it is maximal as
well. Moreover, the field extension K → S/Q is a finite separable algebraic extension. We
now apply the form of Zariski’s Main Theorem proved in the Lecture Notes of January 23
to conclude that we have a module-finite R-algebra T with R ⊆ T ⊆ S and an element
b ∈ T − Q such that Tb = Sb. It follows that T is also formally unramified over R near
Q ∩ T , and it will suffice to prove the theorem with S and Q replaced by T and Q ∩ T .
We may therefore assume without loss of generality that S is module-finite over R, where
(R,P,K) is quasi-local.

Now the fiber S/PS is zero-dimensional. One of the factors, call it L, is S/Q, a finite
separable algebraic extension of K. Let us write S/PS = L × B, where B is simply the
product of the other Artin local rings (there are finitely many) in the factorization of
S/PS. Note that Q/PS corresponds to the ideal generated by (0, 1), which is {0}×B, in
L×B.

Let θ denote a non-zero primitive element for L over K, so that L = K[θ] (the condition
that θ 6= 0 is automatic except in the case where L = K), and let θ ∈ S be an element
that maps to (θ, 0) in S/PS ∼= L×B.

Let q be the contraction of Q to R[θ]. Note that θ ∈ S is integral over R. We claim that
R[θ]q = Sq = SQ (once we know this, we will be able to replace S by R[θ].) To prove that

R[θ]q = Sq we may use Nakayama’s lemma: since S is module-finite over R, Sq is module-

finite over Rq. It therefore will suffice to show that R[θ]q/qR[θ]q = Sq/qSq. We first

consider what happens to the extension R[θ] ⊆ S when we work mod the expansions of P ,
since PR[θ] ⊆ q. The image of R[θ]/PR[θ] in S/PS is R[θ]/(PS ∩R[θ]) ⊆ S/PS ∼= L×B.
Let θ′ = (θ, 0). Then the image of R[θ]/(PS ∩ R[θ]) in L × B is K[θ′], where we have
identified K with its image in L × B. The typical element of the image has the form
H(θ′) = (H(θ), H(0)), where H is an element of K[x]. Since we may choose H to be
the minimal polynomial of θ 6= 0, which has nonzero constant term α, the image contains
(0, α), and hence, the image contains e = (1, 1)−α−1(0, α) = (1, 0) ∈ L×B. The element e
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lies outside the contraction of Q/PS. Therefore, (S/PS)q is a localization of (L×B)e ∼= L.

Therefore, (S/PS)q = L. It is also clear that R[θ]/q = L, since θ is a primitive element

for L over K. We have verified that R[θ]q = Sq, and so Sq is already local with residue
class field L. It follows as well Sq = SQ.

We may now replace S by R[θ]. Let h denote the dimension of the K-vector space
K ⊗R S = S/PS, which is now spanned over K by the powers of the image of θ, which we

call θ1. Then 1, θ1, θ
2
1, . . . , θ

h−1
1 is a K-vector space basis for K ⊗R S. By Nakayama’s

lemma, it follows that 1, θ, θ2, . . . θh−1 span S over R, and that there is a monic polynomial
f in R[x] such that if f denotes the image of f in R[x], then f(θ) = 0. Let C denote the ring
R[x]/

(
f(x)

)
: we have that C maps onto S and that K⊗RC → K⊗RS is an isomorphism.

Let n denote the contraction of Q to C. Note that Cn/nCn ∼= K[θ] ∼= SQ/QSQ = L.

We then have that K ⊗R ΩC/R → K ⊗R ΩS/R is an isomorphism, since the former is
isomorphic to ΩK⊗RC/K , the latter to ΩK⊗RS/K , and K ⊗R C ∼= K ⊗R S. Now,

L⊗C ΩC/R ∼= (L⊗C C/PC)⊗C ΩC/R ∼= L⊗C (K ⊗R ΩC/R) ∼= L⊗C/PC (K ⊗R ΩC/R)

and, by an entirely similar argument, L ⊗S ΩS/R ∼= L ⊗S/PS ⊗(K ⊗R ΩC/R). Since
S/PS ∼= C/PC, we have that L⊗C ΩC/R ∼= L⊗S ΩS/R, and so

(Cn/nCn)⊗C ΩC/R ∼= (SQ/QSQ)⊗S ΩS/R ∼= (ΩS/R)Q/Q(ΩS/R)Q.

Since Sb is formally unramified over R, the numerator is 0, for even ΩSb/R
∼= (ΩS/R)b = 0.

Thus,

0 = (Cn/nCn)⊗C ΩC/R = L⊗ ΩCn/R,

and since ΩCn/R is finitely generated over Cn, we may apply Nakayama’s lemma to conclude
that (ΩC/R)n ∼= ΩCn/R = 0. Since ΩC/R is finitely generated over C, we may choose a
single element g = g(x) with image not in n such that ΩCg/R = 0. Thus, Cg is unramified
over R, and we may replace g by a multiple that maps to a multiple of b. We replace b by
this multiple, and then we have a surjection Cg � Sb. Since Cg = R[x]g/(f) is formally
unramified over R and ΩCg/R = 0 is the cokernel over Cg of the matrix

(
f ′
)

(one takes
the image of f ′ in Cg), we have that the image of f ′ in invertible in Cg = R[x]g/(f), so
that R[x]g/(f) is the required standard étale algebra. �

Lecture of January 27, 2010

We are now ready classify étale homomorphisms. First note that the property of R→ S
being flat is local on S: if SQ is flat for every prime Q of S, so is S. For if 0→ N →M is
an injection of R-modules, and S⊗RN → S⊗RM is not injective, the kernel is supported
at some prime ideal Q of S, and SQ ⊗R N → SQ ⊗R M will have non-trivial kernel, a
contradiction. Thus, if S is flat near Q for all prime ideals Q if and only if S is flat.
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Theorem. Let S be a finitely presented R-algebra. The following are equivalent:
(a) S is étale over R.
(b) S is flat over R and ΩS/R = 0.
(c) S is flat and unramified over R.
(d) Near every prime Q of Spec (S), S is standard étale over R (that is, there exists

b ∈ S −Q and a ∈ R not in the contraction P of Q such that Ra → Sb is defined and
is standard étale).

Proof. We already know that (b) and (c) are equivalent. We next observe that (d) ⇒ (a).
Suppose that we have an R-algebra map φ : S → T/J and we want to show that it has
a unique lifting S → T . This is very easy if we make use of the local nature of a map
of schemes. For every prime Q of Spec (S) we can choose b ∈ S − Q and a ∈ R − P ,
where P is the contraction of Q, such that Ra → Sb is defined and standard étale. Fix
an element β ∈ T that maps to the image of b in T/J . Then we have a surjection
Tβ � Tβ/JTβ ∼= (T/J)b. Note that Tβ is independent of the choice of β: if β′ also maps to
the image of b, the images of the two differ by a nilpotent in Tβ , and so β′ also is invertible
in Tβ . The sets D(b) cover Spec (S) (there is a choice of b outside any given prime Q),
and for each of them we have a unique map Sb → Tβ lifting the map Sb → (T/J)b. If we
think in terms of schemes we have a map from the open set Spec (Tβ)→ Spec (Sb). These
maps agree on overlaps: given b1, b2 and corresponding elements β1, β2, we may localize
the map Sb1 → Tβ1 at b2 and the map Sb2 → Tβ2 at b1: the results must agree, because
we get two liftings of Sb1b2 → (T/J)b1b2 to Tβ1β2

, and R→ Sb1b2 is étale. Therefore there
is a unique homomorphism S → T such that for all b, Sb → Tb is the same as Sb → Tβ . It
is easy to check that this unique homomorphism gives the unique lifting.

The condition in (d) also implies that S is flat over R, since standard étale algebras are
flat. Thus, (d) implies not only (a) but (b) and (c) as well.

To complete the proof, we shall show both that (a)⇒ (d) and that (c)⇒ (d). In either
case, we have that S is unramified over R, and so after passing to a suitable choice of
Ra → Sb (our hypothesis is preserved) we may assume that S = C/I where C = R[x]g/(f)
where f is monic and f ′ is invertible in C, i.e., C is standard étale over R. Let q be the
contraction of Q to C. To complete the proof, it will suffice to show that I becomes 0 after
localizing at some element of C − q. From the finite presentation condition, I is finitely
generated. Therefore, it suffices to show that Iq = 0. We may now replace R by RP and
assume that (R, P, K) is quasi-local.

By Nakayama’s lemma, to show that Iq = 0 it will suffice to show instead that Iq = I2
q ,

i.e., that Iq/I
2
q = 0. Let L = Cq/qCq. By another application of Nakayama’s lemma it

will suffice to show that L ⊗Cq
(ICq/I

2Cq) = 0. Now, because C is unramified over R,
C/PC is unramified over R/P = K, and so is reduced and zero-dimensional. But then
Cq/PCq is local, reduced, and zero-dimensional, which means that it is a field. It follows
that Cq/PCq = L and that PCq = qCq. For any Cq-module M ,

L⊗Cq
M ∼= (Cq/qCq)⊗Cq

M ∼= M/qM ∼= M/PM ∼= R/P ⊗RM = K ⊗RM.

Applying this with M = ICq/I
2CQ, we see that to complete the proof it suffices to show

that K ⊗R (ICq/I
2Cq) = 0.
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We have an exact sequence of R-modules:

(∗∗) 0→ ICq/I
2Cq

α−→ Cq/I
2Cq

β−→ SQ → 0

(recall that SQ = Cq/ICq). If we are assuming (a) we have that S is étale over R and
so SQ is formally étale over R. Therefore the R-algebra isomorphism SQ → Cq/ICq has
a unique lifting to a homomorphism SQ → Cq/I

2Cq. This map is a splitting, over R, of
the map β : Cq/I

2Cq → SQ, so that Cq/I
2Cq ∼= SQ ⊕ ICq/I2Cq. This implies that the

exact sequence (∗∗) remains exact when we apply K ⊗R . On the other hand, if we are
assuming that S is flat over R then so is SQ. This implies that Tor1

R(K, SQ) = 0, and so
the sequence (∗∗) remains exact when we apply K⊗R as well. Thus, in either of the two
cases, we see that we may identify K ⊗R (ICq/I

2Cq) with the kernel of the map K ⊗R β,
and so we have reduced to proving that K ⊗R β is an injective map.

Since both R→ C and R→ C � S are unramified over R, these two homomorphisms
are unramified over K once we apply K ⊗R . This implies that

K → K ⊗R Cq and K → K ⊗R Cq � K ⊗R SQ

are maps of K into separable algebraic finite field extensions of K. We therefore have that
the map K ⊗R Cq → K ⊗R SQ is injective. Since we have a factorization

K ⊗R Cq � K ⊗R Cq/I2Cq � K ⊗R SQ,

both these maps are injective as well as surjective, and the second of them is K ⊗R β. �

Lecture of January 30, 2017

Our next main objective is the Jacobian criterion for smoothness. We need some pre-
liminary results. The first gives a useful criterion for when the cokernel of a matrix over a
quasilocal ring is free. For this lemma we need some discussion of ideals of minors.

If M is a matrix over a ring a ring R we denote by It(M) the ideal generated by the
size t minors (or subdeterminants) of M . By convention, I0(M) = R. (The determinant
of a 0 × 0 matrix ought to be 1, because it is the determinant of an identity map, albeit
on a zero module. With this convention, the determinant of the direct sum of two square
matrices is the product of their determinants, even if one of the matrices is 0 × 0.) Note

that It(M) = I1
(∧t

(M)
)
. If M and N are matrices whose sizes are such that MN is

defined, we have that
∧t

(MN) =
∧t

(M)
∧t

(N). It follows easily that every size t minor
of MN is a sum in which each term is the product of a size t minor of M and one of N ,
and so It(MN) ⊆ It(M)It(N). If U is invertible, It(UM) ⊆ It(U)It(M) ⊆ It(M), while

It(M) = It
(
U−1(UM)

)
⊆ It(U−1)It(UM) ⊆ It(UM),

and so It(M) = It(UM), provided, of course, that UM is defined. Similarly, if V is
invertible and MV is defined we have that It(M) = It(MV ).
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Lemma. Let M be an n ×m matrix over a quasilocal ring (A, q,K). Then the cokernel
of the linear map induced by M from Am → An (we also use M to denote this map) is
free of rank d if and only if In−d+1(M) = 0 while In−d(M) = A.

Moreover, if d = n−m the following conditions are equivalent:

(a) Coker (M) is free of rank n−m.

(b) Im(M) = A.

(c) Some size m minor of A is a unit.

(d) The image of M mod q has rank m.

(e) The rows of M span Am.

(f) There exists an m× n matrix W such that WM is the size m identity matrix.

Proof. Replacing M by UMV , where U and V are invertible, does not affect the ideals
of minors of various sizes, and does not affect the cokernel. If some entry of M is a unit
we may perform elementary row and column operations until the unit is in the upper left
hand corner and is replaced by the element 1. We may then perform elementary row and
column operations to get the rest of the entries in the first column and row to be 0. We
may then iterate this process with the n − 1 × m − 1 matrix in the lower right corner.
Eventually, we express M is the direct sum of a size k identity matrix 1k (k may be 0) and
an n− k ×m− k matrix M ′ all of whose entries are in q, and we need only consider this
case. The cokernel of the M is the direct sum of the two cokernels, and therefore is equal
to the cokernel of M ′. This cokernel is free if and only if M ′ = 0, since otherwise one has
non-trivial relations on what must be a minimal set of generators. Note that if M ′ = 0,
the cokernel is free of rank n− k, and one has that Ik+1(M) = 0 while Ik(M) = A. Here,
d = n−k, and so k = n−d. It remains only to see that if M ′ 6= 0, then we cannot have one
ideal of minors be the unit ideal while the ideal generated by the next larger size minors
is 0. Consider the ideals of minors mod q. It is clear that, Ik(M) = A while It(M) ⊆ q
for t > k. We can complete the proof of the first statement by showing that if M ′ 6= 0,
then Ik+1(M) 6= 0. Let w be a nonzero entry of w and form the submatrix determined by
the first k rows of M and the row of w together with the first k columns of M and the
column of w. This submatrix is the direct sum of Ik and the 1 × 1 matrix

(
w
)
, and has

determinant w 6= 0, as required.

The equivalence of the six conditions for the case d = n −m is then easy: (a) ⇔ (b)
by what we have already proved, and (b) ⇔ (c) ⇔ (d) is clear. We have that (d) ⇒ (e)
by Nakayama’s lemma, while (e) ⇒ (f) is an easy exercise: the i th row of W consists of
the coefficients needed to express the i th standard basis vector as a linear combination of
the rows of M . Finally, (f) ⇒ (b) because A = Im(1m) = Im(WM) ⊆ Im(W)Im(M) ⊆
Im(M). �

We also need:

Lemma. Let S be an R-algebra and let T be any formally smooth R-algebra that maps
onto S (we know that a polynomial ring over R or a localization of a polynomial ring is
formally smooth). Let S = T/I. Then S is formally smooth over R if and only if the

R-algebra homomorphism T/I2 β−→ S = T/I splits in the category of R-algebras.
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Proof. Evidently, if S is formally smooth one has a lifting of the identity on S = T/I to
an R-algebra map β : S → T/I2 which gives the splitting. Now suppose that one has this
splitting and that one has a map S → U/J where J2 = 0. Then we have a composite map
T � S → U/J from which we get an R-algebra map T → U , lifting T → U/J (because T
is formally smooth over R) such that I maps into J . Thus, I2 maps into J2 = 0, and so

we have an induced map T/I2 → U that lifts T/I → U/J . The composite S
β−→ T/I2 → U

gives the lifting we want. �

We are now ready to prove the following:

Theorem (Jacobian criterion for smoothness). Let S = R[x]/I = R[x1, . . . , xn]/I,

where I is finitely generated, and let Q ∈ Spec(S). Let Q̃ denote the inverse image of Q
in R[x]. Let h(Q) denote the least number of generators of I

Q̃
. Then R → S is smooth

near Q if and only if (ΩS/R)Q is free of rank n − h(Q), and this holds iff SQ is formally
smooth over R.

Moreover, a localization S′ of S is formally smooth over R if and only if (S′)Q is formally
smooth for every prime (respectively, maximal) ideal Q of S′.

Proof. Consider a localization S′ = W−1R[x]/I, where I = (F1, . . . , Fm)R[x]. By the
preceding Lemma, S′ is formally smooth if and only if W−1R[x]/I2 → S splits. Let xi be
the image of xi mod I2 and x′i be its image mod I. Constructing the splitting is equivalent
to finding elements δ1, . . . , δn ∈ I/I2 such that the n elements x1 + δ1, . . . , xn + δn can
serve as the images of the x′i under the splitting, and the condition is simply that the m
elements

Fj(x1 + δ1, . . . , xi + δi, . . . , xn + δn)

vanish in W−1R[x]/I2W−1R[x]. Using Taylor’s formula, this system may be written as

Fj +
∑
i

∂Fj
∂xi

δi ≡ 0 mod I2W−1R[x].

That is, the expression on the left vanishes when each Fj and each
∂Fj
∂xi

is replaced by its

image in W−1R[x]/I2W−1R[x].

Let v1, . . . , vm be the images of F1, . . . , Fm in IW−1R[x]/I2W−1R[x], and let v =

(v1 . . . vm). Let J be the image of the matrix
(∂Fj
∂xi

)
in S′. Since each δi is to be a linear

combination of the elements vj , say δi =
∑m
k=1 vkwki, with the wki ∈ S′, we see that S′ is

formally smooth over R if and only if there exists an m × n matrix W with entries in S′

such that −v = vWJ .

Here, v and J are fixed and we seek the unknown entries ofW. The system is a system
of linear equations over S′ in unknowns wki that are allowed to be arbitrary elements of S′.
The coefficients are in IW−1R[x]/I2W−1R[x]. The problem of whether such a system has
a solution is local on S′, that is, it has a solution in S′ if and only if it has a solution after
localization at every prime ideal if and only if it has a solution after localization at every
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maximal ideal. The reason is that such a system has a solution if and only if a certain
element of a certain module is in the span of certain other elements of the module. The
final statement of the theorem is now clear.

In the remainder of the proof we may assume that W = R[x]−Q̃. Moreover, in analyzing
this case we may assume that the Fj have been chosen to be a minimal system of generators
of IR[x]

Q̃
. Thus, we are in the situation where m = h(Q). The statement that (ΩS/R)Q is

free of rank n−m is equivalent to the statement that Im(J ) is the unit ideal. By part (f)
of the Lemma on freeness of cokernels, if Im(J ) is the unit ideal then we can choose W
such that W(−J ) = 1m. On the other hand, if −v = vWJ then after tensoring with the
residue class field (I/I2 becomes an m-dimensional vector space with the images of the vj
as a basis), we see that the image of J has rank m. �

Lecture of February 1, 2017

We next want to give some alternative characterizations of smooth algebras.

Theorem. Let S be a finitely presented R-algebra. The following conditions are equiva-
lent:

(a) S is smooth over R.
(b) Near every prime Q of S, S is étale over a polynomial ring in finitely many variables.
(c) Near every maximal ideal Q of S, S is étale over a polynomial ring in finitely many

variables.

In consequence, if S is smooth over R, then S is flat over R.

Proof. Polynomial and étale extensions are flat, and flatness is local on Spec(S), so that
condition (b) implies flatness. Therefore it will suffice to show that (a) ⇒ (b) ⇒ (c) ⇒
(a). It is clear that (b) ⇒ (c). Assume (c). To prove that S is smooth, it suffices to prove
that SQ is formally smooth for every Q. Since every SQ is a localization of Sm for some
maximal m ⊇ Q, it suffices to show that Sm is formally smooth when m is maximal. This
is clear from the condition in (c), since étale homomorphisms and adjunction of finitely
many indeterminates are both smooth, and localization is formally smooth.

This means we need only prove the most interesting of the implications, namely, that (a)
⇒ (b). Suppose that S = R[x1, . . . , xn]/I is smooth over R, where I is finitely generated.

Fix Q ∈ Spec (S), and let Q̃ be the inverse image of Q in R[x]. Suppose that IR[x]
Q̃

has m

generators. Then we may choose g ∈ R[x]−Q̃ such that these m generators F1, . . . , Fm are
in R[x]g and IR[x]g = (F1, . . . , Fm)R[x]g. Here, m = h(Q) in the notation of the Jacobian

criterion from the preceding lecture. Let J denote the image of the matrix
(∂fj
∂xi

)
over

S. The fact that S is smooth near Q together with the Jacobian criterion for smoothness

imply that some m×m minor of J is not in Q̃. Without affecting any relevant issues, we
may replace S by its localization at the image of this minor, and therefore assume that the
image of this minor is invertible in S. By renumbering, we may assume that this minor is
formed from the last m rows of J .
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Let d = n−m, and let zi = xi+d, 1 ≤ i ≤ m. Let R′ = R[x1, . . . , xd], and let Gj denote
Fj thought of as an element of R′[z1, . . . , zm]. Then we may think of S (after localizing
at one element) as a localization at one element of R′[z1, . . . , zm]/(G1, . . . , Gm) such that

the image of
(∂Gj
∂zi

)
is invertible: the determinant ∆ is the minor that we know is not in

Q̃. This shows that

R′[z1, . . . , zm]g∆/(G1, . . . , Gm)

is étale over the polynomial ring R′ = R[z1, . . . , zd], by part (b) of the first Proposition in
the Lecture Notes of January 18. But this ring is the localization of S at the image b of
g∆ �

Before proceeding further, we want to characterize smooth extensions first over alge-
braically closed fields and then over arbitrary fields.

Lemma. Let K be an algebraically closed field and let S be a finitely generated K-algebra.
Let Q be a maximal ideal of S. The following conditions are equivalent:

(a) SQ is (formally) smooth over K.
(b) SQ is a regular local ring.
(c) (ΩS/K)Q is free of rank equal to the Krull dimension of SQ.

Proof. S is generated over K by elements of Q (S = K + Q) and so we can map

K[x1, . . . , xn] � S so that all xi map into Q. Let Q̃ = (x1, . . . , xn). Then SQ ∼=
W−1K[x1, . . . , xn]/(F1, . . . , Fm) where W = K[x1, . . . , xn] − Q̃. Moreover, we may as-
sume that the Fi are a minimal set of generators for the ideal they generate in the ring
W−1K[x1, . . . , xn]. The fact that (a) and (b) are equivalent may now be deduced from
the Jacobian criterion for smoothness. Think of K as S/Q, and let J be the Jacobian
matrix. Then K ⊗S J has rank m if and only if the linear forms occurring in F1, . . . , Fm

are linearly independent: the coefficient of xi in Fj is the same as the image of
(∂Fj
∂xi

)
mod Q. This is equivalent to the condition that the Fj are part of a minimal system of

generators for Q̃K[x1, . . . , xn]
Q̃

, which is tested mod Q̃2. But we know that a quotient

of a regular ring is regular if and only if the ideal being killed is part of a minimal set of
generators of the maximal ideal: see the first Proposition of the Supplement on Regular
rings and finite projective resolutions. This shows that (a) ⇔ (b). Moreover, when these
equivalent conditions hold, we have also seen that n−m = dim (SQ), so that the equivalent
conditions (a) and (b) imply (c).

Now assume (c), so that (ΩS/K)Q is free of rank equal to dim (SQ). We must show
SQ is regular. To see this, renumber the Fj so that F1, . . . , Fh have linearly independent
linear forms, where h is the dimension of the span of the linear forms of the Fj . By
subtracting K-linear combinations of F1, . . . , Fh from the remaining Fj , we may assume

that Fh+1, . . . , Fm are in Q̃2. Let T = W−1K[x1, . . . , xn]/(F1, . . . , Fh). Then T is a
regular local ring of Krull dimension n−h. Since the cokernel of J is free once we localize,
the rank of J once we tensor with SQ may be computed modulo QSQ, and so is h. It
follows that (ΩS/K)Q has rank n − h. But we are given that the rank is dim (SQ). It
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follows that dim (SQ) = n − h. But SQ is a homomorphic image of the regular local ring
T , which has dimension n− h and is a domain. If the kernel were nonzero, the dimension
of the quotient would drop. It follows that SQ = T , and so SQ is regular. Therefore (c)
⇒ (b). �

Lecture of February 3, 2017

We next want to characterize smooth algebras over an arbitrary field. In order to do
so, we need to discuss geometrically regular K-algebras. We need a lemma first.

Lemma. Let S → T be a ring homomorphism.
(a) If T is faithfully flat over S then for every prime ideal P of S there is a prime ideal

Q of T lying over P : in fact, any minimal prime of PT has this property.
(b) If S → T is a faithfully flat homomorphism and T is a regular Noetherian ring then

S is regular.
(c) If S is Noetherian and is a direct limit lim

−→ t St of regular Noetherian rings, then S is

regular.
(d) If (S, P ) → (T, Q) is flat local, where the rings are Noetherian, then dim (T ) =

dim (S) + dim (S/PS).
(e) If (S, P )→ (T, Q) is flat local such that (S, P ) and and T/PT (the closed fiber) are

regular, then T is regular.
(f) if S → T is flat, T is Noetherian, S is regular, and all fibers of S → T are regular,

then T is regular.
(g) If K ⊆ S where K is a field and L is a field containing K such that L⊗K S is regular,

then S is regular.
(h) If K ⊆ S where K is a field and S is regular, and if L is a finite separable algebraic

extension of K, then L⊗K S is regular.

Proof. For part (a), since T is faithfully flat PT is a proper ideal of T and has a minimal
prime Q. We want to show that Q lies over P . Suppose that Q lies over P ′. Then
RP ′ → SQ is faithfully flat, and so is RP ′/PRP ′ → SQ/PSQ. This map is therefore
injective. Since Q is minimal over PS, every element of the maximal ideal of SQ/PSQ
is nilpotent, and so every element of the maximal ideal of P ′RP ′ is nilpotent mod PRP ′ .
Since PRP ′ is prime, this shows that P ′ = P .

For (b), let P be any any prime of S. By part (a), we can choose Q lying over P , and
then SP → TQ is a faithfully flat local map of local rings. Since TQ is regular, so is SP ,
by the corollary at the bottom of the second page of the Supplement on Regular rings and
finite projective resolutions.

In (c), let Q be any prime ideal of S and let Qt be its contraction to St for all t. Then
SQ is the direct limit of the rings (St)Qt . Thus, we may assume without loss of generality
that all the rings and maps are local. We use induction on dim (S).

Note that S is clearly a domain, since all the St are and a direct limit of domains is a
domain. The case of dimension 0 is clear, since then S must be a field. If S has positive
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dimension let x be an element of Q−Q2. Then for sufficiently large t0, we have xt0 ∈ St0 ,
mapping to x. We may restrict to t ≥ t0 without changing the direct limit. Let xt be the
image of xt0 in St. Then we must have that xt ∈ Qt −Q2

t : if xt were a unit, x would be
a unit, while if xt were in Q2

t , x would be in Q2. Then the rings St/xtSt are regular, and
their direct limit is S/xS. By the induction hypothesis, S/xS is regular, and, therefore, S
is.

We prove (d) by induction on dim (S). If dim (S) = 0 then P is nilpotent. Therefore,
dim (T ) = dim (T/PT ), as required. If dim (S) > 1 we first reduce to the case where S
is reduced: let J be the ideal of nilpotents in S and we may study S/J → T/JT instead.
In the reduced case there is a nonzerodivisor x in S. Then x is a nonzerodivisor in T ,

since we may apply T ⊗S to 0 → S
x−→ S, and we may apply the induction hypothesis

to S/xS → T/xT . The closed fiber is unaltered, and so dim (T ) − 1 = dim (T/xT ) =
dim (S/xS)+dim (T/PT ) (by the induction hypothesis) = dim (S)−1+dim (T/PT ), and
the result follows.

To prove (e), let d be the dimension of S and let n be the dimension of T/PT , so that
T has dimension d + n by part (e). P has d generators, and Q/PS has n generators,
and putting together the former with liftings of the latter to Q, we see that Q has d + n
generators. This shows that T is regular.

For part (f), let Q be a maximal ideal of T lying over P in S. Then SP → TQ is
faithfully flat and local, and the closed fiber is the fiber of S → T over P localized at Q,
and so is regular. Thus, TQ is regular by part (e).

Part (g) is immediate from (b), since L ⊗K S is faithfully flat over S (even free: L is
free over K).

For part (h), note that since S → L ⊗ S is flat, it suffices to prove that the fibers are
regular, and each has the form L ⊗K K ′, where K ′ = SP /PSP for some prime P . Let
F be an algebraically closed field containing K ′. Then it suffices to prove that L ⊗K F
is regular, by part (g). But L ∼= K[x]/(f) where f is a polynomial with distinct roots in
F , and so L ⊗K F ∼= F [x]/(f) and, by the Chinese Remainder theorem, this is simply a
product of copies of F , and is therefore regular. �

In part (f), note that the result holds if we only assume that the fibers of S → T are
regular over prime ideals P of S lying under maximal ideals of T .

Proposition. Let K be a field and let S be a Noetherian K-algebra. The following con-
ditions are equivalent:

(a) For every finite purely inseparable algebraic extension L of K, the ring L ⊗K S is
regular.

(b) For every finitely generated field extension L of K, the ring L⊗K S is regular.

Moreover, if S is finitely generated over K the following conditions are also equivalent
to these:

(c) For some perfect field extension L of K, L⊗K S is regular.
(d) For some algebraically closed field L with L ⊇ K, L⊗K S is regular.
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(e) For every field L ⊇ K, L⊗K S is regular.

Before we give the proof, we note that conditions (c), (d), and (e) cannot be used in
the general case because the ring L⊗K S need not be Noetherian.

Proof. We first note that if L ⊆ L′ are fields and L′⊗K S is regular, then L⊗K S is regular
by part (g) of the Lemma. Evidently, (b) ⇒ (a). For the other direction, note that given
L, we may consider a field L′ generated by finitely many generators for L over K over
a perfect closure K ′ of K. Then L′ has a separating transcendence basis over K ′, and
can be obtained as a finite separable algebraic extension of a finite purely transcendental
extension of K ′. After replacing K ′ by a smaller field K1 gotten by adjoining finitely many
of elements of K ′ to K, we obtain a field L1 finitely generated over K1 (and, hence over
K) which contains L and is obtained from K in three steps: a finite purely inseparable
algebraic extension, then a finite transcendental extension, and finally, a finite separable
algebraic extension. The first step gives a regular ring by hypothesis, the second obviously
does not disturb regularity (one has a localization of a polynomial ring in finitely many
variables), and the third preserves regularity by part (h) of the Lemma. This shows that
(a) ⇒ (b).

Now, when S is finitely generated over K, note that (e) ⇒ (d) ⇒ (c) ⇒ (a) is clear
(the last because a perfect extension contains every finite purely inseparable algebraic
extension, coupled with part (g) of the Lemma), and we have already shown that (a) ⇒
(b). Finally (b) ⇒ (e) because every field extension is a direct limit of finitely generated
field extensions, and we may apply ⊗K S and use part (c) of the Lemma. �

We shall say that a Noetherian K-algebra is geometrically regular if the equivalent
conditions (a) and (b) of the Proposition hold for S. If S is a finitely generated K-
algebra this property is characterized by the equivalent conditions (a) through (e) of the
proposition.

Lecture of February 6, 2017

We next prove:

Theorem. Let K be a field and let S be a finitely generated K-algebra (finite presentation
is automatic). The following conditions are equivalent:

(a) S is smooth over K.
(b) L⊗K S is smooth over L for some (equivalently, every field) L.
(c) For some algebraically closed field L ⊇ K, L⊗K S is regular.
(d) For every field L ⊇ K, L⊗K S is regular.
(e) For every maximal ideal Q of S, (ΩS/K)Q is SQ-free of rank equal to dim (SQ).

Proof. We shall show that (a)⇒ (b) for all L⇒ (b) for some L⇒ (c)⇒ (d)⇒ (e)⇒ (a).
That (a) ⇒ (b) for all L is immediate from our results on base change, and this evidently
implies (b) for some L. If L ⊗K S is smooth over L, and L is an algebraic closure of L,
then L⊗K R is smooth over L, and the Lemma of the Lecture Notes for February 1 then
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implies that LK ⊗R S is regular. Thus, (b) ⇒ (c). We have already seen that (c) and (d)
are equivalent.

Now assume that (d) holds. In particular, (d) holds when L is an algebraic closure of
K. Let S′ = L⊗K S. Then S′ is both faithfully flat and an integral extension of S. Hence,
every maximal ideal Q of S lies under a maximal ideal of S′, and every maximal ideal
Q′ of S′ contracts to a maximal ideal of S. Moreover, S′Q′ and SQ have the same Krull
dimension.

Moreover, ΩS′/L ∼= L ⊗K ΩS/K ∼= S′ ⊗S ΩS/K . Let Q′ be a maximal ideal of S′ lying
over a given maximal ideal Q of S. Then dim (S′Q′) = dim (SQ) and it now suffices to see

that if M is a finitely generated module over SQ the is free when we tensor with S′Q′ if
and only if it was already free over SQ. This is clear, because a minimal resolution over
SQ is preserved by applying S′Q′ ⊗SQ

.

Finally, we need to see that (e) implies (a). This follows because (e) continues to
hold after we tensor with an algebraic closure L of K. This implies that L ⊗K S is
smooth, and therefore regular. It follows that S is regular, and, therefore, every SQ is
regular. Fix a maximal ideal Q of S and write S = K[x1, . . . , xn]

Q̃
/(F1, . . . , Fm), where

Q̃ is the inverse image of Q in a polynomial ring K[x1, . . . , xn] mapping onto S and
F1, . . . , Fm ∈ K[x1, . . . , xn] are minimal generators for the kernel K[x]

Q̃
→ SQ. We

know that (ΩS/K)Q is free of rank equal to dim (SQ), and we want to show that it is free
of rank n−m. But since SQ is regular, we know that these two numbers are equal. �

Theorem. Let S be a finitely presented R-algebra. Then the following are equivalent:
(a) S is smooth over R.
(b) S is R-flat and every fiber κP ⊗R S is geometrically regular, where κP = RP /PRP .
(c) S is R-flat and for every maximal ideal Q of S lying over P in Spec (R), (ΩS/R)Q is

free of rank equal to dim (κP ⊗R SQ).

Proof. We shall prove (a) ⇒ (b) ⇒ (c) ⇒ (a). We already know that smooth algebras
are flat, since they are locally polynomial followed by étale, and that fibers, which are the
result of a base change, are smooth and therefore geometrically regular. Thus, (a) ⇒ (b).
Next assume that S is R-flat, fix a maximal ideal Q, and write SQ ∼= R[x]

Q̃
/IR[x]

Q̃
where

F1, . . . , Fm ∈ R[x] are minimal generators for IR[x]
Q̃

, as usual. The sequence

0→ IR[x]
Q̃
→ R[x]

Q̃
→ SQ → 0

remains exact when we apply κP ⊗RP
: since S is R-flat, SQ is RP flat and

TorRP
1 (κP , SQ) = 0.

It follows that the minimum number of generators m for the kernel of R[x]
Q̃

� SQ does

not change when we apply κP⊗RP
: it is still m. Let J denote the image of

(∂Fj
∂xi

)
in

S. Now, (ΩκP⊗RS/κP
)Q is free of rank n −m iff κP → κP ⊗RP

SQ is formally smooth iff
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κP ⊗ J has rank m if and only if a size m minor of J has invertible image in SQ. It is
now clear that in the presence of flatness for R→ S, we have that (b) ⇒ (c) ⇒ (a). �

This completes our basic treatment of unramified, étale, and smooth morphisms. We
next want to use our knowledge of étale morphisms to construct the Henselization of a
quasilocal ring, as well as to gain understanding of what a Henselian ring is.

We recall that a quasilocal ring (R,P,K) is called Henselian if for every monic poly-
nomial F ∈ R[x] and each factorization F = gh into relatively prime monic polynomials
g, h of K[x], where F denotes the image of F in K[x], there is a lifting of that factoriza-
tion F = GH to R[x], where G and H are monic and G ≡ g mod PR[x] while H ≡ h
mod PR[x]. It is a theorem, Hensel’s lemma, that if R is complete and P -adically sepa-
rated then such a lifted factorization exists. That is, a complete P -adically separated ring
is Henselian. In this case, and whenever R is P -adically separated, the factorization is
unique: this follows from its uniqueness mod P t for all t. See page 3 of the Supplement
on the Structure theory of complete local rings.

A module-finite extension ring S of a quasilocal ring (R,P,K) is said to decompose if it
is a product of quasilocal rings. By a pointed étale extension of a quasilocal ring (R,P,K)
we mean a localization (S,Q,L) of an étale algebra over R at a prime lying over P such
that the induced map of residue fields R/P → S/Q is an isomorphism. Note that a pointed
étale extension actually is an extension, since it is faithfully flat.

We shall prove:

Theorem. Let (R,P,K) be quasilocal. Then the following seven conditions are equivalent:
(1) R is Henselian.
(2) Every module-finite extension of R decomposes.
(3) Every free module-finite extension of R decomposes.
(4) Every module-finite extension of R of the form R[x]/(F ), where F is a monic polyno-

mial, decomposes.
(5) If F is a monic polynomial over R whose reduction F mod P has a simple root λ ∈ K,

then there is an element r ∈ R such that r ≡ λ mod P and F (r) = 0.
(6) If R→ S is a pointed étale extension, then R ∼= S.
(7) If F1, . . . , Fn are n polynomials in n variables whose images F j mod P vanish simulta-

neously at (λ1, . . . , λn) ∈ Kn and the Jacobian determinant det
(∂Fj
∂xi

)
does not vanish

mod P at x1 = λ1, . . . , xn = λn, then there are unique elements r1, . . . , rn ∈ R such
that for all i, ri ≡ λi modulo P and Fj(r1, . . . , rn) = 0, 1 ≤ j ≤ n.

The proof is postponed for a bit. It is easiest to make the connection between (1) and
(4), and we shall discuss this first. Note that (5) is more special than (7), and we could
have made a uniqueness statement in (5) as well as in (7).

Lecture of February 8, 2017

Before giving the proof of the Theorem stated at the end of the previous lecture, we want
to discuss the general problem of when a module-finite extension of a quasilocal domain
decomposes.
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Let (R,P,K) be quasilocal and let S be a module-finite extension of R. For every
maximal ideal Q of S, S/Q is a field integral over R/(Q∩R), and so R/(Q∩R) is a field:
that is, every maximal ideal of S lies over P , the unique maximal ideal of R. Since S/PS is
module-finite over K = R/P , it is zero-dimensional. The maximal ideals of S correspond
bijectively to the prime ideals of the Artin local ring S/PS, and so there are finitely many
of them, say Q1, . . . , Qr. Let qj = Qj/PS, 1 ≤ j ≤ r. Then

S/PS ∼=
r∏
j=1

(S/PS)qj

and (S/PS)qj
∼= (S/PS)Qj

, 1 ≤ j ≤ r. Note that since P is contained in every Qj , PS is
contained in every maximal ideal of S, i.e., it is contained in the Jacobson radical of S. It
is now clear that S decomposes if and only if S ∼=

∏
j SQj .

There are 2r idempotents in S/PS: S/PS is a product of r indecomposable factors,
and for each subset S of the factors there is a unique idempotent that corresponds to 1 in
the factors that are in S and 0 in the factors in the complementary subset.

In the product ring S/PS, we shall refer to the idempotent ej the corresponds to 1
in the factor (S/PS)Qj

and 0 in the other factors as the idempotent associated with Qj
or with qj = Qj/PS. It is characterized among the idempotents by the condition that
ej /∈ qj while ej ∈ qi for i 6= j. It is then easy to see that S decomposes if and only if
all idempotents of S/PS lift to idempotents of S, and it suffices if the idempotents ej lift.
(Any other idempotent is a sum of mutually distinct ej or 0.) An idempotent e of S lifts
ej if and only if e /∈ Qj while e ∈ Qi for i 6= j. The reason is that the image of e in S/PS
is an idempotent with the corresponding membership property, and this means that the
image must be ej .

We next consider exactly what it means for S = R[x]/(F ) to decompose when F is
monic and (R,P,K) is quasilocal. Let f ∈ K[x] be the image of F modulo PR[x]. Then f
factors uniquely, except for the order of the terms, as g1 · · · gr where the gi are monic and
are powers of mutually distinct monic irreducible polynomials. Thus, gi and gj generate
the unit ideal in K[x] if i 6= j. We claim that S = R[x]/(F ) decomposes if and only if the
factorization f = g1 · · · gr lifts to a factorization F = G1 · · · , Gr over R[x], where every
Gj is monic and Gj ≡ gj mod PR[x]. Suppose one has the lifted factorization. Then the
principal ideals GjS are pairwise comaximal: since PS is in every maximal ideal of S, it
suffices to see this working over R[x]/PR[x] ∼= K[x], and in this ring the Gj map to the
gj . It follows from the Chinese remainder theorem that S ∼=

∏
j S/GjS, and this shows

that S decomposes.

For the converse, suppose that S =
∏
Sj decomposes, where Sj/PSj ∼= K[x]/(gj). Let

dj = deg(gj). By Nakayama’s lemma, the images of 1, x, . . . , xdj−1 generate Sj as an
R-module, since their images in Sj/PSj ∼= K[x]/(gj) generate that ring as K-vector space,
and PSj is in the Jacobson radical. Therefore, the image of xdj is in the R-span of the

images of 1, x, . . . , xdj−1 in Sj , and this means that we can choose a monic polynomial
Gj ∈ R[x] of degree dj such that Gj(x) maps to 0 in Sj . This implies that the image of
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Gj in K[x] is divisible by gj . Since they have the same degree, gj is the image of Gj mod
PR[x]. Let G =

∏
j Gj . Then deg(G) =

∑
j deg(Gj) =

∑
j deg(gj) = deg(f) = deg(F ).

Now, x satisfies G(x) = 0 in S: since S is the product of the Sj , it is enough to check
that this is true in every Sj , and that follows because Gj divides G. Since S = R[x]/F , it
follows that F divides G. Since they are monic of the same degree, they are equal.

Note that if (R,P,K) is Henselian, a factorization of the image f of F ∈ R[x] over k[x],
say f = g1 · · · , gr, where the gi, gj are relatively prime in pairs, lifts to such a factorization
into monic polynomials over R[x]. When r = 2 it is the definition of Henselian, and one
may prove the result in general by induction on r: if r ≥ 3, since g∗ = g1 · · · gr−1 and gr
are relatively prime, we may lift the factorization g = g∗gr to a factorization G = G∗Gr,
and then apply the induction hypothesis to G∗ and the factorization g∗ = g1 · · · gr−1.

We are now ready to prove the equivalence of the first four conditions in the statement
of the Theorem from the previous lecture.

Proof of the equivalence of (1), (2), (3), and (4). The remarks above show that (1)⇔ (4),
while (2) ⇒ (3) ⇒ (4) is clear. We can therefore complete the proof by showing that (4)
⇒ (2). Let R ⊆ S be module finite and let Q be a maximal ideal of R. Let e0 be the
corresponding idempotent in S/PS, so that e0 is in Q/PS and not in any other maximal
ideal. It suffices to show that e0 lifts to S. Choose any lifting c of e0 to S: of course, c
need not be idempotent, but c is not in Q and and is in every other maximal ideal of S.
Of course, c satisfies some monic polynomial F ∈ R[x]. Let T = R[x]/(F ). We have an
R-algebra map T → S that sends the image of x in T to c ∈ S. Let Q be the inverse image
of Q in T , which is a maximal ideal of T . Since T decomposes it contains an idempotent ẽ
that is not in Q but is in every other maximal ideal of T . The image e of ẽ is an idempotent
of S that is evidently not in Q. It will suffice to show that e is in every maximal ideal
Q′ of S other than Q, for then e must lift e0. It suffices to show that if Q′ 6= Q then Q′

does not lie over Q, for ẽ will then be in the contraction of Q′ to T , and so ẽ will be in Q.
But if Q′ lies over Q then T/Q injects into S/Q′. The image of x is sent to the image of c
under this map, and so is sent to 0. Hence, the image of x in T is in Q, and so is sent to
0 under the injection T/Q → S/Q. But c /∈ Q, a contradiction. �

Lecture of February 10, 2017

Proof that conditions (1), (5), (6), and (7) are equivalent. We show that (1) ⇒ (5) ⇒ (6)
⇒ (7) ⇒ (1). Suppose that the ring is Henselian and that we have a monic polynomial F
such that mod PR[x] the image f of F has a simple root λ ∈ K. This gives a factorization
f = (x − λ)g, and the fact that λ is a simple root means that x − λ and g are relatively
prime. Hence, the factorization lifts to a factorization F = (x− r)G where r ≡ λ mod P .
But then F (r) = 0. This shows that (1) ⇒ (5).

Now suppose that (5) holds, and let S be a pointed étale extension of R. Then S is a
localization of standard étale extension of R near Q lying over P , and so S = (R[x]g/F )Q
where F is monic, F ′ is invertible in S, and Q lies over P . Let λ denote the image of x
in the residue field of S, which is K. Thus, if f is the image of F modulo PR[x], we have
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that f(λ) = 0, and since F ′ is invertible in S, its image f ′(λ) in K is nonzero, so that λ
is a simple root of F . Thus, we can choose r ∈ R such that F (r) = 0, and it follows that
F = (x−r)G(x) for G ∈ R[x]. Since λ is a simple root of f , the image of G(x) is invertible
in S, which means that S is a localization of R[x]/(x − r) ∼= R. Since R → S is a local
map, we must have that R = S. Thus, (5) ⇒ (6).

Assume that we have condition (6) and consider a system of equations as in (7). Let
Q be the kernel of the map R[X1, . . . , Xn]→ K that agrees with the quotient surjection
R � R/P = K on R and sends Xj 7→ λj , 1 ≤ j ≤ n. Then the hypothesis implies
that S = R[X1, . . . , Xn]Q/(F1, . . . , Fn) is a pointed étale extension of R, using part
(b) of the Proposition in the Lecture Notes of January 20, and is therefore equal to R.
Solving the equations in R so as to lift the solution (λ1, . . . , λn) is equivalent to giving
an R-algebra mapping R[X1, . . . , Xn]/(F1, . . . , Fn) → R so that under the composite
R[X1, . . . , Xn]/(F1, . . . , Fn)→ R� K the elements xj map to the elements λj , which is
equivalent to the condition that Q map into P . Thus, giving a lifting of the solution to
R is equivalent to giving a local R-algebra mapping S → R. Since R ∼= S as R-algebras,
there is a unique such mapping, and so the equations have a unique solution.

Finally, assume that (7) holds, let F ∈ R[x] be monic of degree n, and suppose we have
a factorization f = gh over K[x] where g, h are monic of degrees d and e respectively and

d + e = n. Let g =
∑d
j=0 αjx

j with all αi ∈ K and αd = 1, and let h =
∑e
i=0 βkx

k

with all βk ∈ K and βe = 1. We seek to lift this factorization to R[x]. Proceed by
letting the coefficients of the factors be unknown, i.e., we seek values for Y0, . . . , Yd−1 and
Z0, . . . , Ze−1 in R such that

F = (xd + Yd−1x
d−1 + · · ·+ Y1x+ Y0)(xe + Ze−1x

e−1 + · · ·+ Z1x+ Z0).

Let F = xn + cn−1x
n−1 + · · ·+ c1x+ c0 where the ci are given elements of R. This leads

to a system of n equations in the d + e = n unknowns Yj , Zk by setting the coefficient of
xt, expressed in terms of the Yj , Zk, equal to ct, 0 ≤ t ≤ n− 1. After transposing ct to the
other side of the equation, the typical equation looks like:∑

j+k=t

YjZk − ct = 0

where Yd = 1 and Ze = 1 (these are not indeterminates) and where 0 ≤ j ≤ min{d, t}
and 0 ≤ k ≤ min{e, t}. We want to solve so that Yj ≡ αj , Zk ≡ βk, 0 ≤ j ≤ d − 1,
0 ≤ k ≤ e− 1.

Explicitly, the first two equations are Y0Z0 − c0 = 0 and Y0Z1 + Y1Z0 − c1 = 0, while
the last equation is Yd−1 +Ze−1− cn−1 = 0. Of course, the factorization of f = gh gives a
solution in Kn in which αj is the image of Yj and βk is the image of Zk. To complete the
proof, it suffices to show that the Jacobian determinant of these n equations with respect
to Y0, . . . , Yd−1, Z0, . . . , Zd−1, evaluated at the point (α, β) ∈ Kn, is nonzero: condition
(7) will then allow us to lift this solution to Rn, giving the required factorization.
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Explicitly, the Jacobian matrix J is obtained by differentiating all of the polynomials we
are setting equal to 0 by Y0, . . . , Yd−1 and then Z0, . . . , Ze−1. Each row is the sequence
of partial derivatives with respect to one of the variables. The matrix is

Z0 Z1 Z2 · · · Ze−1 1 0 · · · 0
0 Z0 Z1 · · · Ze−2 Ze−1 1 · · · 0

· · ·
· · ·
· · ·

0 0 · · · 0 Z0 · · · Ze−2 Ze−1 1
Y0 Y1 Y2 · · · Yd−1 1 0 · · · 0
0 Y0 Y1 · · · Yd−2 Yd−1 1 · · · 0

· · ·
· · ·
· · ·

0 0 · · · 0 Y0 · · · Yd−2 Yd−1 1


There are d rows involving the Zk and e rows involving the Yj . Let J0 = J |(α,β) be this
matrix after the αj are substituted for the Yj and the βk for the Zk.

Now consider instead the following problem: find polynomials u, v, not both 0, in K[x]
of degrees at most e − 1 and d − 1, respectively, such that ug + vh = 0. This problem
has a solution if and only if g and h have a common factor w of positive degree. If they
have such a factor, say w, for then we may write g = vw and h = −uw and we have that
ug+vh = 0. On the other hand, if g and h have no common factor but we have ug+vh = 0
(u = 0 iff v = 0 here) then h divides u and g divides v, contradicting the degree bounds
unless both vanish. Given g, h, we can look for u and v by letting their coefficients be

unknowns. Suppose that u =
∑e−1
k=0Bkx

k and v =
∑d−1
j=0 Ajx

j . Setting the coefficients on
powers of x equal to 0 gives a system of n linear equations in the n unknowns Aj Bk: the
coefficients of these equations are functions of the coefficients α, β of g and h. Consider the
n× n matrixM of this system of linear equations. The t th row may be thought of as the
coefficients of Aj and Bk occurring in the coefficient of xt in ug+ vh = 0. Therefore, each
column consists of the coefficients on some fixed Aj (or on some fixed Bk) as t varies. For
Aj we get the coefficients in Ajx

jh, which is a row of J0. For Bk we get the coefficients
in Bkx

kg, which is also a row of J0. With the columns suitably ordered, we see that J0 is
the transpose of M. Since g and h are relatively prime, the only element in the kernel of
M is 0, so that M is invertible. Hence, J0 is invertible. �

The determinant described in the proof above is an eliminant for f and g: when f
and g are monic of fixed degrees but their non-leading coefficients are varying, it vanishes
precisely on the set of n-tuples of non-leading coefficients such that f and g have a common
factor (i.e., a common root in an algebraic closure of K), which shows that this set is Zariski
closed. This is the classical approach to elimination theory, and has been largely hidden
by recent methods. The theorem that a projective morphism is proper, i.e., gives a closed
map even after base change, contains much the same sort of information. However, specific
descriptions of the equations defining the closed sets are sometimes needed.
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We want to construct the Henselization of the quasilocal ring R as the direct limit of
all (up to isomorphism) pointed étale extensions of R. To make this idea precise, we need
to study the category of pointed étale extensions of R. The following result contains the
information we need.

Theorem. Let (R,P,K) be a quasilocal ring and let S and T denote pointed étale R-
algebras.
(a) If I is any proper ideal of R, then R/I → S/IS is a pointed étale extension.
(b) The maximal ideal of S is PS.
(c) There exists a pointed étale R-algebra U together with local R-algebra maps S → U

and T → U . In fact, one may take U to be (S ⊗R T )Q where Q is the kernel of the
composite R-algebra surjection S ⊗R T � K ⊗K K ∼= K.

(d) If T = S in the construction in (c) just above, then (S ⊗R S)Q ∼= S via the obvious
map that takes (s⊗ s′)/1 to ss′.

(e) There is at most one local R-algebra homomorphism from S to T , and if there is such
a homomorphism then T is pointed étale over S.

(f) If there are local R-algebra homomorphisms from S to T and from T to S then S ∼= T
as local R-algebras. Moreover, this isomorphism is canonical.

(g) If the cardinality of R is finite so is the cardinality of S. In all other cases, R and S
have the same cardinality. Therefore, there exists a set R of pointed étale extensions
of R such that R contains exactly one representative from each isomorphism class of
pointed étale extensions (isomorphism as local R-algebras). Moreover, R is partially
ordered by the rule that S ≤ T if and only if there exists a local R-algebra map from
S to T . With this partial ordering, R is a directed set.

Proof. Part (a) is clear: this is base change so the map remains localized étale. It is clear
that the map is still local and the the map of residue class fields does not change.

By part (b), S/PS is a pointed étale extension of the field K = R/P : since it is local,
it is a field, and so K → S/PS must be an isomorphism. This proves (b).

To prove (c), first note that the statement that the tensor product of two étale algebras
is étale is left as an exercise: cf. the first problem of Problem Set #2. The composite

R→ S ⊗R T → K ⊗K K → K

is isomorphic with the quotient surjection R� R/P = K, and so R→ (S⊗R T )Q is local,
and the induced map of residue class fields is an isomorphism.

Note that the map S ⊗R S → S sends Q onto the maximal ideal of S, and is surjective.
Since S is a localization of a finitely presented R-algebra, the kernel I of S ⊗R S → S is a
finitely generated ideal I0, and since S is formally étale and therefore formally unramified
over R, I2

0 = I0. Let I = I0(S ⊗R S)Q, the kernel of the map (S ⊗R S)Q � S. Then
I is finitely generated and contained in the maximal ideal, and I2 = I. It follows from
Nakayama’s lemma that I = 0, and so (S⊗R S)Q → S is an isomorphism. This completes
the proof of (d).

Suppose that there are two local R-algebra homomorphisms from S → T , call them
f and g. Then there is an R-algebra homomorphism S ⊗R S → T that sends s ⊗ s′ 7→
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f(s)g(s′), and, with notation as in part (d), it carries Q into the maximal ideal of T and so
induces a map (S ⊗R S)Q → T whose value on s⊗ 1/1 is f(s) and whose value on 1⊗ s/1
is g(s). But under the isomorphism of (S ⊗R S)Q ∼= S established in (d), both s ⊗ 1 and
1⊗ s map to s, i.e., s⊗ 1/1 = 1⊗ s/1 in (S ⊗R S)Q. It follows that f(s) = g(s), and this
establishes the first statement in (e).

Now suppose that we have local R-algebra maps R → S → T where S and T are
pointed étale over R. We want to show that T is pointed étale over S. The module of
differentials ΩT/S = 0 simply because ΩT/R = 0, and so T is formally unramified over
S. It follows from the structure theory that we may write T = U/I where U is a local
ring of an étale S-algebra. We know that all of the residue class fields are isomorphic.
Thus, to complete the proof, it will suffice to show that I = 0. We know that I is finitely
generated. Consider the exact sequence 0→ I → U → T → 0. Since T is R-flat, we have
that TorR1 (K, T ) = 0. Therefore the sequence remains exact when we apply K ⊗R ,
giving 0 → I/PI → U/PU → T/PT → 0. Since U and T are both pointed étale over R,
the map U/PU → T/PT is an isomorphism: these quotients are both K, by part (b). It
follows that I/PI = 0, and then I = (0) by Nakayama’s lemma.

Part (f) is then immediate because the compositions of the two maps must be the
respective identity maps on S and T : the only local R-algebra map from S → S (or
T → T ) is the identity. The isomorphisms are obviously unique, since there is at most one
local R-algebra map from S → T or T → S.

Let | | indicate cardinality. Then |R[x]/(F )| is |R|n for F monic of degree n. Elements
of W−1T are parametrized by T ×W and so |W−1T | ≤ |T |2. It follows that |R| ≤ |S| ≤
|R|2n for any pointed étale extension S of R (note that R ↪→ S here). Therefore, |S| is
finite if |R| is and |S| = |R| otherwise. The existence of the set R is then immediate from
the axiom of choice. The relation ≤ is transitive because one can compose local R-algebra
maps, and we have a partially ordered set using (f). The set is directed because of (c).
This proves (g). �

It is easy to see that the construction (S ⊗R T )Q in part (c) gives the coproduct of S
and T in the category of pointed étale R-algebras and local R-algebra homomorphisms.

Lecture of February 13, 2017

Let (R,P,K) be a quasilocal ring. By a Henselization (S,Q,L) for R we mean a quasilo-
cal ring together with a local homomorphism R→ S such that every local homomorphism
from R to a Henselian quasilocal ring T , the map R→ T factors uniquely R→ S → T . If
S′ is another Henselization of R the mapping properties give that R→ S′ factors uniquely
as R → S → S′ and R → S factors uniquely as R → S′ → S. The maps S → S′

and S′ → S must compose to give the respective identity maps on S and S′. Thus, a
Henselization of R is unique up to unique isomorphism.

We can now construct the Henselization of a quasilocal ring (R,P,K) as follows: choose
a set R of pointed étale extensions of R containing exactly one representative of every
isomorphism class. Then R is a directed set indexing itself, and when S ≤ T there is a
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unique local R-algebra map S → T . We may therefore take the direct limit, lim
−→ S∈R S.

We denote this direct limit as Rh.

Theorem. Rh is a Henselization of the quasilocal ring (R,P,K). It is faithfully flat over
R, and has maximal ideal PRh. Its residue class field is K.

Proof. Let g : R → T be a local map from R to a Henselian ring T . We want to show
that it has a unique local extension to Rh, and it suffices to show that it has a unique
local extension to (S,Q,K) for every pointed étale extension S of R. Note that we have
S ⊗R T → K ⊗R L ∼= L: call the kernel Q. Then (S ⊗R T )Q is a localization of an étale
extension of T , T → (S⊗R T )Q induces an isomorphism L ∼= K⊗RL ∼= L of residue fields.
Thus, (S ⊗R T )Q is a pointed étale extension of T . Since T is Henselian, it is equal to T .
The local map S → (S ⊗R T )Q = T is the map we want. The fact that (S ⊗R T )Q = T
also implies uniqueness.

Since Rh is a direct limit of flat quasilocal rings and local R-algebra homomorphisms, it
is a flat R-algebra, and the map R→ Rh is local, so that Rh is faithfully flat. P expands
to the maximal ideal of Rh because that is true for every pointed étale extension, and
K ∼= Rh/PRh because K ∼= S/PS for every pointed étale extension S of R. �

We pause in our treatment of Henselization to consider further our results on smooth
homomorphisms. The following result was stated in the lecture of January 11 as the last
Theorem, to be proved later:

Theorem. Let S be a finitely presented R-algebra.
(a) If R contains the rationals, S is smooth over R if and only if S is flat over R and

ΩS/R is projective as an R-module.
(b) S is étale over R if and only if S is flat over R and ΩS/R is 0.
(c) S is unramified over R if and only if ΩS/R = 0.

We eventually proved (b) and (c), but we never proved (a), although we did give criteria
for smoothness involving the local freeness of the module of differentials subject to a
condition on its rank.

With no condition on the rank, the hypothesis of characteristic 0 (or some other addi-
tional hypothesis) is needed. For example, let R be a field K of characteristic p > 0 and
let S = K[x]/(xp). Then d(xp) = 0, and from this is it follows that ΩS/R is S-free of rank
one on dx.

We want to prove (a) in equal characteristic 0. To analyze the situation it will help to
consider differentials over complete local rings (R,m,K) with coefficient field K, but we
want to use a somewhat different notion in this case: the ordinary module of differentials

ΩR/K need not be finitely generated, but its m-adic completion Ω̂R/K is. (The power
series ring R = K[[x1, . . . , xn]] typically has uncountable transcendence degree over K,
even when n = 1. If K has characteristic 0, and {uj}j∈J is a transcendence basis in R
for F , the fraction field of R, over K, then because the extension K(uj : j ∈ J) ⊆ F is
separable, we have that ΩF/K is free on the duj , and needs uncountably many generators.
This is a localization of ΩT/K , which must also need uncountably many generators. In



48

characteristic p, if K is perfect then any derivation kills T0 = K[[xp1, . . . , x
p
n]]. Since

T is module-finite over T0 it is certainly finitely generated as an algebra over T0 by the
elements dxj . It follows that ΩT/K = ΩT/T0

is a finitely generated T -module and so is

already complete and Ω̂T/K = ΩT/K in this case.)

In order to see that Ω̂R/K is finitely generated, we first want to define
∂

∂x
for a power

series ring R[[x]]. We may define this formally by the rule

∂

∂x

∞∑
i=0

rix
i =

∞∑
i=1

riix
i−1,

where the ri ∈ R. Alternatively, we may obtain
∂

∂x
F by introducing a new formal inde-

terminate ∆, noting that F (x+ ∆)− F (x) is divisible by ∆ in R[[x,∆]], and letting

∂

∂x
F =

F (x+ ∆)− F (x)

∆ ∆=0
.

This is an R-derivation of R[[x]] into itself. Now, consider A[[x1, . . . , xn]], the formal

power series ring in n variables over A. We may define
∂

∂xi
for 1 ≤ i ≤ n by letting

Ri be the formal power series ring over A in the variables other than xi and thinking of
A[[x1, . . . , xn]] as Ri[[xi]].

Now let (R,m,K) be a complete local ring with coefficient field K, so that we have

K ↪→ R as well as R � K and the composition is the identity. We write Ω̂R/K for the
m-adic completion of ΩR/K . By a complete R-module M we mean an R-module that is

complete and separated in the m-adic topology. The composition d : R→ ΩR/K → Ω̂R/K
gives a K-derivation of R into Ω̂R/K which we still denote by d.

Then:

Proposition. Let (R,m,K) be complete local with coefficient field K.

(a) For every complete R-module M , there is a bijection between HomR(Ω̂R/K , M) and
K-derivations of R into M : every derivation is obtained from a unique R-linear map

L : Ω̂R/K → M by composition with d. This mapping property together with the

condition that Ω̂R/K be complete characterizes Ω̂R/K up to unique isomorphism.

(b) If R is a formal power series ring K[[x1, . . . , xn]], then Ω̂R/K is the free R-module
on the basis dxi, and

dF =
∑
i

∂F

∂xi
dxi

(c) If R is the quotient of K[[x1, . . . , xn]] by the ideal with generators F1, . . . , Fm, Ω̂R/K
is quotient of the free R-module on the dxi by the images of the dfj: thus Ω̂R/K is
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the cokernel of the Jacobian matrix
(∂Fj
∂xi

)
, which is consequently independent of the

choice of presentation K[[x1, . . . , xn]]/(F1, . . . , Fm). In particular, Ω̂R/K is finitely
generated.

Proof. For part (a), the derivation induces a unique linear map ΩR/K → M : since M is

complete, this factors uniquely through Ω̂R/K . The rest of the argument is routine.

For part (b), it suffices to see that a K-derivation D of R into a complete module M
is uniquely determined by the images of the dxi, and that there is a derivation for every
specified set of values. If values u1, . . . , un ∈ M are specified one simply checks that the
map taking F ∈ K[[x1, . . . , xn]] to

∑n
i=1

∂F
∂xi

ui is a derivation. To see that the derivation is
determined by its values on the xi, fix N ∈ N. Given F , let f be the polynomial containing
all terms of F of degree ≤ 2N , and let w ∈ P 2N be the sum of remaining terms of F . The
definition of a derivation forces

dF =
n∑
i=1

∂f

∂xi
ui

and since w = F − f ∈ P 2N = (PN )2, the product rule forces Dw to be in PNM . Thus,

DF −
∑
i

∂F

∂xi
ui ∈ PNM

for all N , and the result follows.

To prove part (c), we note that a K-derivation R = K[[x1, . . . , xn]]/(F1, . . . , Fm) →
M induces a K-derivation K[[x1, . . . , xn]] � K[[x1, . . . , xn]]/(F1, . . . , Fm) → M by
composition. The condition that a K-derivation K[[x1, . . . , xn]] → M factor through
K[[x1, . . . , xn]]/(F1, . . . , Fm) is simply that every dFj be mapped to 0, and so the coker-

nel over R of
(∂Fj
∂xi

)
has the required mapping property. �

Proposition. Let (R,P,K) be complete with coefficient field K ⊆ R.

(a) If K has characteristic 0, then R is regular if and only if Ω̂R/K is free, in which case
it is free of rank dim (R).

(b) If K has characteristic p > 0, then R is regular if and only of Ω̂R/K is free of rank
≤ dim (R), in which case it is free of rank dim (R). If K is perfect, R is reduced, and

Ω̂R/K is free, then R is regular.

Proof. We can represent R as a quotient K[[x1, . . . , xn]]/(F1, . . . , Fm) in such a way that
F1, . . . , Fm are minimal generators of I and all Fj ∈ (x1, . . . , xn)2: if any Fj has a
nonzero linear form, K[[x1, . . . , xn]]/(Fj) is regular and can be written as power series

ring in fewer variables. Then Ω̂R/K is the cokernel of the image of
(∂Fj

∂xi
), which has entries

in P , and so the cokernel is free if and only if all of the partial derivatives are in the ideal.
In characteristic 0 this cannot happen unless all the Fj are 0, by the Lemma that follows.
In characteristic p, again by the Lemma that follows, one has that every variable occurs
in every term of every Fj with exponent that is a multiple of p. Therefore, all the Fj are
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p th powers if K is perfect. In this case, the module of differentials is free of rank n, but
if some Fj is nonzero then dim (R) < n. If K is perfect the fact that R is reduced and Fj
is a p th power contradicts the assumption that Fj is a minimal generator of m. �

Lecture of February 15, 2017

Lemma. Let K be a field and let T = K[[x1, . . . , xn]] be a formal power series ring over

K. Let I = (f1, . . . , fm) be an ideal, and suppose that for all i, j,
∂fj
∂xi
∈ I.

(a) If K has characteristic 0, then I = 0 or I = T .
(b) If K has characteristic p > 0, then I is generated by elements of K[[xp1, . . . , x

p
n]]. If

K is perfect, these elements are p th powers.

Proof. First note that if all the partial derivatives of all of a given set of generators of I
are in I, then I is closed under partial differentiation:

∂

∂xi

∑
j

gjfj =
∑
j

(
∂gj
∂xi

fj + gj
∂fj
∂xi

),

and all terms are in I.

In the characteristic 0 case, if I is not (0), choose an element h of I whose lowest degree
term H is of smallest degree. If I 6= R, then H has positive degree. Choose a variable xi

that occurs in H. Then
∂H

∂xi
6= 0 and is the lowest degree term of

∂h

∂xi
, a contradiction.

In the case of characteristic p > 0, note that the set M of monomials µ = xa11 · · ·xann
such that all of the at < p form a free basis for T over T0 = K[[xp1, . . . , x

p
n]]. Also note

that all of the derivations
∂

∂xi
: T → T are T0-linear. Suppose that I has an element∑

µ∈M gµµ where the gµ ∈ T0. We want to show that all of the gµ ∈ I. Evidently, if
we have a counterexample, we still have a counterexample if we omit all terms such that
gµ ∈ I. Therefore we may assume that gµ /∈ I for all µ that occur, i.e., such that gµ 6= 0.
Choose µ∗ = xa11 · · ·xann occurring of highest degree. Then apply

D =
∂a1

∂xa11

· · · ∂
an

∂xann
.

The value on µ∗ is a1! · · · an!. All other µ occurring are killed by D, since some exponent
in µ will be strictly less than the corresponding exponent ai in µ∗, and D is T0-linear.
Thus, a1! · · · an!gµ∗ ∈ I, and it follows that gµ∗ ∈ I, a contradiction. �

Corollary. Let S be finitely presented and R-flat. If R contains the rational numbers, S
is smooth over R iff ΩS/R is a locally free S-module. More generally, S is smooth over R
if and only if for every maximal ideal Q of S lying over P in R, (ΩS/R)Q is free of rank
less than or equal to the dimension of the localized fiber SQ/PSQ, in which case its rank
is that dimension.
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Proof. We have already proved the necessity of these conditions. To see sufficiency, note
that it suffices to show that the localized fibers at maximal ideals are formally smooth.
Thus, we may assume that R is a field K. We may make a base change to the algebraic
closure of K without affecting the issue. Therefore, we may assume that SQ has residue
field K, and K is a coefficient field. The regularity of SQ and the freeness and rank of

Ω are unaffected by completion if we use Ω̂R/K in the complete case. The result is now
immediate from the preceding Proposition. �

Remark. When S is finitely presented and flat over R, it is smooth if and only if for
every maximal ideal Q of S with contraction P to R, SQ/PSQ is formally smooth over
K = RP /PRP . Therefore, suppose that we restrict attention to the case where R = K is
a field. We may make a base change to the case where K is algebraically closed without
affecting smoothness. Suppose that K is a perfect field of positive characteristic. Then SQ
is formally smooth over K if and only if (ΩS/K)Q is SQ-free and SQ is reduced. However,
the proof needs one fact that we have not established: if a local ring of a finitely generated
K-algebra is reduced, then so is its completion.

We return to the subject of Henselization.

Proposition. If I is a proper ideal of a quasilocal ring R, then there is a canonical local
R-isomorphism (R/I)h ∼= Rh/IRh (since both are killed by I, this is equivalent to saying
that there is a canonical local (R/I)-isomorphism).

Proof. A homomorphic image of a Henselian ring is Henselian: given the problem of lifting
a factorization over the residue class field K, one can lift to R, and then take the image of
that lifting in the quotient. Thus, Rh/IRh is Henselian, and so R/I → Rh/IRh induces a
unique (R/I)-algebra map (R/I)h → Rh/IRh. Likewise, the map R → (R/I)h induces a
unique local R-algebra map Rh → (R/I)h, and, since it kills I, we get a unique local (R/I)-
algebra map Rh/IRh → (R/I)h. The composite map (R/I)h → (R/I)h is the identity on
elements of R/I and so is the identity. Consider the composite map α : Rh/IRh → Rh/IRh

and compose with the surjection Rh → Rh/IRh: the resulting map β : Rh → Rh/IRh

takes the image of r ∈ R to its image in Rh/IRh, and since β extends uniquely to Rh, it
must be the quotient surjection. This means that α must be the identity map. �

Theorem. Let (R,P,K) be a Noetherian local ring. Then there are unique local maps

R → Rh → R̂ and these are injective. If S is any pointed étale extension of R this also

factors uniquely R → S → Rh → R̂ and if we tensor with R/Pn these maps all become
isomorphisms:

R/PnR ∼= S/PnS ∼= Rh/PnRh ∼= R̂/PnR̂.

Rh may be canonically identified with a subring of R̂ and is Noetherian. Moreover, the

induced maps R̂→ Ŝ → R̂h → R̂ are all isomorphisms, i.e.,

R̂ ∼= Ŝ ∼= R̂h ∼= R̂.

Proof. By Hensel’s lemma, R̂ is Henselian, and this gives a unique local R-algebra fac-

torization R → Rh → R̂. Moreover, S is part of the direct limit system used to obtain
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Rh. Once we kill Pn we have that R/Pn is complete, and therefore Henselian. S/PnS
is a pointed étale extension of R/Pn and therefore equal to it, while, Rh/PnRh is the
Henselization of R/Pn and so equal to R/Pn as well. This shows that for each pointed

étale extension S of R, Ŝ → R̂ is an isomorphism. If u ∈ Rh mapped to 0 in R̂ we can

choose u ∈ S for some S, and now we have a contradiction since Ŝ → R̂ is an isomorphism.

Thus, Rh injects into R̂.

Suppose that I ⊆ Rh is not finitely generated. Then we can find a sequence of finitely

generated subideals {It}t that is strictly ascending. The expansions to R̂ must stabilize.

Suppose that s is so large that ItR̂ = IsR̂ for all t ≥ s, and that f1, . . . , fn ∈ Rh generate

IsR̂. We claim that these elements generate It for all t ≥ s. To see this choose g ∈ It.
Choose a pointed étale extension S of R sufficiently large that it contains all of f1, . . . , fh
and g. But after completion the isomorphisms S/PnS → R̂/PnR̂ show that Ŝ ∼= R̂,

and this implies that R̂ is faithfully flat over S. Since g ∈ (f1, . . . , fh)R̂, we must have
g ∈ (f1, . . . , fh)S ⊆ (f1, . . . , fh)Rh. The final statement is clear from the isomorphisms
mod every Pn. �
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Lecture of February 17, 2017

If R is Noetherian local, one may take a representative of every isomorphism class of

pointed étale extensions inside R̂, and the directed union of these is a canonical Henseliza-
tion of R. If (R,P,K) is any quasilocal ring, for each subalgebra B of R finitely generated
over the prime ring in R, we may form BP∩B , which has a local map BP∩B → R. Then

R = lim
−→ B BP∩B

and
Rh = lim

−→ B

(
BP∩B

)h
gives a canonical Henselization of B.

The ring of germs of real-valued C∞ functions or real analytic functions at a point of
Rd or of germs of complex analytic functions at a point of Cd is Henselian. The germs
of real analytic functions may be identified with the subring of R[[x1, . . . , xd]] consisting
of power series that converge on some neighborhood of the origin, and a similar comment
applies to complex analytic functions. The Henselian property follows because there is an
implicit function theorem that applies in each case. Shift coordinates so that the point is
at the origin. The map from the local ring to the residue class field consists of evaluation
of a representative of the germ at the origin. Given n polynomial equations in n unknowns
whose coefficients are germs, each germ may be represented by an actual function on
some open neighborhood of the origin. We may restrict to the intersection of these open
neighborhoods. We can now work with polynomials whose coefficients are functions. The
hypothesis on the Jacobian determinant enables one to apply an implicit function theorem
for the appropriate category to get functions that satisfy the equations.

One version of an implicit function theorem is this: let X, Y denote the n+ d variables
X1, . . . , Xn, Y1, . . . , Yd and let F1, . . . , Fn be n R-valued C∞ functions defined on a

neighborhood of a point (x, y) ∈ Rn+d that vanish at that point. Suppose that det
( ∂Fj
∂Xi

)
(note that the matrix is n × n) does not vanish at (x, y). Then there are unique C∞

functions g1(Y ), . . . , gn(Y ) defined on a neighborhood U of y such that

xj = gj(y), 1 ≤ j ≤ n, and Fj(g1(Y ), . . . , gn(Y ), Y1, . . . , Yd) = 0

identically on U , 1 ≤ j ≤ m. Thus, the equations determine a unique solution for the Xi

in terms of the Yk near the point (x, y). The condition in the hypothesis is very natural
if one thinks of the case where all the Fj are linear. The same statement holds if one
replaces the condition that functions in both the hypothesis and conclusion be C∞ by the
condition that they be real analytic, and also if one works with C-valued functions on Cn+d

and replaces the C∞ condition by the condition that the functions in both the hypothesis
and conclusion be holomorphic.
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We next want to review some material concerning excellent rings. We shall not give
proofs, but we will not be making use of the theorems we do not prove. A Noetherian
ring is called catenary if whenever P ⊆ Q are prime ideals all saturated chains of primes
from P to Q have the same length. This property obviously passes to quotient rings and
localizations. A Noetherian ring is called universally catenary if every finitely generated
algebra over it is catenary. It suffices that polynomial rings in finitely many variables
over it be catenary: other finitely generated algebras over it are quotients of these. The
Appendices to Nagata’s book on local rings contain examples of Noetherian rings that
are not catenary, and catenary rings that are not universally catenary. However, Cohen-
Macaulay rings are catenary. Since a polynomial ring over a Cohen-Macaulay ring is again
Cohen-Macaulay, we have that Cohen-Macaulay rings are universally catenary, and that
means that homomorphic images of Cohen-Macaulay rings are universally catenary.

A map of rings is said to be a P map, where P is a property of rings, if it is flat and all the
fibers have property P. Thus, a map is Cohen-Macaulay if it is flat with Cohen-Macaulay
fibers, and a map is geometrically regular if it is flat with geometrically regular fibers. With
this terminology, R→ S is smooth if and only if it is finitely presented and geometrically
regular. However, some authors use the term “regular” to mean geometrically regular. In
this course we shall use the term geometrically regular, and avoid the term “regular.”

A Noetherian ring R is called a G-ring (“G” as in “Grothendieck”) if for every local

ring A of R, the map A→ Â is geometrically regular.

An excellent ring is a universally catenary Noetherian G-ring R such that in every
finitely generated R-algebra S, the regular locus {P ∈ Spec (S) : SP is regular} is Zariski
open. Excellent rings include the integers, fields, complete local rings, convergent power
series rings, and are closed under taking quotients, localization, and formation of finitely
generated algebras. All of the rings that come up in algebraic geometry, number theory,
and several complex variables are excellent. Excellent rings tend very strongly to share the
good behavior exhibited by rings that are finitely generated over a field. The normalization
of an excellent domain is a finite module over it, the completion of a reduced excellent local
ring is reduced, and the completion of a normal excellent local domain is normal. It is also
true that the Henselization of an excellent local ring is again excellent.

In the sequel we shall refer from time to time to excellent discrete valuation rings. We
always mean Noetherian rank one discrete valuation domains. We use the abbreviation
DVR. In this case one can give a simpler characterization of excellence, and we shall
take this characterization as our working definition of excellence for DVRs throughout the
remainder of these Lecture Notes.

We first define an algebra S over a field K to be separable if for every finite purely
inseparable algebraic extension L of K, the ring L⊗KS is reduced. We shall say a bit more
about this shortly. Notice that if K has characteristic 0, then every reduced K-algebra is

separable. We shall say a DVR V with fraction field K is excellent if K⊗V V̂ is separable.
This is equivalent to the general definition of excellence given earlier in the special case
of a DVR. Notice that every DVR of equal characteristic 0 or of mixed characteristic is
excellent. There can be no problem unless the ring has positive characteristic p.
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We define a Noetherian ring (R,P,K) to be an approximation ring if every finite system

of polynomial equations in finitely many variables over R that has a solution in R̂ has a
solution in R. The reason for the use of the term “approximation” is explained in part by
the following fact.

Proposition. Let R be an approximation ring, let Fj(X1, . . . , Xn) = 0, 1 ≤ j ≤ m be a
system of polynomial equations over R, and let (s1, . . . , sn) be a solution of the equations

in R̂n. Then for every positive integer N there exists a solution (r1, . . . , rn) in Rn such

that for all i, ri ∼= si mod PN R̂. In other words, the solutions of the equations over R are

P -adically dense in the solutions over R̂.

Proof. Fix N and fix elements r′i ∈ R such that r′i
∼= si mod PN R̂, 1 ≤ i ≤ n. Fix

generators u1, . . . , uk for Pn in R. For each i we can find elements yij ∈ R̂ such that

si − r′i −
∑k
j=1 yijuj = 0. Now consider the equations F1 = 0, . . . , Fm = 0 together with

the additional equations involving new variables Yij , namely Xi − r′i −
∑k
j=1 Yijuj = 0.

These equations have a solution (s1, . . . , sn, yij) in R̂. Hence, they have a solution in R,
and for this solution the values for the Xi will satisfy the congruence condition. �

Thus, solutions over R̂ can be “approximated” arbitrarily closely, in the P -adic topology,
by solutions over R.

Based on a wonderful result of Popescu, one can prove that every excellent Henselian
local ring is an approximation ring. The original proof of the result of Popescu has gaps.
Popescu’s theorem asserts that if S is a geometrically regular R-algebra, and one has
a finitely generated R-subalgebra S0 of S, then there is a smooth R-algebra T and a
factorization R → S0 → T → S. (It is not known that the map T → S can be taken to
be injective.) This means that S is a sort of limit of smooth algebras. A proof by Ogoma
filled some of the gaps in Popescu’s argument, while Swan eventually wrote an exposition
of the proof that definitively answered all questions about the earlier versions. The proof
is very long and difficult, and we shall not prove the full result here.

We will however, prove the following beautiful result of Mike Artin, which motivated
the later work.

Theorem (Artin approximation). Let R be a local ring of a finitely generated algebra
over a field or over an excellent DVR. Then Rh is an approximation ring. In particular,

every finite system of polynomial equations over R that has a solution in R̂ has a solution
in a pointed étale extension of R.

This is a hard theorem: it will take us a while before we can prove it.

Artin also proved that the ring of convergent power series over C is an approximation
ring. This is an amazing statement: it says that if a system of polynomial equations with
convergent power series coefficients has a solution in the formal power series ring, then it
has a solution in the convergent power series ring.

Both of these results of Artin are special cases of the statement that every excellent
Henselian ring is an approximation ring.
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Lecture of February 20, 2017

We discuss separable algebras a bit further. Recall that a K-algebra R is separable if
for every finite purely inseparable extension L of K, L⊗K R is reduced.

Lemma. Let K be a field and let R be a K-algebra. Let L denote an extension field of K.
(a) If K has characteristic 0, the R is separable if and only if it is reduced.
(b) If L⊗KR is reduced, then for every subfield L0 of L containing K, L0⊗KR is reduced.
(c) If R is separable over K then every K-subalgebra of R is separable over K.
(d) A direct limit of separable K-algebras is separable.
(e) R is separable over K if and only if all of its finitely generated K-subalgebras are

separable over K.
(f) If R is reduced and L is separable algebraic over K, then L⊗K R is reduced.
(g) If R is reduced and L is pure transcendental over K, then L⊗K R is reduced.

Proof. Part (a) is immediate from the definition, since the only purely inseparable exten-
sion of K is K itself. Part (b) holds because L0 ⊗K R ⊆ L ⊗K R, since R is K-flat. For
the same reason, if R0 is a K-subalgebra of R we have that L ⊗K R0 ⊆ L ⊗K R, from
which (c) follows. Part (d) is a consequence of the fact that tensor product commutes with
direct limit, since a direct limit of reduced rings is reduced. Part (e) is immediate from
(c) and (d). To prove (f), note that since L is a direct limit of finite separable algebraic
extensions, we may assume that L is finite separable algebraic over K. Since R is a direct
limit of finitely generated K-subalgebras, we may assume that R is reduced and finitely
generated over K. Then R embeds in its localization W−1R at the multiplicative system
of all nonzerodivisors, and because R is Noetherian and reduced, this is a finite product of
fields. Thus, it suffices to prove the result when L is finite separable algebraic over K and
R is a field. But then L is étale over K and so L⊗K R is étale over R, and, consequently,
a finite product of separable field extensions of R. Thus, it is reduced. Part (g) is clear
because the pure transcendental extension is a localization of a polynomial ring over R. �

Proposition. Let K be a field and let R be a K-algebra. The following conditions are
equivalent:
(1) R is separable over K.
(2) If L is the perfect closure of K, then L⊗K R is reduced.
(3) If L is the algebraic closure of K, then L⊗K R is reduced
(4) For every field extension L of K, L⊗K R is reduced.
(5) For some perfect field L containing K, L⊗K R is reduced.

Proof. (1) and (2) are equivalent because the perfect closure of K is a directed union of
finite purely inseparable extensions of K, and contains all of them. Clearly, (4) ⇒ (3) ⇒
(5) ⇒ (2) (since the algebraic closure is perfect and since every perfect field containing
K contains a K-isomorphic copy of the perfect closure), and so it will suffice to prove
that (2) ⇒ (4). Since every field is contained in a larger field that contains the perfect
closure L of K, it suffices to show that L′ ⊗K R is reduced when L′ is a field containing
L. L′ is the directed union of finitely generated extensions L′0 of L within L′. Therefore,
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we may assume that L′ is finitely generated over the perfect field L. But then L′ has
a separating transcendence basis over L, and may be reached by a pure transcendental
extension followed by a separable algebraic extension. The result now follows from parts
(f) and (g) of the Lemma. �

We also note:

Proposition. If L is an algebraic field extension of K, then L is separable as a K-algebra
if and only if it is a separable field extension of K.

Proof. If L′ is any field extension of K, then L′⊗K L is reduced by part (f) of the Lemma.
Now suppose that L is not a separable field extension of K. Then L contains an inseparable
element θ whose minimal monic polynomial f = f(x) has multiple roots. Let K denote an
algebraic closure of K. Then K ⊗K L ⊇ K ⊗K K[θ] ∼= K ⊗K K[x]/(f) ∼= K[x]/(f), and
since f is not square-free over K, the last ring has nilpotents. �

Let k be any perfect field of positive characteristic p, and let t1, . . . , tn, . . . be countably
many indeterminates over K. Let K0 = K(tpi : i), and let Kn = K0(t1, . . . , tn), so that
K0 ⊆ K1 ⊆ · · · is a strictly increasing sequence of fields. Let K denote the union. Let
V =

⋃∞
n=0Kn[[x]]. Every Kn[[x]] is complete and, therefore, Henselian, and a direct limit

of Henselian rings is Henselian. Therefore, V is Henselian. Every nonzero element of V is
a unit times a power of x, since that is true in every Vn. It follows that V is a discrete
valuation ring in which x generates the maximal ideal. V/xN ∼= K[[x]]/(xN ), and it follows

that V̂ may be identified with K[[x]]. But K[[x]]p = Kp[[xp]] = K0[[xp]] ⊆ K0[[x]] ⊆ V ,

so that V̂ is purely inseparable over V , and this remains so when we localize at V − {0}
(equivalently, at x). Note that, for example, u =

∑∞
n=1 tnx

n ∈ V̂ − V . Thus, V is a DVR
that is not excellent.

Also note that Artin approximation fails for V . The equation zp − up = 0 (note that

up ∈ V ) has the unique solution z = u in the domain V̂ , but it has no solution in V : the
only possibility is z = u, and u /∈ V .

It is also worth noting that approximation rings must be Henselian. Given an approx-
imation ring (R,P,K) and a factorization of a monic polynomial over R into relatively
prime factors in K[x], the problem of lifting the factorization may be translated into solv-

ing a system of equations for the coefficients. It will have a solution in R̂, since that ring
is complete, and therefore Henselian. Hence, it must have a solution in R as well.

Here is an alternative characterization of approximation rings:

Proposition. Let R be a local ring. Then R is an approximation ring if and only if it is

an R-algebra retract of every finitely generated R-subalgebra S of R̂, i.e., if and only if for
every such S there is an R-algebra homomorphism ρ : S → R such that if ι : R ↪→ S is the
inclusion map, ρ ◦ ι = 1R.

Proof. Suppose that R is an approximation ring and let S = R[s1, . . . , sn] be given. Map
a polynomial ring R[X1, . . . , Xn] � R[s1, . . . , sn] as R-algebras by sending Xj 7→ sj ,
1 ≤ j ≤ n, and let F1, . . . , Fm generate the kernel. Then (s1, . . . , sn) is a solution for
the m equations Fj = 0 in R. Therefore the equations have a solution (r1, . . . , rn) in R.
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The R-algebra map R[X1, . . . , Xn]→ R sending Xj 7→ rj kills the Fj and so induces the
required retraction S ∼= K[x1, . . . , xn]/(F1, . . . , Fm) to R.

To prove the “if” part let Fj = 0, 1 ≤ j ≤ m be a system of polynomial equations

over R with a solution (s1, . . . , sn) in R̂, and let S = R[s1, . . . , sn]. Choose an algebra
retraction ρ of S to R. Let ri = ρ(si), 1 ≤ i ≤ n. Since the si satisfy the equations Fj = 0
and ρ is an R-algebra homomorphism, the ri also give a solution. �

We next want to use Zariski’s Main Theorem and our theory of Henselization and
étale maps to compare a very geometric notion of intersection multiplicity that we shall
introduce with Serre’s definition using alternating sums of lengths of Tor.

The first step is to introduce the geometric notion. To this end, we consider two algebraic
varieties X, Y in AnC = Cn. That is, X and Y are irreducible closed algebraic sets. We deal
only with closed points here. Suppose that u is an isolated point of intersection of X ∩ Y .
In the situation where dim (X)+dim (Y ) = n (X and Y are said to be intersecting properly
at u, we want to introduce a positive integer that represents the intersection multiplicity
of X and Y at u.

Here is one example. Suppose that n = 2 with coordinates x, y in A2
C and that X =

V (y − x2) while Y = V (y). The origin (0, 0) is an isolated point of intersection of these
two varieties. However if we replace the line y = 0 with the line y = ε for any small ε 6= 0,
X = V (y − x2) and Yε = V (y − ε) have two points of intersection: ε 6= 0 has two distinct
square roots, and the points are (±

√
ε, ε). It is therefore natural to define the intersection

multiplicity to be 2 in this case.

If X and Y are arbitrary varieties one can simplify the problem of understanding the
intersection by the process of “reduction to the diagonal.” Let ∆ denote the diagonal
subvariety of AnC × AnC ∼= A2n

C : ∆ = {(v, v) : v ∈ AnC}. This variety is a vector subspace
defined by n linear equations. Set-theoretically there is a bijection between X ∩ Y and
(X × Y ) ∩ ∆ under which u corresponds to (u, u). This bijection is an isomorphism of
algebraic sets. Moreover, a great deal of experience has shown that one can replace the
problem of understanding the manner in which X meets Y by the problem of understanding
the manner in which X × Y meets ∆. For example, u is an isolated point of intersection
of X and Y iff (u, u) is an isolated point of intersection of X×Y and ∆. Moreover, X and
Y meet properly in AnC iff X × Y and ∆ meet properly in A2n

C : the dimension of X × Y is
dim (X) + dim (Y ).

We shall therefore focus attention on the problem of defining intersection multiplicities
when one is intersecting a variety with a linear space. Note that if the linear space is
defined by independent linear equations L1, . . . , Ld then one can imitate the example
with the parabola by counting points of intersection with V (L1 − ε1, . . . , Ld − εd), where
the εj are small, varying complex numbers. Here, one hopes that the number of points of
intersection that are “near” the isolated point u will be constant for “almost all” choices of
(ε1, . . . , εd) consisting of “sufficiently small” complex values. In the case of the parabola
we only had to exclude the value 0 for ε. Our next task is to make all of this precise.
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Lecture of February 22, 2017

Given a finitely generated C-algebra R, if the module differentials ΩR/C is locally free
over R then R is regular (which is equivalent to being smooth over C). What if one assumes
instead that the R-module of derivations DerC(R, R) is locally free? Must R be regular?
Note that DerC(R, R) ∼= HomR(ΩR/C, R). This has been conjectured to be true and is
known as the Zariski-Lipman conjecture.

It is known that if the module of derivations is locally free then R must be normal
(see [J. Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965)
874–898]) and it is known that the conjecture is correct if R is a hypersurface (a regular

domain modulo one nonzero element) (see [G. Scheja and U. Storch,Über differentielle
Abhängigkeit bei idealen analytischer Algebren, Math. Z. 114 (1970) 101–112] and [ ,
Differentielle Eigenschaften des Lokaliserungen analytischer Algebren, Math. Ann. 197
(1972) 137–170]), or if R is graded [M. Hochster, The Zariski-Lipman conjecture in the
graded case, J. of Alg. 47 (1977) 411–424]. By a result of Flenner [H. Flenner, Extend-
ability of differential forms on nonisolated singularities, Invent. Math. 94 (1988) 317–326],
if the theorem is true in dimension two then it is true. It remains open in dimension two,
even if the ring is a complete intersection in a polynomial ring in four variables.

We return to the problem of defining the intersection multiplicity of a variety X and a
linear space Y in AnC. Let dim (X) = d. We assume that the intersection is proper, so that
dim (Y ) = n − d, and we make a change of coordinates so that the point of intersection
that we are studying is the origin, which we assume is an isolated point of intersection.
Then Y can be defined by the vanishing of d homogeneous linear equations Lj , and we
write Y = V (L1, . . . , Ld). For each d-tuple of complex numbers ε = (ε1, . . . , εd) we let
Yε = V (L1−ε1, . . . , Ld−εd). By the Euclidean topology on ANC we mean the usual metric
space topology, which is Hausdorff and locally compact. There is a Euclidean topology on
any closed algebraic set, inherited from a copy of ANC in which it is embedded. The topology
is independent of the embedding, since isomorphisms of closed algebraic sets are given, in
both directions, by polynomial maps in the coordinates, and these will be continuous in
the respective Euclidean topologies and therefore provide a homeomorphism.

We next switch points of view. The functions L1, . . . , Ld, restricted to X, give d
elements of the coordinate ring C[X]. Let (R,P,C) be the local ring of C[X] at the point
we are interested in. The assertion that this point is an isolated point of the intersection
means precisely that L1, . . . , Ld is a system of parameters in R: the contraction of P
to C[X] is a minimal prime of (L1, . . . , Ld)C[X], because the point in question is an
irreducible component of the intersection. Moreover, dim (R) = dim (C[X]) = d. Consider
the map Γ : X → AdC given in coordinates by (L1, . . . , Ld). This is the same as the map
of algebraic sets induced by the C-algebra inclusion C[L1, . . . , Ld] ⊆ C[X]. Then X ∩ Yε
is precisely the same as Γ−1(ε). The fact that we want can now be phrased as follows:

Theorem. Let Γ : X → AdC as described and let x be the point of X that we are studying,
so that Γ maps x to the origin 0 in AdC. Then there are Euclidean neighborhoods B′ of x
and B of 0 in AdC and a proper Zariski closed subset Z of AdC such that for all ε ∈ B −Z,
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the cardinality of Γ−1(ε)∩B′ is a constant µ, and all points in Γ−1(ε)∩B′ approach x as ε

approaches 0. Moreover µ is the torsion-free rank of R̂ as a module over C[[L1, . . . , Ld]].

It will take us a while to prove this result. Once we have this theorem, we can define
the intersection multiplicity of X and Y at x as the value of µ. When Y is not necessarily
linear we replace X and Y by X × Y and ∆.

Let us define the distance between two monic polynomials of degree m as the supremum
of the absolute values of differences of corresponding coefficients. By the root set S(f) of a
monic polynomial f , we mean a sequence that gives the roots θ1, . . . , θm of the polynomial,
each occurring a number of times equal to its multiplicity, but we consider these sequences
only up to equivalence: if π is a permutation of {1, . . . , m} then we regard θ1, . . . , θm as
the same root set as θπ(1), . . . , θπ(m). If S(f) is represented by the sequence θ1, . . . , θm
and S(g) is represented by θ′1, . . . , θ

′
m, then we define the distance between the root sets

as
min
π∈Sm

sup
1≤t≤m

{|θt − θ′π(t)|}.

Thus, two root sets are close if and only if for some choice of orderings of their terms, the
corresponding terms are all close.

Lemma. Let f ∈ C[z] be a monic polynomial of degree m ≥ 1. Then for all ε > 0 there
exists δ > 0 such that if g is within distance δ of f then S(g) is within distance ε of S(f):
that is, the root set of f is a continuous function of the coefficients of f as f varies in the
set of monic polynomials of degree m. Yet another formulation is that if gt is a sequence
of monic polynomials of degree m that converges to f , then the root sets S(gt) converge to
S(f).

Proof. This is obvious if m = 1. We assume that m > 1 and use induction. It will suffice
to prove the final statement. Choose a root θ of f . Replace f by f(z + θ) and gt by
gt(z + θ). We still have that gt(z + θ) → f(z + θ), and all root sets have been translated
by −θ, so that the distance from the root set of gt(z + θ) to the root set of f(z + θ) is
the same as the distance from the root set of gt to the root set of f . Therefore, we may
assume without loss of generality that 0 is a root of f , i.e., that its constant term is 0. Let
ct be the constant term of gt. By hypothesis ct → 0 and so |ct| → 0. It follows as well that
|ct|1/m → 0. Since the product of the absolute values of the roots of gt is |ct|, we know
that gt has at least one root θt with |θt| ≤ |ct|1/m. Then θt → 0, from which it follows
ht = gt(z + θt) → f . Each ht has 0 as a root, and so ht = zh∗t and f = zf∗. But then
h∗t → f∗, and S(h∗t ) → S(f∗) by the induction hypothesis. It follows that S(ht) → S(f).
Since the distance between the root sets of ht and gt is at most |θt| and |θt| → 0, it follows
that S(gt)→ S(f) as well. �

We next want to use this result to prove that if we have a map of closed algebraic sets
G : X → W with x ∈ X mapping to w ∈ W and the map is étale near x, i.e., the map
C[W ]→ C[X] is étale near the maximal ideal Qx of C[X] corresponding to x, then there are
Euclidean open neighborhoods U of x and V of w such that G maps U homeomorphically
onto V .
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Lecture of February 24, 2017

Before proceeding further, we note the following: if one uses a different set of d linearly
independent linear equations L′1, . . . , L

′
d to define Y , the number µ obtained by counting

points in fibers does not change. Thus, µ does not depend on the choice of the Li, only on
Y .

The reason is that the effect of the change is that one winds up studying A◦Γ : X → AdC
instead of Γ, where A : AdC → AdC is an invertible linear transformation. Since A is a
homeomorphism in both the Zariski and Euclidean topologies, this has no effect on the
number of points close to x in fibers over points near 0 when one restricts the points
considered to the intersection of a Euclidean open neighborhood of 0 with a non-empty
Zariski open set.

We next prove:

Proposition. Let G : X → W be a map of closed algebraic sets of C and x ∈ X be such
that G(x) = w ∈ W . Suppose that G is étale near x, i.e., that the map C[W ] → C[X] is
étale near the maximal ideal Q of C[X] corresponding to x. Then there are Euclidean open
neighborhoods U of x and V of w such that G maps U homeomorphically onto V .

Proof. Let R = C[W ] and S = C[X]. Since S is étale near Q, we may replace R and S
by localizations such that the map R → S is standard étale. Therefore, we may assume
without loss of generality that S = R[z]g/(f), where the image of f ′ is invertible in S.

Think of W as a Zariski closed set in AsC. Then X ⊆ As+1
C and

X = {(v, λ) ∈W × A1
C : f(v, λ) = 0, g(v, λ) 6= 0}.

The map G now corresponds to the product projection on the first coordinate, suitably
restricted.

We write fv(z) for the polynomial f(z) with its coefficients (which are in R and therefore
functions on W ) evaluated at the point v of W . The coefficients of fv(z) are continuous
functions on W . Let x correspond to (w, θw), where θw is a root of fw such that gw(θw) 6= 0.

We also know that at (w, θw), the derivative of fw does not vanish, and so the roots of
the monic polynomial fw(z) giving points where g does not vanish are simple: evaluation
at the point gives a map R[x]g/(f)→ C, and since f ′ is invertible in R[x]g/(f), it maps to
a nonzero element of C. Let c be less than half the distance between any other root of fw
and θw. Then there is a Euclidean open neighborhood V of w such that for all v ∈ V , the
distance between the root set of fv and the root set of fw is < c/4. For every v ∈ V there
is a unique root of fv within c/4 of of θw: call this root Θ(v). Each root of fv is within
distance c/4 of a root of fw, and so any root of fv other than Θ(v) is at distance at least
2c− c/4− c/4 > c from Θ(v).

Because the coefficients of fv vary continuously with v, so does the root set of fv, and
it follows that Θ(v) is a continuous function of v. By decreasing V , if necessary, we may
assume that g

(
v,Θ(v)

)
6= 0 for v ∈ V . Then the map H defined by H(v) = (v, Θ(v)), and



62

the product projection on the first coordinate (which is G) are mutually inverse continuous
functions. Let U = H(V ). It suffices to show that U is open in X, and for this it suffices
to show that U is open in G−1(V ). But the ball of radius c/4 around a point

(
v,Θ(v)

)
of

U is contained in U , for if (v′, λ) is in that ball, λ is within c/4 of Θ(v) and therefore with
c/4 + c/4 of Θ(w) = θw. Therefore, Θ(v′) is within c/4 + c/4 + c/4 < c of λ, which forces
Θ(v′) = λ, and we are done, since

(
v′,Θ(v′)

)
∈ U . �

The next step is to prove the following:

Theorem. Suppose that Γ : X → AdC and that x ∈ X is isolated in its fiber over 0 ∈ AdC.
Then there is a commutative diagram of closed algebraic sets:

X̃
G−−−−→ ÃdCy y

X −−−−→
Γ

AdC

such that ÃdC is smooth and irreducible, the vertical arrows are étale, and G is finite.

Moreover, there are points x̃ ∈ X̃ and 0̃ ∈ ÃdC such that G(x̃) = 0̃, x̃ 7→ x, 0̃ 7→ 0, and x̃

is the only point of X̃ that maps to 0̃.

The statement that G is finite means that the corresponding map of rings is module-
finite. For the purpose of doing counting of points in fibers we will be able to replace
the map Γ by the map G and the points x and 0 by x̃ and 0̃. A key point is that
near these points, each point has a Euclidean neighborhood carried homeomorphically by
the appropriate map to a Euclidean open neighborhood of 0 or 0̃. Instead of passing to
Euclidean neighborhoods, we have passed to “étale neighborhoods.”

We postpone the proof for a bit. We first prove a purely ring-theoretic result that will
be helpful.

Theorem. Let A be a Noetherian ring, R a finitely generated A-algebra, let m be a max-
imal ideal of A and let n ⊆ R be a maximal ideal of R that is a minimal prime of mR.
Then Rh

n is module-finite over Ah
m, and is a localization of R⊗A Ah

m at one element.

Note that if A and R are finitely generated algebras over C and m, n are maximal ideals,
the residue class fields are both C.

Note that R̂n is module-finite over Âm: it is easy to see that the extension of residue
class fields is finite algebraic, and mRn is n-primary. This illustrates a frequently recurring
phenomenon: a result for completions often has an analogue for Henselizations.

The Theorem above is quite non-trivial: the proof uses Zariski’s Main Theorem.

Lecture of March 8, 2017

Proof of the Theorem. Note that since R is finitely generated as an A-algebra, R/n is
a field finitely generated as an algebra over the field A/m. By one form of Hilbert’s
Nullstellensatz, this implies that that L = R/n is a finite algebraic extension of K = A/m.
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Let T be the integral closure of C = Ah
m in C ⊗A R. We have an obvious map

C ⊗A R� C/mC ⊗R R/n ∼= K ⊗K L ∼= L.

The kernel of the composite map is evidently a maximal ideal Q of C ⊗A R lying over the
maximal ideal mC of C (mC is the maximal ideal of C because C is the Henselization of
(A,mAm) ). The ideal Q is evidently maximal in its fiber over mC ∈ Spec (C), but it is
minimal as well, since

C ⊗A R/(mC)e ∼= C/mC ⊗A R/mR ∼= K ⊗A R/mR ∼= R/mR,

and n is minimal over mR. It follows that there exists t ∈ T −Q such that Tt = (C⊗AR)t.
Since C ⊗A R is finitely generated over C by a finite set of generators of R, we can choose
a power tN of t and a subalgebra T0 of T containing t and module-finite over C such that
tN multiplies the image of every generator of R into T0. It follows that (T0)t ∼= (C⊗AR)t.

Now, (C ⊗A R)Q is a local ring of (C ⊗A R)t at a maximal ideal, and so it is also a
local ring of (T0)t at a maximal ideal. But T0 is module-finite over the Henselian local
ring C, and therefore it decomposes as a product of local rings: one of these must be
the same as (C ⊗A R)Q, Each of these local rings is module-finite over the Henselian ring
C via a local map, and, therefore, Henselian: we leave this an exercise. It follows that
(R⊗AC)Q is Henselian. It is the localization of (T0)t at an idempotent, and it is therefore
the localization of T0 at one element. But then it is also the localization of C ⊗A R at one
element.

We may now complete the proof by showing that (R ⊗A C)Q is the Henselization of
R. First note that since there is a local R-algebra map R → (R ⊗A C)Q and this ring is
Henselian, we have a unique local R-algebra map Rh

n → (R ⊗A C)Q. On the other hand,
C is a direct limit of pointed étale extensions Ci of A. Each of these, when tensored with
R, is a localization of an étale extension of R. Let Qi be the kernel of the composite map

Ci ⊗A R� K ⊗K R/n ∼= L.

Then (C ⊗AR)Q is the direct limit of the (Ci⊗AR)Qi
, each of which is pointed étale over

R. But this gives a unique local R-algebra map (C ⊗AR)Q → Rh
n, and it is injective. The

composition
Rh
n → (C ⊗A R)Q → Rh

n

is a local R-algebra map Rh
n → Rh

n, and so is evidently the identity, which forces the
injection (C ⊗A R)Q → Rh

n to be surjective as well. �

The next result is aimed at replacing the Henselizations Ah
m and Rh

n by étale exten-
sions. We want to descend from the Henselizations to pointed étale extensions and then
“unlocalize” these, in a manner of speaking. For this result we impose some additional
hypotheses, namely that C be a domain and that dim (A) = dim (R). C is a domain if A
is regular, and these hypotheses will hold in the geometric situation in which we want to
apply the result.
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Theorem. Let A, m, R, n be as in the preceding theorem. Let C = Ah
m and D = Rh

n.
Assume that C is a domain, which is true when Am is regular, and that dim (Am) =
dim (Rn). Then C → D is injective, and since D is module-finite, it has a torsion-free

rank µ > 0 over C. Moreover, D̂ ∼= R̂n has torsion-free rank µ over Ĉ ∼= Âm.

Let η ∈ C ⊗A R be such that (C ⊗A R)η ∼= D. Then there are étale extensions Ã of A

and R̃ of R such that there is a commutative diagram

C −−−−→ Dx x
Ã −−−−→ R̃x x
A −−−−→ R

and such that:
(1) There is a unique maximal ideal m̃ of Ã lying over m in A; moreover, m̃ = mÃ and

is the contraction of mC.

(2) There is a unique maximal ideal ñ of R̃ lying over m̃ in Ã (equivalently, lying over m

in A). This maximal ideal is also the unique maximal ideal of R̃ lying over n in R,
and it is the contraction of nD.

(3) There is an element η0 ∈ Ã⊗AR such that η0 maps to η in C⊗AR and R̃ = (Ã⊗AR)η0 .

(4) R̃ is a module-finite extension of Ã of torsion-free rank µ.

Proof. We know that dim (C) = dim (Am) and dim (D) = dim (Rn) = dim (Am), so that
dim (C) = dim (D). Since D is module-finite over C, it has the same dimension as the
image of C. Since C is a domain, C → D cannot have a kernel, or the dimension of D will
be strictly smaller than the dimension of C. Thus, D has some torsion-free rank µ > 0
over C, and there will be an exact sequence

0→ Cµ → D →W → 0

where W is killed by a nonzero element of C. Since completion is exact,

0→ Ĉµ → D̂ → Ŵ → 0

is exact, and it follows that the torsion-free rank of D̂ over Ĉ is also µ.

Next observe that C is a directed union of pointed étale extensions of Am. Here, the
maps are faithfully flat and, hence, injective. Each of these pointed étale extensions is a
direct limit of localizations of an étale extension at one element, and these are simply étale
extensions themselves. Thus, C is a direct limit of étale extensions of A. Each may be
localized further at an element to kill the kernel of the map to C if there is any. Thus,

we may view C as a directed union of étale extensions Ã of A. Each of these may be
viewed as a localization at one element of a standard étale extension of A, and so will
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be the localization at one element of a module-finite extension of A. In a pointed étale
extension of Am, m generates the maximal ideal, which is contracted from mC. It follows

that in a suitable localization of Ã, the expansion of m will be the contraction of mC. We

henceforth use Ã for an étale extension of A satisfying these conditions: we are free to

enlarge the choice of Ã further to satisfy some additional conditions.

Choose a finite set of elements vj of C ⊗A R whose images generate (C ⊗A R)η as a
C-module. We may further assume, enlarging the set of generators if necessary, that the
images of v1, . . . , vµ are linearly independent over C and, and that we have a nonzero
element c ∈ C that kills (C ⊗A R)η modulo the C-span of the elements v1, . . . , vµ.

Now choose Ã in the direct limit system of étale extensions of A so large that Ã contains

an element c̃ that maps to c, so large that Ã⊗A R contains an element η0 that maps to η,

and so large that (Ã⊗A R)η0 contains elements ṽj that map to the vj . Then

(Ã⊗A R)η0/
∑
j

Ãṽj

is killed when we apply C ⊗
Ã

, and it follows that if we replace Ã by a suitably larger

étale extension this quotient will be zero. Similarly, after replacing Ã by a suitably larger

étale extension, c̃ will multiply (Ã⊗A R)η0 into
∑
j Ãṽj .

Localization of Ã at one element will again guarantee that mC ∩ Ã = mÃ is the only

maximal ideal of Ã lying over m. Consider the corresponding choice of R̃ = (Ã ⊗A R)η0 .

The contraction of nD to R̃ lies over m in A, since nD lies over m in A, and therefore

lies over mÃ in Ã. The maximal ideals of R̃ lying over m in A correspond to the maximal

ideals of R̃/mR̃ ∼=
(
(Ã/mÃ)⊗A R

)
η0
∼= (K ⊗A R)η0

∼= (R/mR)η0 . On the other hand, D

has a unique maximal ideal, nD, lying over mAh, and we conclude that
(
(Ah/mAh)⊗AR

)
η

has only one maximal ideal, and this ring becomes (K⊗AR)η ∼= (R/mR)η. Since η0 maps
to η, they have the same image in R/mR. Therefore, (R/mR)η0 = (R/mR)η, and there

is a unique maximal ideal of R̃ lying over mÃ. It is the only maximal ideal lying over n,
since n lies over m. �

Lecture of March 8, 2017

The preceding Theorem now immediately implies the result stated in the Lecture Notes
of February 24:

Theorem. Suppose that Γ : X → AdC and that x ∈ X is isolated in its fiber over 0 ∈ AdC.
Then there is a commutative diagram of closed algebraic sets:

X̃
G−−−−→ ÃdCy y

X −−−−→
Γ

AdC
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such that ÃdC is smooth and irreducible, the vertical arrows are étale, and G is finite.

Moreover, there are points x̃ ∈ X̃ and 0̃ ∈ ÃdC such that G(x̃) = 0̃, x̃ 7→ x, 0̃ 7→ 0, and x̃

is the only point of X̃ that maps to 0̃.

We can now use this to justify our earlier statements about counting of points in fibers.
But we first need one more fact:

Proposition. Let g : Y → Z be a finite morphism of affine algebraic sets over C, and
suppose that y ∈ Y is the only point lying over z ∈ Z. Then there for every Euclidean
neighborhood U of y in Y there is a Euclidean neighborhood V of z in Z such that for all
points v ∈ V , g−1(v) ⊆ U .

Proof. If not, we can choose a real number ε > 0, a sequence of points {zi}i in Z converging
to z, and points {yi}i ∈ Y such that for all i, g(yi) = zi while |yi − y| > ε. Think of Y
as embedded in ANC and let F1, . . . , FN be coordinate functions on Y . Since C[Y ] is
module-finite over C[Z], each Fj satisfies a monic polynomial equation over C[Z], say

F
dj
j +

dj−1∑
t=0

rj,tF
t
j = 0,

where the rj,t ∈ C[Z].

This implies that the coordinates of the yi are bounded. To see this for Fj(yi), note

that it is in the root set of F
dj
j +

∑dj−1
t=0 rj,t(zi)F

t
j = 0: as zi → z, this root set converges

to the root set of F
dj
j +

∑dj−1
t=0 rj,t(z)F

t
j = 0. It follows that the sequence {yi}i has a

subsequence that converges, in the Euclidean topology, to a point y′ ∈ ANC . Since Y is
closed in the Zariski topology in ANC , it is closed in the Euclidean topology, and y′ ∈ Y .
Change notation, replacing the original sequence of yi by this subsequence and taking the
corresponding subsequence of the zi. Then y′ 6= y, but g(y′) = z, by the continuity of g in
the Euclidean topology, a contradiction. �

We are now ready to justify the statement we made earlier about counting points in

fibers. The torsion-free rank µ of C[X̃] over C[Ãd] is the same as the degree of the extension
of function fields. By part (c) of the Lemma of the Lecture Notes of January 9, off a proper

Zariski closed subset Z ′ of Ãd, all fibers have µ distinct points. Since the map is finite, by
the preceding Proposition all points of any fiber over a point close to 0̃ are approaching x̃,
and off Z ′ there are always µ such points. Thus, for any small Euclidean neighborhood U
of x̃ there is a small Euclidean neighborhood V of 0̃ such that all fibers over points of V −Z ′
are contained in U and have cardinality µ. But, since the vertical arrows are étale, by the
first Proposition of the Lecture Notes of February 24, sufficiently small neighborhoods of
x̃ and 0̃ respectively will be carried homeomorphically to Euclidean open neighborhoods
of x and 0, respectively. The image of Z ′ will be constructible of dimension smaller than
d, and so its closure Z will be a proper closed subset of AdC . This establishes our earlier
statements about counting points in fibers. Note that µ will also be the torsion-free rank
of the Henselization of the local ring at x over the Henselization of the local ring at 0 (or

we may use x̃ and 0̃: the Henselizations don’t change), and will also be the torsion-free
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rank of the completion of the local rings at x over the completion of the local ring at 0:
the latter is a regular local ring.

We next want to relate multiplicities thought of in this geometric way with Serre’s
definition using alternating sums of lengths of Tor.

Let A be the completion of the local ring at 0: L1, . . . , Ld is a regular system of
parameters. Let L = L1, . . . , Ld. Let R be the completion of the local ring at x. Let M
be any finitely generated A-module. We first observe that the torsion-free rank of M over
A may also be obtained as

χ(L;M) =
d∑
i=0

(−1)i`
(
Hi(L;M)

)
where Hi(L;M) indicates Koszul homology. To check that the rank of M is the same as
χ(L; M), first note that both are additive on short exact sequences of finitely generated
modules. From this it follows that if

0→ Abd → · · · → Ab1 → Ab0 →M → 0

is a free resolution of M , then the rank of M is b0− b1 + · · ·+ (−1)dbd times the rank of A,
which is 1, and it is also b0 − b1 + · · ·+ (−1)dbd times χ(L;A). But this is also 1: because
L1, . . . , Ld is a regular sequence, the Koszul complex is a free resolution of A/(L) ∼= C,
the residue class field. All higher Koszul homology is 0, and H0(L;A) ∼= C, from which
χ(L;A) = 1 follows. Note also that the Koszul homology modules are the same as the

modules TorAi (C,M), since the Koszul complex resolves C ∼= A/(L).

Now suppose that we are considering varieties X = V (P ) and Y = V (Q) with an
isolated point of intersection x. For convenience we translate coordinates so that x is the
origin. Our geometric method of getting at the intersection multiplicity is to work with
X × Y and ∆, the diagonal, instead. The completed local ring of X × Y at (x, x) is the
complete tensor product over C of the completed local rings A/PA and A/QA of X and
Y , respectively. Let f1, . . . , fd be the images of the defining linear forms of the diagonal
in (A/PA)⊗̂C(A/QA). From the remarks above, µ is

d∑
i=0

(−1)i`
(
Hi(f1, . . . , fd; (A/PA)⊗̂C(A/QA))

)
.

Since f1, . . . , fd is a regular sequence in B = A⊗̂CA, this is

d∑
i=0

(−1)i`
(
TorBi (A, (A/PA)⊗̂C(A/QA))

)
,

where the copy of A on the left in Tor is A⊗̂CA/(f1, . . . , fd) ∼= A.
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We can calculate this as follows. Take finite free resolutions of A/PA and A/QA over
A, and form a double complex by taking their complete tensor product over C. The total
complex of this double complex is a free resolution of (A/PA)⊗̂C(A/QA) over B = A⊗̂CA
because complete tensor product over C is exact. When we apply A⊗B we get a complex
whose homology is TorBi (A, (A/PA)⊗̂C(A/QA)). But this complex is also obtained by
taking the total complex of the ordinary tensor product over A of the resolutions of A/PA
and A/QA over A. Thus,

TorBi (A, (A/PA)⊗̂C(A/QA)) ∼= ToriA(A/PA,A/QA).

But then

µ =

d∑
i=0

(−1)i`
(
ToriA(A/PA,A/QA)

)
.

and there is no need to use reduction to the diagonal in the definition.

One more wrinkle: because the point of intersection is isolated, P +Q is primary to the
maximal ideal that corresponds to that point. This means not only that the Tor modules
in this formula for µ have finite length, but also that the formula for µ is valid if we use the
local ring at x instead of the completed local ring A at x throughout the formula: these
finite length modules don’t change when we complete.

Lecture of March 10, 2017

We return to the study of approximation rings.

Proposition. If R is an approximation ring and I is a proper ideal of R, then R/I is an
approximation ring.

Proof. Let I = (r1, . . . , rs)R. Given a system of polynomial equations

Fj(X1, . . . , Xn) = 0, 1 ≤ j ≤ m

with coefficients in R/I, we may lift coefficients to obtain corresponding polynomials

F̃j(X1, . . . , Xn) over R. Introduce additional variables Yik and consider the system

(∗) F̃j(X1, . . . , Xn)−
s∑
i=1

riYij = 0

1 ≤ j ≤ m over R. If the Fj have a solution in the completion of R/I, which may be

identified with R̂/IR̂, then the system (∗) has a solution in R̂. Thus, (∗) has a solution in
R, and its image in R/I gives the required solution of the Fj(X1, . . . , Xn) = 0 in R/I. �
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Proposition. If R→ S is local, where R is an approximation ring and S is module-finite
over R, then S is an approximation ring.

Proof. The idea of the proof is to “push down” a given system of equations over S to a
system over R (in different variables) such that solving the original system over S (respec-

tively, Ŝ) is equivalent to solving the new system over R (respectively, R̂).

Let θ1, . . . , θh be elements of S that span S over R. Let
(
rij
)

be an N×h matrix whose
rows span the module of relations over R on the elements θ1, . . . , θh. For all i, j there are
elements bijk ∈ R such that

(#) θiθj =
h∑
k=1

bijkθk.

Notice that θ1, . . . , θh also span Ŝ over R̂, that the rows of the matrix
(
rij
)

still span the

relations over R̂ (by the right exactness of tensor), and that the equations (#) hold for R̂

and Ŝ.

Any element of S (respectively, Ŝ) can be written as an R-linear (respectively, as an

R̂-linear) combination of the elements θ1, . . . , θh. Instead of seeking the elements of S
that satisfy the equations Fj directly, we look for the coefficients needed to write them as
linear combinations of θ1, . . . , θh.

We therefore introduce nh new variables Yki (these will take values in R or R̂). We

substitute
∑h
k=1 Ykiθk for Xi in each equation Fj = 0. Using the equations (#) repeatedly,

we can rewrite

Fj(

h∑
k=1

Yk1θk, . . . ,

h∑
k=1

Yknθk)

in the form
Gj1θ1 + · · ·+Gjhθh

where every Gjt is a polynomial in the variables Yki with coefficients in R. The condition

that this vanish after we substitute elements of R (or R̂) for the Yki is that the value of

(Gj1, . . . , Gjh)

be in the span of the rows of
(
rij
)
. Let ρ1, . . . , ρN denote the rows of this matrix, and let

Zjt be mN new indeterminates. Solving the original system over S (or Ŝ) is equivalent to
solving the system

(Gj1, . . . , Gjh)−
N∑
t=1

Zjtρt = 0

over R (or R̂). This becomes a system of polynomial equations over R if we equate the
entries of the vectors on the left to 0 for every j.

A solution of the original system Ŝ gives a solution of the new system of R̂. Since R
is an approximation ring we get a solution of the new system over R, and this yields the
required solution of the original system over S. �

Our next objective is to prove the following:
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Lemma. Let R denote the localization at a prime ideal of a finitely generated algebra over
a field K or a DVR (V, tV ). Then Rh is a homomorphic image of a module-finite local
extension of Ah, where A is a regular local ring that has the form Λ[x]Q, where Λ is either a
field or else a DVR that is a localization of a finitely generated V -algebra, x = x1, . . . , xn,
and Q is generated by the maximal ideal of Λ and x.
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Lecture of March 13, 2017

Before proving the result stated at the end of the Lecture Notes from March 10, we
observe the following fact. (This result can also be deduced from the harder and deeper
Theorem stated at the end of the notes from February 24, but that argument uses Zariski’s
Main Theorem, which is not needed here.)

Proposition. Let T be a module-finite extension of a quasilocal ring (R,P,K) and let Q
be a maximal ideal of T . Then T h

Q is a local ring of Rh ⊗R T , and the map Rh → T h is
module-finite and local.

Proof. Because Rh is Henselian and Rh⊗R T is module-finite over Rh, it decomposes. The
maximal ideals of this ring all contract to the maximal ideal P of R, and so correspond
bijectively to the maximal ideals of

(R/P )⊗R (Rh ⊗R T ) ∼= K ⊗R T ∼= T/PT,

and, hence, to the maximal ideals of T . Suppose that Q is the maximal ideal of Rh ⊗R T
corresponding to Q. Then

TQ → (Rh ⊗R T )Q

is a local map. Since Rh is Henselian, Rh ⊗R T decomposes, and (Rh ⊗R T )Q is one of
the factors. Since direct product and direct sum of finitely many modules are the same,
(Rh ⊗R T )Q is a direct summand of a module-finite extension of Rh, and is local. By the
first problem of Problem Set #3, it follows that (Rh ⊗R T )Q is Henselian. We therefore
have a local map

T h
Q → (Rh ⊗R T )Q.

Since Rh is a direct limit if pointed étale extensions of R, we have that (Rh ⊗R T )Q is
a direct limit of pointed étale extensions of TQ, which provides an injective local map
(Rh ⊗R T )Q → T h

Q. Since the composite

T h
Q → (Rh ⊗R T )Q → T h

Q

is a local map that is the identity on TQ, it is the identity, and so (Rh ⊗R T )Q → T h
Q is

surjective as well as injective. �

We next prove the result stated at the end of the Lecture Notes from March 10, which
we state again here.

Lemma. Let R denote the localization at a prime ideal of a finitely generated algebra over
a field K or a DVR (V, tV ). Then Rh is a homomorphic image of a module-finite local
extension of Ah, where A is a regular local ring that has the form Λ[x]Q, where Λ is either a
field or else a DVR that is a localization of a finitely generated V -algebra, x = x1, . . . , xn,
and Q is generated by the maximal ideal of Λ and x.
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Proof. Write R = TP where T is a finitely generated K or V -algebra and P is prime. Since
T is a homomorphic image of a domain (even a polynomial ring) finitely generated over
K or V , we may assume that T is a domain. In the case of a DVR V , we might as well
assume that P contains t: otherwise, we can replace T and V by Tt and Vt, a field, and
we are in the case where the base is a field.

The residue class field of R may be assumed to be a finitely generated field over K (in
the DVR case, K = V/tV ). Choose z1, . . . , zh in T such that the images of these elements
form a transcendence basis for R/PR over K. If K ⊆ T then K[z1, . . . , zh] ⊆ T and the
elements z1, . . . , zh are algebraically independent over K since this is true even mod P .
Since the nonzero elements are not in P , they all have inverses, and so

Λ = K(z1, . . . , zh) ⊆ R.

Similarly, if T is finitely generated over V then z1, . . . , zh are algebraically independent
over V , and every element of V [z1, . . . , zh] not in (t) has an inverse in R. Let V (z1, . . . , zh)
denote the localization of V [z1, . . . , zh] at the prime ideal (t). Then

Λ = V (z1, . . . , zh) ⊆ R,

and Λ is a DVR with maximal ideal generated by (t). We may then replace K or V by Λ,
and think of T as a finitely generated Λ-algebra.

In this way we may assume without loss of generality that R/P is a finite algebraic
extension of K (which is Λ/tΛ in the DVR case), so that P is a maximal ideal. We also
know that when Λ is a DVR, P contains t. We map a polynomial ring

T = Λ[Y1, . . . , Yn]

onto R. Let P̃ be the maximal ideal that is the inverse image of P . Modulo P̃ , the image
of every Yj is algebraic over K, which is the image of Λ in the DVR case. For each j,
let Fj(Wj) denote a monic polynomial in one variable Wj such that the coefficients, other
than the leading coefficient, are in K or Λ, that lifts the polynomial over K satisfied by

Yj . Then xj = Fj(Yj) ∈ P̃ . We now see that T is module-finite over Λ[x], because for
1 ≤ j ≤ n, Yj satisfies the monic polynomial Fj(Yj)−xj = 0 (here, −xj becomes part of the
constant term of this polynomial). It follows that the xj are algebraically independent over

Λ. The contraction of P̃ contains t and all the xj , and so must be equal to Q = (t, x)Λ[x].
Since T is module-finite over Λ[x], (T

P̃
)h is module-finite over Λ[x]hQ, by the preceding

Proposition. �
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Lecture of March 15, 2017

By the result proved last time, we need only prove that rings of the form V [x]hQ are

approximation rings, where (V, tV ) denotes either (K, 0), where K is a field, or (V, tV )
where V is an excellent DVR.

We need to show that given a solution of a finite system of polynomial equations over

such a ring with coefficients in Ah, where A = V [x]Q, if there is a solution in Â, there is a
solution in Ah.

First, we want to get rid of coefficients in Ah: we want to use coefficients in A. The
idea is to use systems over A with a congruence condition instead.

Lemma. Let (A,m) be as above and suppose that for every system of polynomial equations
Fj(Y1, . . . , Yd) = 0, 1 ≤ j ≤ s, with coefficients in A, if there is a solution (ŷ1, . . . , ŷd)

over Â, then for every positive integer N there is a solution (y′1, . . . , y
′
d) over Ah such that

y′j ≡ ŷj mod mN Â, 1 ≤ j ≤ d. Then Ah is an approximation ring.

Proof. Suppose that we are given a system of equations Fj(Y1, . . . , Yd) = 0 over Ah with

a solution (ŷ1, . . . , ŷd) over Â. We must show that these equations have a solution in Ah.
For each coefficient cµ,j of Fj in (we have that cµ,j ∈ Ah) we introduce a new variable Zµ,j .
Let Gj = Gj(Y,Z) be the polynomial obtained from Fj by replacing every coefficient cµ,j
by the corresponding variable. Thus, Gj has coefficients each of which is 1 or 0.

Every cµ,j is algebraic over A: for every choice of µ and j, choose a nonzero polynomial
equation Hµ,j(Zµ,j) = 0 with coefficients in A that is satisfied by cµ,j . For all µ, j we
can choose N so large that if c is any root of Hµ,j(Zµ,j) = 0 in Ah with c 6= cµ,j , then
c − cµ,j /∈ mNAh, and since there are only finitely many choices of µ, j we can choose a
single value of N so large that this condition holds simultaneously for all µ, j.

Now consider the family of equations Gj(Y,Z) = 0 together with Hµ,j(Zµ,j) = 0. These

have the solution Y = (ŷ1, . . . , ŷd), Zµ,j = cµ,j in Â. It follows from our hypothesis that
these equations have a solution (y′1, . . . , y

′
d), c

′
µ,j in Ah that is congruent to the first solution

mod mN Â. For all µ, j , we have that c′µ,j and cµ,j are both roots of Hµ,j(Zµ,j) = 0 in

Ah, and that c′µ,j − cµ,j ∈ mN Â ∩ Ah = mNAh. By our choice of N , we must have that
c′µ,j = cµ,j for all µ, j. But when these values are used for the Zµ,j , the polynomials
Gj(Y,Z) become the polynomials Fj(Y ) with which we started. Therefore (y′1, . . . , y

′
d) is

a solution of the equations Fj(Y ) = 0 in Ah, as required. �

We next observe that once we know the coefficients are in A = TQ, we may multiply

by an element of T −Q to clear denominators. Since Â is regular it is a domain, and the

solutions of the equations in both Ah and in Â are unaffected. Hence:

Corollary. Let (A,m) and T = V [x1, . . . , xn] be as above and suppose that for every
system of polynomial equations Fj(Y1, . . . , Yd) = 0, 1 ≤ j ≤ s, with coefficients in T , if

there is a solution (ŷ1, . . . , ŷd) over Â, then for every positive integer N there is a solution
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(y′1, . . . , y
′
d) over Ah such that y′j ≡ ŷj mod mN Â, 1 ≤ j ≤ d. Then A is an approximation

ring. �

We next observe that we can state the result somewhat more conceptually this way:

given a finitely generated T -subalgebra S of Â and a power of the maximal ideal mN ,
there is a T -algebra map φ : S → Ah such that for every element u ∈ S, φ(u) ≡ u mod

mN Â. Here, S is generated by solutions ŷj of a system of equations Fj(Y ) over T , and
the elements ŷj satisfy these equations. The images under the homomorphism also satisfy

the same equations. Note that the condition that φ(u) ≡ u mod mN Â for all u ∈ S is
equivalent to the same condition imposed on a set of generators of S over T : the set of
elements of S that satisfy this condition is a T -subalgebra of S, and so will be all of S if
it contains generators for S as a T -algebra. We henceforth shall usually write s1, . . . , sd
for a set of generators of S over T instead of writing ŷ1, . . . , ŷd.

By phrasing the problem in terms of S we achieve certain freedoms: we can change the
generators of S and this changes the equations we need to solve. (We can even replace S by

a larger finitely generated T -subalgebra of Â: a homomorphism from the larger subalgebra
may be restricted to the original subalgebra. We will not need to do this now, but will
later in the DVR case.) We can map T [Y1, . . . , Yd] � S and consider the kernel, which is
a prime ideal P of T [Y1, . . . , Yd]. We can take the equations we need to solve to be any
set of generators of P . By making use of a congruence condition as well, we can do a little
bit more.

Let h denote the height of the ideal P . Then T [T1, . . . , Td]P is a regular local ring of
dimension h, and we can choose h generators F1, . . . , Fh for PT [Y1, . . . , Yd]P such that
F1, . . . , Fh ∈ T [Y1, . . . , Yd]. Then P/(F1, . . . , Fh) becomes 0 when we localize at P , and
so there is an element G ∈ T − P such that GP ⊆ (F1, . . . , Fd) ⊆ P .

Since G(s1, . . . , sd) 6= 0 in Â, by increasing the value of N , if necessary, we may

guarantee that G(s1, . . . , sd) /∈ mN Â. Then it suffices to approximate the solution of
Fj(Y ) = 0 mod mN , that is, it suffices to find y′1, . . . , y

′
d ∈ Ah such that y′i ≡ si mod

mN Â, 1 ≤ i ≤ d and Fj(y
′
1, . . . , y

′
d) = 0, 1 ≤ j ≤ h. We claim that it now follows that

F (y′1, . . . , y
′
d) = 0 for all F ∈ P . The reason is that we know that GF ∈ (F1, . . . , Fh),

and so
G(y′1, . . . , y

′
d)F (y′1, . . . , y

′
d) = 0

in the domain Â. But

G(y′1, . . . , y
′
d) ≡ G(s1, . . . , sd) mod mN Â,

and since G(s1, . . . , sd) /∈ mN Â, it follows that G(y′1, . . . , y
′
d) /∈ mnÂ, and, in particular,

G(y′1, . . . , y
′
d) 6= 0. Therefore, F (y′1, . . . , y

′
d) = 0.

We shall soon see that we can assume that some h× h minor of
(∂Fj
∂Yi

) is not contained

in P , and in the DVR case we shall show by enlarging S so that Â/S is torsion-free over

V that we may even assume that the image of some minor in Â is not divisible by t.
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We shall also need the following generalization of the implicit function theorem charac-
terization of Henselian local rings:

Lemma (Tougeron’s implicit function theorem). Let (R,m) be a Henselian quasilo-
cal ring and let F1, . . . , Fh ∈ R[Y1, . . . , Yd]. Let A ⊆ m be any ideal. Let

δ = δ(Y ) = det
(∂Fj
∂Yi

)

be an h× h minor of the Jacobian matrix obtained by choosing h of the variables (equiva-
lently, h rows of the Jacobian matrix).

Suppose that we can find elements y′1, . . . , y
′
d ∈ R such that for 1 ≤ j ≤ h,

Fj(y
′) ≡ 0 mod δ(y′)2A.

Then there exist y1, . . . , yd ∈ R such that for 1 ≤ j ≤ h,

Fj(y) = 0 and y ≡ y′ mod δ(y′)A.

This statement looks a bit technical, but notice that if d = h, A = m, and δ(y′) is a
unit, this is precisely the implicit function theorem characterization of Henselian rings.

Lecture of March 17, 2017

We shall prove a generalized version of the theorem we stated last time, which is given
below, but before doing so we want to make a comment about a strengthening of the usual
implicit function theorem that requires no effort to prove.

Let (R,m) be a Henselian quasilocal ring and let A ⊆ m be a proper ideal of R.
Suppose that one has a system of n equations in n unknowns X1, . . . , Xn, say Fj(X) = 0,
1 ≤ j ≤ n. Suppose that one has a solution of these equations, say y1, . . . , yn in R/A,
and also suppose that the image of the Jacobian determinant

det
( ∂Fj
∂Xi

)
evaluated at (y1, . . . , yn) is an invertible element of R/A. Then the equations have a
solution y1, . . . , yn in R, and for all j, yj is congruent to yj mod A. The point here
is that the solution mod A obviously gives a solution mod m, and so the usual implicit
function theorem characterization gives a unique solution (y1, . . . , yn) in R lifting the
given solution. But the usual implicit function theorem also tells us that the solution in
R/A is unique (given what it becomes mod m), and so the images of the yj in R/A must
be the yj . �
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Theorem (Tougeron’s implicit function theorem). Let (R,m) be a Henselian quasi-
local ring and let F1, . . . , Fh ∈ R[Y1, . . . , Yd]. Let A ⊆ m be any ideal. Let J = J (Y )
denote the the h× d matrix

(
∂Fi/∂Yj), which is the transpose of the Jacobian matrix. Let

y′1, . . . , y
′
d ∈ R. Let ∆(y′) denote an ideal of R that annihilates the cokernel of the linear

map Rd → Rh with matrix J (y′), and suppose that

Fj(y
′) ≡ 0 mod ∆(y′)2A.

Then there are elements y1, . . . , yd ∈ R such that

Fj(y) = 0, 1 ≤ j ≤ h, and y ≡ y′ mod ∆(y′)A.

Proof. Let δ1, . . . , δν generate ∆(y′). Let ej be a column of the size h identity matrix.
Then

δiej = J (y′)ρ
(i)
j

for some ρ
(i)
j . The ρ

(i)
j give the columns of a d× h matrix Mi such that

J (y′)Mi = δi1.

Every Fk(y′) has the form
∑
i,j δiδjαijk for suitable αijk ∈ A. We shall write αij for

the vector (αij1, . . . , αijh).

We seek values for variables Zij in A such that

Fk(y′ +
ν∑
i=1

δiZi) = 0

where Zi is the vector (Zi1, . . . , Zid). We write F for (F1, . . . , Fh). By Taylor’s formula,
the equations become

F (y′) + J (y′)
∑
i

δiZi +
∑
ij

δiδjHij(Z) = 0

where the Hij(Z) are vectors of polynomials in the variables Z all of whose terms are
degree two and higher.

Using that F (y′) =
∑
ij δiδjαij we can write this as

J (y′)
∑
i

δiZi +
∑
ij

δiδj
(
Hij(Z) + αij

)
= 0

or, since δj1 = J (y′)Mj ,∑
i

δiJ (y′)Zi +
∑
i

(
δiJ(y′)

∑
j

Mj

(
Hij(Z) + αij

))
= 0
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or ∑
i

δiJ (y′)

(
Zi +

∑
j

Mj

(
Hij(Z) + αij

))
= 0

This, it suffices to find Zi with entries in A such that

Zi +
∑
j

Mj

(
Hij(Z) + αij

)
= 0.

These are vector equations: there are hd equations in hd unknowns. Mod m, the Jacobian
matrix with respect to the Zij , evaluated at Zij = 0, is the identity, since the Hij have
only terms of degree 2 or more in the Zij . Since Zij = 0 is a solution mod A, by the
remarks preceding the statement of the theorem we get a solution in R such that the zij
are in A. �

We next want to see that in the context of our continuing proof of the Artin approxima-
tion theorem, we may assume that one of the minors of the Jacobian matrix has nonzero

image in Â. To see this, we make use of the theory of separable algebras.

Lecture of March 20, 2017

Proposition. Let B be a domain that is an algebra over a field K and let L denote the
fraction field of B. We assume that B has characteristic p > 0, since in characteristic
zero B is always separable over K. The following conditions are equivalent:

(1) B is separable over K.
(2) L is separable over K.

Moreover, if B is finitely generated over K the following conditions are also equivalent:

(3) K1/p ⊗K L is reduced.
(4) L has a separating transcendence basis over K.
(5) For some element b ∈ B − {0}, Bb is smooth over K.
(6) If B is presented as K[Y1, . . . , Yd]G/(F1, . . . , Fh), where the quotient has dimension

d− h, then some h× h minor of
(∂Fj
∂Yi

)
has nonzero image in B.

Proof. For any field extension K′ of K, K′⊗KB ⊆ K′⊗KL, and the latter is a localization
of the former, so that the two rings are reduced or not alike. Thus, (1) ⇔ (2) is clear.
Moreover, (2) ⇒ (3) is immediate from the definition of separability.

The proof that (3) ⇒ (4) is similar to the argument given earlier for the case where K
is perfect. Choose a transcendence basis u = u1, . . . , us so as to minimize the degree of
L over L0 = K(u)sep, where sep indicates separable closure in L. If v ∈ L is not in L0,
let G(u1, . . . , ud, V ) ∈ K[u1, . . . , ud, V ] be its minimal polynomial over K(u1, . . . , us),
with denominators efficiently cleared. This polynomial is irreducible. If some exponent
on one of the variables, say ui, is not divisible by p, we can use the uj for j 6= i and v as
a transcendence basis u′. Then K(u′)sep contains ui, because G(u, v) gives a polynomial
that ui satisfies that is separable over K(u′). This implies that L1 = K(u′)sep ⊇ L0. But
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v ∈ K(u′)sep, and so [L : L1] < [L : L0]. Thus, all exponents on all variables are divisible
by p (this must be true for V , since G is not separable in V ). Since G is irreducible, not
all of its coefficients are p th powers, or it will be a p th power itself. We can therefore
form H(V ) ∈ K1/p ⊗K K[u1, . . . , us, V ] such that Hp = G, and at least one coefficient
of H is in K1/p − K. It follows that H(v)p = G(v) = 0, and to complete the proof it
will suffice to check that H(v) itself is nonzero. Note that K(u)(v) ∼= K(u)[V ]/

(
G(V )

)
,

and so K1/p⊗KK(u)(v) ∼= K1/p(u)[V ]/
(
G(V )

)
, and this contains H(v) and is contained in

K1/p⊗KL. It therefore suffices to check that H(V ) is not a multiple of G(V ) in K1/p(u)[V ],
which is obvious since H(V )p = G(V ).

If there is a separating transcendence basis, after replacing B by a suitable localization
at one element we may assume that the separating transcendence basis u is in B. We
may then choose a primitive element v for the finite separable algebraic field extension
K(u) ⊆ L, and we may similarly assume that this element is in B. After inverting one
more element, we may assume the extension is generated over a localization K[u]g by v,
where v is a simple root of a monic polynomial f(V ) over K(u) whose coefficients are
actually in K[u]g. Inverting the value of f ′ makes this extension étale over a localization
at one element of a polynomial ring, and, therefore, smooth.

But (5) and (6) are equivalent by the Jacobian criterion for smoothness: if a minor is
nonzero we may invert it to achieve smoothness, while if the localization is smooth some
h× h minor is invertible and, therefore, nonzero.

Finally, smooth algebras are obviously separable, since they remain regular, and so
reduced, after any finite extension of the base field, so that (5) ⇒ (2). �

We now return to the problem of proving the Artin Approximation Theorem. Let δ(x, Y )
be a nonvanishing minor of the Jacobian matrix, which we assume, by renumbering, comes
from the first h rows. If the base V is a DVR we also assume for the moment that the
image of δ(x, Y ) in Â is not divisible by t. We will need to justify this assertion later.

Let R = Ah and A = mN in the Tougeron implicit function theorem. It follows that in
order to complete the proof of the Artin Approximation Theorem it suffices to show that

given a finitely generated T -subalgebra S = T [s1, . . . , sd] of Â and

F1, . . . , Fh ∈ T [Y1, . . . , Yd]

generating PT [Y1, . . . , Yd]P , where P is the prime ideal of relations on the s1, . . . , sd,
then for every positive integer N there exists y′ = y′1, . . . , y

′
d ∈ Ah such that

(∗) y′ ≡ s mod mN Â

and
(∗∗) Fj(y

′) ≡ 0 mod δ2(x, y′)mN .

The Tougeron Implicit Function Theorem enables us to pass from the solution of the
equations mod δ2(x, y′)mN to an “honest” solution. The next idea is this: we prefer to
worry about a solution mod δ2(x, y′) and not about the factor mN , which can be handled
automatically by a trick.

The following Lemma permits this reduction:
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Lemma. Suppose that V [x1, . . . , xν ]h(t,x) is an approximation ring for ν < n. Suppose

that we have elements g, F1, . . . , Fh and s1, . . . , sd ∈ Â such that t does not divide g(x, s)

in Â while g(x, s) divides Fj(x, s) in Â for 1 ≤ j ≤ h.

Then for every positive integer N there exists y
N

= y1N , . . . , ydN ∈ (Ah)d such that

Fj(x, yN ) is divisible by g(x, y
N

) for all j and s ≡ y
N

mod mN Â.

By applying this with g = δ(x, Y )2 for larger and larger values of N , we can get the
conclusions (∗) and (∗∗) we need to complete the proof of the Theorem. Of course, we still
need to prove the Lemma, and for that we shall need the Weierstrass preparation theorem.

Lecture of March 22, 2017

We retain our earlier notations: (V, tV,K) is either a DVR or field (in the latter

case, V = K and t = 0), T = V [x1, . . . , xn], A = T(t,x1, ... ,xn), s1, . . . , sd ∈ Â, S =

T [s1, . . . , sd] ⊆ Â, P is the kernel of the map

φ : T [Y ] = T [Y1, . . . , Yd] � S ⊆ Â

such that Yi 7→ si for all i, 1 ≤ i ≤ d, F1, . . . , Fh ∈ T [Y ] are minimal generators of PTP ,

δ(x, Y ) is an h × h minor of the Jacobian matrix
(∂Fj
∂Yi

)
whose image in Â is not in tÂ.

Let R = Ah and A = mN in the Tougeron Implicit Function Theorem. Then the Theorem
shows that in order to complete the proof of the Artin Approximation Theorem, it suffices
to prove that for every positive integer N there exists y′ = y′1, . . . , y

′
d ∈ Ah such that

(∗) y′ ≡ s mod mN Â

and
(∗∗) Fj(y

′) ≡ 0 mod δ2(x, y′)mN .

The reason is that the Tougeron Implicit Function Theorem enables us to pass from the
solution of the equations Fj ≡ 0 mod δ2(x, y′)mN to an “honest” solution of the equations
Fj = 0. The next idea is this: we prefer to worry about a solution mod δ2(x, y′) and not
to worry about the factor mN , which can be handled automatically by a trick.

The following Lemma permits this reduction:

Key Lemma. Suppose that V [x1, . . . , xν ]h(t,x) is an approximation ring for ν < n. Sup-

pose that we have elements g, F1, . . . , Fh and s1, . . . , sd ∈ Â such that t does not divide

g(x, s) in Â while g(x, s) divides Fj(x, s) in Â for 1 ≤ j ≤ h.

Then for every positive integer N there exists y
N

= y1N , . . . , ydN ∈ (Ah)d such that

Fj(x, yN ) is divisible by g(x, y
N

) for all j and s ≡ y
N

mod mN Â.

We postpone the proof for a while. We first want to see why this Key Lemma enables
us to prove the theorem.
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Let m̂ = mÂ and for u ∈ Â−{0} let ord (u) denote the largest integer b such that u ∈ m̂b,

i.e., u ∈ m̂b − m̂b+1. Because the associated graded ring gr
m̂
Â is a polynomial ring, and,

in particular, a domain, we have that ord (uv) = ord (u) + ord (v) for u, v ∈ Â−{0}. Note
that these remarks apply to any regular local ring, so that we have corresponding notions
of order in A and Ah. The set of powers of the maximal to which an element of a regular
local ring belongs does not change when we pass from the local ring to its completion.
Thus, the order of an element is not affected by whether we think of it as being in A, Ah,

or Â.

Let ord
(
g(x, s)

)
= N0. Then for all N > N0, g(x, y

N
) ≡ g(x, s) mod mN Â, from which

it follows that for all N > N0, ord
(
g(x, y

N
)
)

= N0. Since Fj(x, s) = 0 and y
N
≡ s mod

mN Â, we have that for all j, and all N ,

Fj(x, yN ) ∈ mN Â ∩Ah = mNAh.

But then for all j and all N > 0,

Fj(x, yN+N0
) ∈ g(x, y

N+N0
)Ah ∩mN+N0Ah ⊆ g(x, y

N
)mNAh,

as required, for an element of order smaller than N cannot multiply an element of order
N0 into mN+N0Ah. �

We shall soon return to the proof of the Key Lemma. In that proof, we shall want to use
the Weierstrass Preparation Theorem to keep track of divisibility by g. It will be helpful
if g is a regular element in xn. We can use the following result to arrange this.

Lemma. Let (V, tV,K) be a DVR or a field, so that we allow the possibility that t = 0
and V = K. Let n be a positive integer, and let g ∈ V [[x1, . . . , xn]], the formal power
series ring. Suppose that g /∈ (t). Then there exist positive integers b1, . . . , bn−1 such that
the continuous V -automorphism mapping xi 7→ xi + xbin , 1 ≤ i ≤ n − 1, xn 7→ xn takes g
to an element that is regular in xn, i.e., that is not in the ideal (t, x1, . . . , xn−1).

Proof. In proving this result we may work mod (t) without loss of generality. Therefore,
we assume that t = 0, i.e., that V = K in the rest of the argument. Our hypothesis on g
becomes that g is a nonzero element of K[[x1, . . . , xn]].

We use induction on n. If n = 1 it is obvious from the fact that g 6= 0 that it is regular
in x1. Note, that quite generally, the condition that we need on b1, . . . , bn−1 is simply

that g(xb1n , . . . , x
bn−1
n , xn) 6= 0, for this is what the image of g under the automorphism

becomes mod (x1, . . . , xn−1).

If n = 2 we seek b such that g(xb2, x2) 6= 0. This is equivalent to the condition that g
not be divisible by x1 − xb2. The elements x1 − xb2 for b = 1, 2, 3, . . . are prime in the
UFD K[[x1, x2]], and no two are associates. If g is divisible by all of the elements x1 − xb2
for 1 ≤ b ≤ B, then it is divisible by the product of those elements, and is therefore in
(x1, x2)B . Since g 6= 0, it cannot be in (x1, x2)B for all B.
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If n ≥ 3, we may write g =
∑∞
j=i γix

j
n where all of the γj ∈ K[[x1, . . . , xn−1]] and

γi 6= 0. By the induction hypothesis we may choose b1, . . . , bn−2 such that

γi(x
b1
n−1, . . . , x

bn−2
n−1 , xn−1) 6= 0.

Then g(xb1n−1, . . . , x
bn−2
n−1 , xn−1, xn) is a nonzero formal power series in two variables, and

by the case n = 2 we can substitute xn−1 = xbn for some positive integer b and get a
nonzero result. �

Notice that an automorphism of V̂ [[x1, . . . , xn]] = Â of the form described in the
preceding result, as well as its inverse, stabilize A, and hence also induce mutually inverse
automorphisms of Ah. We henceforth assume that g = g(x, s) is regular in xn, and we let
α = α(xn) denote its unique monic associate, so that

α(xn) = xqn + uq−1x
q−1
n + · · ·+ u0

where the ui are nonunits of C = V̂ [[x1, . . . , xn−1]].

We want to convert our divisibility problem into an equational problem over

D = V [x1, . . . , xn−1]h(t,x1, ... ,xn−1),

which we know from the induction hypothesis is an approximation ring.

Towards this end, we introduce dq new variables Zi,ν and substitute

Zi =

q−1∑
ν=0

Zi,νx
ν
n

for the Yi in the Fj(x, Y ) and in g(x, Y ) to obtain Fj(x, Z) and g(x, Z). We also in-
troduce new indeterminates U0, . . . , Uq−1 and a variable polynomial H in xn with these
coefficients, so that

H(xn) = H(U, xn) = xqn +

q−1∑
j=0

Ujx
j
n.

Let
T = V [x1, . . . , xn−1, Zi,ν , Uν ].

Working in the polynomial ring T [xn] we can formally divide g(x, Z) and Fj(x, Z) by
H(xn) to obtain

(∗) g(x, Z) = H(xn)Q0 +

q−1∑
ν=0

W0,νx
ν
n

(∗∗) Fj(x, Z) = H(xn)Qj +

q−1∑
ν=0

Wj,νx
ν
n
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where the Qj ∈ T [xn] and the Wj,ν ∈ T do not involve the variable xn for all j ≥ 0.

By the Weierstrass Preparation Theorem we can divide every si by α(xn), the unique
monic associate of g = g(x, s), to obtain:

(#) si = α(xn)θi +

q−1∑
ν=0

zi,νx
ν
n,

where θi ∈ Â and the zi,ν ∈ C. We define

zi =

q−1∑
ν=0

zi,νx
ν
n.

Lecture of March 24, 2017

Since si ≡ zi mod α(xn), it follows that g(x, z) ≡ g(x, s) mod α(xn) and that Fj(x, s) ≡
Fj(x, z) mod α(xn) for all j. Since α(xn) and g(x, s) are associates, we have that α(xn)
divides g(x, z). Since the hypothesis of the Key Lemma tells us that g(x, s) divides every
Fj(x, s), we have that α(xn) divides every Fj(x, z).

Recall that
α(xn) = xqn + uq−1x

q−1
n + · · ·+ u0.

We can now substitute the zi,ν for the Zi,ν and the uν for the Uν in (∗) and (∗∗) above.
The equations that result show that the elements

q−1∑
ν=0

Wj,ν(x, z, u)xνn

are the remainders in the Weierstrass Preparation Theorem when g(x, z) and the Fj(x, z)
are divided by α(xn): note that the variable xn does not occur in Wj,ν . But the results of
the preceding paragraph show that these remainders are 0. It follows that

Wj,ν(x, z, u) = 0, 0 ≤ j ≤ h, 0 ≤ ν ≤ q − 1.

Put differently, the system of (h+ 1)q polynomial equations

Wj,ν(x, Z, U) = 0, 0 ≤ j ≤ h, 0 ≤ ν ≤ q − 1

in the variables Z, U , which has coefficients in

V [x1, . . . , xn−1] ⊆ D = V [x1, . . . , xn−1]h(t,x1, ... ,xn−1),

has the solution Z = z, U = u in D̂ = C.
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The induction hypothesis then guarantees that for every positive integer N there is a
solution of these equations Z = zN , U = uN in D which is congruent to z, u modulo
(t, x1, . . . , xn−1)NC. We shall now use this solution to construct the elements y

N
needed

to prove the Key Lemma.

For all i choose any θi,N ∈ Ah such that θi,N ≡ θi mod mN Â. Let

uN = u0,N , . . . , uq−1,N

and let the individual values of the zN be denoted zi,ν,N . Define

αN (xn) = H(uN , xn) = xqn + uq−1,Nx
q−1
n + · · ·+ u0,N ,

while letting

zi,N =

q−1∑
ν=0

zi,ν,Nx
ν
n

and
yi,N = αN (xn)θi,N + zi,N .

Modulo mN Â we know that uN ≡ u, and it follows that modulo mN Â we also have
that αN (xn) ≡ α(xn), that zi,N ≡ zi and that yi,N ≡ si. To complete the proof of the
Key Lemma, it will suffice to show that g(x, y

N
) divides Fj(x, yN ) for all j.

Since the zi,ν,N and the uN satisfy the equations

Wj,ν(x, Z, U) = 0, 0 ≤ j ≤ h, 0 ≤ ν ≤ q − 1

when we substitute in (∗) and (∗∗) we find that αN (xn) divides g(x, zN ) and that it also
divides every Fj(x, zN ). From the way we defined yi,N we also have that zi,N ≡ yi,N
modulo αN (xn). It follows as well that αN (xn) divides g(x, y

N
) and every Fj(x, yN ).

We can complete the argument by showing that αN (xn) is the unique monic associate of
g(x, yN ) for all sufficiently large N .

The point is that if N is large then the fact that

g(x, y
N

) ≡ g(x, s) mod mN Â

implies that g(x, y
N

) is regular of order q in xn, and so it has an associate α′(xn) that is
monic of degree q as a polynomial in xn and has all coefficients on lower powers of xn in

the maximal ideal of C. Since αN (xn) divides α′(xn) in Â, since they are both monic of
the same degree as polynomials in xn, and since they both have lower degree coefficients
in the maximal ideal of C, they must be equal. �

This completes not only the proof of the Key Lemma, but finishes the proof of the Artin
Approximation Theorem when V = K is a field. When the base ring is a DVR, however,
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we have more work to do. In particular, we need to justify the assumption that we can

reduce to the case where δ(x, s) is not in tÂ.

In order to make this reduction we need to study an idea of Néron which Artin refers to
as “Néron’s p-desingularization.” (In Artin’s paper, p is the generator of the maximal ideal
of the DVR, which we are calling t here.) However, we will simply use the term Néron
desingularization.

Lecture of March 27, 2017

We now focus on the situation where the base is a discrete valuation ring (V, tV, K),
so that we are no longer allowing the possibility that t = 0.

Recall that T = V [x1, . . . , xn], a polynomial ring, and that A = T(t,x), where x denotes

x1, . . . , xn. Recall also that S = T [s1, . . . , sd] ⊆ Â is a finitely generated T -subalgebra of

Â. Consider the T -algebra map T [Y1, . . . , Yd] � S ⊆ Â such that yi 7→ si, 1 ≤ i ≤ d. Let
P be the kernel of this map, and let h be the height of P , as before. However, we shall
now keep track of full set of generators of P , F1, . . . , Fk. (Previously, we were working
with F1, . . . , Fh such that PT [Y1, . . . , Yd]P is generated by F1, . . . , Fh.)

Note that t is a prime element of Â: in fact, Â/tÂ ∼= K[[x1, . . . , xn]]. Let Λ = ÂQ
where Q = tÂ, a DVR with maximal ideal tΛ. We let Ω′ = Λ⊗S ΩS/T .

Let J denote the image of the Jacobian matrix
(∂Fj
∂Yi

)
mod P , which we view as a d×k

matrix over S. Note that the cokernel of J is ΩS/T . We shall write J ′ for J viewed as a
matrix or linear transformation over Λ. Thus, the cokernel of J ′ may be identified with
the module Λ⊗S ΩS/T .

Note that for any finitely presented module M over any ring R, we can define Fitting
invariants: the i th Fitting invariant of M is the ideal Id−i(J) where J is the d× k matrix
of the map of free modules in a presentation Rk → Rd �M → 0.

Fitting’s Lemma. The i th Fitting invariant as defined in the preceding paragraph is
independent of the choice of finite presentation of M .

Proof. To prove this, we first check that given a map Rd � M it is independent of the
choice of finitely many column vectors spanning the kernel. Given two choices, we may
compare each with the union. This, it suffices to see that the ideal does not change when
one set of relations is included in the other, i.e., when some set of columns of the matrix,
without loss of generality these may be taken to be the last s, are linear combinations of
the preceding r columns. By subtracting linear combinations of the first r columns from
the last s (we know this does not change the ideals of minors) we may assume that the
last s columns are all 0, and the result is now clear.

It remains to check independence of the map Rd →M , i.e., of the choice of generators
for M . Again, we may compare each of two different sets of generators with their union,
and so we reduce to the case where one set of generators is included in the other and then
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to the case where there is one additional generator. We may assume that included among
the relations is a relation expressing the additional generator, which we number last, as a
linear combination of the others. This means that we may assume that the matrix with the
additional generators present has a 1 in the last row, which we also assume, by permuting
the columns, is in the last column. We can now perform elementary column operations,
subtracting multiples of the last column from the others, until the last row consists of
all zeros except for its final entry, so that the (d + 1) × (k + 1) matrix J1 that we are

considering has the block form J1 =

(
J C
0 1

)
, where J is d× k, 0 denotes a row of zeros

of length k, C is a d × 1 column, and 1 is the 1 × 1 identity matrix. Then J gives a
matrix for the presentation using the first d generators. It is now straightforward to see
that Id+1−i(J1) = Id−i(J). �

We note that in the Lemma below, the ideal generated by the h× h minors of J is the
d− h th Fitting invariant of the module Λ⊗Ω. The number d− h does not depend on the
presentation: it is the same as the dimension of frac (T )⊗T S, which has the presentation
frac (T )[Y1, . . . , Yd]/(F1, . . . , Fk).

Lemma. J has rank h. There is an h × h minor of J that is not divisible by t in Â
(equivalently, in Λ) iff Ω′ is torsion-free over Λ. More generally, the minimum order of a
size h minor with respect to t is the length over Λ of the torsion submodule of Ω′.

Proof. Let F be the fraction field of T , which is also the fraction field of A. Then F →
F ⊗A Â = F ⊗T Â is separable, and, hence, F → F ⊗T S is separable. Note that J is
also the Jacobian matrix for this extension, and that F ⊗T S has dimension d − h. If we
localize at one nonzero element to make this algebra smooth over F its dimension does
not change, and then the determinantal rank of the Jacobian matrix must be h and, after
localization, the size h minors must generate the unit ideal. Since S is a domain, we see
that the rank is of J is exactly h.

The remaining statements follow from a general fact about matrices over a DVR, given
in the next result.

Lemma. Let M be any finitely generated module over a discrete valuation ring (Λ, tΛ),
and let J be the matrix of the map of free modules in a finite presentation of M . Suppose
that J has rank h. Then the length of the torsion submodule of M is the same as the
minimum order of an h× h minor of M , which is the same as the order of a generator of
Ih(M).

Proof. The statements are unaffected by performing elementary row and column operations

on M . This means that we may assume that J has the block form

(
J0 0
0 0

)
where

M0 is a diagonal matrix with diagonal entries ta1 , ta2 , . . . , tah . The only nonvanishing
h × h minor is ta1+···+ah , and a1 + · · · + ah is also the length of the torsion submodule
Λ/(ta1)⊕ · · · ⊕ Λ/(tah). �

We want to note the following. Suppose that we have found a size h minor of J that
is not zero. By, renumbering, we may assume that this minor occurs in the upper left
hand corner of J , so that it involves the partial derivatives of F1, . . . , Fh with respect
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to Y1, . . . , Yh. We claim that it is then automatic that (F1, . . . , Fh)T [Y1, . . . , Yd]P =
PT [Y1, . . . , Yd]P . Since T − 0 does not meet P , we are free to replace T by its fraction
field F in considering this, i.e., we need only show that

(F1, . . . , Fh)F [Y1, . . . , Yd]P = PF [Y1, . . . , Yd]P .

Let C = F [Y1, . . . , Yd]P /(F1, . . . , Fh). Since there is a maximal minor of the Jacobian
matrix that is invertible, ΩC/F = 0, and so it is an C is unramified and essentially finitely
presented over F . Hence, it is a finite product of finite separable extensions of F . But it
is also local. Therefore C is a field. Since C maps onto F [Y1, . . . , Yd]P /PF [Y1, . . . , Yd]P ,
they are equal, and we must have

(F1, . . . , Fh)T [Y1, . . . , Yd]P = PT [Y1, . . . , Yd]P ,

as claimed. �

We denote by `S the length of torsion-submodule of Λ⊗ΩS/T , which is also the minimum
order with respect to t of any size h minor of J ′.

Theorem. Let Q = tÂ ∩ S = tΛ0 ∩ S, and let S′ = S[q/t : q ∈ Q]. Then `S′ ≤ `S, and
the inequality is strict unless `S = 0.

We put off the proof of this result momentarily. Notice that one we know this we may
iterate the process of replacing S by S′ at most `S times until we reach a finitely genrated

T -subalgebra S∗ of Â that contains S but such that `S∗ = 0. For this algebra, there will
be a size h minor that will not be divisible by t. This enables us to carry through the
inductive step in the proof the Artin Approximation Theorem.

However, before we give the proof of this Theorem, we want to observe that the same
result also enables us to give a proof for the base case for the induction when V is a DVR
and not a field!

To see this, note that in the base case n = 0: there are no variables xi. T = A = V , and

Â = V̂ . We may assume that we have S = V [s1, . . . , sd] such that `S = 0, and we want to
map S to V h so that the residue class of every element of S is preserved mod (tN ). Some

size h minor of J is an element of S not divisible by t, that is, it has an inverse in V̂ . We
may adjoin this inverse to S: constructing the algebra map we need only gets harder. But
now we have that S is smooth over V , by the Jacobian criterion for smoothness. Let Q

be the ideal tV̂ ∩ S. By the structure theorem for smooth morphism, locally S is an étale
extension of a polynomial ring, and so SQ is a pointed étale extension of a localization

of a polynomial subring, V [u1, . . . , ur]Q′ . The inclusion S ⊆ V̂ gives us a map of this

localization in V̂ , and the uj have images in V̂ . For every j, pick an element of vj ∈ V h

such that uj ≡ vj mod (tN ). Now map V [u1, . . . , ur] → V h sending uj 7→ vj for all j.
This extends to a map V [u1, . . . , ur]Q′ → V h. Since V h is Henselian, this map extends to
the pointed étale extension SQ, and we have the required map S → SQ → V h. �

This means that after we prove the Theorem stated above, we will have completed the
proof of the Artin Approximation Theorem in all cases.
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Lecture of March 29, 2017

Before proving the Theorem stated in the previous lecture, we introduce some ideas
that will simplify the problem. We replace T by its localization at tT , which we call Λ0.
Then (Λ0, tΛ0, L0) is a DVR, and we have a local map Λ0 → Λ: we use L for the residue
class field of Λ. We replace S by Λ0 ⊗T S, which is a localization of S and a subring of Λ.
Note that this ring is Λ0[s1, . . . , sd] and has the presentation

Λ0[Y1, . . . , Yd]/(F1, . . . , Fk).

The image of Jacobian matrix J is literally the same, although we now think of the entries
as being in Λ0 ⊗T S, the “new” S, which we temporarily denote as S◦. Again, we may
use J ′ for the same matrix over Λ. We write F and G for the fraction fields of Λ0 and Λ
respectively.

The theory of excellent rings implies that the field extensions F → G and L0 → L are
separable. For the new S◦ we again have an operation of enlargement: if Q = tΛ ∩ S◦
we may adjoin all the elements q/t for q ∈ Q to S◦: we need only do this for generators
of Q, and so this is still finitely generated over Λ0. In fact, one has (S′)◦ = (S◦)′, since
S◦ = W−1S with W = T − tT , and t divides s/w in Λ iff t divides s ∈ S. Thus, tΛ∩S◦ is
the expansion of tΛ∩S. In fact, it will be convenient in the remainder of the argument to
generalize substantially further: for example, we may relax the condition that S be finitely
generated over Λ0 by allowing arbitrary localizations at multiplicative systems disjoint
from Q, especially at S −Q itself. We shall also relax the condition that the map S → Λ
be injective.

Néron Desingularization

We therefore start over in a new, abstract situation which captures what we need from
the original situation. Let (Λ0, tΛ0, L0) ↪→ (Λ, tΛ, L) be a local injection of discrete valu-
ation rings such that induced map of fraction fields F → G is separable, and L0 → L is
separable. Let S be a localization of a finitely generated Λ0-algebra, torsion-free over Λ0,
and suppose that we have a map φ : S → Λ, but now, instead of assuming that S → Λ
is injective, we assume that the kernel is a minimal prime q of S such that Sq is a field.
Then Sq is a subfield of G finitely generated over F .

We define Ω′S = Λ ⊗ ΩS/Λ0
. We let `S denote the length of the torsion-submodule of

Ω′S . If we represent S as W−1Λ0[Y1, . . . , Yd]/P and choose generators F1, . . . , Fk for P in

Λ0[Y1, . . . , Yd], then if J ′ denotes the image of the Jacobian matrix
(∂Fj
∂Yi

)
in Λ, we have

that the rank of J ′ is the same as the height of the minimal prime of P which is the inverse
image of q in W−1Λ0[Y1, . . . , Yd]. We denote this height by h and we let `S be the length
of torsion submodule of Ω′S . This length is the same as the minimum order with respect
to t of any size h minor of J ′, where the minor is viewed as an element of Λ. By enlarging
W we can get P itself to be prime, and we can do this while only localizing at elements
not divisible by t. As earlier, we may let Q be the contraction of tΛ to S and we may let
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S′ = S[q/t : q ∈ Q] ⊆ St, which is finitely generated over S. This algebra is called Néron’s
blowing-up of S. The constructions of both S′ and `S from S commute with localization at
a multiplicative system disjoint from Q. Note that we still have a map S′ → Λ: its value
on q/t for q ∈ Q is φ(q)/t, which is an element of Λ because, by definition of Q, φ(q) ∈ tΛ.

We can now state and, eventually, prove a result more general than the Theorem stated
last time. Before proving this, we note that if the field L′ is separable over the field L
and u1, . . . , ud is a set of field generators, then a separating transcendence basis may be
chosen from the elements u1, . . . , ud. To see this, consider the proof of (3) ⇒ (4) in the
first Proposition in the Lecture Notes from March 20. Choose a transcendence basis from
u1, . . . , ud, say u1, . . . , us, so as to minimize [L′ : L(u1, . . . , us)

sep]. If

L′ 6= L(u1, . . . , us)
sep,

choose an element
v ∈ L′ − L(u1, . . . , us)

sep

from among the elements us+1, . . . , ud. The rest of the argument producing a contradic-
tion is the same.

Theorem. With notation as above, so that L0 → L and F → G are both separable,
`S′ ≤ `S, with equality if and only if `S = 0.

Proof. We replace S by SQ. Henceforth we may assume that (S, Q) is local, and that it
is a localization of Λ0[s1, . . . , sd]. Note that we have a presentation of S of the form

S ∼= W−1Λ0[Y1, . . . , Yd]/(F1, . . . , Fk).

We know that at least one size h minor of J ′ has minimum order `S . We are free to make
local étale extensions Λ∗0 of Λ0 and Λ∗ of Λ to enlarge their residue class fields (we shall
say more about this below). This is done in such a way that we still have a map Λ∗0 → Λ∗.
S is replaced by Λ∗0 ⊗Λ0

S. The details of how to do this will be given in the next lecture.

After enlarging the residue class fields, if necessary, we can make an invertible linear
change of variables among Y1, . . . , Yd over Λ0 so that every h rows of the new J ′ will have
a size h minor of order `S . Assuming this for the moment, we renumber the Yj so that the
images of Y1, . . . , Yτ are a separating transcendence basis for S/Q over L0: the images of
Yj are field generators, and so we can do this by the remarks prior to the statement of the
Theorem. We now replace Λ0 by

Λ1 = Λ0[s1, . . . , sτ ](t).

We need to understand what happens to `S and `S′ when we do this. We shall show that
we can keep `S the same while `S′ can only increase. Again, the details will be given in the
next lecture. Next, we adjust the rings Λ0 and Λ again so that Λ0 contains representatives
of all elements of S/Q, which is a now a finite separable algebraic extension of L0. Once
again, the details will be given in the next lecture.
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Lecture of March 31, 2017

We next consider certain changes that we can make without affecting the problem.

We can arrange for a finite separable extension of the residue class field of Λ0: at the
same time, we enlarge Λ. Any such separable extension is generated by a single primitive
element θ. We may choose a monic minimal polynomial for θ over L0: it will be a separable
polynomial, and we then lift it to a monic polynomial, f(z), of the same degree over Λ0.
Then Λ∗0 = Λ0[z]/

(
f(z)

)
is a module-finite étale extension of Λ0. Mod (t) we get the

desired extension of L0. Because killing (t) produces a field, Λ∗0 is still a local ring and, in
fact, a DVR with maximal ideal tΛ∗0. However, this ring no longer maps to Λ. Consider
Λ∗0 ⊗Λ0

Λ, which is module-finite and étale over Λ: if we kill (t), we get L[z]/(f), an étale
extension of L which is necessarily a product of finite separable extensions of L. Thus, by
localizing Λ∗0 ⊗Λ0

Λ at a minimal prime Q of t, we obtain a DVR, Λ∗, to which Λ∗0 maps,
and its maximal ideal is still generated by t. Moreover, S∗ = Λ∗0 ⊗Λ0 S maps to it as well,
and we replace Λ0, S, Λ and S → Λ by these. Note that J ′ does not change, although
its entries are now considered in Λ∗, and the orders of its minors with respect to t don’t
change.

We also need to see that this process commutes with Néron’s blowing-up. We are
assuming that S = SQ, so that S/Q is a field. Note that we might as well replace S∗ by
S∗Q∗ , where Q∗ is the contraction of tΛ∗ to S∗. The key point is that the expansion of
Q to S∗Q∗ is Q∗S∗Q∗ . Thus, if q1, . . . , qk generate Q, their images generate Q∗S∗Q∗ , and

so Néron’s blowing-up of the latter is generated over it by the images of q1/t, . . . , qk/t.
To see this, it suffices to see that S∗Q∗/QS

∗
Q∗ is a field. But this ring is (S∗/QS∗)Q∗ , and

S∗/QS∗ = Λ∗0 ⊗Λ0 S/Q, where S/Q is a field. This is an étale extension of S/Q, and so
it is a finite product F1 × · · · × Fj of finite separable algebraic field extensions of S/Q.
Since (S∗/QS∗)Q∗ is a local ring which is a localization of S∗/QS∗ ∼= F1 × · · · × Fj , it is
isomorphic to some Fi, and therefore is a field. It follows that (S∗Q∗)

′ = (Λ∗0 ⊗Λ0
S′)Q∗ . It

then follows that the image of the Jacobian matrix for Néron’s blowing-up after we enlarge
the residue class field is the same as before, although it is now being considered in Λ∗. The
smallest order of a minor with respect to t does not change, however, since tiΛ∗ ∩Λ = tiΛ
for all i.

An invertible linear change of the variables Y1, . . . , Yd over Λ0 produces a corresponding

change in the Jacobian matrix. Suppose that for 1 ≤ i ≤ d, we have that Yi =
∑d
k=1 αkiY

′
k,

where
(
αki
)

is an invertible matrix with entries in Λ0. Then

dYi =
d∑
k=1

αkidY
′
k,

and so

dFj =

d∑
i=1

∂Fj
∂Yi

dYi =
d∑
i=1

(∂Fj
∂Yi

d∑
k=1

αkidY
′
k

)
=

d∑
k=1

(
d∑
i=1

αki
∂Fj
∂Yi

)dY ′k.



90

Thus, the new Jacobian matrix is
(
αki
)
J . We therefore see that an invertible linear change

of variables over Λ0 enables us to perform corresponding row operations on J and, hence,
on J ′.

To see that we may assume that any h rows of J ′ have a size h minor of order `S , it
suffices to prove the following:

Lemma. Let (Λ0, tΛ0, L0) ⊆ (Λ, tΛ, L) be a local inclusion of discrete valuation rings.
Suppose that the residue class field of L0 is infinite. Let J be a d×k matrix over Λ of rank
h such that the smallest order with respect to t of any size h minor is `. Then one can
perform elementary row operations on the matrix over Λ0 such that any h distinct rows of
the matrix have a size h minor of order `.

Proof. Note that column operations over Λ do not affect the order of the generator of
the ideal of h size minors of a given set of h rows. Therefore, we may perform column
operations over Λ and row operations over Λ0 without affecting the issue. First permute
rows and columns so that an element of least order is in the upper right hand corner of J .
By multiplying the first column by a unit we may assume that the entry in the upper left
corner is ta1 . By performing elementary column operations over Λ we may assume that
the other entries of the first row are 0. We now iterate this procedure, working with the
submatrix obtained by deleting the first row and leftmost column. After h iterations we
reach a matrix such that the h × h submatrix in the upper left corner is lower triangular
with ta1 , . . . , tah on the diagonal, the entries to the right of these in the first h rows are 0,
and each of the entries in the j th column below taj is divisible by taj , 1 ≤ j ≤ h. It also
follows that the entries in columns beyond the h th column and below the h th row must
all be zero, or the rank will be larger than h.

We want to perform elementary row operations over Λ0 to get every h× h minor of the
first h columns to have order a1 + · · · + ah with respect to t. We factor taj from the j th
column for 1 ≤ j ≤ h. We may drop all but the first h columns, since the other columns
are 0. We thus obtain a matrix with h columns such that the submatrix formed from the
first h rows is lower triangular, with 1 in each spot on the main diagonal. It will suffice to
perform elementary row operations over Λ0 so that all size h minors are units.

For this purpose we may work mod tΛ0. Thus, we may view the given matrix as having
entries in L = Λ/tΛ, and we need only select, for each of the last d− h rows, an L0-linear
combination over Λ0 of the first h rows to add to it, so as to produce a matrix in which
any h rows are independent. This is clearly possible if L0 is infinite. �

We may now pass to a situation in which any h rows of J ′ have an h×h minor of order
`S . If L0 is infinite we can do this as in the the Lemma above. If L0 is finite we can make
an étale extension of Λ0 to enlarge the residue class field enough so that we can make the
required linear change of variables.

Then, after renumbering variables, we may assume that the images of Y1, . . . , Yτ are
a separating transcendence basis for S/Q. We now replace Λ0 by Λ1, the localization of
Λ0[Y1, . . . , Yτ ] at tΛ0[Y1, . . . , Yτ ]. S remains the same: the elements we inverted to form
Λ1 are already invertible in S = SQ. Note that `S does not change: the new Jacobian is
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computed using only the Yj for j > τ , and so it is clear that `S cannot decrease. Moreover,
it does not increase, because we have placed the coordinates in general position, and so we
can find an h×h minor of some remaining h rows of order `S . S′ does not change, but the
relevant Jacobian matrix is a truncation of the one we used to compute `S′ before, and so
`S′ can not decrease when replace Λ0 by Λ1.

In this way, we may assume that S/Q is a finite separable extension of L0. But then an
étale change of rings for Λ0 enables us to reduce to the case where all residues in S/Q are
represented in L0. This means that by subtracting scalars in Λ0 we may assume without
loss of generality that all of s1, . . . , sd ∈ Q. This means that the contraction of Q to
Λ0[Y1, . . . , Yd] is (t, Y1, . . . , Yd).

The main calculation in the proof of the Theorem. We can now complete the proof that
iterating Néron’s blowing-up eventually produces an algebra S such that `S = 0. We need
only show that `S′ ≤ `S with strict inequality if `S > 0.

Note that the generators of S′ are the elements si/t. Let Zi be variables mapping to
these. We do not have to find all the relations on the Zi: we only need sufficiently many
to be able to see that some size h minor of the new Jacobian matrix has the same order
as before, and that there exists a minor of smaller order if `S > 0.

Let

Fj = bj +
d∑
i=1

aijYi +Hj(Y )

where Hj has only terms of degree 2 and higher. Note that all coefficients are in Λ0. Since
Fj(s1, . . . , sd) = 0, we may substitute Yi = tZi to get a polynomial in the Zi which gives
a relation on the si/t: it has the form

bj + t

d∑
i=1

aijZi + t2H∗j (Z),

where the coefficients are in Λ0. Here bj ∈ Λ0 ∩ tΛ = tΛ0, and so we may write bj = tcj ,
with cj ∈ Λ0. We get a relation

Gj = cj +
d∑
i=1

aijZi + tH∗j (Z).

Note that Gj(Z) = Fj(tZ)/t, whence

∂Gj(Z)

∂Zi
= 1/t

(∂Fj
∂Yi

(tZ)
)
t

where the final factor t arises from the chain rule. Substituting Zi = si/t, we see that the

image of the Jacobian matrix
(∂Gj
∂Zi

)
in Λ is J ′. This proves that `S′ ≤ `S .
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Finally, suppose that `S > 0. This means that mod tΛ, all size h minors of J ′ vanish,
so that the rank of this matrix mod tΛ is at most h− 1. Mod t, the matrix is the same as
the image of

(
aij
)

mod t. We may assume, after renumbering, that `S is achieved in the
minor obtained by using the first h columns and the first h rows of J ′.

Now , mod tΛ∩Λ0 = tΛ0, the the first h columns of J ′ are linearly dependent over L0,
and hence so are the first h columns of

(
aij
)
. By renumbering, we may assume without loss

of generality that the first column is an L0-linear combination of the columns numbered
2 through h. Lift the elements of L0 needed to elements λ2, . . . , λh ∈ Λ0, and consider
G1 − λ2G2 − · · · − λhGh. The coefficients on quadratic and higher terms are divisible
by t. By our choice of the λν , the coefficients on the Zi are divisible by t. The scalar is
then forced to be divisible by t. Thus, G1 − λ2G2 − · · · − λhGh may divided by t to
get a new relation, which we call G0. Consider the Jacobian matrix of G0, G2, . . . , Gh
with respect to the variables Z1, . . . , Zh, and compare this with the Jacobian matrix of
G1, . . . , Gh with respect to the variables Z1, . . . , Zh. The first column has been altered
first by subtracting off a sum of multiples of the other columns, which does not affect the
minor, and then by factoring out t from the first column, while the other columns are the
same as when we used for G1, . . . , Gh. The new minor clearly has order `(S) − 1 with
respect to t. �

This completes not only the proof of the Theorem asserted in the previous lecture, but
also the proof of all cases of the Artin Approximation Theorem.

We now want to use Artin Approximation to prove the following:

Theorem. Consider a family of finite systems of polynomial equations over Z such that
each system in the family involves variables x1, . . . , xd and other variables Yi,1, . . . , Yi,hi

where both hi and the variables are allowed to depend on which system in the family one
is considering. Suppose that none of these systems has either

(a) a solution in a finitely generated algebra over a finite field such that the values of the
xj generated an ideal of height d, nor

(b) a solution in a finitely generated algebra over a DVR of mixed characteristic p > 0
such that the ideal generated by the values of the xj has height d.

Then no system in the family has a solution in a Noetherian ring in such a way that the
values of the xj generate an ideal of height d. Moreover, (a) alone guarantees that there is
no solution in a Noetherian ring containing a field such the values of the xj generate an
ideal of height d.

Lecture of April 3, 2017

We begin our attack on the proof of the Theorem stated at the end of the Lecture Notes
from March 31 by making several reductions in the problem. First note that it suffices to
consider just one system of equations. We denote the equations

Fj(X1, . . . , Xd, Y1, . . . , Yh) = 0, 1 ≤ j ≤ n.
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Second, we note that if there is a solution x = x1, . . . , xd, y = y1, . . . , yh in a Noetherian
ring R such that (x1, . . . , xd)R has height d, then we may localize R at a minimal prime
of (x1, . . . , xd)R of height d. Thus, we get a solution of the system satisfying the height
constraint if and only if we get a solution in a local ring of dimension d such that x1, . . . , xd
is a system of parameters. We may evidently replace this local ring by its completion.
Hence there is a solution satisfying the height constraint if and only if there is a solution
in a complete local ring (R, m) such that x1, . . . , xd is a system of parameters.

This solution is preserved if we kill a minimal prime of R such that the quotient still
has dimension d. Thus, we may assume that (R, m) is a complete local domain. By the
structure theory of complete local rings, we then have that R is module-finite over A, where
A is a formal power series ring either over a field K or over a complete DVR (V, pV ) of
mixed characteristic p. Specifically, we write A = K[[u1, . . . , ud]] or A = V [[u2, . . . , ud]],
and in the second case we let u1 = p. In either case, u1, . . . , ud is a regular system of
parameters for A.

Since R is module-finite over A, it has a set of generators θ1 = 1, θ2, . . . , θs. These are
not free generators: let M =

(
aij
)

denote an s × t matrix over A whose t columns span
the module of relations on θ1, . . . , θs over A.

We next want to describe a finite system of polynomial equations in variables corre-
sponding to the aij and other scalars from A. The equations have coefficients in Z, and
solving them in a ring A1 enables one to construct a ring S module-finite over A1 with a
set of generators θ′1 = 1, θ′2, . . . , θ

′
s.

First note that for all i, j we can choose aijk ∈ A such that

(∗) θiθj =

s∑
κ=1

aijkθk.

We need the aij and the aijk to satisfy certain equational conditions in order to guarantee
that one gets a commutative associative ring with θ1 as identity. We impose:

(1) a1jk = δjk

where δ is the Kronecker δ function which is 1 when j = k and 0 otherwise. This guarantees
the multiplication by θ1 is the identity function.

To guarantee that multiplication will be commutative we impose

(2) aijk = ajik

for all i, j, k.

We want to write down equations that will guarantee that multiplication is associative.
To do this, for all i, j, k write down the formula for θiθj as a linear combination of θ1, . . . , θs
using (∗), and then multiply on the right by θk and simplify each quadratic term by another
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application of (∗). This yields a formula for (θiθj)θk as a linear combination of θ1, . . . , θs in
which every coefficient is a polynomial in the aijk. Similarly, use (∗) to write down ajak as
a linear combination of θ1, . . . , θs and then multiply by θi and use (∗) repeatedly again to
give a formula for θi(θjθk) in which every coefficient is a polynomial with integer coefficients

in the aijk. Subtract the two linear combinations to obtain B
(ijk)
1 θ1 + · · ·+B

(ijk)
s θs where

each B
(ijk)
µ is a polynomial in the aijk with coefficients in Z. Write the coefficients as an

s × 1 column vector. Then this column vector gives a relation on θ1, . . . , θs, and so is
a linear combination of the columns of

(
aij
)
. Thus, if B(ijk) denotes the column vector

whose entries are B
(ijk)
1 , . . . , B

(ijk)
s then for all i, j, k we can choose a t× 1 vector U (ijk)

of scalars from A such that

(3) B(ijk) =MU (ijk),

where M is the s× t matrix
(
aij
)

whose columns span the relations on θ1, . . . , θs.

We also need to write down equations that guarantee that multiplication is well-defined.
The relation

∑s
i=1 aijθi = 0 coming from the j the column of the matrixM =

(
aij
)
, when

multiplied by θk, produces a sum
∑s
i=1 aijθiθk that can be rewritten, using (*), as a linear

combination of the θi with coefficients that are polynomials in the aij and aijk with integer

coefficients. Since this is 0, for each choice of j and k the column vector C(jk) of coefficients
of the θi can be written in the form MW (jk), where W (jk) is a t × 1 column vector with
entries in A, i.e.,

(4) C(jk) =MW (jk).

Note that the ring structure of R is completely determined by the choice of the ring A
and the scalars M =

(
aij
)
, aijk, and the entries of the U (ijk) and W (jk). Moreover, given

any ring A1 and corresponding subscripted elements of A1 satisfying the equations (1),

(2), (3), and (4), say bij , bijk, U ijk1 , and W
(jk)
1 (the latter two are vectors over A1), one

gets a unique commutative, associative, ring S generated as an A1-module by elements
θ′1, . . . , θ

′
s such that θ′1 is the identity, the columns of the matrix

(
bij
)

span the relations
on θ′1, . . . , θ

′
s, and such that for all i and j

(∗′) θ′iθ
′
j =

s∑
k=1

bijkθ
′
k

S is defined as the cokernel of the matrix
(
bij
)

over A1 with θ′1, . . . , θ
′
s as the image

of the standard basis. The equations (∗′) are used to define the ring multiplication. The
equations (1) guarantee that multiplication by θ1 will be the identity map, the equations
(2) guarantee that multiplication is commutative, the equations (3) guarantee that multi-
plication is associative, and the equations (4) guarantee that multiplication is well-defined.

We denote this ring as R(A1; bij , bijk, U
(ijk)
1 , W

(jk)
1 ).

We use this idea to descend a solution of the equations

Fj(X1, . . . , Xd, Y1, . . . , Yh) = 0, 1 ≤ j ≤ n
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over R, which is a module-finite extension of A, to a solution in a ring S with is a module-
finite extension of the Henselian ring A1, where A1 is the Henselization of the localization

at (u1, . . . , ud) of the ring K[u1, . . . , ud] (respectively, V [u2, . . . , ud]), so that Â1 = A.
However we need three sets of additional equations.

In the original choice of R, we can write each xµ and each yν as a linear combination of
the θi with coefficients in A. These coefficients γ will all become unknowns, to be solved
for in A1. Each polynomial Fj(x, y) can be expressed, using (∗) repeatedly, as a linear
combination of the the θi each of whose coefficients is a polynomial in the aijk and the
elements γ. This means that the column vector of coefficients of the θi can be written
as the product of M with a column vector over A, whose entries will be a new set of
unknowns. We refer to the equations obtained in this way as (5).

In R, the elements x1, . . . , xd are a system of parameters. This means that there is a
fixed integer N such that every uNν is an R-linear combination of x1, . . . , xd. Each xν is
already expressed as an A-linear combination of the θi. We can also write each coefficient
of each xν as an A-linear combination of the θi: this introduces new elements that initially
vary in A. The equations (∗) can be used to rewrite uNν θ1 minus the R-linear combination
of the xν as a linear combination of the θ1, . . . , θs. The coefficients are polynomials in
elements that may be thought of a varying in A. As in previous examples we set the
column vector of coefficients equal to M multiplied by a column vector whose entries are
in A, but which should be thought of as new variables. We refer to the equations one gets
as (6).

Finally, we need equations which keep track of the condition that the map A → R is
injective. If we tensor with the fraction field F of A, we get an injection F → F ⊗A R.
Hence we have a F-linear map F ⊗A R → F that is nonzero. This gives a composite
A-linear map R→ F ⊗A R→ F that is not zero. We can choose a common denominator
in A−{0} for the values of this nonzero A-linear map R→ F on the θi and multiply by it
to obtain an A-linear map φ : R→ A that is not zero. Let a1, . . . , as be the values on the
θi. The condition that there exist an A-linear map with these values is that the matrix
product

(7)
(
a1 . . . as

)
M = 0.

Suppose that ai 6= 0. Then we can choose Q such that ai /∈ mQ.

We now think of every subscripted element from A as a variable. However, in the
equations (6) the elements uNν are treated as fixed elements of A1. The resulting system
of polynomial equations over A1 has a solution in A, and it therefore has a solution in A1

congruent to the original solution mod mQ, by the Artin Approximation Theorem.

The solution in A1 gives rise to a ring S that is module-finite over A1, generated as an
A1-module by θ′1 = 1, . . . , θ′d. The equations (1), (2), (3), and (4) guarantee that one has
a well-defined commutative associative multiplication on A1 such that multiplication by θ′1
is the identity map. The equations (5) guarantee that we have a solution for the equations

Fj(X1, . . . , Xd, Y1, . . . , Yh) = 0, 1 ≤ j ≤ n,
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and the equations (6) guarantee that (x1, . . . , xd)S is primary to the maximal ideal of S.
From the equations (7) we get a nonzero A1-linear map S → A1 whose values on the θ′i
are the values corresponding to the variables introduced to replace the ai. This map is not
zero because the value on θi is congruent to the original value mod mQ.

Finally, we may descend further, from A1 to a suitable étale extension of K[u1, . . . , ud]
or V [u2, . . . , ud]. After localizing at one element, if necessary, we will still have that the
radical of (x1, . . . , xd)S is maximal of height d. This completes the proof of the theorem
in case we are working over a DVR.

In the case of a field K, we want to show that we can replace the field K by a finite
field, even if K has characteristic 0 initially.

Henceforth, we assume that we have a solution in a finitely generated K-algebra, where
K is a field that may be of positive characteristic or characteristic 0, and where the values
x1, . . . , xd for X1, . . . , Xd generate an ideal whose radical is a maximal ideal of height d.
We may write this K-algebra in the form

R = K[X1, . . . , Xd, Y1, . . . , Yh, Z1, . . . , Zs]/
(
Fj(X,Y ), Gk(X,Y, Z)

)
where the Xd and Yh map to the solution in the quotient ring. We may choose a finitely
generated Z-subalgebra B of K that contains all the coefficients of the polynomials gener-
ating the ideal we are killing, and then we may define

RB = B[X1, . . . , Xd, Y1, . . . , Yh, Z1, . . . , Zs]/
(
Fj(X,Y ), Gk(X,Y, Z)

)
.

If K has characteristic p > 0, then B is a finitely generated (Z/pZ)-algebra.

We make the convention that if C is a B-algebra then

RC = C ⊗B RB ∼= C[X1, . . . , Xd, Y1, . . . , Yh, Z1, . . . , Zs]/
(
Fj(X,Y ), Gk(X,Y, Z)

)
.

To complete the proof of the theorem, we shall prove two facts: the first is that for every
maximal ideal µ of B, B/µ is a finite field. The second is that for the maximal ideals µ in
some nonempty open subset of MaxSpec (B), (x1, . . . , xd)RB/µ has height d.

Lecture of April 5, 2017

Lemma. Let R be an algebra finitely generated over its prime ring. Then the quotient of
R by any maximal ideal is a finite field.

Proof. The quotient S will be a field finitely generated as an algebra over its prime ring Z
or Z/pZ. If the prime ring is Z then, by Noether normalization for domains, after localizing
at one nonzero element of Z , S is a module-finite extension of a polynomial extension by
finitely many variables of Za, a 6= 0. If the prime ring is Z/pZ, S is a module-finite
extension of a polynomial extension of Z/pZ. Since S is a field, it has dimension 0, which
is impossible if the prime ring is Z, since module-finite extensions preserve dimension, and
adjoining indeterminates increases dimension by the number of indeterminates adjoined.
In the second case one sees that there are no indeterminates, and S is module-finite over
Z/pZ, which means that it is a finite field. �
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Lemma (Generic Freeness). Let M be a finitely generated module over R, where R is a
finitely generated algebra over the Noetherian domain A. Then there is a nonzero element
a ∈ A such that Ma is Aa-free.

Proof. M has a prime cyclic filtration by modules of the form R/P , and it suffices to
show this for R/P , which can replace R. So it suffices to do the case M = R and R is
a domain. We use induction on dim (F ⊗A R), where F is the fraction field of A. By
Noether normalization R is module-finite over a Aa[X1, . . . , Xn], and so it suffices to
consider a prime cyclic filtration of Ra over Aa[X1, . . . , Xn]. Those factors that are equal
to Aa[X1, . . . , Xn] are free, those that have Aa-torsion become zero after localization at
one more element of A−{0}, while the other factors can be made free by localizing at one
more element of A− {0} by the induction hypothesis. �

In the situation we were considering last time, we now know that every B/µ, for µ
maximal in B, is a finite field. We want to preserve the condition that the x1, . . . , xd
generate an ideal whose radical is a maximal ideal of height d, and this is equivalent to
saying that the radical is maximal of height ≥ d. Note that the height is correct when
we pass to the fraction field L of B, since after that we are making a base change from
one field to another, and the height will be preserved by the following much more general
result:

Proposition. Let S be a Noetherian ring faithfully flat over R and let I be an ideal of
R. Then the height of IS is the same as the height of I. In particular, if R is a finitely
generated L-algebra and K is a field containing L, then for every ideal I of R, the height
of I is the same as the height of its expansion to K ⊗L R.

Proof. The height of IS is the same as the minimum of the heights of minimal primes Q of
S containing IS. If we replace S by SQ for such a prime Q and R by its localization at the
contraction of Q, then RP → SQ is faithfully flat. ISQ is primary to QSQ, and it follows
that PRP is nilpotent modulo IRP . Then the height of Q is dim (SQ) ≥ dim (RP ) which
is at least the height of I. Now choose P prime in R so that it is a minimal prime of I
and the height of I is dim (RP ). Choose Q to be a minimal prime of PS. Then RP → SQ
is faithfully flat with closed fiber of dimension 0, and so we have that the height of IS is
bounded by dim (SQ) = dim (RP ) (see part (d) of the first Lemma of the Lecture Notes of
February 3) which is the height of I. The second statement follows from the first because
K is faithfully flat over L and so K ⊗L R is faithfully flat over R. �

We are free to replace B by its localization at one nonzero element several (but finitely
many) times: we shall retain the notation B as we do this.

Moreover, we are free to localize at one (equivalently, finitely many) nonzero elements of
B: this is equivalent to looking at a dense open subset of MaxSpec (B). In RL = L⊗BRB
we can chooae a minimal prime contained in the radical of (x1, . . . , xd) so as to preserve
the height when this prime is killed. We may kill the contraction of this prime to RB ,
and so assume that RB and RL are domains. After localization at one element of B−{0}
we may assume that RB is module-finite over a polynomial B[u1, . . . , ud], and embeds
in a finitely generated free module GB over B[u1, . . . , ud]. After localizing at one more
element of B − {0} we may assume that GB/RB is free over B, by the Lemma on generic
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freeness. Thus, for any µ, RB/µ is module-finite over (B/µ)[u1, . . . , ud] and embeddable in
a torsion-free module over it: thw sequence 0→ RB → GB → GB/RB → 0 remains exacts

when we apply ⊗B B/µ because GB/RB is B-free and so TorB1 (GB/RB , B/µ) = 0.
This implies that it has pure dimension d, and so every maximal ideal has height d. Now
L⊗B RB/(x1, . . . , xd) is local and Artinian, with a nilpotent maximal ideal. The residue
field is module-finite over L. Therefore, after suitable localization, we may assume that
RB/(x1, . . . , xd) has a nilpotent prime such that the quotient is a domain module-finite
over B. Now it is clear that all maximal ideals of RB/µ have height d, and that the quotient
of this ring by (x1, . . . , xd) is 0-dimensional, which forces (x1, . . . , xd) to have height d,
since all of its minimal primes must be maximal ideals.

If there are several minimal primes among these maximal ideals, we can get back to the
case where there is just one by localizing at one element. �

We want to apply our method of reduction to characteristic p to prove that every local
ring containing a field has a big Cohen-Macaulay module. A module M over a local ring
(R, m, K) is called a big Cohen-Macaulay module for R if every system of parameters for
R is a regular sequence on M and mM 6= M .

Theorem. Every local ring that contains a field has a big Cohen-Macaulay module.

We shall prove this by showing that the existence of a big Cohen-Macaulay module is an
equational problem, and then it will suffice to solve the problem in positive characteristic.
Stronger results are known: e.g., it is known that there are big Cohen-Macaulay algebras
for local rings that contain a field and in mixed characteristic in dimension at most three.
The proofs of these stronger results are extremely difficult.

The result of the Theorem above is very useful, and will illustrate the method of re-
duction to characteristic p. For rings of equal characteristic zero, no proof of the result is
known without reduction to characteristic p > 0.

Lecture of April 7, 2017

In order to construct big Cohen-Macaulay modules over a local ring (R, m, K), we want
to discuss the notion of a modification of a module M with respect to a set of relations
in M with respect to sequences x1, . . . , xk+1 that are part of a system of parameters
for the local ring. The careful study of this idea will enable us to see that the existence
of big Cohen-Macaulay modules is equivalent to the statement that a certain family of
polynomial equations with a dimensional constraint has no solution.

Suppose that dim (R) = d. Fix a non-empty family F of sequences of length d such that
the elements of each sequence form a system of parameters for R. An important special
case is when F has just one element. Another is when F consists of all such sequences.

We shall modify our terminology a bit and say that an R-module M is a big Cohen-
Macaulay module with respect to F if every sequence in F is a regular sequence on M .
(Thus, our original use of the term big Cohen-Macaulay module corresponds to the case
where F consists of all sequences of parameters.) By our definition of regular sequence, for
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x1, . . . , xn to be a regular sequence on M , we must have that (x1, . . . , xn)M 6= M . For
any ideal generated I generated by a system of parameters (or any m-primary ideal I), the
condition that IM 6= M is equivalent to the condition that mM 6= M . For if mM = M ,
we have that m2M = m(mM) = mM = M , and, by induction, that mtM = M for all
t. Since mt ⊆ I for some t, we have that IM = M . On the other hand, if IM = M it is
clear that mM = M .

By a type k-relation on a module M with respect to F we mean a sequence of elements
(u1, . . . , uk, u) in M together with a sequence x1, . . . , xk+1 that is an initial segment of
an element of F such that

xk+1u =
k∑
i=1

xiui

(the case k = 0 is allowed, and then the right hand side is 0).

Given a set of relations S with respect to F (the types are allowed to vary), by the
modification of M with respect to S we mean the map M → M ′ constructed as follows.
For each element σ ∈ S of type k = kσ, let Gσ be a free R-module of rank k with free
basis bσ1 , . . . , b

σ
k , and let

M ′ = (M ⊕
⊕
σ∈S

Gσ)/SpanR{ρσ : σ ∈ S}

where, if σ corresponds to

xk+1u =
k∑
i=1

xiui,

then

ρσ = u−
k∑
i=1

xib
σ
i .

The map M →M ′ is the composition of the obvious injection of M into the direct sum in
the numerator composed with the quotient surjection.

If the set S has just one element, we shall say that M ′ is a single modification of M .

Given a modification of M with respect to a set of relations, call it M ′, one can then form
a modification of M ′, call it M ′′, with respect to some set of relations on M ′′. Continuing
in this way, one may consider sequences of modifications

M →M ′ →M ′′ → · · · →M (r).

We start with R itself, and form a sequence in which, at each stage, we modify the given
module with respect to the set of all relations on M with respect o F . In this way we get
a sequence of modifications

R = M0 →M1 →M2 → · · · .

Each relation with respect to F on Mi becomes trivial in Mi+1. Let M∞ be the direct
limit of the Mi. The image of 1 ∈ R in Mi plays a special role here: call it 1i. In particular,
the image of 1 in M∞ is denote 1∞.
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Lemma. Let (R, m, K) of dimension d be given, let F be non-empty family of sequences
of length d whose elements are systems of parameters, as above, let x1, . . . , xd be one
element of F and let

R = M0 →M1 → · · · →Mr → · · ·

by the sequence of modifications with respect to F described in the preceding paragraph. Let
M∞ be the direct limit of the Mr, and let 1r be the image of 1 ∈ R in Mr, 0 ≤ r ≤ ∞.
Then the following conditions are equivalent:

(1) R has a big Cohen-Macaulay module with respect to F .

(2) M∞ is a big Cohen-Macaulay module over R with respect to F .

(3) 1∞ /∈ (x1, . . . , xd)M∞.

(4) 1r /∈ (x1, . . . , xd)Mr for all positive integers r.

(5) For every sequence M0 = R, . . . , Mr such that each Mi+1 is a modification of Mi

with respect to some set of relations on Mi over F , the image of 1 ∈ R in Mr is not
in (x1, . . . , xd)Mr.

Moreover, if M is any R-module with a map φ to a big Cohen-Macaulay module B with
respect to F , and M ′ is any modification of M with respect to a set of relations on M over
F , then the map M → B factors through a map M ′ → B, so that one has M →M ′ → B.

Proof. It is clear that (5) ⇒ (4), while the equivalence of (3) and (4) follows from the fact
that M∞ is the direct limit of the Mr. If (3) holds, we claim that (2) holds. Evidently,
with I = (x1, . . . , xd)R we have IM 6= M , and therefore, by the discussion at the end of
the third paragraph of the first page, we have that mM 6= M . But given a relation on
x1, . . . , xk+1 in M∞, where x1, . . . , xk+1 is an initial segment of some sequence in F , it
must come from such a relation on some Mr that maps to it. This relation becomes trivial
in Mr+1, and therefore in M∞ as well. Of course, (2) ⇒ (1) is clear.

It remains only to prove that (1) ⇒ (5). It will suffice to show that given a big Cohen-
Macaulay module B and an element w ∈ B−mB, we can map Mr → B in such a way that
the image wr of 1 ∈ R in Mr maps to w. We cannot then have wr ∈ (x1, . . . , xd)Mr, for we
may apply the map Mr → B then gives that w ∈ (x1, . . . , xd)B ⊆ mB, a contradiction.

We show that there is a map Mr → B by defining it successively on the sequence of
modules R = M0, M1, . . . ,Mr, . . . . In the case of R, we simply take the map that sends
1 ∈ R to w ∈ B. We use induction. Suppose that we have defined φi : Mi → B such that
φi(wi) = w, where wi is the image of 1 in Mi. We want to define φi+1 : Mi+1 → B such
that the diagram

B
=−−−−→ B

φi

x xφi+1

Mi −−−−→ Mi+1

commutes. That is, we want to establish the final statement of the Lemma with M = Mi,
φ = φi and M ′ = Mi+1, and so we can complete the proof by proving the final statement
of the Lemma.
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We proceed by defining the new map φ′ on each direct summand of M⊕
⊕

σ Gσ so as to
kill all the relations ρσ. We define it to be φ on M . We need to specify values for φ′ on the
free generators of every Gσ in such a way that all the ρσ vanish. Given σ corresponding

to xk+1u =
∑k
j=1 xiui with the ui and u in M , we apply φ to get

xk+1φ(u) =
k∑
j=1

xiφ(ui).

Since B is a big Cohen-Macaulay module with respect to F , it follows that φ(u) ∈
(x1, . . . , xk)B which yields φ(u) =

∑k
j=1 xivi for suitable elements v1, . . . , vk ∈ B. We

define the values of φ′ on bσ1 , . . . , b
σ
k to be v1, . . . , vk, respectively. This clearly does what

we need. �

Remark. In conditions (3), (4), and (5) we could use mM instead of (x1, . . . , xd)M . The
given formulation is convenient when we formulate an equational version of the criterion.

Note that if f : M → N is any R-linear map, each type k relation on M with respect
to F maps to a type k-relation on N with respect to F : the point is simply that if

xk+1u =
k∑
i=1

xiui

then

xk+1f(u) =

k∑
i=1

xif(ui).

In particular, if one has a sequence of modifications of M , each type k relation on M maps
to such a relation on the further terms in the sequence.

Our next objective is to show that the obstruction to the existence of big Cohen-
Macaulay modules with respect to F can be phrased in terms of (all) finite sequences
of single modifications of M . We make use of characterization (4). Suppose that 1r ∈
(x1, . . . , xd)Mr. Only finitely many elements of Mr are needed as coefficients here. The
same relation will hold if we modify Mr−1 with respect to only finitely many of the re-
lations used in the construction of Mr. All of these modifications can be described using
only finitely many elements of Mr−1. All the elements and relations needed will be in a
modification of Mr−2 with respect to finitely many relations. We can continue working
backward in this way. We therefore get the following:

Theorem. Let (R, m, K) be local of dimension d, let F be a non-empty family of se-
quences of length d whose elements are systems of parameters for R, and let x1, . . . , xd be
one element of F . The following conditions are equivalent:

(1) R has a big Cohen-Macaulay module with respect to F .

(2) For every finite sequence of modifications of R, say

R = M0 →M1 → · · · →Mr,
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each with respect to a finite set of relations over F , the image wr of 1 ∈ R in Mr is
not in (x1, . . . , xd)Mr.

(3) For every finite sequence of single modifications of R, say

R = M0 →M1 → · · · →Mr,

each with respect to a single relation over F , the image wr of 1 ∈ R in Mr is not in
(x1, . . . , xd)Mr.

Proof. The argument prior to the statement of the Theorem shows that if (2) holds then
condition (4) of the Lemma holds, and so (2)⇒ (1). However, a modification of a moduleM
with respect to finitely many relations σ1, . . . , σh can be achieved by making, successively,
h single modifications: one modifies M with respect to σ1 to get M1, and then modifies
M1 with respect to the image of σ2, and so forth. At the inductive step, one modifies Mi

with respect to the image of σi+1, if i < h. Then Mh is the same as the modification
of M with respect to σ1, . . . , σh. Thus, (3) ⇒ (2). Finally, (1) ⇒ (3) follows from the
implication (1) ⇒ (5) in the preceding Lemma. �

We next want to show that the problem of the existence of big Cohen-Macaulay modules
can be viewed equationally. For simplicity, we first state the next result when there is only
one system of parameters being used, and then indicated the modification needed when
there may be many.

Theorem. Suppose that (R,m,K) is a d-dimensional local ring with system of param-
eters x1, . . . , xd. Let k1, . . . , kr be a sequence of integers with values between 0 and
d − 1. Then there is a system of polynomial equations with coefficients in Z and vari-
ables X1, . . . , Xd, Y1, . . . , Yh such that the system has a solution in R with x1, . . . , xd as
the values of X1, . . . , Xd if and only if R has a sequence of single modifications

R = M0 →M1 → · · · →Mr

of types k1, . . . , kr with respect to x1, . . . , xd such that the image wr of 1 is in the sub-
module (x1, . . . , xd)Mr.

Before discussing the proof of this result in the general case, we want to discuss the case
where r = 1. We write k = k1. The modification comes from a relation

yxk+1 =
k∑
j=1

ykxk

over R. The modification may be described as (R⊕Rk)/Rρ where

ρ = (y,−x1, . . . , −xk).

We are then concerned with whether, in this modified module M1, we have that the image
of (1, 0, . . . , 0) is in (x1, . . . , xd)M1. This leads to the additional equations coming from
the vector equation

(1, 0, . . . , 0) = (y11x1 + · · ·+ y1dxd, · · · , yk+1,1x1 + · · ·+ yk+1,dxd) + y′ρ



103

This will give k + 1 equations over Z in variables Y, Y1, . . . , Yk, Yµ,ν , Y
′ and X1, . . . , Xd,

where each lower case letter has been replaced by a correspondingly subscripted or super-
scripted upper case letter that is to be viewed as a variable.

In the general case, we give explicit presentations of each of M1, · · · ,Mr. These are
constructed recursively. Mi will be a quotient of R⊕Rk1 ⊕Rki ∼= R1+k1+···ki by the span
over R of i vectors, ρ1, . . . , ρi. The ρi will be thought of as having entries some unkonwn,
and others satisfying certain equations over Z coming from relations on previous modules
in the sequence. To get the presentation of Mi+1, one starts with a relation on Mi. This
is given by using unknown coefficients: the relation is thought of as being given by vectors
in the numerator, which is free, and one adds into the equation a linear combination of the
vectors ρ1, . . . , ρi with unknown coefficients. One adds a copy of Rki+1 in the numerator,
and identifies R1+k1+···ki with its image in R1+k1+···ki+ki+1 (spanned by an initial segment
of the standard basis). The vectors ρ1, . . . , ρi one killed to get Mi may be identified with
their images (one enters zeros in the last ki+1 spots). In addition, to get the presentation
of Mi+1 one kills one additional vector, ρi+1, derived from a new relation holding in Mi,
whose entries are unknowns satsifying certain equations.

Eventually one constructs the presentation of Mr, and then one can express the condi-
tion that the image of 1 ∈ R is in (x1, . . . , xd)Mr by one additional vector equation, setting
(1, 0, . . . , 0) equal to the sum of a vector whose entries are unknown linear combinations
of x1, . . . , xd and a linear combination of the ρ1, . . . , ρr with unknown coefficients. �

Lecture of April 10, 2017

We next want to describe how the equational set-up changes if there is a family of
systems of parameters and one has a modification with respect to a system that may
be different at every stage. It is convenient to view one of the systems, x1, . . . , xd as
special. This one is used when one writes down an equation corresponding to the fact
that the image of 1 ∈ R is in (x1, . . . , xd)Mr. In dealing with a finite sequence of single
modifications, only finitely systems will occur. One can introduce variables that represent
the elements in the finitely many systems of parameters. The equations connected with
the modification process change only in obvious ways: in dealing with a modification with
respect to a certain system of parameters or a relation on a certain system of parameters;
one uses those parameters as coefficients (or variables corresponding to them in the system
of equations). One introduces extra equations that keep track of the fact that each of the
additional sequences has the same radical as x1, . . . , xd. If x′1, . . . , x

′
d is one such sequence,

it suffices to use the equations

xNj =

d∑
i=1

zijx
′
i

(which will hold for some positive integer N and suitable elements zij ∈ R) and similar
ones reversing the roles of the xi and the x′i: these equations guarantee that (x1, . . . , xd)
and (x′1, . . . , x

′
d) have the same radical, so that x′1, . . . , x

′
d is also a system of parameters.
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The problem of the existence of big Cohen-Macaulay modules has now been shown
to be equational with dimension constraint in a sense that reduces the problem in equal
characteristic to the case of local ring in characteristic p > 0. But we may then pass to
the case of a complete local domain, and it will suffice to prove that case.

We next observe the following fact:

Theorem. Let R be a complete local domain of positive characteristic p and let x1, . . . , xd
be a system of parameters. Then there exists a nonzero element c ∈ R such that for all k,
0 ≤ k < d, and for all q = pe, e ∈ N,

(∗) c
(
(xq1, . . . , x

q
k)R :R x

q
k+1

)
⊆ (xq1, . . . , x

q
k)R.

Hence, for any finite set of systems of parameters there exists a nonzero element c that
has this property for all of these sets.

Moreover, if R is module-finite over a regular local ring A we can choose c ∈ A − {0}
so that it has this property for every system of parameters in A.

Proof. Given one system of parameters x1, . . . , xd we can choose a coefficient field K for
R and let A = K[[x1, . . . , xd]]. Since systems of parameters for A are closed under the
operation of replacing every element by a power of that element, the statement for one
system of parameters follows from the statement about A. But if one has several systems of
parameters and elements c1, . . . , ck, where for all of the systems of parameters one of the
ci satisfies the condition (∗) for that system, then c = c1 · · · ck satisfies the condition (∗)
for all of them. It therefore suffices to prove the final statement for systems of parameters
in A.

Let h denote the torsion-free rank of R as an A-module and let u1, . . . , uh be a maximal
set of elements in R linearly independent over A. Let G be the A-span of these elements.
Then G ∼= A⊕h, and R/G is A-torsion. Thus, we may choose c ∈ A−{0} such that c kills
R/G, i.e., such that cR ⊆ G.

Let y1, . . . , yd be any system of parameters for A and suppose that

yk+1r =
k∑
i=1

yiri.

Multiply by c to obtain

yk+1(cr) =

k∑
i=1

yi(cri).

All of the elements cr, cri ∈ G. Since A is regular, it is Cohen-Macaulay, and y1, . . . , yd
is a regular sequence on A and, therefore, on G ∼= A⊕h as well. It follows that

cr ∈ (y1, . . . , yk)G ⊆ (y1, . . . , yk)R. �

We next note the following: let (R,m)→ (S, n) be a local homomorphism of local rings
of the same dimension such that mS is primary to n. This implies that the image of every
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system of parameters for R is a system of parameters for S. Suppose that x1, . . . , xd has
image y1, . . . , yd in S. Let M → M ′ be a single modification of M with respect to a
relation

xk+1u =
k∑
i=1

xiui,

where the ui ∈M . Then S ⊗RM → S ⊗RM ′ is likewise a single modification of S ⊗RM
with respect to the relation

yk+1(1⊗ u) =
k∑
i=1

yi(1⊗ ui).

The verification is quite straightforward:

S ⊗R (M ⊕R⊕k) ∼= (S ⊗RM)⊕ S⊕k,

and the image of (u,−x1, . . . , −xk) is (1⊗ u,−y1, . . . , −yk). Thus, a sequence of single
modifications

R = M0 →M1 → · · · →Mr

becomes another sequence of single modifications

S = S ⊗RM0 → S ⊗RM1 → · · · → S ⊗RMr.

Moreover, if the image of 1 ∈ R = M0 in Mr is in (x1, . . . , xd)Mr, then the image of
1 ∈ S = S ⊗RM0 in S ⊗RMr is in (y1, . . . , yd)(S ⊗RMr).

In particular, we can apply base change when S = R and the map is a power of the
Frobenius endomorphism, sending r 7→ rq for all r ∈ R: here q = pe for some e ∈ N.

We are now ready to prove:

Theorem. Every local ring containing a field has a big Cohen-Macaulay module (with
respect to all systems of parameters).

Proof. As already noted, the problem is equational with dimension constraint and so re-
duces to the case of a complete local domain (R,m,K) of characteristic p > 0. Suppose
that there is a series of single modifications with respect to various systems of parameters

R = M0 →M1 → · · · →Mr

such that the image of 1 ∈ M0 in Mr is in (x1, . . . , xd)Mr, where x1, . . . , xd is a system
of parameters. We shall obtain a contradiction. Choose c ∈ R − {0} such that condition
(∗) of the preceding Theorem holds for all of the finitely many systems of parameters that
occur in the displayed sequence of modifications. Then for every q = pe we may apply
base change using the e th power of the Frobenius endomorphism, and so obtain a new
sequence of modifications

R = M
(e)
0 →M

(e)
1 → · · · →M (e)

r
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such that the image of 1 ∈M0 in M
(e)
r is in (xq1, . . . , x

q
d)M

(e)
r . Each modification is with

respect to a system of parameters consisting of q th powers of the elements in one of the
original systems of parameters. We claim that there is is a commutative diagram:

R
c−−−−→ R

c−−−−→ · · · c−−−−→ R
c−−−−→ R

c−−−−→ · · · c−−−−→ R

idR

x φ1

x φi

x φi+1

x φr

x
R=M

(e)
0 −−−−→ M

(e)
1 −−−−→ · · · −−−−→ M

(e)
i −−−−→ M

(e)
i+1 −−−−→ · · · −−−−→ M

(e)
r

where we shall show recursively that the vertical arrows can be constructed so that the
diagram commutes. The leftmost arrow is simply the identity map on R.

Suppose that we have constructed the φj , j ≤ i, so that the leftmost i squares commute,

and suppose that i < r. Let M = M
(e)
i , and write φ = φi. We write M ′ = M

(e)
i+1. Then

M ′ has the form (
M ⊕ (Rb1 ⊕ · · · ⊕Rbk)

)
/Rv

where the bi give a free basis, where

v = u− y1b1 − · · · − ykbk

where y1, . . . , yd is a system of parameters consisting of q th powers of one of the finitely
many systems specified earlier, and where there is a relation

yk+1u =
k∑
i=1

yiui

for elements u, u1, . . . , uk ∈M . Then

yk+1φ(u) =
k∑
i=1

yiφ(ui) ∈ R,

and we therefore have that

cφ(u) =
k∑
i=1

yiri ∈ R,

because of the special choice of c satisfying (∗) for each of the finitely many systems of
parameters that occur. But this means that we can define the next map on the numerator
module M ⊕ (Rb1 ⊕ · · · ⊕ Rbk) by letting it agree with cφ on M and by mapping each bi
to ri: our choice of the ri is such that v is killed.

Once we have this commutative diagram we can compute the image of 1 ∈ M0 in
the rightmost copy of R in the upper row by following two different paths: if we apply
the leftmost vertical arrow and then all of the horizontal arrows in the top row, we get
1 · cr = cr. If we apply the horizontal arrows in the bottom row and then φr, we get the
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image in R of an element in (xq1, . . . , x
q
d)M

(e)
r , which will be in (xq1, . . . , x

q
d)R. This shows

that for all q,
cr ∈ (xq1, . . . , x

q
d)R ⊆ m

q,

and so cr ∈
⋂
qm

q = 0, a contradiction. �

We shall now use this theorem to prove two theorems that do not refer to any non-
Noetherian objects.

The next result was proved in characteristic p and in certain characteristic 0 cases by
Peskine and Szpiro [C. Peskine and L. Szpiro, Dimension projective finie et cohomologie
locale, Publ. Math. I.H.E.S. (Paris) 42 (1973) pp. 323–395] (for the intersection theorem)
and [ , Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974) pp. 1421–
1424] (for the new intersection theorem) and by Paul Roberts [P. Roberts, Two applications
of dualizing complexes over local rings, Ann. Sci. Ec. Norm. Sup. 9 (1976) pp. 103–
106]. The equicharacteristic case in general was obtained in [M. Hochster, Topics in the
Homological Theory of Modules over Commutative Rings, CBMS Regional Conference
Series No. 24, AMS, Providence, RI, 1975]; see also [ , Canonical elements in local
cohomology modules and the direct summand conjecture, J. of Algebra 84 (1983) pp.
503–553].

Theorem (new intersection theorem). Let R be a local ring that contains a field. Let
0 → Gn → · · · → G0 → 0 be a finite complex of finitely generated free modules such that
H0(G0) 6= 0 and all the homology modules have finite length. Then dim (R) ≤ n.

Theorem. Let R be a regular ring that contains a field. Then R is a direct summand of
every module-finite extension algebra.

The second result is easy in characteristic 0 by other means, where it holds for normal
rings. The characteristic p result was not established until the early 1973, however. The
first argument is in [M. Hochster, Contracted ideals from integral extensions of regular
rings, Nagoya Math. J. 51 (1973) pp. 25–43]. The mixed characteristic case of this problem
remains an open question in dimension ≥ 4.

Lecture of April 12, 2017

The new intersection theorem is known even for rings of mixed characteristic, but the
proof in the mixed characteristic case, which is due to Paul Roberts, is quite difficult. Cf.
[P. Roberts, Le théorème d’intersection, C. R. Acad. Sc. Paris Sér. I 304 (1987) pp. 177–
180], [ , Intersection theorems, in Commutative Algebra, Math. Sci. Research Inst.
Publ. 15, Springer-Verlag, New York-Berlin-Heidelberg (1989) pp. 417–436], and [ ,
Multiplicities and Chern classes in local algebra, Cambridge Tracts in Mathematics 133,
Cambridge University Press, Cambridge, England, 1998]. Here we give the argument in
equal characteristic. It is valid for any local ring that has a big Cohen-Macaulay module.

Proof of the new intersection theorem. Let

0→ Gn → · · · → G1 → G0 → 0
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be the given free complex. Recall that H0(G•) 6= 0 and choose a minimal generator u of
H0(G•). Of course, u is killed by some power of the maximal ideal m of R. (In fact, the
proof does not use that H0(G•) has finite length: only that it is nonzero and has a minimal
generator u that is killed by a power of m.) Some element of G0 maps onto u, and it must
be a minimal generator of G0. Thus, we may write G0 = Re1⊕G′0 where both summands
are R-free. We can choose an integer N0 so large that mN0u = 0 and mN0Hi(G•) = 0 for
i ≥ 1. Let Zi and Bi denote the modules of cycles and boundaries respectively in Gi, so
that Hi(G•) = Zi/Bi. Then mN0e1 ∈ B0 and mN0Zi ⊆ Bi for i ≥ 1.

For each i ≥ 1, we may use the Artin-Rees Lemma to choose N so large that

mNGi ∩ Zi ⊆ mN0Zi.

Since we need only be concerned with i ≤ n, we may choose N ≥ N0 so that for all i,
1 ≤ i ≤ n, mNGi ∩ Zi ⊆ mN0Zi ⊆ Bi.

Next, we choose a system of parameters x = x1, . . . , xd for R inside mN . We can do
this by first choosing any system of parameters and then replacing every element by its
N th power. Recall that what we want to prove is that d ≤ n. Assume, to the contrary,
that d > n. We shall obtain a contradiction. Let K•(x; R) denote the Koszul complex on
x1, . . . , xd. First note that we have a commutative diagram

G0 −−−−→ H0(G•)→ 0x x
R −−−−→ R/(x)→ 0

where the vertical arrow on the left takes 1 ∈ R to e1 ∈ G0 and the vertical arrow on
the right maps 1 ∈ R/(x) to u (the second map exists since u is killed by mN0 and
(x) ⊆ mN ⊆ mN0).

Think of the copy of R on the left in the bottom row as K0(x; R). We shall show by
induction that this diagram extends to a map from the Koszul complex K(x; R) to G•:

0 −−−−→ · · · −−−−→ Gn −−−−→ · · · −−−−→ G0 −−−−→ H0(G•) −−−−→ 0x x x x
Kd(x; R) −−−−→ · · · −−−−→ Kn(x; R) −−−−→ · · · −−−−→ R −−−−→ R/(x) −−−−→ 0

Assume that the vertical maps have been constructed, starting on the right, up to and
including φ : Ki(x; R)→ Gi so that the diagram commutes. Thus, we have:

−−−−→ Gi+1 −−−−→ Gi −−−−→ Gi−1 −−−−→

?

x φi

x φi−1

x
−−−−→ Ki+1(x; R) −−−−→ Ki(x; R) −−−−→ Ki−1(x; R) −−−−→
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We want to define the map φi+1 so that the square on the left will commute. Consider
a free generator f of Ki+1(x; R). The matrices of the maps in the Koszul complex have
entries each of which is 0 or ±xj for some j: thus all entries are in (x1, . . . , xd) ⊆ mN .
Hence, the image of f in Ki(x; R) is actually in (x1, . . . , xd)Ki(x; R), and so the image of
f in Gi is in mNGi. It is also in Zi, that is, the image of f in Gi−1 is 0, because we view
the map Ki+1(x; R)→ Gi−1 as factoring

Ki+1(x; R)→ Ki(x; R)→ Ki−1(x; R)→ Gi−1

and the composition of the two maps on the left is 0. Thus, the image of f in Gi is in
mNGi∩Zi ⊆ Bi, by our choice of N , and so we can choose f ′ ∈ Gi+1 such that f ′ maps to
the image of f in Gi. We define the value of φi+1 on f to be f ′. We repeat this argument
for every element in a free basis for K(x; R), and so define φi+1.

We now have the desired map of complexes. Now suppose that B is a big Cohen-
Macaulay module for R (all we need is that x1, . . . , xd is a regular sequence on B and that
some element v ∈ B − (x1, . . . , xd)B). The image of v in B/(x1, . . . , xd)B spans a cyclic
module of finite length: we replace v by a multiple, which we still denote by v, which is in
the socle. That is, without loss of generality, we may assume that v /∈ (x1, . . . , xd)B but
mv ⊆ (x1, . . . , xd)B.

Next note that because u is a minimal generator of H = H0(G•), it has nonzero image in
the K-vector space H/mH. Hence, there is a map of H/mH onto Kv ⊆ B/(x1, . . . , xd)B
that sends the image of u to v, and so there is a map H → B/(x1, . . . , xd) that sends u→ v.
This will lift to a map of G0 = Re1 ⊕G′0 to B sending e1 to v. We now extend this map
to a map of complexes G• → K•(x; B), which we can do because G• is free and K(x; B)
is acyclic. We can then compose with the map of complexes K•(x; R) → G• already
constructed to get a map of complexes K•(x; R)→ K•(x; B) that sends 1 ∈ R = K0(x; R)
to v ∈ B = K0(x; B). Note, however, that because of the assumption that d > n, the last
map factors through Gd = 0, and so is the zero map.

We can give another map of complexes K•(x; R) → K•(x; B) that sends 1 ∈ R =
K0(x; R) to v ∈ B = K0(x; B) as follows: take the map R → B that sends 1 to v and
tensor over R with the complex K•(x; R) to get a map of complexes. But now the last
map sends 1 ∈ R = Kd(x; R) to v ∈ B = Kd(x; B), and we are close to the desired
contradiction. Because the Koszul complex of R is free and the Koszul complex of B
is acyclic, these two maps of complexes are homotopic. Therefore, the difference of the
two maps Kd(x; R) → Kd(x; B) is the composition of a map h : Kd−1(x; R) → Kd(x; B)
with the map δ : Kd(x; R) → Kd−1(x; R) from the complex, where h is one of the maps
giving the homotopy. (There is another relevant map involved in the homotopy, from
Kd(x; R) → Kd+1(x; B), but it is the zero map, since Kd+1(x; , B) = 0.) Since the image
of δ is contained in (x1, . . . , xd)Kd−1(x; R), the image of h◦δ is contained in (x1, . . . , xd)B,
which shows that v ∈ (x1, . . . , xd)B, a contradiction. �

From this one can easily deduce the original intersection theorem of Peskine-Szpiro,
which was proved in their joint thesis. (From Roberts’s work this is known without the
equicharacteristic restriction.)
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Theorem (Peskine-Szpiro intersection theorem). Let R be an equicharacteristic lo-
cal ring and let M 6= 0, N 6= 0 be finitely generated R-modules such that pdRM is finite
and M ⊗R N has finite length. Then dim (N) ≤ pdRM .

This follows at once from the new intersection theorem: let I = AnnRN . Then R/I
has the same dimension as N , and the length of M ⊗R (R/I) is finite, since the length of
M⊗RN is finite if and only if the sum of their annihilators is primary to the maximal ideal.
Therefore we may replace N by R/I. Take a minimal free resolution of M , which has length
n = pdRM , and tensor with S = R/I. One gets a free complex G• over S which has finite

length homology: the homology is TorR• (M, N) which is killed by AnnR(M) + AnnR(N).
Thus, the new intersection theorem may be applied over S to conclude that dim (R/I) ≤ n.

Peskine and Szpiro show that the intersection theorem implies M. Auslander’s zerodi-
visor conjecture: that conjecture asserts that if R is local, and M 6= 0 is finitely generated
and has finite projective dimension, then any zerodivisor in the ring R is a zerodivisor on
M . It follows that a regular sequence on M must be a regular sequence in R.

They also proved that the intersection theorem implies an affirmative answer to a ques-
tion of Bass (eventually known as Bass’s conjecture): if a local ring possesses a nonzero
module of finite injective dimension then the ring must be Cohen-Macaulay. (The converse
was known: a Cohen-Macaulay local ring does possess a finitely generated module of finite
injective dimension.)

It is worth noting that the new intersection theorem implies the Krull height theorem
in a very simple way. Let I be an n generator ideal of a Noetherian ring R. We want to see
that every minimal prime of I has height at most n. We may localize the minimal prime in
question. The result therefore asserts that if x1, . . . , xn generates an ideal primary to the
maximal ideal m of the local ring (R,m), then dim (R) ≤ n. This follows from considering
the Koszul complex K(x1, . . . , xn; R): it has finite length homology, since the homology
is killed by the m-primary ideal (x1, . . . , xn)R, and so dim (R) ≤ n, as required.

We remarked during the course of the proof the new intersection theorem that the
argument shows more. The difference may seem rather technical, but it turns out to be
important. The stronger result is:

Theorem (improved new intersection theorem). Let R be a local ring that contains
a field. Let 0→ Gn → · · · → G0 → 0 be a finite complex of finitely generated free modules
such that H0(G0) 6= 0 and has a minimal generator that is killed by a power of the maximal
ideal, and such that all the higher homology modules have finite length. Then dim (R) ≤ n.

This result is not known in mixed characteristic. It can be used to prove the Evans-
Griffith Syzygy Theorem, which asserts that a k th module of syzygies of a finitely generated
module over a regular local ring, if it is not free, must have rank at least k. The Evans-
Griffith Syzygy theorem remains open in mixed characteristic. Cf. [M. Hochster, Canonical
elements in local cohomology modules and the direct summand conjecture, J. of Algebra
84 (1983) pp. 503–553] for the argument deducing the syzygy theorem from the improved
new intersection theorem, and [E. G. Evans and P. Griffith, Syzygies, London Math. Soc.
Lecture Note Series 106, Cambridge Univ. Press, Cambridge, England, 1985] for further
background and variant results.
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We next want to turn our attention to the question, is every regular local ring a direct
summand of every module-finite extension ring?

We begin by noting several reductions that are possible in considering this problem.
First, R ↪→ S splits if and only the map

HomR(S, R)→ HomR(R, R)

is onto. (The map g ∈ HomR(S, R) that maps to 1R is the splitting of R ↪→ S.) Since
localization commutes with Hom for finitely generated modules over a Noetherian ring, we
may reduce to the case where R is local. Likewise, we may reduce to the complete case,
since the completion of R is faithfully flat over R and flat base change commutes with
Hom for finitely generated modules over a Noetherian ring.

Thus, we may assume that the regular ring is local or even complete local. Next, we
may assume that S is a domain. For we may kill a minimal prime ideal P of S disjoint from
R− {0}, so that we have R ↪→ S � S/P and we still have R ↪→ S/P . The composition of
a splitting g : S/P � R with the map S � S/P will split R ↪→ S.

We shall next use the existence of big Cohen-Macaulay modules to prove that regular
rings are direct summands of their module-finite extensions in equal characteristic. But
we first want to note that this proof is mainly of interest in characteristic p > 0. In equal
characteristic 0, even normal rings are direct summands of their module-finite extensions,
by a very simple argument: if R is a normal domain containing the rational numbers,
S is a module-finite extension domain, and the fraction fields of R and S are K and L,

respectively, then if d = [L : K], the map
1

d
TraceL/K, field trace from L to K, is an R-linear

retraction from S to R. (The trace of λ ∈ L is the trace of multiplication by λ as a K-linear
transformation on the d-dimensional K-vector space L. Thus, the trace of 1 is d.) The
map is a priori defined from L → K and is K-linear. We need to check that if s ∈ S then
the trace of s is in R, not just in K.

One argument is as follows: let f be the minimal polynomial of s over K. Since R is nor-
mal, the coefficients are in R. Let L0 = K[s]. Then TraceL/K(s) = [L : L0]TraceL0/K(s),
and the latter is the sum of the roots of f . Since the roots of f are all integral over R,
TraceL0/K(s) is integral over R as well as being in K, and so is in R. �

An alternative argument in the Noetherian case uses that a normal ring R is an inter-
section of discrete valuation rings V ⊆ K: one may let V run through the localizations of
R at its height one primes. One needs to see that TraceL/K(s) is in each such V . Note
that V ⊆ K ⊆ L and S ⊆ L, and so we may form the ring W = V [S] ⊆ L generated over
V by the elements of S. In fact, a finite set of generators for S as an R-module will also
be a finite set of generators for W as a V -module. We may work with V and W instead
of R and S. But now W is free over V , since W is finitely generated and torsion-free over
V and V is a principal ideal domain, and so the field trace of multiplication by s may
be calculated using a free basis for W over V as the basis for L over K. The entries of
the matrix of multiplication by s will all be in V , and so the field trace of s is in V , as
required. �
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Lecture of April 14, 2017

Let (R, m, K) be a regular local ring of dimension d and let x1, . . . , xd be a regular
system of parameters, so that (x1, . . . , xd) = m. We want to give a very down-to-earth
criterion for when the regular ring R splits from a module-finite extension S. Before doing
so, we establish some properties of regular sequences on a module.

Proposition. Let R be a ring, let M be an R-module, and let x1, . . . , xd be a sequence
of elements of R. Suppose that x1, . . . , xd is a regular sequence on M .

(a) For all positive integers a1, . . . , ad, xa11 , . . . , xadd is a regular sequence on M , and if∑d
j=1 x

aj
j uj = 0, where the uj ∈M , then for all j, 1 ≤ j ≤ d,

uj ∈ (xa11 , . . . , x
aj−1

j−1 , x
aj+1

j+1 , . . . , x
ad
d )M.

(b) Let a1, . . . , ad be nonnegative integers and let b1, . . . , bd be positive integers such that
bj > aj, 1 ≤ j ≤ d. Then

(xb11 , . . . , x
bd
d )M :M xa11 · · · x

ad
d = (xb1−a11 , . . . , xbd−add )M.

(c) For every integer t ≥ 1, the map

M/(xt−1
1 , . . . , xt−1

d )M →M/(xt1, . . . , x
t
d)M

induced by multiplication by x1 · · · xd is injective.

(d) Let y = x1 · · · xd. For every positive integer t,

(xt1, . . . , x
t
d)M :M (x1, . . . , xd) = (xt1, . . . , x

t
d, y

t−1)M.

(e) The relations on x1, . . . , xd in Rt = R/It, where It = (xt1, . . . . x
t
d), are spanned by the

Koszul relations xjei−xiej and the relations xt−1
i ei, where e1, . . . , ed is the standard

free basis for Rdt .

(f) Let J = (xb11 , . . . , x
bd
d ) for positive integers b1, . . . , bd, suppose that 1 ≤ h ≤ d, and

let a1, . . . , ah be nonnegative integers such that ai < bi, 1 ≤ i ≤ h. Then

h⋂
i=1

(
(xaii ) + J

)
= (xa11 · · · x

ah
h ) + J.

In particular, if h < d, bh+1 = t−1 while the other bi are all t, so that J = (xt−1
h+1)+It,

and a1 = · · · = ah = t− 1, we obtain that for 1 ≤ h < d,

h⋂
i=1

(
(xt−1
i ) + (xt−1

h+1) + It
)

= (xt−1
1 · · ·xt−1

h ) + (xt−1
h+1) + It.
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(g) With the same hypothesis and notation as in part (e), every Rt-linear homomorphism
of (x1, . . . , xd)Rt into Rt is induced by multiplication by some r ∈ Rt. That is, if
we start with the inclusion (x1, . . . , xd)Rt ↪→ Rt then the map induced by applying
HomRt

( , Rt) is surjective. This is equivalent to the assertion that

Ext1
Rt

(
R/(x1, . . . , xd), Rt

)
= 0.

Proof. The first statement in part (a) is the Extra Credit problem in Problem Set #3 from
Math 615, and, given the first statement, the second statement is immediately reduced to
the case where all the ai = 1. We use induction on d. If d = 1 and u1x1 = 0, then u1 = 0.
Suppose that

x1u1 + · · ·+ xdud = 0.

If j = d the result is immediate from the definition of a regular sequence. If not, we write

ud = x1v1 + · · ·+ xd−1vd−1,

and the original relation becomes

x1(u1 + xdv1) + · · ·+ xd−1(ud−1 + xdvd−1) = 0.

The result now follows from the induction hypothesis.

We prove part (b) using induction on the number of elements among a1, . . . , ad that
are not zero. If all of the elements are zero the statement is obvious. Now suppose that
aj > 0. Suppose that

xa11 · · · x
ad
d u =

d∑
i=1

xbii ui

with u, u1, . . . , ud ∈M . Let x =
∏
k 6=j x

ak
k . Then

x
aj
j (xu− xbj−ajj uj) =

∑
i6=j

xbii ui.

From the second statement in part (a), we see that

xu− xbj−ajj uj =
∑
i 6=j

xbii vi,

for suitable vi ∈M , i.e.,

xu = x
bj−aj
j uj +

∑
i 6=j

xbii vi.

This is the same type of equality that we started with, except that the exponent on xj on
the right has been reduced to bj − aj , and one more exponent occurring in x on the left,
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namely, the exponent on xj , is now zero. The desired result is now immediate from the
induction hypothesis.

Part (c) is a special case of part (b): the case where all the bj are t and all the aj are 1.

To prove (d), let J = (xt1, . . . , x
t
d), let Ih = (xd−h+1, . . . , xd), 0 ≤ h ≤ d, where

I0 is interpreted to be (0). Let yh = xd−h+1 · · ·xd, 0 ≤ h ≤ d, where y0 is interpreted
to be 1 and yd = y. We shall prove by induction on h that JM :M Ih = (J, yt−1

h )M .
The case j = 0 is clear: the left hand side is JM :M 0 = M , and the right hand side
is (J, R)M = M . For the inductive step, suppose that we know the result for a certain
h < d and that Ih+1u ⊆ JM . Then Ihu ⊆ JM , and so we can write u in the form
v + yt−1

h w, where v ∈ JM and w ∈M . To complete the argument is suffices to show that

yt−1
h w ∈ yth+1M + JM . But

xd−h(v + yt−1
h w) ∈ JM,

and since v ∈ JM we have that

xd−hy
t−1
h w ∈ JM.

By part (b),
w ∈ (xt1, . . . , x

t
d−h−1, x

t−1
d−h, xd−h+1, . . . , xd)M,

Since the first d−h−1 generators are already in J , the product of yt−1
h with xt−1

d−h is yt−1
h+1,

and the product of yt−1
h with each of the remaining generators is in J , the result is proved.

For part (e), note that a relation on x1, . . . , xd mod (xt1, . . . , x
t
d)R is expressed by an

equation of the form ∑
j

ajxj =
∑
j

bjx
t
j

where the aj , bj ∈ R, and this can be rewritten as∑
j

(aj − bjxt−1
j )xj = 0,

where in sums indexed by j, j runs from 1 to d. This shows that
∑
j(aj − bjx

t−1
j )ej is a

linear combination of Koszul relations on x1, . . . , xd even over R, and subtracting from
the original relation on the xj evidently produces a relation which is a linear combination

of the relations xt−1
j ej .

For part (f) we use induction on h. If h = 1 the result is tautological. At the inductive
step what we need to show is that

(
(µ) + J) ∩

(
(ν) + J) = (µν) + J where µ = xa11 · · ·x

ah
h

and ν = x
ah+1

h+1 . We need only show ⊆, since the opposite inclusion is obvious. For an
element u of the intersection we have u = µv + j = νw + j′ where j, j′ ∈ J and then
µv ∈ (ν) + J and so v ∈

(
(ν) + J

)
: Rµ. From part (b), this is

(xb1−a11 , . . . , xbh−ahh , x
ah+1

h+1 ) + J.
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But µ times any of the first h generators is in J , and so µv ∈ (µν) +J , and the same holds
for u = µv + j.

For part (g) suppose that r1, . . . , rd are elements of R such that there is a homomor-
phism (x1, . . . , xd)Rt → Rt whose values on the images of x1, . . . , xd are represented by
the images of r1, . . . , rd. Then for all i and j,

rjxi − rixj ∈ (xt1, . . . , x
t
d),

and for all j,

rjx
t−1
j ∈ (xt1, . . . , x

t
d).

From part (b), it follows that

rj ∈ (xt1, . . . , x
t
j−1, xj , x

t
j+1, . . . , x

t
d),

and since we are free to alter each rj by subtracting an element of It, we may assume
without loss of generality that rj = sjxj for all j. We then find that sjxjxi − sixixj =
(sj − si)xixj ∈ It for all i, j, and so, again by part (b),

sj − si ∈ (xt−1
i , xt−1

j ) + (xtk : k 6= i, j).

We shall show by induction on h, 1 ≤ h ≤ d, that s1, . . . , sh can be replaced by a single
element s ∈ S such that, mod It, sxi = sixi, 1 ≤ i ≤ h. This is clear if h = 1. Now suppose
that we have proved the result for 1 ≤ h < d. Then we may assume that s1 = · · · = sh = s.
Then sh+1 − s ∈ (xt−1

i , xt−1
h+1) + (xtk : k 6= i, h+ 1) for 1 ≤ i ≤ h, and we may intersect all

of these ideals. The intersection is
(
(x1 · · · xh)t−1

)
+ (xt−1

h+1) + It by part (f). Thus, we
may write

sh+1 − s = (x1 · · · xh)t−1v + xt−1
h+1w + z

where z ∈ It, and so we may let

s′ = sh+1 − xt−1
h+1w − z = s+ (x1 · · · xh)t−1v.

We now see that we can use s′ instead of s or sh+1, since s′xi ≡ sxi mod It for i ≤ h (we
have that xt−1

i divides s′−s), and s′xh+1 ≡ sh+1xh+1 mod It (we have that, mod It, x
t−1
h+1

divides sh+1 − s). This completes the inductive step. The homomorphism coincides with
multiplication by s, where s is the element that is obtained in the case where h = d. �

We give an alternative proof of part (g) of the preceding Proposition due to Yongwei
Yao. This result is more general, but uses machinery other than elementary properties of
regular sequences. The result of part (g) follows from the last statement in part (b) of
the Proposition below in the case where yj = xtj , 1 ≤ j ≤ d, M = R/(x1, . . . , xd)R and
N = R.
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Proposition. Let R be a ring, and let M and N be R-modules.

(a) Let y ∈ R be such that yM = 0 and y is a nonzerodivisor on both R and N . Then
ExtiR/yR(M, N/yN) ∼= Exti+1

R (M, N) for all i ≥ 0.

(b) Let y = y1, . . . , yd ∈ R be a regular sequence on R and N such that (y1, . . . , yd)M =

0. Then ExtiR/(y)

(
M, N/(y)N

) ∼= Exti+dR (M, N). In particular, if pdRM ≤ d, then

for all j > 0, ExtjR/(y)

(
M, N/(y)N

)
= 0.

Proof. The first statement in part (b) is immediate from part (a) by induction on d, and
the second statement in part (b) is immediate from the first statement. It remains only to
prove part (a).

We give a separate proof when i = 0, although the result in this case can also be deduced
along the same lines as in the argument below for the case i > 0.

If i = 0, note that applying HomR(M, ) to the short exact sequence

0 −→ N
y−→ N −→ N/yN −→ 0

yields a long exact sequence part of whose beginning is

HomR(M, N) −→ HomR(M, N/yN)
δ−→ Ext1

R(M, N)
y−→ Ext1

R(M, N) −→ · · · .

Note that HomR(M, N) = 0, that HomR(M, N/yN) ∼= HomR/yR(M, N/yN), and that

multiplication by y is the zero map on Ext1
R(M, N), so that δ induces an isomorphism

HomR(M, N/yN)
∼=−→ Ext1

R(M, N) as required. Henceforth we assume that i ≥ 1.

Let 0 → N → E0 → E1 → · · · → En → · · · be an injective resolution of N , and
let E• be the complex 0 → E0 → E1 → · · · → En → · · · . The cohomology of the
complex HomR(R/yR, E•) is Ext•R(R/yR, N), which we may compute from the projective

resolution 0 → R
y−→ R → 0 of R/yR: thus, Hom(R/yR, N) = 0 and Ext1

R(R/yR, N) ∼=
N/yN , while ExtiR(R/yR, N) = 0 for i ≥ 2. Let Ei denote

HomR(R/yR, Ei) ∼= AnnEi
y,

Note that if E is injective over R, then E = HomR(R/yR, E) is an injective module over
R/yR: in fact, the functor Q 7→ HomR/yR(Q, E) on (R/yR)-modules is isomorphic with
the functor Q 7→ HomR(Q,E) on (R/yR)-modules, since the image of a map Q→ E must
consist entirely of elements killed by y and so must be contained in E.

Since H0(E
•
) = 0, E

0
injects into E

1
as a submodule of the module of cocycles Z1 ⊆ E1

:

the image of E
0

is the module of coboundaries B1. Since E0 is injective over R/yR, it splits

from E
1
, and so E

1′ = E
1
/B1 is injective. Now, Z1/B1 = Z1/E

1
= Ext1

R(R/yR, N) ∼=
N/yN , and is the kernel of the map from E

1′ → E
2
. This yields an exact sequence

0 → N/yN → E
1′ → E

2 → E
3 · · · which is an injective resolution of N/yN over R/yR,

with the numbering shifted by one from the usual numbering.
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If we apply HomR/yR(M, ) to

0→ E
1′ → E

2 → E
3 → · · ·

and take cohomology, we get the modules Ext•R/yR(M, N/yN), with the term of the com-

plex indexed by i+ 1 corresponding to ExtiR/yR(M, N/yN). We get the same cohomology

at the spots indexed by 2, 3, . . . by applying HomR(M, ) to

0→ E0 → E1 → E2 → E3 · · · → .

Again, because M is killed by y, a map of M to Ei is the same as a map of M to Ei.
This cohomology will be Exti+1

R (M, N) as claimed, i ≥ 1. When i = 1, one needs to

make the observation as well that the image of HomR(M, E1) → HomR(M, E2) is the

same as the image of HomR(M, E1
′)→ HomR(M, E2), since E0 is in Ker (E

1 → E
2
) and

0→ E
0 → E

1 → E1
′ → 0 is split exact. �

Lecture of April 17, 2017

Theorem. Let let (R, m, K) be a regular ring and let x1, . . . , xd be a regular system of
parameters. Let It = (xt1, . . . , x

t
d)R and let Rt = R/It. Let y = x1 · · · xd.

(a) The ring Rt has a one-dimensional socle represented by the element yt−1. Hence,
every ideal of R strictly larger than It contains yt−1.

(b) The ring Rt is injective as an Rt-module.
(c) The map of R-modules Rt → Rt+1 induced by multiplication by y mapping R→ R is

injective, and the direct limit E = lim
−→ tRt, where every map is induced by multiplica-

tion by y, is an injective R-module.
(d) If R is complete and E is as in part (c), the map R→ HomR(E, E) is an isomorphism.

Proof. Since R is regular, it is Cohen-Macaulay, and every system of parameters is a regular
sequence.

For (a), since m = (x1, . . . , xd), the result follows from the fact that

It :R (x1, . . . , xd) = It + yt−1R,

which is immediate from part (d) of the first Proposition above.

To prove (b), first note that by part (2) of the third Proposition on the fifth page of the
Lecture Notes of March 22 from Math 615, to establish that Rt is injective it suffices to
show that Ext1

Rt
(Rt/A, Rt) = 0 for every ideal A of Rt. Now if M has a finite filtration

with factors Mj such that ExttRt
(Mj , N) = 0 for all j, then ExttRt

(M, N) = 0 (if there are
just two factors this follows from the long exact sequence for Ext; the general case follows
by induction on the number of factors). Since Rt is Artinian, Rt/A has a finite filtration
in which all the factors are copies of K. It follows that Rt is injective if Ext1

Rt
(K, Rt) = 0.

But this is part (g) of the first Proposition.
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The first statement in part (c) follows from part (d) of the Proposition on the first
page. To see that E is injective, note that by the Proposition on the second page of
the Lecture Notes of March 19 from Math 615, it suffices to show that every map of an
ideal I of R to E extends to R. Since I is finitely generated, the map I → E factors
I → Rt ↪→ E for all sufficiently large t. The map I → Rt kills ItI. For s� 0, Is ∩ I ⊆ ItI
by the Artin-Rees lemma, since Is is contained in arbitrarily high powers of m for s� 0.
Thus, we have an induced map I/(Is ∩ I) � I/ItI → Rt ↪→ Rs for s � 0. Here,
I/(Is ∩ I) ∼= (I + Is)/Is ⊆ R/Is. Since Rs is injective as an Rs-module, this map extends
to a map R/Is → Rs ↪→ E, giving a map R � R/Is → Rs ↪→ E. This map extends the
original map I → Et ⊆ E.

It remains to prove part (d). First note that AnnEIt is the copy of Rt in the direct limit
system. It contains the copy of Rt, obviously. The fact that it agrees with Rt is equivalent
to the assertion that for all s > t, the annihilator of It in R/Is is spanned by the image of
ys−t (since this element spans the image of Rt in Rs in the direct limit system), i.e., that

(xs1, . . . , x
s
d) :R (xt1, . . . , x

t
d) = (xs1, . . . , x

s
d) + ys−t.

But

(xs1, . . . , x
s
d) :R (xt1, . . . , x

t
d) =

⋂
j

(x1, . . . , xs) :R x
t
j =

⋂
j

(
(xs−tj ) + Is

)
,

by part (b) of the first Proposition. The result we need now follows from part (f) of the
first Proposition.

Thus, every endomorphism of E stabilizes the image of Rt for all t. Any endomorphism
of Rt is evidently given by multiplication by a unique element of Rt, and so HomR(E, E)

may be identified with lim
←− t

Rt ∼= R̂ ∼= R, as required. �

Theorem. Let (R, m, K) be a regular local ring and let x1, . . . , xd be a regular system
of parameters in R. Let It = (xt1, . . . , x

t
d)R. Let M be a finitely generated R-module,

and R ↪→ M an injection such that 1 7→ u ∈ M . Then R → M splits if and only if
ItM ∩Ru = Itu for every positive integer t.

In particular if R ⊆ S = M is an R-algebra, R → S splits if and only if ItS ∩ R = It
for every positive integer t. Hence, R → S splits if and only if xt−1

1 · · ·xt−1
d /∈ ItS for all

t.

Proof. Let φ : M → R be a splitting and let I be any ideal of R. Suppose that ru ∈ IM .
Applying φ, we get that rφ(u) ∈ IR = I, so that IM ∩ Ru = Iu for every ideal I of R.
This shows that the stated condition is necessary for splitting.

R ↪→M splits if and only if the induced map HomR(M, R)→ HomR(R, R) is onto, and
this is unaffected by completion, since Hom commutes with flat base change for Noetherian

modules over a Noetherian ring and R̂ is faithfully flat over R. Thus, we may assume that

R is complete without loss of generality. Note also that R/It ∼= R̂/ItR̂ for all t, and that

M/ItM ∼= M̂/ItM̂ for all t.
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Since R/It → M/ItM ∼= (R/It) ⊗R M is injective for all t, we may take a direct limit
and obtain that E → E⊗RM ∼= M⊗RE is injective, where E is constructed as in part (c)
of the preceding Theorem and is injective over R. Applying HomR( , E) we find that the
map HomR(M ⊗R E, E) → HomR(E, E) is surjective, and by the adjointness of tensor
and Hom, the left hand module may be identified with HomR

(
M, HomR(E, E)

)
. By part

(d) of the preceding Theorem, R→ HomR(E, E) is an isomorphism, and so we have that
the map HomR(M, R)→ HomR(R, R) is surjective, as required.

The very last statement follows because xt−1
1 · · ·xt−1

d generates the socle in R/It, and

so every ideal of R strictly larger than It contains xt−1
1 · · ·xt−1

d . Thus, if ItS ∩R is strictly

larger than It, it must contain xt−1
1 · · ·xt−1

d : see part (a) of the preceding Theorem. �

Conjecture (monomial conjecture). Let x1, . . . , xd be be elements of a Noetherian
ring R that generate an ideal of height d. Then for every positive integer t,

xt−1
1 · · · xt−1

d /∈ (xt1, . . . , x
t
d)R.

If one has a counterexample, one can always localize at a minimal prime of (x1, . . . , xd)R
of height d, and so obtain a counterexample in a local ring of dimension d in which
x1, . . . , xd is a system of parameters. One can then complete, and so get a counter-
example in a complete local ring. One can also kill a minimal prime so as to get a new
counter-example in a complete local domain for which x1, . . . , xd is a system of param-
eters. We shall not completely prove the following result: for one of the implications in
mixed characteristic we give a reference.

Theorem. For local domains of a given characteristic (where this may refer to mixed
characteristic p) and a given dimension d, the direct summand conjecture for regular local
rings of that dimension and characteristic is equivalent to the monomial conjecture for
systems of parameters of local rings of that dimension and characteristic.

Proof. Assume the monomial conjecture in that dimension and characteristic. It suffices to
prove the direct summand conjecture for complete regular local rings R of that dimension
and characteristic and module-finite extension domains S of R. Let x1, . . . , xd be a regular
system of parameters for R. Then it is also a system of parameters for S. The monomial
conjecture applied to x1, . . . , xd and S shows that R is a direct summand of S, by the last
statement of the preceding Theorem.

Now let S be a complete equicharacteristic domain and x1, . . . , xd a system of param-
eters for S. Let K be a coefficient field for S. Let R = K[[x1, . . . , xd]] ⊆ S: R is regular
and S is module-finite over R. The direct summand conjecture for R shows that R to S
splits, and the fact that

xt−1
1 · · · xt−1

d /∈ (xt1, . . . , x
t
d)S

now follows from the final statement of the preceding Theorem.

For the mixed characteristic case of this result we refer the reader to [M. Hochster,
The direct summand conjecture and canonical elements in local cohomology modules, J.
of Algebra 84 (1983), 503–553]. �
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We have already established the existence of big Cohen-Macaulay modules in equal
characteristic. This immediately yields the monomial conjecture and, hence, the direct
summand conjecture.

Theorem. The monomial conjecture holds for every local ring that has a big Cohen-
Macaulay module. In fact, the monomial conjecture holds for every sequence of elements
x1, . . . , xd that is a regular sequence on some module M .

Hence the monomial conjecture holds for Noetherian rings that contain a field, and a
regular ring that contains a field is a direct summand of every module-finite extension
algebra.

Proof. First note that if x1, . . . , xd is a regular sequence on M , then

(xt1, . . . , x
t
d)M :M xt−1

1 · · · xt−1
d = (x1, . . . , xd)M

(by part (b) of the first Proposition), and (x1, . . . , xd)M 6= M by the definition of a regular
sequence. Thus,

(xt−1
1 · · · xt−1

d )M /∈ (xt1, . . . , x
t
d)M,

and therefore

xt−1
1 · · · xt−1

d /∈ (xt1, . . . , x
t
d)R.

This proves the statement in the second sentence of the Theorem, and the statement
in the first sentence is then immediate. The monomial conjecture for equicharacteristic
rings follows because it reduces to the local case, and we have shown the existence of big
Cohen-Macaulay modules in the local case for equicharacteristic rings. The final result is
immediate from the preceding Theorem. �

We conclude with some discussion of the notion of the superheight of an ideal I of a
Noetherian ring R. If I is a proper ideal of R, we define the superheight of I as the
supremum of heights of ideals IS, where R → S is a map of Noetherian rings such that
IS is a proper ideal of S. (By convention, the height of the unit ideal is +∞.) We want
to make several observations about this notion.

First, the Krull height theorem is the same as the statement the the superheight of
A = (X1, . . . , Xd) in the polynomial ring Z[X1, . . . , Xd] is d, since the expansions A to
various choices of S are the same as the ideals with at most d generators in the various
Noetherian rings S. It follows that the superheight of any ideal is at most the number of
generators of that ideal. Since two ideals with the same radical have the same height, they
also have the same superheight, and the superheight of I is bounded by the least number
of generators of an ideal J such that J and I have the same radical.

If R → S is such that the height of IS is the superheight of I, this remains true when
we local IS at a suitable minimal prime of IS, complete, and kill a suitable minimal prime.
Thus, in the definition of superheight, it suffices to allow S to run through complete local
domains to which R maps such that IS is primary to the maximal ideal of S.
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Consider the following example: let K be a field, let X1, . . . , Xn and Y1, . . . , Yn be in-
determinates over K, let T = K[X1, . . . , Xn, Y1, . . . , Yn], and let P be the ideal generated
by the size 2 minors of the matrix (

X1 · · · Xn

Y1 · · · Yn

)
.

Let R = T/P . It is known that R is a domain of dimension n + 1. (See 3. in Problem
Set #4, Math 614, Fall 2003, and its solution, where it is shown that the corresponding
algebraic set is irreducible: this at least shows that the radical of the ideal is prime. The
open set where the first row is not 0 is dense. One sees that the dimension is n+1 because
the matrix determines and is determined by the nonzero first row and the scalar whose
product with the first row gives the second row. For a complete treatment of varieties of
this type, see [M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and
the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058].) Let
I = (X1, . . . , Xn)R. Then R/I = K[Y1, . . . , Yn] has dimension n, and so I is a height one
prime ideal of R. Let J = (Y1, . . . , Yn)R. Then S = R/J ∼= K[X1, . . . , Xn], a polynomial
ring in n variables over K. The expansion of I to S has height n. Thus, even though I
has height one, its superheight is n.

The problem of determining the superheight of an ideal is extremely difficult. Let Λ
denote either a field or the integers Z. Let

Rd,t = Λ[X1, . . . , Xd, Y1, . . . , Yd]/Ft,d,

where

Ft,d = Xt−1
1 · · · Xt−1

d −
d∑
j=1

YjX
t
j .

Let I = (X1, . . . , Xd)R. Then the monomial conjecture is precisely equivalent to the
statement that, when Λ = Z, the superheight of I is d − 1. It is easy to see that it must
be d− 1 or d. But the question of which it is remains open if Λ = Z and d ≥ 4. The direct
summand conjecture is known to hold for rings containing a field, and so the superheight
is d−1 if Λ is a field, but this is not obvious. The direct summand conjecture and even the
existence of big Cohen-Macaulay algebras are known in mixed characteristic in dimension
at most three (see [R. Heitmann, The direct summand conjecture in dimension three,
Annals of Math. (2) 156 (2002) 695–712] and [M. Hochster, Big Cohen-Macaulay algebras
in dimension three via Heitmann’s theorem, J. Algebra 254 (2002) 395–408]. Thus the
superheight is known to be d− 1 when Λ = Z if d ≤ 3.

The following result, which we will prove in seminar next semester, is essentially due to
Serre:

Theorem. If P is a prime ideal of a regular ring, the superheight of P is equal to the
height of P .

One can reduce to the case where R is regular local. Then, when S has the form R/Q,
one needs to see that the height of P (R/Q) is at most the height of P . This is Serre’s
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result, in [J.-P. Serre, Algèbre Locale •Multiplicités, Lecture Notes in Math. 11, Springer-
Verlag, Berlin • Heidelberg • New York, 1965]. The general case can be reduced to this
one.

Note that this Theorem is a vast generalization of the Krull height theorem, which is
the case where R = Z[X1, . . . , Xd] and P = (X1, . . . , Xd).


