Math 615, Winter 2017 Problem Set #1: Solutions

1. It is clear that R/m = K, so that m is maximal. In R,,, every 1 — z; is a unit,
and if ¢ < j, the relation x;(1 — x;) = 0 then implies that x;/1 = 0 in R,,. Thus,
R,, =2 R, /mR,, = K, and it follows that m is minimal. If {m} is open, there is some
element f ¢ m such that D(f) = {m}. But f can involve only finitely many x;: say
f=c+cax+ -+ cpr, where c € K — {0} and ¢; € K, 1 < i < n. There is a
homomorphism R — K such that x; — 0, 1 < ¢ < n and z; — 1, ¢ > n: this map
preserves the relations x; = x;x; for ¢ < j. The kernel is a maximal ideal in D(f) and is
different from m, a contradiction.

EXTRA CREDIT 1. Consider any prime ideal P of R. If xj, ¢ P, then z5(1 —z;) =0
for h < 4, which shows that 1 — z; € P for all # > h. Thus, the elements x; such that
x; ¢ P form an upper interval, and for every such j, z; — 1 € P. Except for P = m,
at least one x; is not in P, and there will be a least such, say x,,. Then x; € P for all
i < n, while z; — 1 € P for all i« > n. Call this prime m,,. The quotient R/m,, is just K,
since in the quotient every x; is identified either with 0 or 1. Thus, every prime of R is
maximal, and is one of the maximal ideals in the set {m} U {m1,mo, ms,... ,my,,...}. If
f=0-zp—1)xyn =Ty —xp_1,n > 2, then D(f) = {m,} is open (as well as closed), as is
my = D(x1). Also, every open set that contains m has finite complement: it contains D(g)
for some g = c+c121+- - -+ cpzy, where ¢ € K —{0} and all other ¢; € K,and we have that
D(g) O {m; : i > n}. Hence, Spec(R) is the one point compactification of a countably
infinite discrete space. Thus, X is homeomorphic with {0,1,1/2,1/3,... ,1/n,...} if we
let m,, correspond to 1/n for all n > 1 and let m correspond to 0.

2. Since u™ € R, S is integral over R, and, by the lying over theorem, the map is
surjective. The scheme-theoretic fiber T = k ®pg S, where Kk = Rp/PRp, is then nonzero,
and T' = k[v], where v is the image of u. By the Euclidean algorithm, there are integers
a, b such that am + bn = 1. We must show Spec (T") has at most one point. If v™ =0 or
v"™ =0 in K, killing v does not effect Spec (T"), which will be the same as Spec (k). If both
are not 0, v is a unit and v = (v™)*(v")? € K, so that T = k[v] = k. O

3. (a) Choose a system of parameters x1, ... ,x; € m for R. Since m = Rad (z1, ... ,z;)R,
S/mS has the same dimension, say d, as as S/(x1, ... ,x%)S, and if we choose elements
Y1, .- ,Yq in S whose images in S/(x1, ... ,x)S form a system of parameters, we have

that n C Rad (z1, ... , Tk, Y1, - - - ,Ya)S. Thus, dim (S) < k+d ,and k > dim (S) —d. O

(b) Let m be the maximal ideal of R corresponding to . Then dim f~!(y) = dim (S/mS) =
dim (S/mS),, for some maximal ideal n O m.S, which equals dim (S,,/m.S,) > dim (S,,) —
dim (R,,) (by (a)) = dim (S) — dim (R) = dim (X) — dim (V).

4. The “if” part is true: by the lying over theorem the map is surjective, and the scheme-
theoreric fibers are module-finite over a field: these rings are zero-dimensional Noetherian
rings, and therefore are Artin and have only finitely many primes, all of which are maximal.
The “only if” part is false: see the solution of the next problem.

5. Since f is bijective the fibers are 0-dimensional, and K (X) is algebraic over K(Y).
Since there is one point in every fiber, and the extension is separable, [K(X) : K(Y)] =1,



ie, K(X) = K(Y). But the bijectivity does not imply that S is contained in the the
integral closure T’ of R in its fraction field. We use the ring R = K[t? — 1, t3 — t] from
Problem 6. to give a counter-example. The integral closure of R in its fraction field is
K = R[t]. By the results of 6, R is the coordinate ring of Y = V(y? —2? —23) C A%. The
map R C K[t, 1/(t+ 1) induces a bijection of X = A}, —{—1} with Y. Note that there is
at least one point of AL lying over a given point of Y, since K[Y] C K[t] is module-finite.
Over points (x,y) of Y where x # 0, one can recover t as y/x. Over the point where
x = 0 (y must be 0 as well), one must have t2 — 1 = 0, and so one gets only the point
corresponding to t = 1 in X. While K(Y) = K(X), it is not true that K[X] is contained
in the integral closure T'= K|t] of K[Y] in K(Y).

6. The defining equation y? — 22 — 23 of Y is irreducible, since 22 + 23 = 22(1 + ) is not
a perfect square in K (z). Hence, the quotient ring is a 1-dimensional domain R. Under
the K-algebra map K|x,y] — K]Jt] such that x + t> — 1 and y + t3 — ¢, the element
Po? - (Bt -1) - -1 = -2 -1—-(t* 1)) =0, and
so there is a K-algebra map h: R — K[t> — 1,#3 —t] C K[t]. Since this is a surjection of
1-dimensional domains, Ker (h) = (0), and h is an isomorphism. Since t = (t3 —t)/(t> — 1)
is in the fraction field and satisfies, e.g., 2> — 2 — (t3 —t) = 0, t is in the integral closure
and, since K[t] is normal, T' > K[t|]. Note that ¢ ¢ R, since no element of R has degree
one. We may identify R with K[t? — 1,#3 —t] and T with K[t]. Given any polynomial
F € K]Jt] of degree N > 1, we can write N = 3a + 2b for integers a, b € N, and then
deg(F — (t* — t)*(t? — 1)?) < deg(F). By induction on the degree, T' = K|[t] = R + KT,
and so dix (T/R) = 1. Hence, g € R is in A iff gt € R. Then t? — 1 € A, since t3 —t € R,
and 3 —t € A, since (12 — t)t = (t?)* — (t*) € R, since t* = (#* — 1) + 1. Thus,
2AD (12 —t,t2 —1)R = (x, y) R, which is maximal. Hence, 2 = (3> — ¢, t* — 1)R.

EXTRA CREDIT 2. The matrix (In | v) where I, is an n x n identity matrix, | indicates
concatenation, and the column v has entries ¢, ... , ¢, mapsto (=1)""1(c1, —ca, ..., cu, 1).
Multiply the first row by ¢ # 0 to get any vector with last entry # 0 in the image
of f. By symmetry, all of A% — {0} is in the image of the matrices of rank n. All
matrices of rank < m map to 0. Let « € G = GL(n + 1, K) act on X by right mul-
tiplication, i.e., u +— pa, and on Y (viewed as row vectors) via v +— wvdet(a). Then
f(pa) = f(p)det(ar), since we may identify f(u) with A™(u). Any two n x (n + 1) ma-
trices of rank n are in the same orbit of G (bring each to reduced column echelon form,
which will be (In | 0) for both, by elementary column operations — these are given by
right multiplication by elements of G). Hence, all fibers over y € A% — {0} are iso-
morphic. Since dim f~}(Y) = (n? +n) — (n+ 1) = n? — 1 for y in an open set # 0,
dim f71(y) =n?—1forally € Y — {0}. Let V. = f~1(0) = {u : rank (u) < n}, and
rank (p) < niff Im(pu) € W C K™ with dim g (W) = n—1. Thus, rank (u) < n iff 4 factors
Kni1 — Kpo1 — Ky, ie., p= fywherevyisnx(n—1)and §is (n—1)x(n+1). This gives
a surjection A" x AUV sy 6 that Vs irreducible, and dim (V) = dim (U),
where U C V is the open set such that the first n — 1 rows are independent. For matrices in
U, the last row is uniquely a linear combination of the first n — 1 rows, which gives a bijec-
tion A%H)(nfl) x A1 — U such that (6, w) maps to the matrix whose first n—1 rows give
6 and whose last row is wf. Hence, dim f~1(0) = (n+1)(n—1)+ (n—1) = (n+2)(n—1).



