
Math 615, Winter 2017 Problem Set #1: Solutions

1. It is clear that R/m ∼= K, so that m is maximal. In Rm, every 1 − xj is a unit,
and if i < j, the relation xi(1 − xj) = 0 then implies that xi/1 = 0 in Rm. Thus,
Rm
∼= Rm/mRm

∼= K, and it follows that m is minimal. If {m} is open, there is some
element f /∈ m such that D(f) = {m}. But f can involve only finitely many xj : say
f = c + c1x1 + · · · + cnxn where c ∈ K − {0} and ci ∈ K, 1 ≤ i ≤ n. There is a
homomorphism R → K such that xi 7→ 0, 1 ≤ i ≤ n and xi 7→ 1, i > n: this map
preserves the relations xi = xixj for i ≤ j. The kernel is a maximal ideal in D(f) and is
different from m, a contradiction.

EXTRA CREDIT 1. Consider any prime ideal P of R. If xh /∈ P , then xh(1− xi) = 0
for h ≤ i, which shows that 1 − xi ∈ P for all i ≥ h. Thus, the elements xj such that
xj /∈ P form an upper interval, and for every such j, xj − 1 ∈ P . Except for P = m,
at least one xi is not in P , and there will be a least such, say xn. Then xh ∈ P for all
i < n, while xi − 1 ∈ P for all i ≥ n. Call this prime mn. The quotient R/mn is just K,
since in the quotient every xi is identified either with 0 or 1. Thus, every prime of R is
maximal, and is one of the maximal ideals in the set {m} ∪ {m1,m2,m3, . . . ,mn, . . . }. If
f = (1− xn−1)xn = xn− xn−1, n ≥ 2, then D(f) = {mn} is open (as well as closed), as is
m1 = D(x1). Also, every open set that contains m has finite complement: it contains D(g)
for some g = c+c1x1+ · · ·+cnxn, where c ∈ K−{0} and all other ci ∈ K,and we have that
D(g) ⊇ {mi : i > n}. Hence, Spec (R) is the one point compactification of a countably
infinite discrete space. Thus, X is homeomorphic with {0, 1, 1/2, 1/3, . . . , 1/n, . . . } if we
let mn correspond to 1/n for all n ≥ 1 and let m correspond to 0.

2. Since um ∈ R, S is integral over R, and, by the lying over theorem, the map is
surjective. The scheme-theoretic fiber T = κ⊗R S, where κ = RP /PRP , is then nonzero,
and T = κ[v], where v is the image of u. By the Euclidean algorithm, there are integers
a, b such that am+ bn = 1. We must show Spec (T ) has at most one point. If vm = 0 or
vn = 0 in K, killing v does not effect Spec (T ), which will be the same as Spec (κ). If both
are not 0, v is a unit and v = (vm)a(vn)b ∈ κ, so that T = κ[v] = κ. �

3. (a) Choose a system of parameters x1, . . . , xk ∈ m for R. Since m = Rad (x1, . . . , xk)R,
S/mS has the same dimension, say d, as as S/(x1, . . . , xk)S, and if we choose elements
y1, . . . , yd in S whose images in S/(x1, . . . , xk)S form a system of parameters, we have
that n ⊆ Rad (x1, . . . , xk, y1, . . . , yd)S. Thus, dim (S) ≤ k + d ,and k ≥ dim (S)− d. �

(b) Letm be the maximal ideal of R corresponding to y. Then dim f−1(y) = dim (S/mS) =
dim (S/mS)n for some maximal ideal n ⊇ mS, which equals dim (Sn/mSn) ≥ dim (Sn)−
dim (Rm) (by (a)) = dim (S)− dim (R) = dim (X)− dim (Y ).

4. The “if” part is true: by the lying over theorem the map is surjective, and the scheme-
theoreric fibers are module-finite over a field: these rings are zero-dimensional Noetherian
rings, and therefore are Artin and have only finitely many primes, all of which are maximal.
The “only if” part is false: see the solution of the next problem.

5. Since f is bijective the fibers are 0-dimensional, and K(X) is algebraic over K(Y ).
Since there is one point in every fiber, and the extension is separable, [K(X) : K(Y )] = 1,



i.e., K(X) = K(Y ). But the bijectivity does not imply that S is contained in the the
integral closure T of R in its fraction field. We use the ring R = K[t2 − 1, t3 − t] from
Problem 6. to give a counter-example. The integral closure of R in its fraction field is
K = R[t]. By the results of 6, R is the coordinate ring of Y = V(y2−x2−x3) ⊆ A2

K . The
map R ⊆ K[t, 1/(t+ 1) induces a bijection of X = A1

K −{−1} with Y . Note that there is
at least one point of A1

K lying over a given point of Y , since K[Y ] ⊆ K[t] is module-finite.
Over points (x, y) of Y where x 6= 0, one can recover t as y/x. Over the point where
x = 0 (y must be 0 as well), one must have t2 − 1 = 0, and so one gets only the point
corresponding to t = 1 in X. While K(Y ) = K(X), it is not true that K[X] is contained
in the integral closure T = K[t] of K[Y ] in K(Y ).

6. The defining equation y2 − x2 − x3 of Y is irreducible, since x2 + x3 = x2(1 + x) is not
a perfect square in K(x). Hence, the quotient ring is a 1-dimensional domain R. Under
the K-algebra map K[x, y] → K[t] such that x 7→ t2 − 1 and y 7→ t3 − t, the element
y2 − x2 − x3 7→ (t3 − t)2 − (t2 − 1)2 − (t2 − 1)3 = (t2 − 1)2

(
t2 − 1 − (t2 − 1)

)
= 0, and

so there is a K-algebra map h : R � K[t2 − 1, t3 − t] ⊆ K[t]. Since this is a surjection of
1-dimensional domains, Ker (h) = (0), and h is an isomorphism. Since t = (t3− t)/(t2− 1)
is in the fraction field and satisfies, e.g., z3 − z − (t3 − t) = 0, t is in the integral closure
and, since K[t] is normal, T ∼= K[t]. Note that t /∈ R, since no element of R has degree
one. We may identify R with K[t2 − 1, t3 − t] and T with K[t]. Given any polynomial
F ∈ K[t] of degree N > 1, we can write N = 3a + 2b for integers a, b ∈ N, and then
deg

(
F − (t3 − t)a(t2 − 1)b

)
< deg(F ). By induction on the degree, T = K[t] = R + Kt,

and so diK(T/R) = 1. Hence, g ∈ R is in A iff gt ∈ R. Then t2 − 1 ∈ A, since t3 − t ∈ R,
and t3 − t ∈ A, since (t3 − t)t = (t2)2 − (t2) ∈ R, since t2 = (t2 − 1) + 1. Thus,
A ⊇ (t3 − t, t2 − 1)R = (x, y)R, which is maximal. Hence, A = (t3 − t, t2 − 1)R.

EXTRA CREDIT 2. The matrix
(
In | v

)
where In is an n×n identity matrix, | indicates

concatenation, and the column v has entries c1, . . . , cn maps to (−1)n−1(c1,−c2, . . . , ±cn, 1).
Multiply the first row by c 6= 0 to get any vector with last entry 6= 0 in the image
of f . By symmetry, all of An+1

K − {0} is in the image of the matrices of rank n. All
matrices of rank < n map to 0. Let α ∈ G = GL(n + 1, K) act on X by right mul-
tiplication, i.e., µ 7→ µα, and on Y (viewed as row vectors) via v 7→ v det(α). Then
f(µα) = f(µ) det(α), since we may identify f(µ) with ∧n(µ). Any two n × (n + 1) ma-
trices of rank n are in the same orbit of G (bring each to reduced column echelon form,
which will be

(
In | 0

)
for both, by elementary column operations — these are given by

right multiplication by elements of G). Hence, all fibers over y ∈ An+1
K − {0} are iso-

morphic. Since dim f−1(Y ) = (n2 + n) − (n + 1) = n2 − 1 for y in an open set 6= ∅,
dim f−1(y) = n2 − 1 for all y ∈ Y − {0}. Let V = f−1(0) = {µ : rank (µ) < n}, and
rank (µ) < n iff Im(µ) ⊆W ⊆ Kn with dim K(W ) = n−1. Thus, rank (µ) < n iff µ factors
Kn+1 → Kn−1 → Kn, i.e., µ = βγ where γ is n×(n−1) and β is (n−1)×(n+1). This gives

a surjection An(n−1)
K ×A(n+1)(n−1)

K � V , so that V is irreducible, and dim (V ) = dim (U),
where U ⊆ V is the open set such that the first n−1 rows are independent. For matrices in
U , the last row is uniquely a linear combination of the first n−1 rows, which gives a bijec-

tion A(n+1)(n−1)
K ×An−1

K � U such that (θ, w) maps to the matrix whose first n−1 rows give
θ and whose last row is wθ. Hence, dim f−1(0) = (n+ 1)(n− 1) + (n− 1) = (n+ 2)(n− 1).


