
Math 615, Winter 2017 Problem Set #2: Solutions

1. We may replace n by a large power of 2, say 2k ≥ n, and assume that J2k = 0 for some
k. We use induction on k. The case k = 1 follows from the definition. For the inductive
step, we have, if J2k+1

= 0, that there is a (resp., at most one, resp., a unique) lifting to

T1 = T/J2k , since (JT1)2
k

= 0 (by the induction hypothesis). But then there is a (resp.,

at most one, resp., a unique) lifting to T , since (J2k)2 = 0 in T .

2. (a) Because all exponents on all Xi are divisible by p, they contribute 0 to the partials,
and the Jacobian matrix J equals that of their linear forms, which consists of their coeffi-
cients. Since the linear forms are linearly independent, so are the columns of J (a matrix
of scalars over K), and so det(J ) ∈ K − {0}. Thus, the map is étale. �

(b) If h = 0 the quotient, R, is étale. If h = 1, the quotient R[x]/(c) is 0, hence, étale
if c 6= 0 and smooth but not étale if c = 1. Assume h ≥ 2. We need the invertibility
of the derivative hxh−1 − 1 modulo xh − x + c. Modulo hxh−1 − 1, xh − x + c becomes
(1/h)x− x+ c. We have an étale extension unless x = c/(1− 1/h) satisfies hxh−1− 1 = 0.
Thus, the condition is that hch−1/(1− 1/h)h−1 − 1 6= 0 or ch−1 6= (1− h)h−1/hh.

3. (a) By base change, S1 ⊗R S2 has the property needed (smooth, unramifeid, or étale)
over S2, and S2 has the property needed over R. Thus, we may compose. �

(b) Write di for the universal R-derivation dSi/R : Si → ΩSi/R. Define an R-linear map
D : S1⊗RS2 → S2⊗RΩS1/R⊕S1⊗RΩS2/R, which we call Ω, using the map induced by the
R-bilinear map that sends (s1, s2) 7→ s2⊗d1(s1)+s1⊗d2(s2), which will then be the value
of D(s1 ⊗ s2). Then D is R-linear. Since the elements of the form s1 ⊗ s2 span, to check
that D is a derivation it suffices to check this for (s1⊗s2)(s′1⊗s′2), which is straightforward.
To complete the proof, it suffices to show that D is universal. Let d : S1 ⊗ S2 → W be
any other R-derivation. Composing with the map S1 → S1 ⊗ S2 gives an R-derivation

S1 →W that factors uniquely S1
d1−→ ΩS1/R

L1−→W . We may construct L2 simiilarly, and
idS2
⊗ L1 ⊕ idS1

⊗ L2 gives an S1 ⊗R S2 linear map L : Ω→W such that L ◦D = d. It is
clear that L is the only map that can work, since d(s1 ⊗ s2) = s2d(s1) + s1d(s2) must be
the image of s2 ⊗ d1(s1)⊕ s1d2(s2).

4. Let J be the annihilator of the finitely generated ideal I = (h1, . . . , hk)R. If I + J is
proper, it is contained in a maximal ideal m. Then IRm ⊆ mRm and IRm = (IRm)2. By
Nakayama’s Lemma, I = 0 in Rm. For each generator hi of I, let gi ∈ R−m kill hi, and so
g =

∏
i gi ∈ R−m kills I, contradicting that J ⊆ m. Hence, I+J = R, and we can choose

e ∈ I with 1 − e ∈ J ,, so that (1 − e)h = 0 for all h ∈ I, and so he = h. Then e ∈ I is
idempotent and I = eR. When S is finitely generated by s1, . . . , sn, I = Ker (S⊗RS → S)
is finitely generated by the si ⊗ 1− 1⊗ si, and so I = I2 (class criterion for unramifed) iff
I is generated by an idempotent.

5. Suppose that we have an R-algebra map SQ → T/J with J2 = 0. Since S is formally
smooth, the map S → SQ → T/J lifts uniquely to a map S → T . Since the image of S−Q
is invertible in T/J and J2 = 0, it is invertible in T . Hence, this induces a lifting SQ → T ,
and since its values on S are uniquely determined, the same is true for its values on SQ.
(Alternatively, but not from directly from the definition, R to S is formally étale, so are



all localizations R→ SQ, since each S → SQ is formally étale, and we may compose.) We
prove the converse when S is finitely presented. In that case S is étale iff it is flat and
unramified over R. Since SQ is formally unramified for all Q, every (ΩS/R)Q = 0, and so
ΩS/R = 0. By the Jacobian criterion for smoothness, S is smooth near Q if and only if
SQ is formally smooth, and if S is smooth near Q we will have that Sb is flat over Ra and
hence over R, for a 6∈ P with invertible image in Sb with b /∈ Q. This implies that SQ is
flat over R. Since whenever SQ is formally étale it is formally smooth, it follows that every
SQ is flat over R, and so S is flat over R.

In considering whether a map from R to (S,Q) has the property of being formally smooth,
or formally unramified, or formally étale, it does not matter whether we consider S as an
algebra over R or RP because the R-homomorphisms from S to any R-algebra T are the
same as the RP -homomorphisms, since the elements of R− P map to units in (S,Q) and
hence to units in T/J and so to units in T (since J is nilpotent).

6. Note that the equation y2p + uyp − v is irreducible over k[y, u, v] (the quotient is
k[y, u]). Hence, it is irreducible and generates a prime ideal over the localization K[y]. It
is not a separable equation since both of the exponents on y are divisible by p. For the
final statement, that L contains an element w of K1/p not in K. Then [K[w] : K] = p,
and so [L : K[w]] = 2. It follows that y satisfies a monic quadratic equation over K[w].
But if we enlarge K[w] to all of K1/p we know the quadratic equation that y satisfies:
y2+u1/py−v1/p = 0, which is clearly irreducible over K1/p = k(u1/p, v1/p). This quadratic
is unique, so we must have that u1/p, v1/p are both in K[w], a contradiction, since adjoining
both produces an extension of K of degree p2. The exclusion of p = 2 is not needed.

EXTRA CREDIT 3. As in class, the lifting problem from T/I to T when I2 = 0 comes
down to solving equations Fj(X1 + δ1, . . . Xn + δn) = 0 for the δi in I, where one replaces
the coefficients by their images in T and the Xi by arbitrarily chosen liftings of their images
in T/I to T . The image of Fj(x1, . . . , xn) is then vj ∈ I. By Taylor’s formula, the image
of Fj(X1 + δ1, . . . Xn + δn) = 0 is v +

∑n
i=1(∂Fj/∂Xj)δi. In matrix form, this equation

is −(v1, . . . , vn) = (δ1, . . . , δn)
(
∂Fj/∂Xi

)
Here, siince the δi ∈ I, which is a T/I module,

the action of the matrix
(
∂Fj/∂Xi

)
is determined by its image matrix J over T/I, and

so this action is determined by the image J over S. Hence, it is sufficient for the map to
be unramified (resp., smooth) if the action of J by right multiplication is injective (resp.,
surjective) for all modules M . Thus, one needs to show that the action of a matrix on the
right is injective for all modules iff its action on the left is surjective for all modules, and
conversely. See the solution to Extra Credit 4.

EXTRA CREDIT 4. If m ≤ n the map is injective for all n if and only ithe m ×m
minors of the matrix generate the unit ideal. if m ≥ n, the map is surjective for all M
if and only if the n × n minors generate the unit ideal. These conditions are necessary,
because if the minors do not generate the unit ideal, one can choose a maximal ideal P that
contains them all, and take M = R/P . The condition for injectivity (resp., surjectivity)
is that the matrix have rank m (resp., n). The conditions are sufficient because if there
is a nonzero kernel (resp., a cokernel) there will still be one after localizing at a suitable
maximal ideal. But then, as in class, one may bring the matrix to the form where there
are all ones on the main diagonal and zeroes elsewhere by elementary row and column



operations, and the issues are unaffected. The result needed for Extra Credit 3. is now
immediate by considering the matrix and its transpose. There are many other correct
characterizations. A matrix gives a map that remains surjective after tensoring with any
module if and only if it is sujrective, by the right exactness of tensor. It is also true that
a matrix gives a map that remains injective if and only if the cokernel is locally free (this
follows from the characterization of freeness of the cokernel in the quasilocal case given in
class). Moreover, for a finitely presented module, being flat, being projective, and being
locally free are equivalent properties. �

EXTRA CREDIT JC. This is an open question for all n ≥ 2.


