
Math 615, Winter 2017 Problem Set #4 Solutions

1. (a) For every subring A of R finitely generated over the prime ring Im (Z → R), we
may consider the localization (B, PB) of B at the contraction of P to B. Clearly, (R, P )
is the directed union of the rings B, PB), and the inclusion maps are local. Choose a finite
presentation S = T/I for S, where T = R[X1, . . . , Xn] is a polynomial ring over R, and
I = (F1, . . . , Fm). Choose B0 sufficiently large that F1, . . . , Fm ∈ B0[X1, . . . , Xn], and
for any B ⊇ B0, let TB = R[X1, . . . , Xn], let IB = (F1, . . . , Fm)TB , and let SB = TB/I

2
B .

Since T/I is smooth over R, T/I2 � T/I splits over R. Suppose that the image of Xj

under T → T/I → T/I2 is represented by Xj +
∑m
h=1GjhFh (it must have this form).

Moreover, (∗) for every i, Fi(X1 +
∑m
h=1G1hFh, . . . , Xn +

∑m
h=1GnhFh) must be in I2,

and so must be expressible as
∑
j,kHijkFjFk. Choose B ⊇ B0 large enough to contain

all the coefficients of the Gjh and the Hijk. Then we can define TB/IB → TB/I
2
B so that

under TB → TB/IB → TB/I
2
B the image of Xj is represented by Xj +

∑m
h=1GjhFh. This

gives a well-defined map because (∗) continues to hold in TB . Thus, we may take Rλ0
= B,

and S0 = TB/IB . We have that SB is smooth over B, that S = R⊗B SB . �
(b) Let P1, . . . , Pn be the minimal primes of R. Since R is reduced, their intersection is
0. Thus, R embeds in

∏n
i=1(R/Pi) ⊆

∏n
i=1 κi, where κi = frac(R/Pi). Since S is R-flat,

S = S⊗RR embeds in S⊗R
∏n
i=1 κi

∼=
∏n
i=1 κi⊗RS, and the rings κi⊗RS are the generic

fibers and so are reduced. �
(c) S is a localization of a smooth R-algebra, and so it suffices to show the result for
smooth R-algebras, since a localization of a reduced ring is reduced. If Q ∈ Spec (S) is in
the support of Sz, where z is nilpotent, then we may localize at the contraction P of S to
R, and the image of z in SP is a nonzero nilpotent. Now represent RP as a direct limit
as in part (a), and S as a direct limit of smooth extensions of these. Then each Sλ in the
direct limit system is reduced, and it follows that S is reduced. �
(d) The Henselization is a direct limit of pointed étale extensions. Each pointed étale
extension is essentially smooth, and so reduced. Since a direct limit of reduced rings is
reduced, the result follows. �

2. The polynomial Y 2−X2−X3 is irreducible in C[X,Y ], since X2 +X3 = X2(1 +X) is
not a perfect square in the C[X]. Hence, C[x, y] = C[X,Y ]/(Y 2 −X2 −X3) is a domain
of dimension one, and D = C[x, y]m where m = (x, y) is a local domain of dimension one.
In the Henselization, 1 + x has two square roots, f and −f , corresponding to the roots
1,−1 of the equation Z2 − 1 = 0. Then (y − xf)(y + xf) = 0 in the quotient, but neither
factor is 0: there is a local C[[x]]-homomorphism D → C[[x]] that sends y 7→ ±xg where
g = 1 + (1/2)x + · · · , where g2 = 1 + x. One of these maps kills y − xf but not y + xf ,
while the other kills y + xf but not y − xf . �

3. Let Z = (Zij) be an s×s matrix of unknowns. Then it suffices to show that the system
of s2 equations in s2 unknowns given by the matrix equation (Is + Z)n = Is + M , where
M has entries in P , has a solution in P . Mod P , Z = 0 is a solution, and so it suffices
to show that the s2 × s2 Jacobian matrix has a determinant that is a unit. The equation
may be written in matrix form as nZ + Q(Z) −M = 0 where Q(Z) involves only terms
that are of degree 2 and higher in the Zij . The Jacobian matrix is therefore nIs2 , which
will be invertible precisely when n is a unit.



4. Assume R is separable. Then for each minimal prime P of R, RP is separable, and RP
is the fraction field of R/P . Hence, R/P ⊆ frac(R/P ) is separable. In the other direction,
since R ↪→

∏
P (R/P ) as P runs through the minimal primes of R, it suffices to show that

K →
∏
P (R/P ) is separable. Let K ′ be a finite purely inseparable extension of K. Then

K ′ ⊗K (
∏
P R/P ) ∼=

∏
P (K ′ ⊗K R/P ) (this needs that K ′ is a finite-dimensional vector

space over K) and since every factor is reduced, so is the product. Alternatively, one can
use that for any field extension L ⊇ K, L⊗

∏
P (L⊗K R/P ) is injective.

Note that, more generally, if V are vector spaces over K and Wj is a possibly infinite
family of such vector spaces, we have a map V ⊗K

∏
jWj →

∏
j(V ⊗K Wj) that sends

v ⊗ θ to the element whose j th coordinate is v ⊗ θj . If V is finite-dimensional with basis
v1, . . . , vs, this map is bijective: a typical element of

∏
j(V ⊗KWj) has j th coordinate of

the form v1 ⊗ w1j + · · · vs ⊗ wsj , and the inverse takes this element to the sum of the of
the elements vi ⊗ θi, where θi has j th coordinate wij . If V is not finite-dimensional the
map is injective, since for every finite-dimensional V0 inside V , we have V0 ⊗K

∏
jWj ↪→∏

j(V0 ⊗K Wj) ↪→
∏
j(V ⊗K Wj) and the composite map is the same as V FINISH.

5. R must be Henselian. Let S be a module-finite extension of R. The maximal ideals of
S/NS correspond bijectively to those of S, since NS consists of nilpotents, and since R/N
is Henselian, S/NS decomposes as a product of quasilocal rings, one for each maximal ideal
of S (or S/NS). Since idempotents lift uniquely modulo nilpotents, all of the idempotents
yielding the product decomposition of S/NS lift to S, and so S also decomposes into such
a product.

6. For the domain (resp., reduced) property, note that if xy = 0 (resp. xk = 0) for nonzero

x, y (resp., x) we have that x, y (resp., x) /∈ mnR̂ for large n. But then XY = 0 (resp.

Xk = 0) has a solution in R that is congruent to the original solution modulo mnR̂, which
yields elements x1, y1 (resp., x1) of R not in mn such that x1y1 = 0 (resp., xk1 = 0). �

EXTRA CREDIT 7. Since localizations are formally étale, every local ring of R is
formally smooth over K and we may assume that R is local, since it suffices to check
regularity locally. One has a coefficient field L ⊆ R/P 2 (which is complete), and by the
structure theory for complete local rings, L contains K, since K is perfect. Let x1, . . . , xd
be a minimal set of generators of P . Then we have a K-algebra surjection R � R/P 2 ∼=
L[X1, . . . , Xd]/m

2, where X1, . . . , Xd are indeterminates, m = (X1, . . . , Xd), and the
image of xi maps to the image of Xi. Since R is formally smooth over K this lifts to a
map θn : R → L[X1, . . . , Xd]/m

n+1 = Sn for all n. Let mn be the maximal ideal of Sn.
Since the images of the xi generate mn/m

2
n, by Nakayama’s lemma they generate mn. It

follows from the part (c) of the Proposition stated at the bottom of p. 7 of the Supplement
on the Structure Theory of Complete Local Rings that the map R/Pn → Sn is surjective.
Hence, `(R/Pn) ≥ `(Sn), which is a polynomial of degree d in n for n� 0. It follows that
dim (R) ≥ d, the least number of generators of P , while dim (R) ≤ d is automatic. Thus,
dim (R) = d, and R is regular. �

EXTRA CREDIT 8. We know from Problem 2. that we may assume both rings are

domains. It suffices to prove that if R̂ is not normal, then R is not normal. Suppose that

y/x is an element of the fraction field of R̂ not in R̂, where x 6= 0. Then y/x satisfies a



monic polynomial over R̂ of degree, say, n. Multiplying by xn, we obtain a polynomial
equation (∗) yn + z1y

n−1x + · · · + ziy
n−ixi + · · · + znx

n = 0. Since y/x /∈ R, we have
that y /∈ xR, and so there exists N � 0 such that y /∈ xR+mN and x /∈ mN , where m is

the maximal ideal of R̂. Let Y,X,Zi be variables, and approximate the solution y, x, zi of

the equation (∗∗) Y n+Z1Y
n−1X+ · · ·+ZiY

n−iXi+ · · ·+ZnX
n = 0 we have over R̂ by

a solution in the approximation ring R, call it y′, x′, z′i, that is congruent to the original

solution mod mN . Then y′ /∈ x′R̂ + mN , and so y /∈ xR,and x′ /∈ mN , so that x′ 6= 0.
Hence, y′/x′ is an element of the fraction field of R. Since y′/x′ satisfies (∗∗), by dividing
by x′

n
we see that y′/x′ is integral over R, a contradiction. �


