Math 615, Winter 2017 Problem Set #4 Solutions

1. (a) For every subring A of R finitely generated over the prime ring Im (Z — R), we
may consider the localization (B, Pg) of B at the contraction of P to B. Clearly, (R, P)
is the directed union of the rings B, Pg), and the inclusion maps are local. Choose a finite
presentation S = T'/I for S, where T'= R[X1, ..., X,] is a polynomial ring over R, and
I = (Fy,...,F,). Choose By sufficiently large that Fi, ..., F,, € By[Xy, ... ,X,], and
for any B D By, let T = R[ X1, ..., X,], let Ig = (Fy, ... ,F,,)Tg, and let Sp = Tg/I%.
Since T'/I is smooth over R, T/I? — T/I splits over R. Suppose that the image of X;
under T' — T'/I — T/I? is represented by X; + >_}" | G;,Fy, (it must have this form).
Moreover, (x) for every i, Fy(X1+ > 1 GinFp, ..., Xp + Yon—y GnnF)) must be in 12,
and so must be expressible as > ik H;j, F;Fy,. Choose B 2 By large enough to contain
all the coefficients of the G;;, and the H; ;. Then we can define Tg/Ip — TB/I% so that
under Tp — T /Ip — Tp/I% the image of X is represented by X; + >oney GjpFy. This
gives a well-defined map because (x) continues to hold in T5. Thus, we may take Ry, = B,
and Sy = Tp/Ip. We have that Sp is smooth over B, that S = R®p Sp. O

(b) Let Py, ..., P, be the minimal primes of R. Since R is reduced, their intersection is
0. Thus, R embeds in [[_,(R/P;) C [1i_, ki, where r; = frac(R/P;). Since S is R-flat,
S =S®rRembeds in SQp[[—; ki = [[i—, ki ®rS, and the rings x; @ S are the generic
fibers and so are reduced. [J

(c) S is a localization of a smooth R-algebra, and so it suffices to show the result for
smooth R-algebras, since a localization of a reduced ring is reduced. If @ € Spec (5) is in
the support of Sz, where z is nilpotent, then we may localize at the contraction P of S to
R, and the image of z in Sp is a nonzero nilpotent. Now represent Rp as a direct limit
as in part (a), and S as a direct limit of smooth extensions of these. Then each Sy in the
direct limit system is reduced, and it follows that S is reduced. [

(d) The Henselization is a direct limit of pointed étale extensions. Each pointed étale
extension is essentially smooth, and so reduced. Since a direct limit of reduced rings is
reduced, the result follows. [J

2. The polynomial Y2 — X2 — X3 is irreducible in C[X, Y], since X2+ X3 = X?(1+ X) is
not a perfect square in the C[X]. Hence, Clz,y] = C[X,Y]/(Y? — X? — X3) is a domain
of dimension one, and D = C[z, y],,, where m = (z,y) is a local domain of dimension one.
In the Henselization, 1 + x has two square roots, f and —f, corresponding to the roots
1,—1 of the equation Z2 —1 = 0. Then (y — zf)(y + zf) = 0 in the quotient, but neither
factor is 0: there is a local C[[z]]-homomorphism D — C[[z]] that sends y — £xg where
g=1+(1/2)x +--- , where g*> = 1 + 2. One of these maps kills y — zf but not y + z f,
while the other kills y + zf but not y —zf. U

3. Let Z = (Z;5) be an s x s matrix of unknowns. Then it suffices to show that the system
of 52 equations in s? unknowns given by the matrix equation (I, + Z)" = I, + M, where
M has entries in P, has a solution in P. Mod P, Z = 0 is a solution, and so it suffices
to show that the s? x s? Jacobian matrix has a determinant that is a unit. The equation
may be written in matrix form as nZ + Q(Z) — M = 0 where Q(Z) involves only terms
that are of degree 2 and higher in the Z;;. The Jacobian matrix is therefore nls2, which
will be invertible precisely when n is a unit.



4. Assume R is separable. Then for each minimal prime P of R, Rp is separable, and Rp
is the fraction field of R/P. Hence, R/P C frac(R/P) is separable. In the other direction,
since R — [[p(R/P) as P runs through the minimal primes of R, it suffices to show that
K — [[p(R/P) is separable. Let K’ be a finite purely inseparable extension of K. Then
K' @k (IIp R/P) = [[p(K' ®k R/P) (this needs that K’ is a finite-dimensional vector
space over K) and since every factor is reduced, so is the product. Alternatively, one can
use that for any field extension L O K, L ® [[p(L ®x R/P) is injective.

Note that, more generally, if V' are vector spaces over K and W; is a possibly infinite
family of such vector spaces, we have a map V @k [[; W; — [[;(V ®x W;) that sends
v ® 6 to the element whose jth coordinate is v ® ;. If V is finite-dimensional with basis
V1, ... Vs, this map is bijective: a typical element of [,(V @k Wj) has j th coordinate of
the form vy ® wyj + -+ - vs ® wgj, and the inverse takes this element to the sum of the of
the elements v; ® 60;, where 6; has jth coordinate w;;. If V' is not finite-dimensional the
map is injective, since for every finite-dimensional V; inside V', we have Vj @k [] Wi —
[[;(Vo @k W;) = [[;(V @k W;) and the composite map is the same as V' FINISH.

5. R must be Henselian. Let S be a module-finite extension of R. The maximal ideals of
S/NS correspond bijectively to those of S, since NS consists of nilpotents, and since R/N
is Henselian, S/N S decomposes as a product of quasilocal rings, one for each maximal ideal
of S (or S/NS). Since idempotents lift uniquely modulo nilpotents, all of the idempotents
yielding the product decomposition of S/NS lift to S, and so S also decomposes into such
a product.

6. For the domain (resp., reduced) property, note that if zy = 0 (resp. =¥ = 0) for nonzero
x, y (resp., ) we have that x, y (resp., x) ¢ m" R for large n. But then XY = 0 (resp.
X* = 0) has a solution in R that is congruent to the original solution modulo m"ﬁ, which
yields elements z1, y; (resp., £1) of R not in m™ such that z;y; = 0 (resp., ¥ =0). O

EXTRA CREDIT 7. Since localizations are formally étale, every local ring of R is
formally smooth over K and we may assume that R is local, since it suffices to check
regularity locally. One has a coefficient field L C R/P? (which is complete), and by the
structure theory for complete local rings, L contains K, since K is perfect. Let x1, ... , x4
be a minimal set of generators of P. Then we have a K-algebra surjection R — R/P? =
L[X1, ..., Xq4]/m?, where X1, ..., X, are indeterminates, m = (X1, ..., Xy), and the
image of x; maps to the image of X;. Since R is formally smooth over K this lifts to a
map 6, : R — L[X1, ..., X4]/m"* =G, for all n. Let m,, be the maximal ideal of S,,.
Since the images of the x; generate m,,/m?, by Nakayama’s lemma they generate m,,. It
follows from the part (c) of the Proposition stated at the bottom of p. 7 of the Supplement
on the Structure Theory of Complete Local Rings that the map R/P"™ — S, is surjective.
Hence, ¢(R/P™) > ¢(S,), which is a polynomial of degree d in n for n > 0. It follows that
dim (R) > d, the least number of generators of P, while dim (R) < d is automatic. Thus,
dim (R) = d, and R is regular. [

EXTRA CREDIT 8. We know from Problem 2. that we may assume both rings are
domains. It suffices to prove that if R is not normal, then R is not normal. Suppose that
y/z is an element of the fraction field of R not in R, where = # 0. Then y/x satisfies a



monic polynomial over R of degree, say, n. Multiplying by 2", we obtain a polynomial
equation (*) " + z1y" x4+ -+ 2y 2t + - + z,2™ = 0. Since y/x ¢ R, we have
that y ¢ xR, and so there exists N > 0 such that y ¢ xR +m” and =z ¢ m”", where m is
the maximal ideal of R. Let Y, X, Z; be variables, and approximate the solution y, z, z; of
the equation () Y"+Z; Y 1X +... 4+ Z,Y" X +...+ Z,X™ = 0 we have over R by
a solution in the approximation ring R, call it ¢/, 2’, 2, that is congruent to the original
solution mod m”~. Then 3’ ¢ 2/R + m", and so y ¢ zR,and 2/ ¢ m®, so that 2’ # 0.
Hence, y'/x’ is an element of the fraction field of R. Since y'/z’ satisfies (xx), by dividing
by 2’ we see that y'/x’ is integral over R, a contradiction. [J



