
Math 615, Winter 2017 Problem Set #5 Solutions

1. A separable algebra is the directed union of its finitely generated separable subalgebras,
and a direct limit of reduced rings is reduced. Hence, we may assume that each of the
separable algebras is finitely generated over K, and then embeds in a finite product of
separable domains. Hence, we may also assume that both of the rings are domains. A
finitely generated domain over K is separable if and only if its localization at one nonzero
element is smooth. Hence, both can be enlarged by localization to be smooth, and then the
tensor product is smooth over K and so reduced. There are a great many solutions. �

2. ∂F
∂x = xF1, where F1 = 2y2 + nxn−2 and ∂F

∂y = yF2, where F2 = 2x2 + nyn−2. Since

x, F1 have no common factor with y or F2, xF1, yF2 is a regular sequence and so a system
of parameters in C[[x, y]], and C[[x, y]]/I, where I = (∂F∂x ,

∂F
∂y ), is Artin.

F − 1
n (x∂F∂x + y ∂F∂y ) = 2

nx
2y2. If F ∈ I then x2y2 ∈ I as well, and this gives x2y2 =

GxF1 + HyF2. Since x does not divide F2, we have H = xH1 and, similarly, G = yG1.
Factoring out xy yields xy = (2y2 + nxn−2)G1 + (2x2 + nyn−2)H1, which is clearly false
(compare degree two terms on both sides). Thus, F /∈ I. Similarly, to see that (∗) xF ∈ I,
it suffices to see that x(x2y2) ∈ I, and, hence, to see that x2y ∈ (F1, F2). Mod F2, x2y is
a scalar times yn−1, while nxn−2 ≡ y2v with v ∈ (x, y), so that 2y2 + nxn−2 ≡ uy2 where
u = 2 + v is a unit of C[[x, y]], and (∗) follows. By symmetry, yF ∈ I. Thus, F 6= 0 while

F
2

= 0 in C[[x, y]]/I. Evidently, dF = 0 in R/I, since ∂F
∂x and ∂F

∂y are 0 in C[[x, y]]/I. �

3. (a) I2 is spanned as an abelian group by products fg with f, g ∈ I, and d(fg) =
gdf + fdg ∈ IΩT/R, so that I2 is killed. If g ∈ I and f ∈ T , d(fg) = fdg + gdf , and the
second term is 0 in ΩT/R/IΩT/R. This implies S-linearity.

(b) To give the R-algebra splitting T/I → T/I2 of the map T/I2 → T/I, for each element
of t ∈ T one must specify φ([t]) ∈ T/I2, and we also write φ(t) for φ([t]). The element φ(t)
must have the form t− δt where δ(t) ∈ I/I2. In order for the function φ corresponding to
a map δ to preserve addition, δ must be linear. In order for φ to preserve multiplication,
we must have (t − δ(t))(t′ − δ(t′)) = tt′ − δ(tt′), and this is simply the condition that
δ(tt′) = tδ(t′) + t′δ(t). Thus, δ is a derivation of T into I/I2. In order that φ be well-
defined on T/I, we must have that for f ∈ I, that (†) δ(f) = f , so that φ(f) = 0. In order
for φ to be R-linear, we must have that δ be an R-derivation of T into I/I2. Thus, giving
a splitting φ is equivalent to giving an R-derivation δ : T → I/I2 such that (†) δf = f for

all f ∈ I. Such an R-derivation corresponds to a T -linear map θ̃ : ΩT/R → I/I2 such that

(†′) θ(df) = f for all f ∈ I, and, hence, to giving a T -linear map θ : ΩT/R/IΩT/R → I/I2

such that (†′′) θ([df ]) = f for all f ∈ I. The T -linearity of θ is equivalent to its S-linearity,
since I kills both modules. But this is exactly the condition that θ be a splitting over S
of the map described in part (a).

(c) is immediate, since, quite generally, A → B → C → 0 is split exact if and only if
A→ B is injective and the surjection B � C splits. �

4. The specified elements are not even in the expansion of m (which is no longer maximal),
since this is the union of the expansions of the ideals (x1, . . . , xh), as h runs through the



positive integers, and the image of each of these elements is nonzero modulo every ideal of
the form (x1, . . . , xh).

5. Map Λ0[Y1.Y2] � Λ0[ta cos t, tb sin t]. Since cos t is transcendental over R[t] (it has
infinitely many roots), and cos2 t + sin2 t = 1, dim (S) = 2, and the kernel must be a
height one, hence, principal prime. Let M = max{a, b}. Then the generator of the
kernel is F = t2M−2aY 2

1 + t2M−2bY 2
2 − t2M , since it is in the kernel and is irreducible

(the coefficient of Y1 or Y2 is one, and the sum other terms is not the negative of a
perfect square). The Jacobian

(
∂F
∂Y1

∂F
∂Y2

)
=
(
t2M−2a2Y1 t2M−2b2Y2

)
evaluated at

Y1 = ta cos t, Y2 = tb sin t gives
(
t2M−2a2ta cos t t2M−2b2tb sin t

)
. The orders of the two

entries in R[[t]] are 2M − 2a+ a and 2M − 2b+ b+ 1: we want the minimum of these two.
If a ≥ b, these are a and 2a − b + 1 ≥ a + 1, and the minimum is `S = a. If a < b, these
are 2b− a ≥ b+ 1 and b+ 1, and the minimum is `S = b+ 1. The generators of the prime
ideal Q = tΛ ∩ S are t, ta cos t, tb sin t if a ≥ 1 (even if b = 0, since sin t

t ∈ R[[t]]), while if

a = 0 one gets t, 1 − cos t, tb sin t. The elements that generate S′ over S are obtained by
dividing these by t (of course, one does not need to adjoin t

t = 1).

6. The module Cn obtained from De1 ⊕ · · · ⊕Den+1| by killing the relations ej − pjej+1,
1 ≤ j ≤ n, is free on the image of en+1. The other ej are identified with multiples of
en+1: ej is identified with pj · · · pnen+1, and so Cn may be identified with rank one free
D-submodule of L generated by fn = 1/(p1 · · · pn). Here, e1 is mapped to f0 = 1, e2
to f1 = 1/p1, e3 to f2 = 1/(p1p2), . . . , ej to fj−1 , . . . , en+1 to fn. Taking a direct
limit shows that C may be identified with the submodule of L generated by all the fn,
which is clearly the same as the set of all fractions that may be written with a square-free
denominator. If we localize at P = Pi, so that all pj for j 6= i become invertible, this
simply becomes the free rank one DP module on the generator 1/pi, and so the map splits.
It cannot split over D, because if it does, the image of 1 ∈ C in the free module will contain
a nonzero element of a free D-module that is divisible by every pi. Such a nonzero element
has a nonzero coordinate, which would be a nonzero element of D divisible by every pi.
But a nonzero element of D can only be divisible by finitely many pi, a contradiction. �

EC 9. If we localize at a prime of D, say P , all but at most one of the primes pi becomes
invertible in DP . That the images of Xj and Xj+1 are associates (each is a unit times the
other) unless j = i and pi is not invertible. In that case, it is still true that the image of xi
is pi times the image of xi+1, and so SP may be identifieid with DP [xi+1], and is smooth
over DP and formally smooth over D. Hence, every SQ is formally smooth over D, since
Q lies over some prime P of D. On the other hand, one may deduce that S is not formally
smooth over D from problems 3. and 6. (T/I)⊗ΩT/D is the free S-module on the images
of the dXi. Since d(Xi − piXi+1) = dXi − pidXi+1, the map ψ : ΩT/D/IΩT/D � ΩS/D
that occurs on the right in the sequence (∗) in Problem 3. may be described as idS ⊗D ζ,
where ζ : G→ C is the map studied in Problem 6. There is a D-algebra retraction S � D
that kills the images of all of the Xj . If ψ were split, we could use this S-algebra structure
on D to apply D ⊗S , and it would follow that ζ is split over D, a contradiction. �

EC 10. (a) The tensor product is a finite dimensional C-algebra, and is clearly local,
since the elements of the ring not in the tensor product of the t copies of C are spanned by



elements u1 ⊗ · · · ⊗ uh where are least one uν is nilpotent. When we expand gtt using the
distributive law, there is only one term which occurs without exponent at least two: the
terms where the exponent is 2 or more evidently vanish. That one term, f1f2 · · · ft, is not
zero: it corresponds to the tensor product of f1 ⊗ f2 ⊗ · · · ⊗ ft, and these are all nonzero
in their respective factors. On the other hand, in the expansion of gt+1

t every term has a
factor which occurs with exponent two or more, and each f2ν = 0.

(b) Note that HomC(At,C) is spanned over C by the maps Li, 0 ≤ i ≤ t − 1, where
Li(t

i) = 1 and Li(t
j) = 0 if 0 ≤ j ≤ t − 1 and j 6= i. Note that tt−1−iLt−1 = Li,

0 ≤ i ≤ t− 1. Hence, the HomC(At,C) is cyclic of the same dimension over C at At, and
so must be ∼= At. The remaining statements follow as indicated.

(c) We may consider R as an At algebra since we have At ∼= C[u] ⊆ R with z mapping
to u. We may consider Bt as an At-algebra by sending z 7→ gt. Then the surjection
R⊗C Bt → R⊗At

Bt kills u− gt, since u and gt are the images of z, and z passes through
the tensor symbol. This yields a surjection R ⊗C Bt/(u − gt) → R ⊗At

Bt, and so it
suffices to show that R injects into this tensor product. However, as an At module, we
have that At splits from Bt, say Bt ∼= At⊕Nt, where Nt is an At -submodule of Bt, Then
R ⊗At

Bt ∼= R ⊗At
(At ⊕ Nt) ∼= (R ⊗At

At) ⊕ (R ⊗At
Nt) ∼= R ⊕ R ⊗At

Nt, and so it is
clear that R injects. The last statement is clear, since it holds even for gt in Bt and u is
identified with gt.

(d) Choose a basis for the maximal ideal. By finitely many successive applications of part
(c), the ring can be enlarged to an Artin local ring over C in which the differential of
every element of the basis and, hence, of the original maximal ideal is 0. Iterate countably
many times, to obtain an ascending sequence of Artin local rings over C such that the
differential of every element of the maximal ideal of a given ring in the sequence is 0 when
it is considered as an element of the next ring in the sequence. The direct limit of this
sequence evidently has the required properties.


