
LECTURES ON COMMUTATIVE ALGEBRA II

Mel Hochster

Math 615: Lecture of January 4, 2012

In these lectures, all rings are assumed to be commutative, associative, with multiplica-
tive identity denoted 1, which may be subscripted with the letter denoting the ring if
precision is needed. Ring homomorphisms R→ S are assumed to map 1R ∈ R to 1S ∈ S.
Modules M over a ring R are assumed to be unital, i.e., 1 · u = u for all u ∈ M . A local
ring is a Noetherian ring with a unique maximal ideal. The statement that (R, m) is local
means that R is a local ring with maximal ideal m. The statement that (R, m, K) is local
means that R is local with maximal ideal m and residue class field K = R/m. We use
N ⊆ Z ⊆ Q ⊆ R ⊆ C for the nonnegative integers, the integers, the rational numbers, the
real numbers, and the complex numbers, respectively.

We give an overview of some the material that will be covered near the beginning of
this set of lectures.

One theme will be the study of complete local rings. Localization at a prime followed
by completion at the resulting maximal ideal is a way of life. Many problems, even some
that seem “global,” can be attacked by first reducing to the local case and then to the
complete case. Complete local rings turn out to have extremely good behavior in many
respects. A key ingredient in this type of reduction is that when R is local, R̂ is local and
faithfully flat over R.

We shall study the structure of complete local rings. A complete local ring that contains
a field always contains a field that maps onto its residue class field: thus, if (R,m,K)
contains a field, it contains a field K0 such that the composite map K0 ⊆ R� R/m = K
is an isomorphism. Then R = K0 ⊕K0 m, and we may identify K with K0. Such a field
K0 is called a coefficient field for R.

The choice of a coefficient field K0 is not unique in general, although in positive prime
characteristic p it is unique if K is perfect, which is a bit surprising. The existence of
a coefficient field is a rather hard theorem. Once it is known, one can show that every
complete local ring that contains a field is a homomorphic image of a formal power series
ring over a field. It is also a module-finite extension of a formal power series ring over a
field. This situation is analogous to what is true for finitely generated algebras over a field,
where one can make the same statements using polynomial rings instead of formal power
series rings. The statement about being a module-finite extension of a power series ring is
an analogue of the Noether normalization theorem. A local ring (R,m,K) that contains a
field is called equicharacteristic, because R contains a field if and only if R and K have the
same characteristic. (It is clear that if K ⊆ R they must have the same characteristic. If
K has characteristic 0, it is clear that R does, and contains a copy of Z. Since no nonzero
integer vanishes in R/m, every nonzero integer is a unit in R, which gives a unique map of
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Q = (Z−{0})−1Z into R by the universal mapping property of localization. On the other
hand, if R has positive prime characteristic p > 0, it clearly contains a copy of Z/pZ.)

Local rings that are not equicharacteristic are called mixed characteristic. The charac-
teristic of the residue class field of such a ring is always a positive prime integer p. The
characteristic of the ring is either 0, which is what it will be in the domain case, or else a
power of p, pk, with k > 1.

Throughout these lectures, the term discrete valuation ring, abbreviated DVR, will be
used for a local domain V , not a field, whose maximal ideal is principal, say tV , t 6= 0.
It is then the case that every nonzero element of V is uniquely expressible in the form
utn, where u is a unit, and every ideal is consequently principal. (Technically, these rings
should be called rank one discrete valuation rings or Noetherian discrete valuation rings.)

A local domain of mixed characteristic will have characteristic 0, while its residue class
field has positive prime characteristic p. An example is the ring of p-adic integers, which
is the completion of the localization of the integers at the prime ideal generated by the
positive prime integer p. A formal power series ring over the p-adic integers also has mixed
characteristic.

The structure of complete local rings in mixed characteristic is more complicated, but
the theory has been fully worked out: if (R, m) has mixed characteristic, it is a homomor-
phic image of a formal power series ring over a complete discrete valuation ring (V, pV )
whose maximal ideal is generated by a positive prime integer p. If a mixed characteristic
local ring is a domain, it is module-finite over a formal power series ring over such a ring
V ⊆ R such that the induced map of residue class fields V/pV → R/m is an isomorphism.
V is called a coefficient ring for R. When R is not a domain the statements are more
complicated, but the situation is completely understood.

We shall study regular local rings: these constitute an important class of local rings.
(R, m, K) is regular precisely if the Krull dimension dim (R) of R is equal to the least
number of generators of the maximal ideal m: by Nakayama’s lemma, the latter is the
same as dimK(m/m2). The local ring of a complex algebraic variety at a closed point
(corresponding to localizing at a maximal ideal) is regular if and only if the variety is
smooth (or nonsingular) at that point. Such points are also called simple points. In the
case of dimension one, a regular local ring is the same thing as a DVR. Although it is not
obvious from the definition, a regular local ring is an integral domain. In fact, a regular
local ring is a UFD. This was an open question for many years: it was not solved until
the introduction of homological methods into commutative algebra by M. Auslander, D.
Buchsbaum. We shall eventually give a proof of this fact, following M. P. Murthy, based
on recovering the divisor class group of a normal domain R from the Grothendieck group
of finitely generated R-modules.

A local ring is regular if and only if its completion is regular. Complete regular local
rings can be classified. A complete regular local ring that contains a field is simply the
formal power series ring in finitely many variables over a field. The situation in mixed
characteristic is more complicated, but also well understood. If V is a coefficient ring,
the complete regular ring R of Krull dimension d is either a formal power series ring
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V [[x1, . . . , xd−1]], or it will have the form T/(p − f), where T = V [[x1, . . . , xd]] has
maximal ideal mT = (p, x1, . . . , xd)T , and f ∈ m2

T .

An important property of complete local rings is that they satisfy Hensel’s lemma. Let
(R, m, K) be complete local and let f be a monic polynomial over R. If u ∈ R[x], we write
u for the polynomial in K[x] obtained by taking residue classes of coefficients of u modulo
m. Suppose that f factors f = GH in K[x], where G and H are relatively prime monic
polynomials. Hensel’s lemma asserts that this factorization lifts uniquely to R[x]. That is,
there are monic polynomials g, h ∈ R[x] such that f = gh and g = G while h = H.

This is a very powerful result. For example, consider the formal power series ring C[[z]]
in one variable over the complex numbers, and consider the polynomial equation x2−(1+z).
Mod the maximal ideal zC[[z]], this equation becomes x2 − 1 = (x − 1)(x + 1). Hensel’s
lemma now implies that x2−(1+z) factors as

(
x−α(z)

)(
x−β(z)

)
where α(z), β(z) ∈ C[[z]].

Of course, these must be square roots of 1+z, so that β = −α. Hensel’s lemma also implies
that their constant terms must be 1 and −1. Lifting the factorization yields the existence
of power series square roots for 1 + z. Of course, we know this from Newton’s binomial
theorem, which gives an explicit formula for (1 + z)1/2. But Hensel’s lemma provides
solutions to much more complicated problems for which no formula is readily available.
This result is closely related to the implicit function theorem: we shall make this more
explicit when we study étale ring extensions.

Algebraists are not satisfied with having Hensel’s lemma available over the completion
of a local ring R. It turns out that in between the local ring R and its completion is a ring
Rh, the Henselization of R, for which Hensel’s lemma holds, but which is algebraic over
R. (In many good cases it is the same as the algebraic closure of R in its completion, but
it is not defined that way.) The Henselization is constructed using the theory of étale ring
extensions. Rh is Noetherian, and faithfully flat over R. Heuristically, it may be viewed as
an “algebraic version” of the completion of R. When R is regular, Rh is also regular. The
maximal ideal of R expands to the maximal ideal of Rh, and the induced map of residue
class fields between a local ring and its Henselization is an isomorphism.

Here is a result due to Artin and Rotthaus which may also be deduced from the
Néron-Popescu desingularization theorem. There is a version for formal power series
over a complete discrete valuation ring, but in this introduction we only state the re-
sult for fields. Let T = K[[x1, . . . , xn]] be a formal power series ring over a field. Let
R be any finitely generated K-subalgebra of T . The Artin-Rotthaus theorem asserts
that the inclusion R ⊆ T factors R → S → T where S is obtained from algebraically
independent elements x1, . . . , xn, y1, . . . , ym by localizing K[x1, . . . , xn, y1, . . . , ym] at
the maximal ideal (x1, . . . , xn, y1, . . . , ym) and then taking the Henselization: briefly,
S = (K[x, y](x,y))h. xi ∈ S maps to xi ∈ T for all i, and the yj map into the maximal ideal
of T . Thus, S is a regular local ring, algebraic over K[x1, . . . , xn, y1, . . . , ym], in which
the elements x1, . . . , xn are part of a minimal set of generators of the maximal ideal.

It is necessary to allow for the possibility of the extra indeterminates y1, . . . , ym, since
T has infinite transcendence degree over K. Note that the theorem does not assert that
the map S → T has to be injective.
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This theorem frequently allows one to reduce problems about complete local rings to the
study of algebras finitely generated over a field! The complete local ring is module-finite
over a formal power series ring. One can frequently translate the problem into a statement
over the formal power series ring T that involves only finitely many elements from the
formal power series ring. These elements generate a K-subalgebra R that can be used in
the hypothesis of the Artin-Rotthaus theorem. The trouble with working with R is that
good properties of T may have been lost. However, these are restored when we map to S
and work in S. Moreover, one does not need to use all of S, and one can frequently replace
S by a finitely generated K-algebra. In the mixed characteristic case there is an entirely
similar result.

In consequence, many problems can be reduced to the case of a finitely generated algebra
either over a field or over a complete DVR.

This means that the study of finitely generated algebras over a field and over a DVR is
utterly central to the subject of commutative Noetherian rings!

In a different direction, we will also study Hilbert functions associated with local rings
and numerical invariants, such as multiplicities. Consider a local ring (R, m, K) of Krull
dimension d and an m-primary ideal I. The condition on I simply means that for some N ,
mN ⊆ I ⊆ m. The function `(R/In), where ` is length, is called the Hilbert function of I,
and agrees with a polynomial in n of degree d for all n� 0. The polynomial is called the
Hilbert polynomial. Its leading term will have the form e

d!n
d where e is a positive integer.

The integer e is called the multiplicity of I. Note that e can be obtained as a limit:

e = d! lim
n→∞

`(R/In)
nd

.

The multiplicity of m is called the multiplicity of R. Under mild assumptions, a local ring
of multiplicity 1 is regular. (One can also study `(M/InM) for any finitely generated R-
module M . This is gives the Hilbert function and Hilbert polynomial of M : one difference
is that in the module case, the degree of the Hilbert polynomial is the dimension of M .)

Multiplicities can be obtained in other ways. Given a sequence of elements x =
x1, . . . , xd of ring R, and an R-module M , we shall define a homology theory called
Koszul homology: the Koszul homology modules are denoted Hi(x;M). (They vanish if
i < 0 or if i > d.) We won’t give the definition at this point. Koszul homology has
many uses, including the proofs of the fundamental facts about behavior of cohomology
of coherent sheaves on projective space. The connection with the multiplicities defined in
the preceding paragraph is this. If x1, . . . , xd is a system of parameters for the local ring
R, which simply means that d = dim (R) and I = (x1, . . . , xd)R is m-primary, then the
multiplicity of the ideal I is the same as

∑d
i=0(−1)i`

(
Hi(x;R)

)
, the alternating sum of the

lengths of the Koszul homology modules, which do turn out to have finite length in this
situation.

In developing the theory of regular rings and the material on multiplicities we shall
introduce and use a number of homological techniques, including derived functors such as
Tor and Ext, and the theory of spectral sequences. We shall give a spectral sequence proof
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of the equivalence of the two characterizations of the multiplicity associated to an ideal
generated by a system of parameters. Eventually we shall also give a proof that does not
depend on the theory of spectral sequences, but the spectral sequence argument, which is
due to J.-P. Serre, was found first. Spectral sequences take some getting used to, but often
provide the right way to look at a problem.

Math 615: Lecture of January 6, 2012

Here is a simple example of a local ring that contains a field but does not have a
coefficient field. Let V be the localization of the polynomial ring R[t] in one variable over
the real numbers R at the prime ideal P = (t2 + 1), and let m = PV . Then V/PV is the
fraction field of R[t]/(t2 + 1) ∼= C, which is C. But S ⊆ R(t) does not contain any element
whose square is −1: the square of a non-constant rational function is non-constant, and
the square of a real scalar cannot be −1. Note that V is a DVR.

The completion of V̂ of V is also a DVR with residue class field C, and so it must
contain a square root of −1. Can you see what it is?

We begin our analysis of the structure of complete local rings by proving Hensel’s lemma.

Theorem (Hensel’s lemma). Let (R, m, K) be a complete local ring and let f be a
monic polynomial of degree d in R[x]. Suppose that u denotes the image of u ∈ R[x] under
the ring homomorphism R[x]� K[x] induced by R� K. If f = GH where G, H ∈ K[x]
are monic of degrees s and t, respectively, and G and H are relatively prime in K[x], then
there are unique monic polynomials g, h ∈ R[x] such that f = gh and g = G while h = H.

Proof. Let Fn denote the image of f in (R/mn)[x]. We recursively construct monic poly-
nomials Gn ∈ (R/mn)[x], Hn ∈ (R/mn)[x] such that Fn = GnHn for all n ≥ 1, where Gn
and Hn reduce to G and H, respectively, mod m, and show that Fn and Gn are unique.
Note that it will follow that for all n, Gn has the same degree as G, namely s, and Hn has
the same degree as H, namely t, where s+ t = d. The uniqueness implies that mod mn−1,
Gn, Hn become Gn−1, Hn−1, respectively. This yields that the sequence of coefficients of
xi in the Gn is an element of lim

←− n
(R/mn) = R, since R is complete. Using the coefficients

determined in this way, we get a polynomial g in R[x], monic of degree s. Similarly, we
get a polynomial h ∈ R[x], monic of degree t. It is clear that g = G and h = H, and
that f = gh, since this holds mod mn for all n: thus, every coefficient of f − gh is in⋂
nm

n = (0).

It remains to carry through the recursion, and we have G1 = G and H1 = H from
the hypothesis of the theorem. Now assume that Gn and Hn have been constructed and
shown unique for a certain n ≥ 1. We must construct Gn+1 and Hn+1 and show that they
are unique as well. It will be convenient to work mod mn+1 in the rest of the argument:
replace R by R/mn+1. Construct G∗, H∗ in R[x] by lifting each coefficient of Gn and Hn

respectively, but such that the two leading coefficients occur in degrees s and t respectively
and are both 1. Then, mod mn, F ≡ G∗H∗, i.e., ∆ = F −G∗H∗ ∈ mnR[x]. We want to
show that there are unique choices of δ ∈ mnR[x] of degree at most s−1 and ε ∈ mnR[x] of
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degree at most t−1 such that F −(G∗+δ)(H∗+ε) = 0, i.e., such that ∆ = εG∗+δH∗+δε.
Since δ, ε ∈ mnR[x], n ≥ 1, their product is in m2nR[x] = 0, since 2n ≥ n+ 1. Thus, our
problem is to find such ε and δ with ∆ = εG∗ + δH∗. Now, G and H generate the unit
ideal in K[x], and R[x]red = K[x]. It follows that G∗ and H∗ generate the unit ideal in
R[x], and so we can write 1 = αG∗+βH∗. Multiplying by ∆, we get ∆ = ∆αG∗+ ∆βH∗.
Then ∆α and ∆β are in mnR[x], but do not yet satisfy our degree requirements. Since H∗

is monic, we can divide ∆α by H∗ to get a quotient γ and remainder ε, i.e., ∆α = γH∗+ε,
where the degree of ε is ≤ t− 1. If we consider this mod mn, we have 0 ≡ γHn + ε, from
which it follows that γ, ε ∈ mnR[x]. Then ∆ = εG∗ + δH∗ where δ = γG∗ + ∆β. Since ∆
and εG∗ both have degree < n, so does δH∗, which implies that the degree of δ is ≤ s− 1.

Finally, suppose that we also have ∆ = ε′G∗ + δ′H∗ where ε′ has degree ≤ t− 1 and δ′

has degree ≤ s− 1. Subtracting, we get an equation 0 = µG∗ + νH∗ where the degree of
µ = ε− ε′ is ≤ t− 1 and the degree of ν = δ − δ′ is ≤ s− 1. Since G∗ is a unit considered
mod H∗, it follows that µ ∈ (H∗), i.e., that H∗ divides µ. But H∗ is monic, and so this
cannot happen unless µ = 0: the degree of µ is too small. Similarly, ν = 0. �

Remark. This result does not need that R be Noetherian. The same proof, verbatim,
shows that if (R, m) is a quasilocal ring that is m-adically separated and complete (so
that R ∼= lim

←− n
R/mn), the same result holds.

We can now deduce:

Theorem. Let (R, m, K) be a complete local ring that contains a field of characteristic
0. Then R has a coefficient field. In fact, R will contain a maximal subfield, and any such
subfield is a coefficient field.

Proof. Let S be the set of all subrings of R that happen to be fields. By hypothesis, this
set is nonempty. Given a chain of elements of S, the union is again a subring of R that is
a field. By Zorn’s lemma, S will have a maximal element K0. To complete the proof of
the theorem, we shall show that K0 maps isomorphically onto K. Obviously, we have a
map K0 ⊆ R � R/m = K, and so we have a map K0 → K. This map is automatically
injective: call the image K ′0. To complete the proof, it suffices to show that it is surjective.

If not, let θ be an element of K not in the image of K0. We consider two cases: the first
is that θ is transcendental over K ′0. Let t denote an element of R that maps to θ. Then
K0[t] is a polynomial subring of R, and every nonzero element is a unit: if some element
were in m, then working mod m we would get an equation of algebraic dependence for θ
over K ′0 in K. By the universal mapping property of localization, the inclusion K0[t] ⊆ R
extends to a map K0(t) ⊆ R, which is necessarily an inclusion. This yields a subfield of R
larger than K0, a contradiction.

We now consider the case where θ is algebraic over the image of K0. Consider the
minimal polynomial of θ over K ′0, and let f be the corresponding polynomial with coeffi-
cients in K0[x] ⊆ R[x]. Modulo m, this polynomial factors as (x − θ)H(x), where these
are relatively prime because θ is separable over K ′0: this is the only place in the argument
where we use that the field has characteristic 0. The factorization lifts uniquely: we have
f = (x− t)h(x) where t ∈ R is such that t ≡ θ mod m. That is, f(t) = 0. We claim that
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the map K0[t] ⊆ R � R/m, whose image is K ′0[θ], gives an isomorphism of K0[t] with
K ′0[θ]: we only need to show injectivity. But if P (x) ∈ K0[x] is a polynomial such that
P (t) maps to 0, then f divides P (x), which implies that P (t) = 0. Since K0[t] ∼= K ′0[θ]
(both are ∼= K0[t]/

(
f(t)

)
), K0[t] is a field contained in R that is strictly larger than K0,

a contradiction. �

Remark. If R is a complete local domain of positive prime characteristic p > 0, the same
argument shows that R contains a maximal subfield K0, and that K is purely inseparable
and algebraic over the image of K0.

We can get a similar result easily in characteristic p if K is perfect, although the proof
is completely different.

Theorem. Let (R, m, K) be a complete local ring of positive prime characteristic p. Sup-
pose that K is perfect. Let Rp

n

= {rpn : r ∈ R} for every n ∈ N. Then K0 =
⋂∞
n=0R

pn is
a coefficient field for R, and it is the only coefficient field for R.

Math 615: Lecture of January 9, 2012

Theorem. Let (R, m, K) be a complete local ring of positive prime characteristic p. Sup-
pose that K is perfect. Let Rp

n

= {rpn : r ∈ R} for every n ∈ N. Then K0 =
⋂∞
n=0R

pn is
a coefficient field for R, and it is the only coefficient field for R.

Proof. Consider any coefficient field L for R, assuming for the moment that one exists.
Then L ∼= K, and so L is perfect. Then

L = Lp = · · · = Lp
n

= · · · ,

and so for all n,
L ⊆ Lp

n

⊆ Rp
n

.

Therefore, L ⊆ K0. If we know that K0 is a field, it follows that L = K0, proving
uniqueness.

It therefore suffices to show that K0 is a coefficient field for K. We first observe that
K0 meets m only in 0. For if u ∈ K0 ∩m, then u is a pn th power for all n. But if u = vp

n

then v ∈ m, so u ∈ ∩nmpn = (0).

Thus, every element of K0 − {0} is a unit of R. Now if u = vp
n

, then 1/u = (1/v)p
n

.
Therefore, the inverse of every nonzero element of K0 is in K0. Since K0 is clearly a ring,
it is a subfield of R.

Finally, we want to show that given θ ∈ K some element of K0 maps to θ. Let rn denote
an element of R that maps to θ1/pn ∈ K. Then rp

n

n maps to θ. We claim that {rpnn }n is a
Cauchy sequence in R, and so has a limit r. To see this, note that rn and rpn+1 both map
to θ1/pn in K, and so rn − rpn+1 is in m. Taking pn powers, we find that

rp
n

n − r
pn+1

n+1 ∈ mpn .
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Therefore, the sequence is Cauchy, and has a limit r ∈ R. It is clear that r maps to θ.
Therefore, it suffices to show that r ∈ Rpk for every k. But

rk, r
p
k+1, . . . , r

ph

k+h . . .

is a sequence of the same sort for the element θ1/pk , and so is Cauchy and has a limit sk
in R. But sp

k

k = r and so r ∈ Rpk for all k. �

Before pursuing the issue of the existence of coefficient fields and coefficient rings further,
we show that the existence of a coefficient field implies that the ring is a homomorphic
image of a power series ring in finitely many variables over a field, and is also a module-
finite extension of such a ring.

We begin as follows:

Proposition. Let R be separated and complete in the I-adic topology, where I is a finitely
generated ideal of R, and let M be an I-adically separated R-module. Let u1, . . . , uh ∈M
have images that span M/IM over R/I. Then u1, . . . , uh span M over R.

Proof. Since M = Ru1 + · · ·+Ruh + IM , we find that for all n,

(∗) InM = Inu1 + · · ·+ Inun + In+1M.

Let u ∈ M be given. Then u can be written in the form r01u1 + · · · + r0huh + v1 where
v1 ∈ IM . Therefore v1 = r11u1 + · · · r1huh + v2 where the r1j ∈ IM and v2 ∈ I2M . Then

u = (r01 + r11)u1 + · · ·+ (r0n + r1h)uh + v2,

where v2 ∈ I2M . By a straightforward induction on n we obtain, for every n, that

u = (r01 + r11 + · · ·+ rn1)u1 + · · ·+ (r0h + r1h + · · ·+ rnh)uh + vn+1

where every rjk ∈ Ij and vn+1 ∈ In+1M . In the recursive step, the formula (∗) is applied
to the element vn+1 ∈ In+1M . For every k,

∑∞
j=0 rjk represents an element sk of the

complete ring R. We claim that

u = s1u1 + · · ·+ shuh.

The point is that if we subtract

(r01 + r11 + · · ·+ rn1)u1 + · · ·+ (r0h + r1h + · · ·+ rnh)un

from u we get vn+1 ∈ In+1M , and if we subtract it from

s1u1 + · · ·+ shuh
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we also get an element of In+1M . Therefore,

u− (s1u1 + · · ·+ shuh) ∈
⋂
n

In+1M = 0,

since M is I-adically separated. �

Remark. We tacitly used in the argument above that if rjk ∈ Ij for j ≥ n+ 1 then

rn+1,k + rn+2,k + · · ·+ rn+t,k + · · · ∈ In+1.

This actually requires an argument. If I is finitely generated, then In+1 is finitely generated
by the monomials of degree n+ 1 in the generators of I, say, g1, . . . , gd. Then

rn+1+t,k =
d∑
ν=1

qtνgν ,

with every qtν ∈ It, and
∞∑
t=0

rn+1+t,k =
d∑
ν=1

(
∞∑
t=0

qtν)gν .

We also note:

Proposition. Let f : R→ S be a ring homomorphism, and supposed that S is J-adically
complete and separated for an ideal J ⊆ S and that I ⊆ R maps into J . Then there is a
unique induced homomorphism R̂I → S that is continuous (i.e., preserves limits of Cauchy
sequences in the appropriate ideal-adic topology).

Proof. R̂I is the ring of I-adic Cauchy sequences mod the ideal of sequences that converge
to 0. The continuity condition forces the element represented by {rn}n to map to

lim
n→∞

f(rn)

(Cauchy sequences map to Cauchy sequences: if rm − rn ∈ IN , then f(rm)− f(rn) ∈ JN ,
since f(I) ⊆ J). It is trivial to check that this is a ring homomorphism that kills the ideal
of Cauchy sequences that converge to 0, which gives the required map R̂I → S. �

A homomorphism of quasilocal rings h : (A, µ, κ) → (R, m, K) is called a local ho-
momorphism if h(µ) ⊆ m. If A is a local domain, not a field, the inclusion of A in its
fraction field is not local. If A is a local domain, any quotient map arising from killing
a proper ideal is local. A local homomorphism induces a homomorphism of residue class
fields κ = A/µ→ R/m = K.
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Proposition. Let (A, µ, κ) and (R, m,K) be complete local rings, and h : A→ R a local
homomorphism. Suppose that f1, . . . , fn ∈ m together with µR generate an m-primary
ideal. Then:
(a) There is a unique continuous homomorphism h : A[[X1, . . . , Xn]]→ R extending the

A-algebra map A[X1, . . . , Xn] taking Xi to fi for all i.
(b) If K is a finite algebraic extension of κ, then R is module-finite over the image of

A[[X1, . . . , Xn]].
(c) If κ→ K is an isomorphism, and µR+ (f1, . . . , fn)R = m, then the map h described

in (a) is surjective.

Proof. (a) This is immediate from the preceding Proposition, since (X1, . . . , Xn) maps
into m.

(b) The expansion of the maximal ideal M = (µ, X1, . . . , Xn) of A[[X1, . . . , Xn]] to R is
µR + (f1, . . . , fn)R, which contains a power of m, say mN . Thus, R/MR is a quotient
of R/mN and has finite length: the latter has a filtration whose factors are the finite-
dimensional K-vector spaces mi/mi+1, 0 ≤ i ≤ N−1. Since K is finite-dimensional over κ,
it follows that R/MR is finite-dimensional over A[[X1, . . . , Xn]]/M = κ. Choose elements
of R whose images in R/MR span it over κ. By the earlier Theorem, these elements span
R as an A[[X1, . . . , Xn]]-module. We are using that R is M-adically separated, but this
follows because MR ⊆ m, and R is m-adically separated.

(c) We repeat the argument of the proof of part (b), noting that now R/MR ∼= K ∼= κ,
so that 1 ∈ R generates R as an A[[X1, . . . , Xn]] module. But this says that R is a
cyclic A[[X1, . . . , Xn]]-module spanned by 1, which is equivalent to the assertion that
A[[X1, . . . , Xn]]→ R is surjective. �

We have now done all the real work needed to prove the following:

Theorem. Let (R, m, K) be a complete local ring with coefficient field K0 ⊆ K, so that
K0 ⊆ R � R/m = K is an isomorphism. Let f1, . . . , fn be elements of m generating
an ideal primary to m. Let K0[[X1, . . . , Xn]] → R be constructed as in the preceding
Proposition, with Xi mapping to fi and with A = K0. Then:
(a) R is module-finite over K0[[X1, . . . , Xn]].
(b) Suppose that f1, . . . , fn generate m. Then the homomorphism K0[[x1, . . . , xn]]→ R

is surjective. (By Nakayama’s lemma, the least value of n that may be used is the
dimension as a K-vector space of m/m2.)

(c) If d = dim (R) and f1, . . . , fd is a system of parameters for R, the homomorphism

K0[[x1, . . . , xd]]→ R

is injective, and so R is a module-finite extension of a formal power series subring.

Proof. (a) and (b) are immediate from the preceding Proposition. For part (c), let A
denote the kernel of the map K0[[x1, . . . , xd]] → R. Since R is a module-finite extension
of the ring K0[[x1, . . . , xd]]/A, d = dim (R) = dim (K0[[x1, . . . , xd]]/A). But we know
that dim (K0[[x1, . . . , xd]]) = d. Killing a nonzero prime in a local domain must lower the
dimension. Therefore, we must have that A = (0). �
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Thus, when R has a coefficient field K0 and f1, . . . , fd are a system of parameters, we
may consider a formal power series ∑

ν∈Nd
cνf

ν ,

where ν = (ν1, . . . , νd) is a multi-index, the cν ∈ K0, and fν denotes fν11 · · · f
νd
d . Because

R is complete, this expression represents an element of R. Part (c) of the preceding
Theorem implies that this element is not 0 unless all of the coefficients cν vanish. This
fact is sometimes referred to as the analytic independence of a system of parameters. The
elements of a system of parameters behave like formal indeterminates over a coefficient
field. Formal indeterminates are also referred to as analytic indeterminates.

Math 615: Lecture of January 11, 2012

A quasilocal ring (R, m, K) is defined to be Henselian if whenever f ∈ R[x] is monic
and f ≡ GH mod mR[x], where G, H ∈ K[x] are monic and relatively prime, there exist
monic polynomials g, h ∈ R[x] such that g ≡ G mod mR[x], h ≡ H mod mR[x], and
f = gh. More briefly, R is Henselian precisely when all factorizations into relatively prime
monic polynomials mod mR[x] over K[x] lift to R[x]. With this terminology, Hensel’s
lemma implies that complete and separated quasilocal rings are Henselian. Notice that if
R is Henselian and m-adically separated, then the g and h are unique. The reason is that
the proof of Hensel’s Lemma shows that the factorizations are unique over R/mn for all
n, so that each coefficient is determined mod mn for all n. We shall eventually see that
Henselian rings can be much smaller than complete rings, and exist in abundance.

We next want to prove that a local ring is regular if and only if its completion is regular,
and that a complete regular local ring containing a coefficient field is a formal power series
ring over a field. We first observe the following:

Lemma. Let R→ S be a map of rings such that S is flat over R. Then:
(a) For every prime Q of S, if Q lies over P in R then RP → SQ is faithfully flat.
(b) If S is faithfully flat over R, then for every prime P of R there exists a prime Q of S

lying over P .
(c) If S is faithfully flat over R and Pn ⊃ · · · ⊃ P0 is a strictly decreasing chain of primes

of R then there exists Qn lying over Pn in S; moreover, for every choice of Qn there
is a (strictly decreasing) chain Qn ⊃ · · · ⊃ Q0 such that Qi lies over Pi for every i.

(d) If S is faithfully flat over R then dim (R) ≤ dim (S).

Proof. (a) We first show that SQ is flat over RP . Recall that if W , M are RP modules,
W ⊗R M → W ⊗RP M is an isomorphism (see the bottom of the second page and top
of the third page of the Math 614 Lecture Notes of October 31: briefly, (1/s)w ⊗ u =
(1/s)w ⊗ s(1/s)u = (1/s)sw ⊗ (1/s)u = w ⊗ (1/s)u). Thus, to show that if N ↪→ M is
an injection of RP -modules then SQ ⊗RP M → SQ ⊗RP M is injective, it suffices to show
that SQ ⊗R N → SQ ⊗RM is injective. But since SQ is flat over S and S is flat over R,
we have that SQ is flat over R, and the needed injectivity follows.
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Thus SQ is flat over RP . Since the maximal ideal PRP maps into SQ, faithful flatness
is then clear.

(b) When S is faithfully flat over R, R injects into S and the contraction of IS to R is I
for every ideal I of R: see Math 614 Problem Set #6, problem 5. and its solution. Hence,
for every prime P , the contraction of PS is disjoint from R − P , and so PS is disjoint
from the image of R − P in S. Thus, there is a prime ideal Q of S that contains PS and
is disjoint from the image of R− P , and this means that Q lies over P in R.

(c) The existence of Qn follows from part (b). By a straightforward induction on n, it
suffices to show the existence of Qn−1 ⊆ Qn and lying over Pn−1. Then, once we have found
Qi, . . . , Qn, the problem of finding Qi−1 is of exactly the same sort. Consider the map
RPn → RQn , which is faithfully flat by part (a). Thus, there exists a prime Qn−1 of RQn
lying over Pn−1RPn . Let Qn−1 be the contraction of Qn−1 to R. Since Qn−1 ⊆ QnRQn ,
we have that Qn−1 ⊆ Qn. Since Qn−1 contracts to Pn−1RPn , it contracts to Pn−1 in R,
and so Qn−1 contracts to Pn−1 as well.

(d) Given a finite strictly decreasing chain in R, there is a chain in S that lies over it,
by part (c), and the inclusions are strict for the chain in S since they are strict upon
contraction to R. It follows that dim (S) ≥ dim (R). �

All of the completions referred to in the next result are m-adic completions.

Proposition. Let (R, m, K) be a local ring and let R̂ be its completion.
(a) The maximal m

R̂
ideal of R̂ is the expansion of m to R̂. Hence, mnR̂ = mn

R̂
for all

n.
(b) The completion Î of any ideal I of R may be identified with IR̂. In particular, m

R̂
may be identified with m̂.

(c) Expansion and contraction gives a bijection between m-primary ideals of R and m̂-
primary ideals of R̂. If A is an m-primary ideal of R, R/A ∼= R̂/Â.

(d) dim (R) = dim (R̂), and every system of parameters for R is a system of parameters
for R̂.

(e) The embedding dimension of R, which is dimK(m/m2), is the same as the embedding
dimension of R̂.

Proof. Part (b) is a consequence of the fact that completion is an exact functor on finitely
generated R-modules that agrees with R̂ ⊗R : since we have an injection I → R, we
get injections Î ↪→ R̂ and I ⊗R R̂ ↪→ R ⊗R R̂ ∼= R̂. The image of I ⊗R R̂ is IR̂, so
that I ⊗R R̂ ∼= IR̂ ∼= Î ↪→ R̂, as claimed. When I = m, the short exact sequence
0 → m → R → K → 0 remains exact upon completion, and K̂ ∼= K, which shows that
m
R̂

= mR̂, proving (a). When I = A is m-primary, we have that 0 → A → R → R/A is
exact, and so we get an exact sequence of completions

0→ Â→ R̂→ R̂/A→ 0.

Because there is a power of m contained in A, there is a power of m that kills R/A, and
it follows that the natural map R/A ↪→ R̂/A is an isomorphism. The bijection between
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m-primary ideals of R and m̂-primary ideals of R̂ may be seen as follows: the ideals of R
containing mn correspond bijectively to the ideals of R/mn, while the ideals of R̂ containing
m̂n = mnR̂ correspond bijectively to the ideals of R̂ containing m̂n. But R/mn ∼= R̂/m̂n.

We have that dim (R̂) ≥ dim (R) since R̂ is faithfully flat over R. But if x1, . . . , xn is
a system of parameters in R, so that mN ⊆ (x1, . . . , xn)R, then m̂n ⊆ (x1, . . . , xn)R̂. It
follows that dim (R̂) ≤ n = dim (R), and so dim (R̂) = dim (R) = n, and it is now clear
that the images of x1, . . . , xn in R̂ form a system of parameters.

Now, m̂/m̂2 ∼= mR̂/m2R̂ ⊆ R̂/m2R̂ ∼= R/m2, and it follows that m̂/m̂2 ∼= m/m2, as
required. �

Remark. Let K be, for simplicity, an algebraically closed field, and let R be a finitely
generated K-algebra, so that the maximal spectrum of R can be thought of as an closed
algebraic set X in some ANk . To get an embedding, one maps a polynomial ring over
K onto R: the least integer N such that K[x1, . . . , xN ] can be mapped onto on R as
a K-algebra is the smallest integer such that X can be embedded as a closed algebraic
set in ANK . In this context it is natural to refer to N as the embedding dimension of X,
and by extension, of the ring R. We now let K be any field. It is natural to extend this
terminology to complete rings containing a field: the integer dimK(m/m2) gives the least
N such that K[[x1, . . . , xn]] can be mapped onto the complete local ring (R, m, K) when
R contains a field (in which case, as we shall soon see, it has a coefficient field). The term
embedding dimension, which is reasonably natural for complete equicharacteristic local
rings, has been extended to all local rings.

Corollary. A local ring R is regular if and only if R̂ is regular.

Proof. By definition, R is regular if and only if it dimension and embedding dimension are
equal. The result is therefore clear from parts (d) and (e) of the preceding Proposition. �

We now prove the following characterization of equicharacteristic regular local rings,
modulo the final step of proving the existence of coefficient fields in general in characteristic
p > 0.

Corollary. Suppose that (R, m, K) be an equicharacteristic local ring. Then R is reg-
ular of Krull dimension n if and only if R̂ is isomorphic to a formal power series ring
K[[X1, . . . , Xn]].

Proof. We assume the existence of coefficient fields in general for equicharacteristic com-
plete local rings: we give the proof of the remaining case immediately following. By the
preceding Corollary, we may assume that R is complete. It is clear that a formal power
series ring is regular: we want to prove the converse. We have a field K0 ⊆ R such that
K0 ⊆ R� R/m = K is an isomorphism. Let x1, . . . , xn be a minimal set of generators of
m. By the final Theorem of the preceding lecture, we have a map K0[[X1, . . . , Xn]]→ R
sending Xi to xi. By part (b) of the theorem, since the Xi generate m the map is surjec-
tive. By part (c) of the theorem, since x1, . . . , xn is a system of parameters the map is
injective. Thus, the map is an isomorphism. �
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We now discuss the construction of coefficient fields in local rings (R, m, K) of prime
characteristic p > 0 that contain a field when K need not be perfect, which is needed to
complete the proof of the result given just above.

Let K be a field of characteristic p > 0. Finitely many elements θ1, . . . , θn in K −Kp

are called p-independent if [Kp[θ1, . . . , θn] : Kp] = pn. This is equivalent to the assertion
that

Kp ⊆ K[θ1] ⊆ Kp[θ1, θ2] ⊆ · · · ⊆ Kp[θ1, θ2, . . . , θn]

is a strictly increasing tower of fields. At each stage there are two possibilities: either θi+1

is already in Kp[θ1, . . . , θi], or it has degree p over it, since θi+1 is purely inseparable of
degree p over Kp. Every subset of a p-independent set is p-independent. An infinite subset
of K −Kp is called p-independent if every finite subset is p-independent.

A maximal p-independent subset of K − Kp is called a p-base for K. Zorn’s Lemma
guarantees the existence of a p-base, since the union of a chain of p-independent sets is
p-independent. If Θ is a p-base, then K = Kp[Θ], for an element of K −Kp[Θ] could be
used to enlarge the p-base. The empty set is a p-base for K if and only if K is perfect.

It is easy to see that Θ is a p-base for K if and only if every element of K is uniquely
expressible as a polynomial in the elements of Θ with coefficients in Kp such that the
exponent on every θ is at most p− 1, i.e., the monomials in the elements of Θ of degree at
most p− 1 in each element are a basis for K over Kp.

Now for q = pn, the elements of Θq = {θq : θ ∈ Θ} are a p-base for Kq over Kpq: in
fact we have a commutative diagram:

K
F q−−−−→ Kqx x

Kp −−−−→
Fpq

Kpq

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms: here,
F q(c) = cq. In particular, Θp is a p-base for Kp, and it follows by multiplying the two
bases together that the monomials in the elements of Θ of degree at most p2 − 1 are a
basis for K over Kp2 . By a straightforward induction, the monomials in the elements of
Θ of degree at most pn − 1 in each element are a basis for K over Kpn for every n ∈ N.

Theorem. Let (R, m, K) be a complete local ring of positive prime characteristic p, and
let Θ be a p-base for K. Let T be a subset of R that maps bijectively onto Θ, i.e., a lifting
of the p-base to R. Then there is a unique coefficient field for R that contains T , namely,
K0 =

⋂
nRn, where Rn = Rp

n

[T ]. Thus, there is a bijection between liftings of the p-base
Θ and the coefficient fields of R.

Proof. Note that any coefficient field must contain some lifting of Θ. Observe also that
K0 is clearly a subring of R that contains T . It will suffice to show that K0 is a coefficient
field and that any coefficient field L containing T is contained in K0. The latter is easy:
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the isomorphism L → K takes T to Θ, and so T is a p-base for L. Every element of L
is therefore in Lp

n

[T ] ⊆ Rp
n

[T ]. Notice also that every element of Rp
n

[T ] can be written
as a polynomial in the elements of T of degree at most pn − 1 in each element, with
coefficients in Rp

n

. The reason is that any N ∈ N can be written as apn + b with a, b ∈ N
and b ≤ pn − 1. So tN can be rewritten as (ta)p

n

tb, and thus if tN occurs in a term we
can rewrite that term so that it only involves tb by absorbing (ta)p

n

into the coefficient
from Rp

n

. Let us call a polynomial in the elements of T with coefficients in Rp
n

special if
the exponents are all at most pn − 1. Thus, every element of Rp

n

[T ] is represented by a
special polynomial. We shall also say that a polynomial in elements of Θ with coefficients
in Kpn is special if all exponents on elements of T are at most pn − 1. Note that special
polynomials in elements of T with coefficients in Rp

n

map mod m onto special polynomials
in elements of Θ with coefficients in Kpn .

We next observe that
Rp

n

[T ] ∩m ⊆ mpn .

Write the element of u ∈ Rp
n

[T ] ∩ m as a special polynomial in elements of T with
coefficients in Rp

n

. Then its image in K, which is 0, is a special polynomial in the
elements of Θ with coefficients in Kpn , and so cannot vanish unless every coefficient is
0. This means that each coefficient of the special polynomial representing u must have
been in m ∩Rpn ⊆ mpn . Thus,

K0 ∩m =
⋂
n

(Rp
n

[T ] ∩m) ⊆
⋂
n

mpn = (0).

We can therefore conclude that K0 injects into K. It will suffice to show that K0 → K is
surjective to complete the proof.

Let λ ∈ K be given. Since K = Kpn [Θ], for every n we can choose an element of Rp
n

[T ]
that maps to λ: call it rn. Then rn+1 ∈ Rp

n+1
[T ] ⊆ Rpn [T ], and so rn− rn+1 ∈ Rp

n ∩m ⊆
mpn (the difference rn − rn+1 is in m because both rn and rn+1 map to λ in K). This
shows that {rn}n is Cauchy, and has a limit rλ. It is clear that rλ ≡ λ mod m, since that
is true for every rn. Moreover, rλ is independent of the choices of the rn: given another
sequence r′n with the same property, rn−r′n ∈ Rp

n

[T ]∩m ⊆ mpn , and so {rn}n and {r′n}n
have the same limit. It remains only to show that for every n, rλ ∈ Rp

n

[T ]. To see this,
write λ as a polynomial in the elements of Θ with coefficients of the form cp

n

. Explicitly,

λ =
∑
µ∈F

cp
n

µ µ

where F is some finite set of monomials in the elements of θ. If µ = θk11 · · · θkss , let
µ′ = tk11 · · · tkss , where tj is the element of T that maps to θj . For every µ ∈ F and every
n ∈ N, choose cµ,n ∈ Rn such that cµ,n maps to cµ mod m. Thus, {cµ,n}n is a Cauchy
sequence converging to rcµ . Let

wn =
∑
µ∈F

cp
n

µ,nµ
′
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for every n ∈ N. Then wn ∈ Rn and wn ≡ λ mod m. It follows that

lim
n→∞

wn = rλ,

but this limit is also ∑
µ∈F

rp
n

cµ µ
′ ∈ Rn.

�

Remark. This result shows that if (R, m, K) is a complete local ring that is not a field
and K is not perfect, then the choice of a coefficient field is never unique. Given a lifting
of a p-base T , where T 6= ∅ because K is not perfect, we can always change it by adding a
nonzero element of m to one or more of the elements in the p-base.

Math 615: Lecture of January 13, 2012

Before proceeding further with the investigation of coefficient rings in mixed character-
istic, we explore several consequences of the theory that we already have, and then discuss
enough homological algebra to use it as a tool in investigating regular rings.

Theorem (Weierstrass preparation theorem). Let (A, m, K) be a complete local
ring and let x be a formal indeterminate over A. Let f =

∑∞
n=0 anx

n ∈ A[[x]], where
ah ∈ A − m is a unit and an ∈ m for n < h. (Such an element f is said to be regular
in x of order h.) Then the images of 1, x, . . . , xh−1 are a free basis over A for the ring
A[[x]]/fA[[x]], and every element g ∈ A[[x]] can be written uniquely in the form qf + r
where q ∈ A[[x]], and r ∈ A[x] is a polynomial of degree ≤ h− 1.

Proof. Let M = A[[x]]/(f), which is a finitely generated A[[x]]-module, and so will be sep-
arated in the M-adic topology, where M = (m, x)A[[x]]. Hence, it is certainly separated
in the m-adic topology. Then M/mM ∼= K[[x]]/(f), where f is the image of f under the
map A[[x]]� K[[x]] induced by A� K: it is the result of reducing coefficients of f mod
m. It follows that the lowest nonzero term of f has the form cxh, where c ∈ K, and so
f = xhγ where γ is a unit in K[[x]]. Thus,

M/mM ∼= K[[x]]/(f) = K[[x]]/(xh),

which is a K-vector space for which the images of 1, x, . . . , xh−1 form a K-basis. By
the first Theorem of the Lecture Notes from January 9, the elements 1, x, . . . , xh−1 span
A[[x]]/(f) as an A-module. This means precisely that every g ∈ A[[x]] can be written
g = qf + r where r ∈ A[x] has degree at most h− 1.

Suppose that g′f + r′ is another such representation. Then r′ − r = (q − q′)f . Thus, it
will suffice to show if r = qf is a polynomial in x of degree at most h− 1, then q = 0 (and
r = 0 follows). Suppose otherwise. Since some coefficient of q is not 0, we can choose t
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such that q is not 0 when considered mod mtA[[x]]. Choose such a t as small as possible,
and let d be the least degree such that the coefficient of xd is not in mt. Pass to R/mt.
Then q has lowest degree term axd, and both a and all higher coefficients are in mt−1, or
we could have chosen a smaller value of t. When we multiply by f (still thinking mod mt),
note that all terms of f of degree smaller than h kill q, because their coefficients are in m.
There is at most one nonzero term of degree h+ d, and its coefficient is not zero, because
the coefficient of xh in f is a unit. Thus, qf has a nonzero term of degree ≥ h+ d > h− 1,
a contradiction. This completes the proof of the existence and uniqueness of q and r. �

Corollary. Let A[[x]] and f be as in the statement of the Weierstrass Preparation The-
orem, with f regular of order h in x. Then f has a unique multiple fq which is a monic
polynomial in A[x] of degree h. The multiplier q is a unit, and qf has all non-leading
coefficients in m. The polynomial qf called the unique monic associate of f .

Proof. Apply the Weierstrass Preparation Theorem to g = xh. Then xh = qf + r, which
says that xh − r = qf . By the uniqueness part of the theorem, these are the only choices
of q, r that satisfy the equation, and so the uniqueness statement follows. It remains only
to see that q is a unit, and that r has coefficients in m. To this end, we may work mod
mA[[x]]. We use u for the class of u ∈ A[[x]] mod mA[[x]], and think of u as an element of
K[[x]].

Then xh − r = qf . Since f is a unit γ times xh, we must have r = 0. It follows that
xh = xhqγ. We may cancel xh, and so q is a unit of of K[[x]]. It follows that q is a unit
of A[[x]], as asserted. �

Discussion. This result is often applied to the formal power series ring in n-variables,
K[[x1, . . . , xn]]: one may take A = K[[x1, . . . , xn−1]] and x = xn, for example, though,
obviously, one might make any of the variable play the role of x. In this case, a power
series f is regular in xn if it involves a term of the form cxhn with c ∈ K − {0}, and if one
takes h as small as possible, f is regular of order h in xn. The regularity of f of order h
in xn is equivalent to the assertion that under the unique continuous K[[xn]]-algebra map
K[[x1, . . . , xn]] → K[[xn]] that kills x1, . . . , xn−1, the image of f is a unit times xhn. A
logical notation for the image of f is f(0, . . . , 0, xn). The Weierstrass preparation theorem
asserts that for any g, we can write f = qg + r uniquely, where q ∈ K[[x1, . . . , xn]], and
r ∈ K[[x1, . . . , xn−1]][xn]. In this context, the unique monic associate of f is sometimes
call the distinguished pseudo-polynomial associated with f . If K = R or C one can consider
instead the ring of convergent (on a neighborhood of 0) power series. One can carry through
the proof of the Weierstrass preparation theorem completely constructively, and show that
when g and f are convergent, so are q and r. See, for example, [O. Zariski and P. Samuel,
Commutative Algebra, Vol. II, D. Van Nostrand Co., Inc., Princeton, 1960], pp. 139–146.

Any nonzero element of the power series ring (convergent or formal) can be made regular
in xn by a change of variables. The same applies to finitely many elements f1, . . . , fs, since
it suffices to make the product f1 · · · fs regular in xn, (if the image of f1 · · · fs in K[[xn]]
is nonzero, so is the image of every factor). If the field is infinite one may make use of a
K-automorphism that maps x1, . . . , xn to a different basis for Kx1 + · · ·+Kxn. One can
think of f as f0 + f1 + f2 + · · · where every fj is a homogeneous polynomial of degree j in
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x1, . . . , xn. Any given form occurring in fj 6= 0 can be made into a monic polynomial by
a suitable linear change of variables, by problem 3. of Problem Set #3 for Math 614 and
its solution.

If K is finite one can still get the image of f under an automorphism to be regular
in xn by mapping x1, . . . , xn to x1 + xN1

n , . . . , xn−1 + x
Nn−1
n , xn, respectively, as in the

proof of the Noether normalization theorem, although the details are somewhat more
difficult. Consider the monomials that occur in f (there is at least one, since f is not 0),
and totally order the monomials so that xj11 · · ·xjnn < xk11 · · ·xknn means that for some i,
1 ≤ i ≤ n, j1 = k1, j2 = k2, . . . , ji−1 = ki−1, while ji < ki. Let xd11 · · ·xdnn be the smallest
monomial that occurs with nonzero coefficient in f with respect to this ordering, and let
d = max{d1, . . . , dn}. Let Ni = (nd)n−i, and let θ denote the continuous K-automorphism
of K[[x1, . . . , xn]] that sends xi 7→ xi + xn

Ni for 1 ≤ i ≤ n − 1, and xn 7→ xn. We claim
that θ(f) is regular in xn. The point is that the value of θ(f) after killing x1, . . . , xn−1 is

f(xN1
n , xN2

n , . . . , xNn−1
n , xn),

and the term c′xe11 · · ·xenn where c′ ∈ K − {0} maps to

c′xe1N1+e2N2+···+en−1Nn−1+en
n .

In particular, there is a term in the image of θ(f) coming from the xd11 · · ·xdnn term in f ,
and that term is a nonzero scalar multiple of

xd1N1+d2N2+···+dn−1Nn−1+dn
n .

It suffices to show that no other term cancels it, and so it suffices to show that if for some
i with 1 ≤ i ≤ n, we have that ej = dj for j < i and ei > di, then

e1N1 + e2N2 + · · ·+ en−1Nn−1 + en > d1N1 + d2N2 + · · ·+ dn−1Nn−1 + dn.

The left hand side minus the right hand side gives

(ei − di)Ni +
∑
j>i

(ej − dj)Nj ,

since dj = ej for j < i. It will be enough to show that this difference is positive. Since
ei > di, the leftmost term is at least Ni. Some of the remaining terms are nonnegative,
and we omit these. The terms for those j such ej < dj are negative, but what is being
subtracted is bounded by djNj ≤ dNj . Since at most n − 1 terms are being subtracted,
the sum of the quantities being subtracted is strictly bounded by ndmaxj>i{dNj}. The
largest of the Nj is Ni+1, which is (dn)n−(i+1). Thus, the total quantity being subtracted
is strictly bounded by (dn)(dn)n−i−1 = (dn)n−i = Ni. This completes the proof that

e1N1 + e2N2 + · · ·+ en−1Nn−1 + en > d1N1 + d2N2 + · · ·+ dn−1Nn−1 + dn,
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and we see that θ(f) is regular in xn, as required.

If the Weierstrass Preparation Theorem is proved directly for a formal or convergent
power series ring R over a field K (the constructive proofs do not use a priori knowledge
that the power series ring is Noetherian), the theorem can be used to prove that the ring
R is Noetherian by induction on n. The cases where n = 0 or n = 1 are obvious: the ring
is a field or a discrete valuation ring. Suppose the result is known for the power series ring
A in n − 1 variables, and let R be the power series ring in one variable xn over A. Let
I be an ideal of R. We must show that I is finitely generated over R. If I = (0) this is
clear. If I 6= 0 choose f ∈ I with f 6= 0. Make a change of variables such that f is regular
in xn over A. Then I/fR ⊆ R/fR, which is a finitely generated module over A. By the
induction hypothesis, A is Noetherian, and so R/fR is Noetherian over A, and hence I/fR
is a Noetherian A-module, and is finitely generated as an A-module. Lift these generators
to I. The resulting elements, together with f , give a finite set of generators for I.

Math 615: Lecture of January 18, 2012

Although we shall later give a quite different proof valid for all regular local rings,
we want to show how the Weierstrass preparation theorem can be used to prove unique
factorization in a formal power series ring.

Theorem. Let K be a field and let R = K[[x1, . . . , xn]] be the formal power series ring
in n variables over K. Then R is a unique factorization domain.

Proof. We use induction on n. If n = 0 then R is a field, and if n = 1, R is a discrete val-
uation ring. In particular, R is a principal ideal domain and, hence, a unique factorization
domain.

Suppose that n > 1. It suffices to prove that if f ∈ m is irreducible then f is prime.
Suppose that f divides gh, where it may be assumed without loss of generality that g, h ∈
m. Then we have an equation fw = gh, and since f is irreducible, we must have that
w ∈ m as well. We may make a change of variables so that all of f, w, g and h are regular
in xn. Moreover, we can replace f , g, and h by monic polynomials in xn over

A = K[[x1, . . . , xn−1]]

whose non-leading coefficients are in Q = (x1, . . . , xn−1)R: we multiply each by a suitable
unit. The equation will hold after we multiply w by a unit as well, although we do not
know a priori that w is a polynomial in xn. We can divide gh ∈ A[xn] by f which is
monic in xn to get a unique quotient and remainder, say gh = qf + r, where the degree
of r is less the degree d of f . The Weierstrass preparation theorem guarantees a unique
such representation in A[[xn]], and in the larger ring we know that r = 0. Therefore, the
equation gh = qf holds in A[xn], and this means that q = w is a monic polynomial in xn
as well.

By the induction hypothesis, A is a UFD, and so A[xn] is a UFD. If f is irreducible in
A[xn], we immediately obtain that f | g or f |h. But if f factors non-trivially f = f1f2 in
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A[xn], the factors f1, f2 must be polynomials in xn of lower degree which can be taken to
be monic. Mod Q, f1, f2 give a factorization of xd, and this must be into two powers of x
of lower degree. Therefore, f1 and f2 both have all non-leading coefficients in Q, and, in
particular their constant terms are in Q. This implies that neither f1 nor f2 is a unit of
R, and this contradicts the irreducibility of f in R. Thus, f must be irreducible in A[xn]
as well. �

We are next going to treat the theory of regular local rings and develop part of the theory
of multiplicities: in the course of that treatment, we will introduce powerful techniques from
homological algebra (derived functors, including Tor and Ext, and spectral sequences). One
of the auxiliary notions we will utilize is that of an associated graded ring or module. We
first recall some material about graded rings and modules.

Let H be an additive semigroup with identity 0. A ring R is graded by H if it has a
direct sum decomposition

R =
⊕
h∈H

Rh

such that 1 ∈ R0 and for all h, k ∈ H, RhRk ⊆ Rh+k, where

RhRk = {rs : r ∈ Rh, s ∈ Rk}.

It follows that R0 is a subring of R, and every Rh is an R0-module. A grading of an
R-module M is a direct sum decomposition M =

⊕
h∈HMh such that for all h, k ∈ H,

RhMk ⊆Mh+k,

where
RhMk = {ru : r ∈ Rh, u ∈Mk}.

An element of Rh for any h is called homogeneous or a form. If it is nonzero, it is said to
have degree h. The element 0 is homogeneous, but does not have a degree. In dealing with
N-gradings, some authors assign 0 the degree −1 or −∞, but this is not so natural when H
is an arbitary semigroup. We leave the degree of 0 undefined. In dealing with N-gradings,
the degree of a possibly inhomogeneous element is defined to be the largest degree of a
nonzero homogeneous component of the element. If n ∈ N, the phrase “elements of degree
≤ n” is then understood to include the 0 element.

When an element u ∈M (or R) is written in the form

uh1 ⊕ · · · ⊕ uhn ,

with the hi distinct elements of H, the uhi are called the homogeneous components of u.
Those not shown explicitly are 0. Every nonzero element of M or R has a unique (except
for the order of the terms) expression as a sum of nonzero homogeneous components of
distinct degrees.

We are mainly interested in the case where H = N, but the cases where H = Z, Nd and
Zd arise with reasonable frequency. When H = Nd or Zd the term multidegree is sometimes
used instead of degree. When n = 2, the term bidegree is sometimes used.
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A submodule N of a graded module M is called homogeneous or graded if whenever
u ∈ N , all homogeneous components of u are in N . An equivalent condition is that N be
generated by forms. A third equivalent condition is that

N =
⊕
h∈H

N ∩Mh,

and so a graded submodule inherits a grading from M . In particular, we may refer to
homogeneous ideals of R. Arbitrary sums and intersections of graded submodules are
graded, and the operations may be performed componentwise. If M is a graded module
and N a graded submodule there is an obvious way of grading the quotient:

M/N =
⊕
h∈H

Mh/Nh.

Theorem. Let M be a Noetherian graded module over a Noetherian graded ring R, where
the grading is by N or Z. Then every associated prime P of M is a homogeneous ideal.

Proof. If P is an associated prime of M it is the annihilator of a nonzero element

u = uj1 + · · ·+ ujt ∈M,

where the ujν are nonzero homogeneous elements of degrees j1 < · · · < jt. Choose u such
that t is as small as possible. Suppose that

r = ri1 + · · ·+ ris

kills u, where for every ν, riν has degree iν , and i1 < · · · < it. We shall show that every riν
kills u, which proves that P is homogeneous. If not, we may subtract off all the riν that
do kill u: the resulting element still kills u. Therefore, to get a contradiction, it suffices to
show that ri1 kills u. Since ru = 0, the unique least degree term ri1uj1 = 0. Therefore

u′ = ri1u = ri1uj2 + · · ·+ ri1ujt .

If this element is nonzero, its annihilator is still P , since Ru ∼= R/P and every nonzero
element has annihilator P . Since ri1ujν is homogeneous of degree i1 +jν , or else is 0, u′ has
fewer nonzero homogeneous components than u does, contradicting our choice of u. �

Corollary. If I is a homogeneous ideal of a Noetherian ring R graded by N or Z, every
minimal prime of I is homogeneous.

Proof. This is immediate, since the minimal primes of I are among the associated primes
of R/I. �

Without any finiteness assumptions we have:
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Proposition. If R is graded by N or Z and I is a homogeneous ideal, then Rad (I) is
homogeneous.

Proof. Let
fi1 + · · ·+ fik ∈ Rad (I)

with i1 < · · · < ik and each fij nonzero of degree ij . We need to show that every
fij ∈ Rad (I). If any of the components are in Rad (I), we may subtract them off, giving
a similar sum whose terms are the homogeneous components not in Rad (I). Therefore, it
will suffice to show that fi1 ∈ Rad (I). But

(fi1 + · · ·+ fik)N ∈ I

for some N > 0. When we expand, there is a unique term formally of least degree,
namely fNi1 , and therefore this term is in I, since I is homogeneous. But this means that
fi1 ∈ Rad (I), as required. �

Sometimes we shall use the notation [M ]n for the n th graded component of the graded
module M , particularly in contexts where there is also a filtration, for in that case {Mn}n
will frequently be used to denote an infinite descending sequence of submodules of M .

Let M be an R-module and I ⊆ R an ideal. The I-adic filtration on R is the infinite
descending sequence of ideals {In}n, i.e.,

R ⊇ I ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · .

Similarly, the I-adic filtration on the R-module M is the sequence {InM}n. An infinite
descending filtration

(∗) M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn ⊇ · · ·

is called I-stable if IMn ⊆ Mn+1 for all n and IMn = Mn+1 for all sufficiently large
integers n. The terminology I-good (I-bon by French authors) is also used. Note that this
implies that there is a constant positive integer c such that Mn+c = InMc for all n ∈ N.

Given a filtration (∗) of M and a submodule N , N acquires a filtration using the
submodules Mn ∩N = Nn, called the inherited filtration.

The Artin-Rees Lemma asserts precisely that if M is a finitely generated module over
a Noetherian ring R and N ⊆ M is a submodule, the filtration on N inherited from the
I-adic filtration on M is I-stable. One can generalize this slightly as follows:

Theorem (Artin-Rees Lemma). Let N ⊆ M be finitely generated modules over the
Noetherian ring R, let I be an ideal of R, let {Mn}n be an I-stable filtration of M , and
let {Nn}n be the inherited filtration on N . Then {Nn}n is also I-stable.

Proof. First, INn ⊆ IMn ∩ N ⊆ Mn+1 ∩ N = Nn+1. Choose c such that Mn+c = InMc

for all c. Then
Nn+c = InMc ∩N = InMc ∩Nc,
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since Nc ⊇ Nn+c, and, by the usual Artin-Rees Lemma applied to Nc ⊆Mc, this is

I(In−1Mc ∩Nc) = INn+c−1

for all sufficiently large n. �

Math 615: Lecture of January 20, 2012

We recall that an N-graded ring R is Noetherian iff R0 is Noetherian and R is finitely
generated over R0: cf. problem 4. of Problem Set #5 from Math 614 last semester, and
its solution. The generators may be taken to be homogeneous. This means that we may
write R as the homomorphic image of R0[x1, . . . , xn] for some n, where the polynomial
ring is graded so that xi has degree di > 0. In this situation Rt is the R0-free module on
the monomials xa1

1 · · ·xann such that
∑n
i=1 aidi = t. Since all the ai are at most t, there

are only finitely many such monomials, so that every Rt is a finitely generated R0-module.
Thus, since a Noetherian N-graded ring R is a homomorphic of such a graded polynomial
ring, all homogeneous components Rt of such a ring R are finitely generated R0-modules.
Moreover, given a finitely generated graded moduleM overR with homogeneous generators
u1, . . . , us of degrees d1, . . . , ds,

Mn =
s∑
j=1

Rn−djuj ,

and since every Rn−dj is a finitely generated R0-module, every Mn is a finitely generated
R0-module.

The polynomial ring R0[x1, . . . , xn] also has an Nn-grading: if we let h = (h1, . . . , hn) ∈
Nh, then

[R]h = R0x
a1
1 · · ·xann

where aidi = hi, 1 ≤ i ≤ n, or 0 if for some i, di does not divide hi. The usual N-grading
on a polynomial ring is obtained when all the di are specified to be 1.

An N-graded Noetherian A-algebra R is called standard if A = R0 and it is generated
over R0 by R1, in which case it is a homomorphic image of some A[x1, . . . , xn] with the
usual grading. The kernel of the surjection A[x1, . . . , xn]� R is a homogeneous ideal.

The associated graded ring of R with respect to I, denoted grIR, is the N-graded ring
such that

[grI(R)]n = In/In+1,

with multiplication defined by the rule [ih][ik] = [ihik], where ih ∈ Ih, ik ∈ Ik, and [ih],
[ik], and [ihik] represent elements of Ih/Ih+1, Ik/Ik+1, and Ih+k/Ih+k+1, respectively. It
is easy to see that if one alters ih by adding an element of Ih+1, the class of ihik mod Ih+k+1

does not change since ihik is altered by adding an element of Ih+k+1. The same remark
applies if one changes ik by adding an element of Ik+1. It follows that multiplication on
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these classes is well-defined, and it extends to the whole ring by forcing the distributive
law. This ring is generated over R/I by the classes [i] ∈ I/I2, i ∈ I, and if i1, . . . , is
generate I then [i1], . . . , [is], thought of in I/I2, generate grIR over R/I. Thus, grIR is a
standard graded R/I-algebra, finitely generated as an R/I-algebra whenever I is finitely
generated as an ideal of R. In particular, if R is a Noetherian ring, grIR is a standard
Noetherian (R/I)-algebra for every ideal I.

The associated graded ring can also be obtained from the second Rees ring, which is
defined as R[It, 1/t] ⊆ R[t, 1/t]. More explicitly,

R[It, 1/t] = · · ·+R
1
t2

+R
1
t

+R+ It+ I2t2 + · · · .

This ring is a Z-graded R-algebra. Let v = 1/t. Notice that v is not a unit in S = R[It, 1/t]
(unless I = R). In fact S/vS is Z-graded: the negative graded components vanish, and the
n th nonnegative graded component is Intn/In+1tn ∼= In/In+1, since In+1tn+1v = In+1tn.
Thus, S/vS may also be thought of as N-graded, and, in fact, R[It, v]/(v) ∼= grIR.

Suppose that R contains a field of K. One may think of R[It, v] as giving rise to a
family of rings parametrized by K, obtained by killing v − λ as λ varies in K. For values
of λ 6= 0, the quotient ring is R, while for λ = 0, the quotient is grIR.

If {Mn}n is an I-stable filtration of an R-module M , then there is an associated graded
module

⊕
nMn/Mn+1, which is easily checked to be a grIR-module with multiplication

determined by the rule [ih][mk] = [ihmk] for ih ∈ IhR and mk ∈ Mk, where [ih], [mk],
and [ihmk] are interpreted in Ih/Ih+1, Mk/Mk+1, and Mh+k/Mh+k+1, respectively. If
Mn+c = InMc for n ∈ N, then this associated graded module is generated by its graded
components with indices ≤ c, namely M/M1, M1/M2, . . . , Mc/Mc+1. Thus, if R and M
are Noetherian it is a finitely generated N-graded grI(R)-module, and is Noetherian. If
the filtration is the I-adic filtration, one writes grIM for the associated graded module.

When we refer to a graded ring without specifying H, it is understood that H = N.
However, when we refer to a graded module M over a graded ring R, our convention is
that M is Z-graded. If M is finitely generated, it will have finitely many homogeneous
generators: if the least degree among these is a ∈ Z, then all homogeneous elements of
M have degree ≥ a, so that the n th graded component Mn of M will be nonzero for
only finitely many negative values of n. When M is Z-graded it is convenient to have
a notation for the same module with its grading shifted. We write M(t) for M graded
so that M(t)n = Mt+n. For example, R(t) is a free R-module with a homogeneous free
generator in degree −t: note that R(t)−t = R0 and so contains 1 ∈ R.

Let M be a finitely generated graded module over a graded algebra R over R0 = A
where A is an Artin local ring. We define the Hilbert function HilbM (n) of M by the
rule HilbM (n) = `A(Mn) for all n ∈ Z, and we define the Poincaré series PM (t) of M
by the formula PM (t) =

∑∞
n=−∞HilbM (n)tn ∈ Z[[t]]. Note that `(Mn) is finite for all

n ∈ Z , because each Mn is finitely generated as an A-module, by the discussion of the
first paragraph. If A has a coefficient field, lengths over A are the same as vector space
dimensions over its coefficient field. Technically, it is necessary to specify A in describing
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length. For example, `C(C) = 1, while `R(C) = 2. However, it is usually clear from context
over which ring lengths are being taken, and then the ring is omitted from the notation.

Note that Z[t] ⊆ Z[[t]], and that elements of the set of polynomials W with constant
±1 are invertible. We view W−1Z[t] ⊆ Z[[t]], and so it makes sense to say that a power
series in Z[[t]] is in W−1Z[t].

Example. Suppose that R = K[x1, . . . , xd] the standard graded polynomial ring. Here,
A = K and length over K is the same as vector space dimension. The length of the vector
space Rn is the same as the number of monomials xk11 · · ·x

kd
d of degree n in the variables

x1, . . . , xd, since these form a K-vector space basis for Rn. This is the same as the number
of d-tuples of nonnegative integers whose sum is n. We can count these as follows: form a
string of k1 dots, then a slash, then a string of k2 dots, then another slash, and so forth,
finishing with a string of kd dots. For example, x3

1x
2
2x

5
4 would correspond to

· · ·/ · ·// · · · ··

The result is a string of dots and slashes in which the total number of dots is k1+· · ·+kd = n
and the number of slashes is d − 1. There is a bijection between such strings and the
monomials that we want to count. The string has total length k+d−1, and is determined
by the choice of the d− 1 spots where the slashes go. Therefore, the number of monomials
is
(
n+d−1
d−1

)
. The Hilbert function of the polynomial ring is given by the rule HilbR(n) = 0

if n < 0 and

HilbR(n) =
(
n+ d− 1
d− 1

)
if n ≥ 0. Note that, in this case, the Hilbert function agrees with a polynomial in n of
degree d − 1 = dim (R) − 1 for all n � 0. This gives one formula for the Poincaré series,
namely

∞∑
n=0

(
n+ d− 1
d− 1

)
tn.

We give a different way of obtaining the Poincaré series. Consider the formal power
series in Z[[x1, . . . , xd]] which is the sum of all monomials in the xi:

1 + x1 + · · ·+ xd + x2
1 + x1x2 + · · ·+ x2

d + · · ·

This makes sense because there are only finitely many monomials of any given degree. It
is easy to check that this power series is the product of the series

1 + xj + x2
j + · · ·+ xnj + · · ·

as j varies from 1 to d: in distributing terms of the product in all possible ways, one gets
every monomial in the xj exactly once. This leads to the formula

1 + x1 + · · ·+ xd + x2
1 + x1x2 + · · ·+ x2

d + · · · =
d∏
j=1

1
1− xj

.
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There is a unique continuous homomorphism Z[[x1, . . . , xd]] → Z[[t]] that sends xj → t
for all j. Each monomial of degree n in the xj maps to tn. It follows that the formal power
series

1 + x1 + · · ·+ xd + x2
1 + x1x2 + · · ·+ x2

d + · · ·

maps to PR(t), but evidently it also maps to 1/(1− t)d. This calculation of the Poincaré
series yields the identity:

1
(1− t)d

=
∞∑
n=0

(
n+ d− 1
d− 1

)
tn.

Theorem. Let R be a finitely generated graded A-algebra with R0 = A, an Artin ring,
and suppose that the generators f1, . . . , fd have positive degrees k1, . . . , kd, respectively.
Let M be a finitely generated N-graded R-module. Then PM (t) can be written as the ratio
of polynomials in Z[t] with denominator

(1− tk1) · · · (1− tkd).

If M is finitely generated and Z-graded, one has the same result, but the numerator is a
Laurent polynomial in Z[t, t−1].

Proof. If the set of generators is empty, M is a finitely generated A-module and has only
finitely many nonzero components. The Poincaré series is clearly a polynomial (respec-
tively, a Laurent polynomial) in t. We use induction on d. We have an exact sequence of
graded modules:

0→ AnnMfd →M
fd−→M →M/fdM → 0.

In each degree, the alternating sum of the lengths is 0. This proves that

PM (t)− tdkPM (t) = PM/fdM (t)− PAnnMfd(t).

Since multiplication by fd is 0 on both modules on the right, each may be thought of
as a finitely generated N- (respectively, Z-) graded module over A[f1, . . . , fd−1], which
shows, using the induction hypothesis, that (1− tkd)PM (t) can be written as a polynomial
(respectively, Laurent polynomial) in t divided by

(1− tk1) · · · (1− tkd−1).

Dividing both sides by 1− tkd yields the required result. �

Math 615: Lecture of January 23, 2012

Remark. Base change over a field K to a field L does not change the Krull dimension
of a finitely generated K-algebra, nor of a finitely generated module over such an alge-
bra. A finitely generated K-algebra R is a module-finite extension of a polynomial ring
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K[x1, . . . , xd] ↪→ R, where d = dim (R). Then L[x1, . . . , xd] ∼= L ⊗K K[x1, . . . , xd] ↪→
L⊗K R, (L is free and therefore flat over K), and if r1, . . . , rs span R over K[x1, . . . , xd],
then 1⊗ r1, . . . , 1⊗ rs span L⊗R over L[x1, . . . , xd].

Evidently, for graded K-algebras R with R0 = K and graded K-modules M ,

L⊗R =
⊕
n

L⊗K Rn

and
L⊗K M =

⊕
n

L⊗K Mn

are graded, and their Hilbert functions do not change.

Proposition. If R is finitely generated and graded over R0 = A, Artin local, and f ∈ R
is homogeneous of degree k > 0, then if f is a not a zerodivisor on M , a finitely generated
graded R-module, then PM (t) = 1

1−tkPM/fM .

Proof. This is immediate from the exact sequence

0→M(−k)
f−→M →M/fM → 0

of graded modules and degree preserving maps: one has

PM (t)− tkPM (t) = PM/fM (t).

�

By induction on the number of indeterminates, this gives at once:

Proposition. Let A be Artin local and x1, . . . , xd indeterminates over A whose respective
degrees are k1, . . . , kd. Let R = A[[x1, . . . , xd]]. Then

PR(t) =
`(A)∏d

i=1(1− tki)
.

�

We note the following facts about integer valued functions on Z that are eventually
polynomial. It will be convenient to assume that functions are defined for all integers even
though we are only interested in their values for large integers. We write f ∼ g to mean
that f(n) = g(n) for all n� 0.

If f is a function on Z we define ∆(f) by the rule

∆(f)(n) = f(n)− f(n− 1)

for all n. We define Σ(f) by the rule Σ(f)(n) = 0 if n < 0 and

Σ(f)(n) =
n∑
j=0

f(j)
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if n ≥ 0. Suppose that d ∈ N. We shall assume that
(
n
d

)
, is 0 if n is negative or if d > n.

It is a polynomial in n of degree d if n ≥ 0, namely

1
d!
n(n− 1) · · · (n− d+ 1).

It is obvious that if f ∼ g then ∆(f) ∼ ∆(g), that Σ(f)−Σ(g) is eventually constant, that
∆Σ(f) ∼ f , and that Σ∆(f) − f is equivalent to a constant function. When f ∼ g is a
nonzero polynomial we refer to the degree and leading coefficient of f , meaning the degree
and leading coefficient of g.

Lemma. A function f from Z to Z that agrees with a polynomial in n for all sufficiently
large n is equivalent to a Z-linear combination of the functions

(
n
d

)
, and any such Z-

linear function has this property. Hence, a polynomial g that agrees with f has, at worst,
coefficients in Q, and the leading coefficient has the form e/d!, where e ∈ Z and d = deg(g).

If f : Z → Z then ∆(f) agrees with a polynomial of degree d − 1, d ≥ 1, if and only if
f agrees with a polynomial of degree d, and the leading coefficient of ∆(f) is d times the
leading coefficient of f . ∆(f) ∼ 0 iff f ∼ c, where c is a constant integer. For d ≥ 0, Σ(f)
∼ a polynomial of degree d + 1 iff f ∼ a polynomial of degree d (nonzero if d = 0), and
the leading coefficient of Σ(f) is the leading coefficient of f divided by d+ 1.

Proof. Every polynomial in n is uniquely a linear combination of the functions
(
n
d

)
, since

there is exactly one of the latter for every degree d = 0, 1, 2, . . . . Note that ∆
(
n
d

)
=(

n
d

)
−
(
n−1
d

)
=
(
n
d−1

)
for all n� 0, from which the statement about that ∆(f) is polynomial

when f is follows, as well as the statement relating the leading coefficients. Also, if f is
eventually polynomial of degree d, then we may apply the ∆ operator d times to obtain
a nonzero constant function ∆df , whose leading coefficient is d!a, where a is the leading
coefficient of the polynomial that agrees with f , and this is an integer for large n, whence
it is an integer. It follows that the leading coefficient of f has the form e/d! for some
e ∈ Z− {0}. We may therefore subtract e

(
n
d

)
from f to obtain a Z-valued function that is

polynomial of smaller degree than f for large n. We may continue in this way. Thus, the
polynomial that agrees with f is a Z-linear combination of the polynomials that agree with
the

(
n
d

)
. Note also that Σ

(
n
d

)
=
(

0
d

)
+ · · ·+

(
n
d

)
=
(
d
d

)
+ · · ·+

(
n
d

)
for n ≥ d and 0 otherwise.

The value of the sum shown, when n ≥ d, is
(
n+1
d+1

)
, by a straightforward induction on n.

Finally, f is equivalent to a polynomial when ∆f is, since Σ∆(f) − f is equivalent to a
constant. �

Theorem. Let R be a standard graded A-algebra, where (A, µ, K) is Artin local, and let
M be a finitely generated graded R-module. Then the Hilbert function HilbM (n) of the
finitely generated graded module M is eventually a polynomial in n of degree dim (M)− 1
with a positive leading coefficient, except when M has dimension 0, in which case the
Hilbert function is eventually identically 0.

Proof. The Poincaré series can be written in the form tkQ(1− t)/(1− t)d for some k ≤ 0:
we can write a polynomial in t as a polynomial in 1− t instead. This is a sum of finitely
many terms of the form mtk/(1 − t)s. We have already seen that the coefficient on tn in
1/(1− t)s is eventually given by a polynomial in n of degree s− 1, and multiplying by tk
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has the effect of substituting n− k for n in the Hilbert function. A linear combination of
polynomials is still a polynomial. It remains to prove the assertion about dimensions.

Since A is Artin, we know that µs = 0 for some positive integer s. Then M has a
filtration

M ⊇ µM ⊇ µ2M ⊇ · · · ⊇ µs−1M ⊇ µSM = 0,

and each of the µjM is a graded submodule. It follows that the Hilbert function of M is
the sum of the Hilbert functions of the modules µjM/µj+1M . Since the dimension of M
is the supremum of the dimensions of the factors, it suffices to prove the result for each
µjM/µj+1M , which is a module over the standard graded K-algebra R/µR. We have
therefore reduced to the case where A = K is a field.

We may apply L⊗K for some infinite field L, and so we may assume without loss of
generality that K is infinite. We use induction on d = dim (M). Let m be the homogeneous
maximal ideal of R, which is generated by 1-forms. If M is 0-dimensional, this is the only
associated prime of M , and M has a finite filtration with factors ∼= K and is killed by a
power of m. Thus, M is a finite-dimensional K-vector space, and Mn is 0 for all n � 0.
Now assume that M has positive dimension. Let

N =
⋃
t

AnnMmt.

The modules AnnMmt form an ascending chain, so this is the same as AnnMmt for any
t� 0 and is a graded submodule of M of finite length. The Hilbert function of M is the
sum of the Hilbert functions of M/N and N , and the latter is eventually 0. Therefore
we may study M/N instead of N . In M/N no nonzero element is killed by a power of
m (or else its representative in M is multiplied into N by a power of m — but then it
would be killed by a power of m, and so it would be in N). Replace M by M/N . Then
no element of M − {0} is killed by m, and so m /∈ AssM . This means that the associated
primes of M cannot cover R1, which generates m, for then one of them would contain R1.
Thus, we can choose a degree one element f in R1 that is not a zerodivisor on M . Then
dim (M/fM) = dim (M)−1, and so P (n) = HilbM/fM (m) is eventually a polynomial in n
of degree d− 2 if d ≥ 2; if d = 1, it is constantly 0 for n� 0. Let Q(n) = HilbM (n). Since
Q(n) − Q(n − 1) = P (n), Q is a polynomial of degree d − 1, (if d = 1, we can conclude
that Q is constant). Since Q(n) is positive for n� 0, the leading coefficient is positive for
all d ≥ 1. �

Remark. The trick of enlarging the field avoids the need to prove a lemma on homogeneous
prime avoidance.

Let (R, m, K) be a local ring, and let M be a finitely generated R-module with m-
stable filtration M = {Mn}n. We write grM(M) for the associated graded module⊕∞

n=0Mn/Mn+1, which is a finitely generated grIR-module, and we write grIM in case
M is the I-adic filtration. In this situation we define HR(n) = `(R/mn+1), and call this
the Hilbert function of R, and we write HM(n) = `(M/Mn+1), the Hilbert function of M
with respect to the m-stable filtration M. In case M is the m-adic filtration on M , we
write HM (n) for `(M/mn+1M).

Our next objective is the following result:
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Theorem. Let (R, m, K) be local and let M be a nonzero R-module of Krull dimension
d. Then for any m-stable filtration M of M , HM(n) is eventually a polynomial in n of
degree d.

First note that grcMM =
⊕

nMn/Mn+1, then for all n, HM(n) = `(M/Mn+1) =∑n
i=0 `(Mi/Mi+1) since M/Mn+1 has a filtration with the Mi/Mi+1 as factors, 0 ≤ i ≤ n.

This says that Σ HilbgrM = HM. This shows that HM(n) is eventually polynomial in n

of degree dim
(
grM(M)

)
. Once we complete the proof of the theorem above, it will follow

that dim
(
grM(M)

)
= dim (M), and, in particular, dim

(
grm(R)

)
= dim (R) for any local

ring R. Before proving the theorem we need the following observation.

Proposition. Let (R, m, K) be local, and let 0 → N → M → M → 0 be an exact
sequence of finitely generated R-modules. Let M be an M -stable filtration on M , let M be
the induced filtration on M whose n th term in the image of Mn, and let N be the inherited
filtration on N , whose n th term is Mn ∩N . Then the sequence

0→ grN (N)→ grM(M)→ grM(M)→ 0

is an exact sequence of graded modules with degree-preserving maps, and so

HM(n) = HN (n) +HM(n)

for all n.

Proof. For every n, the sequence

(∗n) 0→ Nn →Mn → (M/N)n → 0

is exact by construction: (M/N)n is the image of Mn by definition, and the kernel of
Mn → (M/N)n is the same as the kernel of Mn → M/N , which is N ∩Mn = Nn by
definition. The exactness of (∗n) and (∗n+1) implies the exactness of the sequence of
quotients

0→ Nn
Nn+1

→ Mn

Mn+1
→ (M/N)n

(M/N)n+1
→ 0

for all n. �

In order to prove the Theorem, we may again consider N =
⋃
t AnnNmt, which will be

the same as AnnMmt for any t� 0. Any m-stable filtration on N is eventually 0, and so
HN (n) = `(N) for all sufficiently large n. If M is 0-dimensional we are done. If not, by
the Proposition it suffices to consider M/N instead of M .

Math 615: Lecture of January 25, 2012

We have reduced the problem of proving that the degree of the Hilbert function of
M 6= 0 is the Krull dimension of M to the case where m /∈ Ass (M). Here M is a finitely
generated module over the local ring (R,m,K).
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Before proceeding further, we generalize the notion of Hilbert functions to a larger
context. Let M be a finitely generated module over the local ring (R, m, K) and let A
be any ideal of R that is primary to m modulo the annihilator I of M . That is, A + I
is m-primary, or, equivalently, A(R/I) is primary to m/I ⊆ R/I. Note that dim (M) =
dim (R/I), by definition. Then for any A-stable filtrationM = {Mn}n, we defineHM(n) =
`(M/Mn+1). We may always use the A-adic filtration, in which case we write HA,M (n) =
`(M/AnM). The calculation of the values of this function is unaffected if we replace R
by R/I: all of the modules involved are killed by I, and multiplying any of these modules
by A is the same as multiplying it by the expansion of A to R/I. Thus, without loss of
generality, we may readily assume that M is faithful and that A is m-primary, by passing
to R/I as indicated.

The following result will complete the proof of the Theorem from the previous lecture:

Theorem. Let M be a finitely generated nonzero module over a local ring (R, m, K).
For any A-stable filtration M on M , HM(n) is eventually a polynomial that agrees with
Σ HilbgrM(M). The degree and leading coefficient of this polynomial are independent of
the choice of the A-stable filtration M. The degree is the same as dim (M), and also the
same as dim

(
grM(M)

)
.

Proof. We kill AnnRM , and so assume that M is faithful over R, that A is m-primary, and
that dim (M) = dim (R). Since grM(M) is a finitely generated module over grAR, which
is a standard graded algebra over the Artin local ring R/A, we have that HilbgrM(M)(n)
is a polynomial of degree dim

(
grM(M)

)
− 1. Since

`(Mn+1) = `(M/M1) + `(M1/M2) + · · ·+ `(Mn/Mn+1),

it follows that HM(n) is polynomial of degree dim
(
grM(M)

)
.

We know compare the leading term of the polynomial coming from M = {Mn}n with
the polynomial given by the A-adic filtration. Since AMn ⊆ Mn+1 for all n, AnM ⊆ Mn

for all n, and `(M/Mn) ≤ `(M/AnM). Let c be such that Mn+c = AnMc for all n ≥ c.
Then Mn+c ⊆ Anm, and so `(M/Mn+c) ≥ `(M/AnM) for all n. Thus,

HM(n+ c) ≥ HA,M (n) ≥ HM(n)

for all n, and so HA,M is trapped between two polynomials with the same degree and
leading coefficient. Therefore all three have the same degree and leading coefficient. This
shows that the leading term of the polynomial in independent of the choice of M.

We next show that the degree is independent of the choice of A. We can choose c such
that mb ⊆ A ⊆ m, and then mnb ⊆ An ⊆ mn for all n, and so

`(M/mnb) ≥ `(M/AnM) ≥ `(M/mnM)

which shows that HA,M is eventually a polynomial trapped between HM (n) and HM (bn).
The latter two are eventually polynomials of the same degree, and so HM(n) must be as
well, since we know that it is eventually polynomial.
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It remains to see that the degree is d = dim (M) = dim (R). To see that the degree
is ≤ dim (R), we choose A to be generated by a system of parameters x1, . . . , xd ∈ m.
Then grA(R) is generated over R/A by the classes of the elements xi in A/A2. Since the
algebra is generated by d elements of degree 1, the denominator of the Poincaré series for
grMM is (1 − t)d, at worst, and this shows that the degree of the Hilbert polynomial of
the associated graded module is at most d − 1, which yields the upper bound d for the
degree of HM(n).

The last step is to show that the degree is at least d. We use induction on dim (M): the
case where d = 0 is trivial. Since the degree is independent of both the m-primary ideal A
chosen and the specific A-stable filtration used, it suffices to consider the m-adic filtration.
Moreover, we have already shown that one need only consider the case when no element of
M is killed by m (for we may kill

⋃
t AnnMmt). Thus, we may assume that m /∈ Ass (M),

and by prime avoidance we may choose f ∈ m such that f is not a zerodivisor on M .
Consider the short exact sequence

0→M
f−→M →M/fM → 0.

Place the m-adic filtration on the central copy of M , the inherited m-adic filtration on the
left hand copy of M (using that it is isomorphic with fM to think of it as a submodule
of M : specifically, Mn = mnM :M f), and the image of the m-adic filtration of M on
M/fM : this is the same as the m-adic filtration on M/fM . By the Proposition from
last time, we find that HM (n) − HM(n) = HM/fM (n). By what was proved above, the
two polynomials on the left have the same leading term: when we subtract, we get a
polynomial of lower degree. By the induction hypothesis, the polynomial on the right has
degree dim (M/fM) = d− 1. It follows that the degree of HM (n) is at least d. �

For emphasis, we state the following consequence separately.

Corollary. If M is a finitely generated module over the local ring (R, m), and A is m-
primary, M , grm(M), and grA(M) have the same Krull dimension. �

Note that if (R, m,K) is local, for any m-primary ideal A, we have that R/An ∼= R̂/AnR̂

(recall that AR̂ ∼= Â), and that for any finitely generated R-module M , M̂/AnM̂ ∼=
M/AnM for all n. The completions referred to here are all m-adic. This shows that
we may identify grA(R) ∼= gr

Â
R̂, and grA(M) ∼= gr

Â
M̂ ; in particular, we have these

identifications when A = m.

We also note:

Proposition. If (R, m, K) is local and grm(R) is a domain then R and R̂ are domains.

Proof. The result for R implies the result for R̂, since their associated graded rings are
the same. Suppose the result is false, so that f, g ∈ m − {0} are such that fg = 0. Since
f 6= 0, we can choose s ∈ N such that f ∈ ms −ms+1, and, similarly, we can choose t ∈ N
such that g ∈ mt −mt+1. Let [f ] indicate the class of f in ms/ms+1 and [g] the class of
g ∈ mt −mt+1. Then [f ] and [g] are nonzero homogeneous elements of grm(R), and their
product is [fg] = [0], contradicting that grm(R) is a domain. �
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Note that the completion of a local domain need not be a domain in general. The
polynomial f = y2 − x2(1 + x) is irreducible in the polynomial ring C[x, y], since 1 + x is
not a square (even in the fraction field), and so x2(1+x) is not a square. Thus, it generates
a prime ideal which remains prime if we localize at (x, y). Let R = C[x, y](x,y)/(f), which
is a local domain. Its completion R̂ is C[[x, y]]/(f), but now f is reducible: 1 + x is a
perfect square in C[[x]], by Hensel’s lemma (or use Newton’s binomial theorem to give an
explicit formula for the power series square root of 1 + x). Instead of C, we could have
used any field of characteristic different from 2. In characteristic 2, y3 − x3(1 + x) gives a
similar example.

We can use associated graded rings to characterize regular local rings.

Theorem. A local ring (R, m, K) is regular if and only if grm(R) is a polynomial ring
in d variables over K, in which case d = dim (R).

Proof. Let x1, . . . , xs be a minimal set of generators for m, and note that m/m2 is the K-
vector space of forms of degree 1 in grm(R). Now d = dim (R) = dim

(
grm(R)

)
. If grm(R)

is polynomial, it must be the polynomial ring in s variables, and since it has dimension
both s and d we have that s = d, which shows that R is regular. If R is regular, we
know that grm(R) is generated over K by d one forms, and has dimension d. Thus, it is
a homomorphic image of the polynomial ring in d variables over K, where the variables
map to the [xi]. Since the dimension of grm(R) is d, there cannot be any kernel: a proper
homomorphic image of a polynomial ring in d variables has Krull dimension < d. This
shows that grm(R) is a polynomial ring in d variables. �

Since the associated graded ring of a regular local ring is a domain, we have at once:

Corollary. A regular local ring is a domain. �

Math 615: Lecture of January 27, 2012

Let (R, m, K) be local, let M be a nonzero finitely generated R-module with annihilator
I of Krull dimension d, and let A ⊆ R be an ideal such that A(R/I) is primary to
m/I ⊆ R/I. We define the multiplicity of M with respect to A to be d! times the leading
coefficient of the Hilbert function of M . This function is integer-valued, and the equivalent
polynomial has degree d, and is therefore a Z-linear combination of the polynomials

(
n
j

)
,

0 ≤ j ≤ d, and
(
n
d

)
must occur with positive coefficient. Therefore, the multiplicity is a

positive integer. It may also be described as

d! lim
n→∞

`(M/An+1M)
nd

.

If A = m, we simply refer to the multiplicity of M . In particular we may refer to the
multiplicity of R itself.

We shall be particularly interested in determining multiplicities of rings with respect
to parameter ideals, i.e., ideals generated by a system of parameters. In this case, the
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multiplicity can be recovered as an alternating sum of lengths of homology modules for a
certain homology theory, Koszul homology, which can be viewed as a special case of Tor.
The proof that we shall give of our result in this direction will depend on the theory of
spectral sequences.

We shall also use Tor and related homological ideas to prove properties of regular rings.
The only known proofs that a localization of a regular local ring at prime is again regular
are by these methods, and the proof of unique factorization also depends on these ideas.

Before beginning the development of these homological methods, we want to make a
few more comments about associated graded rings and multiplicities.

Note that the multiplicity of any regular local ring is 1. To check this, observe that
the associated graded ring is K[x1, . . . , xd] where d is the dimension, and the Hilbert
polynomial corresponds to

(
n+d−1
d−1

)
. The Hilbert function of the local ring is obtained by

summing the values of
(
t+d−1
d−1

)
for t = 0, . . . , n. However, we note that the number of

monomials in x1, . . . , xn of degree ≤ n is the same as the number of monomials of degree
precisely n in x0, x1, . . . , xd: there is a bijection obtained by substituting x0 = 1. Thus,
the Hilbert function of the regular ring corresponds to

(
n+d
d

)
, which has leading coefficient

1/d!, and this shows that the multiplicity is 1.

Let R = K[[x1, . . . , xd]] and let f ∈ R have a lowest degree term of degree µ > 0. The
multiplicity of the ring R/f is µ. We shall check this by giving a technique for calculating
associated graded rings of quotients.

If (R, m, K) is local and f ∈ R− {0}, there is always a unique integer t ∈ N such that
f ∈ mt−mt+1. Then [f ] ∈ mt/mt+1 = [grm(R)]t is homogeneous and nonzero: we denote
this element L(f), and call it the leading form of f . Note that L(f) is in grm(R), not in R.
If I ⊆ R, we write L(I) for the ideal of grm(R) generated by all leading forms of elements
of I − {0}: this is evidently a homogeneous ideal. In attempting to find generators for
L(I), it is not in general sufficient to take the leading forms of a set of generators of I. See
problems 1. and 5. of Problem Set #2. However, it is easy to see that this is sufficient
for a nonzero principal ideal in a formal power series ring K[[x1, . . . , xd]] over a field K:
when one multiplies by another nonzero power series, the leading form of the product is
the product of the leading forms.

Proposition. Let (R, m, K) be local and let I be a nonzero ideal of R. Then

grm/I(R/I) ∼= grmR/L(I).

Proof. We have that

[grm/I(R/I)]n = (m/I)n/(m/I)n+1 ∼= (mn + I)/(mn+1 + I) ∼= mn/
(
mn ∩ (mn+1 + I)

)
.

But if u ∈ mn+1, i ∈ I, and u+ i ∈ mn, then u ∈ mn, and so u ∈ mn ∩ I. This shows that
mn ∩ (mn+1 + I) = mn+1 + (mn ∩ I), and so

[grm/I(R/I)]n ∼= mn/(mn+1 +mn ∩ I) ∼= (mn/mn+1)/Wn,



35

where Wn is the image of mn ∩ I in mn/mn+1 = [grm(R)]n. But if f ∈ mn ∩ I, then
if f ∈ mn+1 the image of f in [grm(R)]n is 0, while if f /∈ mn+1 then [f ] ∈ mn/mn+1

is precisely a nonzero leading form in degree n of an element of I, and the result now
follows. �

We now come back to the problem of calculating the associated graded ring of R =
K[[x1, . . . , xd]]/(f) where f has nonzero leading form L of degree µ ≥ 1. From the
remarks we have made, grm(R) ∼= K[x1, . . . , xd]/(L). We have a short exact sequence
0→ T (−µ) L−→ T → T/(L)→ 0, where T = K[x1, . . . , xd]. Since the Hilbert function of T
corresponds to

(
n+d−1
d−1

)
, the Hilbert function of T/(L) corresponds to

(
n+d−1
d−1

)
−
(
n−µ+d−1

d−1

)
.

When we sum, we get
(
n+d
d

)
−
(
n−µ+d

d

)
up to a constant. It is easy to check that if P (n)

has leading coefficient a, then P (n)−P (n−µ) has leading coefficient µa. Thus, the leading
coefficient is µ/d!, and so the multiplicity is µ, as asserted earlier.

We want to make some comments on regular sequences. Recall that x is not a zerodivisor
on M , or is a nonzerodivisor on M if for u ∈ M , xu = 0 implies that u = 0: in other
words, the map on M given by multiplication by u is injective. We define an improper
regular sequence x1, . . . , xd in R on an R-module M to be a sequence with the property
that x1 is not a zerodivisor on M and for all j, 1 < j ≤ d, xj is a nonzerodivisor on
M/(x1, . . . , xj−1)M . We allow the empty sequence as an improper regular sequence.

An improper regular sequence on the R-module M is called a regular sequence if, more-
over, (x1, . . . , xd)M 6= M . Thus, a regular sequence is an improper regular sequence.
One might use the term possibly improper instead, but that necessitates many uses of the
extra word “possibly.” A regular sequence may sometimes be referred to as a proper reg-
ular sequence to emphasize the condition that (x1, . . . , xd)M 6= M : the word “proper” is
redundant here. The empty sequence is a regular sequence on M provided that M 6= 0.

Regular sequences are also called Rees sequences in honor of David Rees, who was one
of the first to make use of such sequences. Some authors also refer to R-sequences on M ,
but we avoid this term.

A nonzero element of a domain R always gives an improper regular sequence of length
one on R, which will be a regular sequence precisely when the element is not a unit. 2
is a regular sequence in Z, while 2, 1 is an improper regular sequence. A unit α of R
followed by any sequence of elements thereafter is an improper regular sequence on M ,
since the unit is not a zerodivisor even if M = 0, while M/αM = 0 — every element of R
is a nonzerodivisor on the 0 module. This should help explain why one usually wants to
restrict to proper regular sequences.

Regular sequences are not permutable in general, although we shall prove theorems in
this direction later. The sequence z − 1, xz, yz is a regular sequence in the polynomial
ring K[x, y, z] in three variables over a field K, while xz, yz, z − 1 is not: in the quotient
by (xz), yz kills the class [x] of x, which is not 0.

It is a straightforward exercise to show that in a UFD, two elements that generate a
proper ideal form a regular sequence of length 2 if and only if they are relatively prime,
i.e., if and only if they have no prime factor in common.
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In a local ring, any regular sequence is part of a system of parameters: the first element
is not a zerodivisor and so not in any associated prime. In particular, it is not in any
minimal prime, and killing the first element must drop the dimension of the ring by 1. The
rest of the argument is a straightforward induction. We also note:

Proposition. A local ring (R, m) is regular if and only if m is generated by a regular
sequence, in which case any minimal set of generators of m is a regular sequence.

Proof. If m is generated by a regular sequence, it is generated by a system of parameters,
which shows that the dimension of R is equal to the least number of generators of m. Now
suppose that R is regular, and that x = x1, x2, . . . , xd is a minimal set of generators of
m. We use induction on d: the case d = 1 is clear. Suppose d > 1. Note that x ∈ m−m2.
Since R is a domain, x is not a zerodivisor. In R/xR, the dimension and the least number
of generators of the maximal ideal have both dropped by one, and are therefore still equal,
so that R/xR is again regular. Moreover, the images of x2, . . . , xn are a minimal set of
generators of m/xR. The result now follows from the induction hypothesis. �

A minimal set of generators of the maximal ideal of a regular local ring R is called a
regular system of parameters. The term is not defined except in regular local rings.

We now want to begin our treatment of Tor, for which we need to talk about projective
resolutions. Let R be any ring, and M be any R-module. Then it is possible to map a
projective R-module P onto M . In fact one can choose a set of generators {uλ}λ∈Λ for
M , and then map the free module P =

⊕
λ∈ΛRbλ on a correspondingly indexed set of

generators {bλ}λ∈Λ onto M : there is a unique R-linear map P � M that sends bλ → uλ
for all λ ∈ Λ. Whenever we have such a surjection, the kernel M ′ of P � M is referred
to as a first module of syzygies of M . We define k th modules of syzygies by recursion: a
k th module of syzygies of a first module of syzygies is referred to as a k + 1 st module of
syzygies.

There is even a completely canonical way to map a free module onto M . Given M let
F(M) denote the module of all functions from M to R that vanish on all but finitely many
elements of M . This module is R-free on a basis {bm}m∈M where bm is the function that
is 1 on m and 0 elsewhere. The map that sends f ∈ F(M) to

∑
m∈M f(m)m is a canonical

surjection: note that it maps bm to m. The sum makes sense because all but finitely many
terms are 0.

By a projective resolution of M we mean an infinite sequence of projective modules

· · · → Pn → · · · → P1 → P0 → 0

which is exact at Pi for i > 0, together with an isomorphism P0/Im (P1) ∼= M . Recall the
exactness at Pi means that the image of the map into Pi is the kernel of the map from Pi.
Note that it is equivalent to give an exact sequence

· · · → Pn → · · · → P1 → P0 �M → 0

which is exact everywhere. A projective resolution is called finite if Pn = 0 for all suffi-
ciently large n.
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We can always construct a projective resolution of M as follows: map a projective
module P0 onto M . Let Z1 be the kernel, a first module of syzygies of M . Map a
projective module P1 onto Z1. It follows that P1 → P0 → M → 0 is exact, and Z2,
the kernel of P1 → P0, is a second module of syzygies of M . Proceed recursively. If
Pn → · · · → P1 → P0 → M → 0 has been constructed so that it is exact (except at Pn),
let Zn be the kernel of Pn → Pn−1), which will be an n th module of syzygies of M . Simply
map a projective Pn+1 onto Zn, and use the composite map

Pn+1 � Zn ⊆ Pn

to extend the resolution.

One can form a completely canonical resolution that is free, not merely projective, by
taking P0 = F(M) together with the canonical map F(M) � M to begin, and choosing
Pn+1 = F(Zn) along with the canonical map F(Zn)→ Zn at the recursive step. We refer
to this as the canonical free resolution of M . We shall see that one can compute Tor using
any projective resolution, but it is convenient for the purpose of having an unambiguous
definition at the start to have a canonical choice of resolution.

If M is an R-module, we define TorRn (M, N) to be the n th homology module of the
complex · · · → Pn ⊗R N → · · · → P1 ⊗R N → P0 ⊗R N → 0, i.e., Hn(P• ⊗R N), where
P• is the canonical free resolution of M . The n th homology module of a complex G• is
Zn/Bn where Zn is the kernel of the map Gn → Gn−1 and Bn is the image of the map
Gn+1 → Gn.

Despite the unwieldy definition, the values of TorR(M, N) are highly computable. One
might take the view that all of the values of Tor make a small correction for the fact that
tensor is not an exact functor. The values of Tor are not always small, but one can often
show that Tor vanishes, or has finite length, and the information it can provide is very
useful.

Math 615: Lecture of January 2, 2012

We make some conventions that will be useful in dealing with complexes.

By a sequence of R-modules (and maps, although they will usually not be mentioned)
we mean a family of modules {Mn}n∈Z indexed by the integers, and for every n ∈ Z
an R-linear map dn : Mn → Mn−1. The sequence is called a complex if dn ◦ dn+1 = 0
for all n ∈ Z. This is equivalent to the condition that Im (dn+1) ⊆ Ker (dn) for all n.
We often use the notation M• to denote a complex of modules. We define Hn(M•) to
be Ker (dn)/Im (dn+1), the n th homology module of M•. We shall make the homology
modules into a new complex, somewhat artificially, by defining all the maps to be 0. Given
a complex M• we make the convention Mn = M−n for all n ∈ Z. Thus, the same complex
may be indicated either as

· · · →Mn+1 →Mn →Mn−1 → · · · →M1 →M0 →M−1 →
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· · · →M−(n−1) →M−n →M−(n+1) → · · ·

or as

· · · →M−(n+1) →M−n →M−(n−1) → · · · →M−1 →M0 →M1 →

· · · →Mn−1 →Mn →Mn+1 → · · ·

for which we write M•. With these conventions, Hi(M•) = H−i(M•). Thus, there really
isn’t any distinction between cohomology (Hi(M•)) and homology. A complex that is
exact at every spot is called an exact sequence.

By a morphism of sequences M• →M ′• we mean a family of R-linear maps φn : Mn →
M ′n such that for every n ∈ Z the diagram

Mn
dn−−−−→ Mn−1

φn

y yφn−1

M ′n −−−−→
d′n

M ′n−1

commutes. There is an obvious notion of composition of morphisms of sequences: if
φ : M• →M ′• and ψ : M ′• →M ′′• , let ψ◦φ : M• →M ′′• be such that (ψ◦φ)n = ψn◦φn. Then
sequences of R-modules and morphisms is a category (the identity map from M• → M•
is, in degree n, the identity map Mn →Mn).

Given a category C, we say that D is a full subcategory of C if Ob (D) ⊆ Ob (C) and for
all objects X and Y of D, MorD(X, Y ) = Mor C(X, Y ). Composition in D is the same
as composition in C, when it is defined. Note that for every subclass of Ob (C) there is a
unique full subcategory of C with these as its objects. For example, finite sets and functions
is a full subcategory of sets and functions, abelian groups and group homomorphisms is
a full subcategory of groups and group homomorphisms, and Hausdorff topological spaces
and continuous maps is a full subcategory of topological spaces and maps.

The category of complexes of R-modules is defined as the full subcategory of the category
of sequences of R-modules whose objects are the complexes of R-modules. We define a
left complex M• as a complex such that Mn = 0 for all n < 0, and a right complex as a
complex such that Mn = 0 for all n > 0. Thus, a left complex has the form

· · · →Mn →Mn−1 → · · · →M1 →M0 → 0→ 0→ · · ·

and a right complex has the form

· · · → 0→ 0→M0 →M−1 → · · · →M−(n−1) →M−n → · · ·

which we may also write, given our conventions, as

· · · → 0→ 0→M0 →M1 → · · · →Mn−1 →Mn → · · ·
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Left complexes and right complexes are also full subcategories of sequences (and of com-
plexes).

A complex is called projective (respectively, free) if all of the modules occurring are
projective (respectively, free).

By a short exact sequence we mean an exact sequence of modules M• such that Mn = 0
except possibly when n ∈ {0, 1, 2}:

0→M2 →M1 →M0 → 0.

These also forms a full subcategory of complexes. The numbering is not very important
here. We shall also refer to M2 as the leftmost module, M1 as the middle module, and M0

as the rightmost module in such a sequence.

The homology modules of a complex may be regarded as a complex by taking all the
maps to be 0. The homology operator is then in fact a covariant functor from complexes
to complexes: given a map {φn}n of complexes M• → M ′•, with maps {dn}n and {d′n}n
respectively, note that if dn(u) = 0, then

d′n
(
φn(u)

)
= φn−1

(
dn(u)

)
= φn−1(0) = 0,

so that φ maps Ker (dn) into Ker (d′n). If u = dn+1(v), then

φn(u) = φn
(
dn+1(v)

)
= d′n+1

(
φn+1(v)

)
,

which shows that φn maps Im (dn+1) into Im (d′n+1). This implies that φn induces a map
of homology

Hn(M•) = Ker (dn)/Im (dn+1)→ Ker (d′n)/Im (d′n+1) = Hn(M ′•).

This is easily checked to be a covariant functor from complexes to complexes.

In this language, we define a projective resolution of an R-module M to be a left
projective complex P• such that Hn(P•) = 0 for n ≥ 1 together with an isomorphism
H0(P•) ∼= M . Since H0(P•) ∼= P0/Im (P1), giving an isomorphism H0(P•) ∼= M is equiv-
alent to giving a surjection P0 � M whose kernel is Im (P1). Thus, giving a projective
resolution of M in the sense just described is equivalent to giving a complex

(∗) · · · → Pn → · · · → P1 → P0 �M → 0

that is exact, and such that Pn is projective for n ≥ 0. In this context it will be convenient
to write P−1 = M , but it must be remembered that P−1 need not be projective. The
complex (∗) will be referred to as an augmented projective resolution of M .

We recall that an R-module P is projective if and if, equivalently
(1) When M � N is onto, HomR(P, M)→ HomR(P, N) is onto.
(2) HomR(P, ) is an exact functor.
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(3) P is a direct summand of a free module.
A direct sum of modules (finite or infinite) is projective if and only if all of the summands

are. It is easy to verify (1) for free modules: if P is free on the free basis {bλ}λ∈Λ and
M � N is onto, given a map f : P → N , we lift to a map g : P →M as follows: for each
free basis element bλ of P , choose uλ ∈M that maps to f(bλ), and let g(bλ) = uλ.

We next want to define what it means for two maps of complexes of R-modules to be
homotopic. Let P• and N• be two complexes. First note that the set of maps of complexes
Mor (P•, N•) is an R-module: we let

{φn}n + {ψn}n = {φn + ψn}n,

and
r{φn}n = {rφn}n.

We define {φn}n to be null homotopic or homotopic to 0 if there exist maps hn : Pn → Nn+1

(these are not assumed to commute with the complex maps) such that for all n,

φn = d′n+1hn + hn−1dn.

The set of null homotopic maps is an R-submodule of the R-module of maps of complexes.
Note that the homology functor H• is R-linear on maps of complexes.

Two maps of complexes are called homotopic if their difference is null homotopic.

Lemma. If two maps of complexes are homotopic, they induce the same map of homology.

Proof. We have
φn − φ′n = d′n+1hn + hn−1dn

for all n. Let z ∈ Ker (dn). Then

φn(z)− φ′n(z) = d′n+1

(
hn(z)

)
+ hn−1

(
dn(z)

)
.

The second term is 0, since dn(z) = 0, and the first term is in Im (d′n+1). This shows that

[φn(z)]− [φ′n(z)] = 0,

as required. �

The following Theorem is critical in developing the theory of derived functors such as
Tor and Ext. In the applications a will typically be 0, but the starting point really does
not matter.

Theorem. Let P• and N• be complexes such that Pn = 0 for n < a − 1 and Nn = 0 for
n < a − 1. Suppose that N• is exact, and that Pn is projective for n ≥ a. Let M = Pa−1

(which need not be projective) and N = Na−1. Let φ be a given R-linear map from M to
N . Then we can choose φn : Pn → Nn for all n ≥ a such that, with φa−1 = φ, {φn}n is
a map of complexes (of course, φn = 0 is forced for n < a − 1). Briefly, φ lifts to a map
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{φn}n of complexes. Moreover, any two different choices {φn}n and {φ′n}n for the lifting
(but with φa−1 = φ′a−1 = φ) are homotopic.

Proof of existence. We have a composite map Pa → M → N and a surjection Na � N .
Therefore, by the universal mapping property of projective modules, we can choose an
R-linear map φa : Pa → Na such that φ ◦ da = d′a ◦ φa. We now shorten both complexes:
we replace the right end

Na+1 → Na � N → 0

of N• by
Na+1 → N ′ → 0,

where N ′ is the image of Na+1 in Na, which is also Ker (Na → N). We shorten the complex
P• by replacing the right end

Pa+1 → Pa →M → 0

by
Pa+1 →M ′ → 0,

where M ′ is the kernel of Pa → M . The restriction of φa to M ′ gives a map φ′ of M ′ to
N ′. We are now in precisely the same situation that we started with, and we construct
φa+1 in the same manner that we constructed φa. The existence of all the φn follows by
a straightforward induction. �

Math 615: Lecture of February 1, 2012

Proof of uniqueness up to homotopy. We work with the difference of the two liftings. It
therefore suffices to show that a lifting of the 0 map M → N is null homotopic. Of course,
we must define hn = 0 if n < a − 1, and we define ha−1 = 0 as well: the property we
need holds because φ = 0 . We construct the maps hn recursively. Suppose that we have
constructed hn for n < b where b ≥ a such that

φn = d′n+1hn + hn−1dn

for all n < b. It will suffice to construct hb : Pb → Nb+1 such that

φb = d′b+1hb + hb−1db.

We claim that the image of φb−hb−1db is contained in the image of Nb+1. By the exactness
of N•, it suffices to show that the image of φb−hb−1db is contained in the kernel of d′b, i.e.,

d′bφb − d′bhb−1db = 0.

But since
φb−1 = d′bhb−1 + +hb−2db−1,
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we may substitute
d′bhb−1 = φb−1 − hb−2db−1

to get
d′bφb − (φb−1 − hb−2db−1)db.

since db−1db = 0, this is just
d′bφb − φb−1db = 0

since {φn}n is a map of complexes. Since

α = φb − hb−1db

has image in Im (Nb+1), we may let β be α with its target restricted to Im (Nb+1). Since Pb
is projective and d′b+1 maps onto the target of β, we may lift β to a map hb : Pb → Nb+1,
so that d′b+1hb = β, which implies that

d′b+1hb = φb − hb−1db,

as required. �

Remark. Consider the case where a = 0. We also have maps of complexes once the
augmentations P−1 = M and N−1 = N are dropped, and because h−1 = 0, we still have
homotopic maps of complexes.

The significance of the result just proved is that we can use any projective resolution of
M to calculate Tor — up to canonical isomorphism.

Theorem. Let P• and Q• be projective resolutions of the R-module M . Choose a lifting of
idM to a map of resolutions φ• : P• → Q• and also to a map of resolutions ψ• : Q• → P•.
Then φ• ⊗R idN and ψ• induce mutually inverse isomorphisms between H•(P• ⊗R N)
H•(Q• ⊗R N) that are independent of the choices of the φ and ψ. In this sense, any
projective resolution of M may be used to compute all the modules TorRn (M, N) up to
canonical isomorphism.

Proof. If we took a different choice of φ• it would be homotopic to the original. The
homotopy is preserved when we apply ⊗R N . Therefore we get maps of homology that
are independent of the choice of φ•. The same remark applies to ψ•. The composition
ψ• ◦ φ• gives a map of complexes P• → P• that lifts idM . The identity map of complexes
is also such a lifting. This shows that ψ ◦ φ is homotopic to the identity map on P•.
This homotopy is preserved when we apply ⊗R N . This shows that the composition of
the induced maps of homology is the identity map. The argument is the same when the
composition is taken in the other order. �

Notice that TorRn (M, N) = 0 if n < 0. If

· · · → P1 → P0 �M → 0
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is a projective resolution of M , then

TorR0 (M, N) = H0(· · · → P1 ⊗R N → P0 ⊗R N → 0) ∼=
P0 ⊗R N

Im (P1 ⊗R N)
∼=

P0

Im (P1)
⊗N

using the right exactness of tensor. Since

P0

Im (P1)
∼= M,

we have that
TorR0 (M, N) ∼= M ⊗N.

We now give an alternative point of view about complexes. Let R[d] = R[∆]/∆2, and
give ∆ degree −1. The category of sequences is the same as the category of Z-graded
R[∆]-modules and degree preserving maps. The category of complexes is the same as the
full subcategory of Z-graded R[d]-modules and degree-preserving maps. It is very easy to
see that given M• → M ′•, one has induced maps AnnM•d → AnnM ′•d and dM• → dM ′•.
Homology is recovered as AnnM•d/dM•, This is an R[d]-module on which d acts trivially,
and it is now quite obvious that there are induced maps H•(M•)→ H•(M ′•) of homology.

From this point of view, the map h that gives a null homotopy is a degree 1 map of
graded R-modules, that is, it increases degrees of homogeneous elements by 1: it need not
commute with d. Then hd+ dh preserves degree, and does commute with d:

d(hd+ dh) = dhd = (hd+ dh)d.

hd+dh gives the zero map on homology because if dz = 0, (hd+dh)(z) = d(h(z)) ∈ Im (d).

We next want to show that Tor is a covariant functor of two variables. Given an R-
module map M →M ′ it lifts to a map of projective resolutions P• for M and P ′• for M ′.
This gives induced maps of homology when we apply ⊗ N . If we choose a different
lifting we get homotopic maps of complexes and the homotopy is preserved when we apply
⊗R N . The check of functoriality in M is straightforward.

Given a map N → N ′, we get obvious induced maps P• ⊗N → P• ⊗N ′ that yield the
maps of Tor. Once again, the proof of functoriality is straightforward.

Math 615: Lecture of February 3, 2012

In order to develop the theory of Tor further, we want to consider double complexes.
One point of view is that a double complex consists of a family of R-modules {Mij}i,j∈Z
together with “horizontal” R-module maps dij : Mij → Mi,j−1 and “vertical” R-module
maps d′ij : Mij → Mi−1,j for all i, j ∈ Z, such that every dijdi,j+1 = 0 (the rows are
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complexes), every d′i,jd
′
i+1,j = 0 (the columns are complexes) and such that all of the

squares

Mij
di,j−−−−→ Mi,j−1

d′ij

y yd′i,j−1

Mi−1,j −−−−→
di−1,j

Mi−1,j−1

commute: omitting subscripts, this means that d′d = dd′. An alternative convention that is
sometimes made instead is that in a double complex, the vertical and horizontal differentials
anticommute: i.e., d′d = −dd′. Both conventions have advantages and disadvantages: we
shall call the latter type of double complex a signed double complex, but this terminology
is not standard.

Given a double complex in our sense, one can alway create a signed double complex
by altering the signs on some of the maps. To have a standard way of doing this, our
convention will be that the associated signed double complex is obtained by replacing d′ij
by (−1)id′ij , while not changing any of the dij . There are many ways to alter signs to
get the squares to anticommute. It does not matter which one is used in the sense that
the homology of the total complex (we shall define the total complex momentarily) is
unaffected.

An alternative point of view is obtained by working with
⊕

ijMij , a (Z × Z)-graded
R-module. Let ∆ and ∆′ be indeterminates over R, and let R[d, d′] = R[∆,∆′]/(∆2,∆′2),
where ∆ has degree (0,−1), ∆′ has degree (−1, 0), and d, d′ are their images. The dij
define an action of d on

⊕
ijMij that lowers the second index by 1, and the d′ij define an

action of d′ on
⊕

ijMij that lowers the first index by 1. Thus, a double complex is simply
a (Z× Z)-graded R[d, d′]-module.

A signed double complex may be thought of as a (Z × Z)-graded module over the
noncommutative ring Λ generated over R by elements d and d′ of degrees (0,−1) and
(−1, 0), respectively, satisfying d2 = d′

2 = 0 and dd′ = −d′d. Λ may be identified with the
exterior algebra over R of the free R-module Rd⊕Rd′.

A morphism of double complexes is a bidegree-preserving Z×Z-graded R[d, d′]-module
homomorphism, so that the maps commute with the actions of d and of d′. We indicate a
double complex, whether signed or not, with the notation M••: the subscript is a reminder
that the bidegree has two integer components. The total complex of a signed double
complex M••, denoted T•(M••), is obtained by letting Tn(M••) =

⊕
i+j=nMij , with

differential d+d′. This is indeed a complex because (d+d′)(d+d′) = d2+d′d+dd′+d′2 = 0.
The total complex of a double complex M•• is simply the total complex of the associated
signed double complex. This means that the differential, restricted to Mij , is dij+(−1)id′ij .

Example. If M• and N• are complexes with differentials d• and d′•, respectively, we get a
double complex M• ⊗N• whose i, j term is Mj ⊗Ni. Thus, the i th row is

· · · →Mj+1 ⊗R Ni →Mj ⊗R Ni ⊗RMj−1 ⊗R Ni → · · ·
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and the j th column is

...
↓

Mj ⊗R Ni+1

↓
Mj ⊗R Ni
↓

Mj ⊗R Ni−1

↓
...

The differentials in the i th row are the maps dj ⊗ idNi while those in the j th column
are the maps idMj

⊗ d′i. We shall return to the study of double complexes of this form
shortly. The total complex T•(M•⊗RN•) is called the total tensor product of M• and N•,
and some authors omit the word “total,” but we reserve the term “tensor product” for the
double complex. Note that the differential of the total tensor product applied to uj × vi
has the value duj ⊗ vi + (−1)juj ⊗ d′vi.

Given a double complex, one can take homology first of the rows (giving a new double
complex) and then of the columns. The result is called iterated homology. One can also
take homology first of the columns and then of the rows: this gives the iterated homology
for the other order. Third, one can take homology of the total complex. These three
objects are related in a complicated way. One of the most important applications of the
theory of spectral sequences is to explain the relationship. We shall return to these ideas
later.

For the moment, we want to prove two lemmas about double complexes that are of
immense importance. They are both special cases of the theory of spectral sequences, but
we ignore this for the moment.

The first is the snake or serpent lemma. One starts with a short exact sequence of
complexes

0→ A•
α−→ B•

β−→ C• → 0,

which simply means that for all n, the sequence 0 → An → Bn → Cn → 0 is exact.
We may form from these a double complex in which A•, B• and C• are the columns. A
typical row is then 0→ An → Bn → Cn → 0, and so is exact. A key point is that in this
situation there is a well-defined map γ• from H•(C•) → H•−1(A•) called the connecting
homomorphism, where the subscript •−1 indicates that degrees have been shifted by −1,
so that the γn : Hn(A•) → Hn−1(C•). We could also have used our graded module
conventions and written H•(C•)(−1), but we shall use the other convention for shifting
the numbering of complexes.

The definition of γ is quite simple: since every map Bn → An is onto, given a cycle
z ∈ An we may choose b ∈ Bn such that β(b) = z. Since z maps to 0 in An−1, we have that
β(db) = d

(
β(b)

)
= dz = 0 maps to 0 in Bn−1, and so db is the image of a unique element
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a ∈ An−1. Moreover da = 0, since d
(
α(a)

)
= d(db) = 0. Our map will send [z] ∈ Hn(C•)

to [a] ∈ Hn−1(A•). Note that if had made another choice of b mapping to z, it would
have the form b+ α(a1) for some a1 ∈ An. Then d(b+ α(a1)) = db+ α(da1), and a would
change to a+ d(a1), which does not change its homology class. If we change the choice of
representative z to z + dc′ for some c′ ∈ Cn+1, we can choose b′ ∈ Bn+1 that maps to c′,
and then a new choice for b is b + db′. But d(b + db′) = db. This shows that we have a
well-defined map Hn(C) → Hn−1(A). R-linearity follows from the fact that if b1 and b2
map to z1 and z2, then rb1 + b2 maps to rz1 + z2 for r ∈ R. Very briefly, the connecting
homomorphism is characterized by the formula γ([β(b)] = [α−1(db)], which makes sense
since α is injective and db is in its image when β(b) is a cycle.

Note the following picture:

b 7→ z

↓

a 7→ db

↓

0

Proposition (snake or serpent lemma). If 0→ A• → B• → C• → 0 is a short exact
sequence of complexes, then there is a long exact sequence of homology:

· · · → Hn+1(C•)
γn+1−−−→ Hn(A•)

αn∗−−→ Hn(B•)
βn∗−−→ Hn(C•)

γn−→ Hn−1(A•)→ · · ·

where αn∗ and βn∗ are the maps of homology induced by αn and βn, respectively.
Moreover, given a morphism of short exact sequences of complexes (this makes sense,

thinking of them as double complexes), we get an induced morphism of long exact sequences,
and the construction is functorial.

Proof. It suffices to check exactness at Hn(C•), Hn(B•), and Hn(A•).

A cycle z in Cn is killed by γ iff for b mapping to c, db is the image of a ∈ An−1 that
is a boundary, i.e., that has the form da′ for some a′ ∈ An−1. But then b− a′ is a cycle in
Bn that maps to z, which shows that [b− a′] maps to [z], as required. Conversely, if b is a
cycle that maps to z, db = 0 and it is immediate that [z] is in the kernel of γn.

For a cycle in z ∈ Bn, [z] is killed by βn∗ iff β(z) is a boundary in Cn, i.e., β(z) = dc′,
where c′ ∈ Cn+1. Choose b′ ∈ Bn+1 that maps onto c′. Then z − db′ maps to 0 in Cn,
and so is the image of an element a ∈ An: moreover, da maps to dz − d2b′ = 0 − 0,
and An−1 ↪→ Bn−1, so that a is cycle and [a] maps to [z]. Conversely, the fact that the
composite Hn(A•)→ Hn(B•)→ Hn(C•) is 0 is immediate from the fact that βα = 0.

Finally, let z ∈ An be a cycle such that [z] is zero in Hn(B•). Then α(z) is a boundary,
i.e., α(z) = db for b ∈ Bn+1. By the definition of γn+1 we have that γn+1([β(b)]) = [a].
Conversely, if γn+1([β(b)]) = [a] we have that [a] maps to [db] = 0, so that αn∗γn+1 = 0.
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Suppose that one has a morphism of short exact sequences from

0→ A• → B• → C• → 0

to
0→ A′• → B′• → C ′• → 0.

The functoriality of the long exact sequence is immediate from the functoriality of taking
homology, except for the commutativity of the squares:

Hn(C•) −−−−→ Hn−1(A•)y y
Hn(C ′•) −−−−→ Hn−1(A′•)

.

This follows from the fact that if α(a) = db and β(b) = z, these relations continue to
hold when we map a ∈ An−1, b ∈ Bn and z ∈ Cn to their counterparts in A′n−1, B′n, and
C ′n. �

Corollary. If 0→ N2 → N1 → N0 → 0 is a short exact sequence of R-modules and M is
any R-module, then there is a long exact sequence

· · · → TorRn (M, N2)→ TorRn (M, N1)→ TorRn (M, N0)→ TorRn−1(M, N2)→ · · · →

TorR1 (M, N2)→ TorR1 (M, N1)→ TorR1 (M, N0)→M⊗RN2 →M⊗RN1 →M⊗RN0 → 0,

where we are identifying TorR0 (M, N) with M ⊗R N .
Moreover, the long exact sequence is functorial in the the short exact sequence

0→ N2 → N1 → N0 → 0.

Proof. Let P• be a projective resolution of M (so that H0(P•) = M), and let N• be the
short exact sequence formed by the Ni. Then N• ⊗R P• is a double complex that may be
thought of as the short exact sequence of complexes

0→ N2 ⊗R P• → N1 ⊗R P• → N0 ⊗R P• → 0.

The typical row
0→ N2 ⊗R Pn → N1 ⊗R Pn → N0 ⊗R Pn →→ 0

is exact because Pn is projective and, therefore, R-flat. The result is now immediate from
the definition of Tor and the snake lemma. �

Note that if P is projective, TorRn (P,N) = 0 for n ≥ 1. This is obvious because with
P0 = P , the complex

0→ P0 → 0
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is a projective resolution of P , and may be used to compute Tor. We shall shortly see that
this property, the functorial long exact sequence, and the fact that TorR0 (M, N) ∼= M⊗RN
canonically as functors of two variables completely characterizes the functor TorR• ( , ),
up to isomorphism of functors of two variables.

One may ask if there is a comparable long exact sequence for Tor if one starts with a
sequence of modules 0 → M2 → M1 → M0 → 0. There is such a sequence, and there are
several ways to see this. One of them is to prove that there is a canonical isomorphism of
functors of two variables TorRn (M, N) ∼= TorRn (N, M) for all n, induced by the canonical
identification M⊗RN ∼= N⊗RM that lets u⊗v correspond to v⊗u. But the commutativity
of tensor products is not the whole story. The symmetry of Tor is asserting that one can
compute TorRn (M,N) by taking a projective resolution of N , tensoring with M , and then
taking homology. It is not obvious how to compare the two. What we shall do is take
projective resolutions P• of M and Q• of N , and compare the two ways of computing Tor
with the homology of T•(P•⊗RQ•). The following fact about double complexes is the key
— before stating it, we recall that a left complex is acyclic if its homology vanishes in all
degrees except degree 0. (The same term is applied to right complexes whose homology
vanishes except in degree 0.)

Theorem. Let M•• be a double complex whose terms all vanish if either component of
the bidegree is < 0. Suppose that every row and every column is acyclic, i.e., that the
homology of every row is 0 except in degree 0, and the same holds for columns. Let Ai be the
augmentation module of the i th row (its 0 th homology module) and Bj be the augmentation
module of the j th column (its 0 th homology module). Note that vertical differentials give
a map from the i th row to the i − 1 st row and hence induce maps Ai → Ai−1 for all i
which makes A• a complex. Similar, B• is a complex. Then there are isomorphisms

H•(A•) ∼= H•
(
T•(M••)

) ∼= H•(B•).

Math 615: Lecture of February 6, 2012

Proof of the Theorem. Every element of Hn(T•(M••) is represented by a cycle of

M0n ⊕M1,n−1 ⊕ · · · ⊕Mn−1,0 +⊕Mn,0.

Denote this cycle
z = u0n ⊕ u1,n−1 ⊕ · · · ⊕ un−1,1 +⊕un,0.

We work in the signed double complex associated with M••, and assume that horizontal
differentials d and the vertical differentials d′ anticommute. We shall also write d (re-
spectively, d′) for the maps Mn,0 → An (respectively, M0,n → Bn). A typical term in
the sum above has the form uij where i + j = n, and both i and j lie between 0 and n
inclusive. The condition that z be a cycle is that for 1 ≤ i ≤ n, dui−1,j+1 = −d′uij : this
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is a condition on the pairs of consecutive terms whose indices sum to n. Given such an
element of Tn(M••), we map it to Hn(A•) by sending it to [dun0], where dun0 ∈ An and
the brackets indicate the class of dun0 in Hn(A•). There is a precisely similar map that
sends [z] to [d′(u0n)] ∈ Hn(B•). There are several things that need checking:

(1) dun0 is a cycle of Hn(A•) (the symmetric fact for [u0n] then follows).
(2) [dun0] is independent of the choice of representative of [z] (the symmetric fact for

[d′u0n] follows).
(3) The maps Hn

(
T•(M••)

)
to Hn(A•) and to Hn(B•) obtained in this way are surjective.

(4) These maps are also injective.
(5) These maps are R-linear.

The checks that have some interest are (3) and (4), but we look at them all.

Consider the following diagram, in which the rows are exact, the rightmost squares
commute (i.e., d′∗ is induced by d′), while other squares, only one of which is shown,
anticommute:

Mn+1,0
d−−−−→ An+1 −−−−→ 0

d′

y yd′∗
Mn,1

d−−−−→ Mn,0
d−−−−→ An −−−−→ 0

d′

y d′

y yd′∗
Mn−1,1

d−−−−→ Mn−1,0
d−−−−→ An−1 −−−−→ 0

(1) We have that d′∗[dun0] = [dd′un,0] ∈ An−1, and d′un,0 = −dun−1,1, and therefore
d′∗[dun0] = [−d2un−1,1] = [0] = 0.

(2) If we change z by adding a boundary in the total complex, un,0 changes by adding a
term of the form dun,1 + d′un+1,0, where un,1 ∈ Mn,1 and un+1,1 ∈ Mn+1,1. But dun,1
maps to 0 in An because d2 = 0, and d′un+1,0 maps to dd′un+1,0 = d′∗dun+1,0, the image
of dun+1,0 ∈ An+1 in An, so that [dun,0] does not change.

(3) Suppose that ζ ∈ An is a cycle. We can write ζ in the form dun,0 for some un,0 ∈Mn,0.
We want to show that we can construct elements un−j,j , 1 ≤ j ≤ n, such that

u0n ⊕ u1,n−1 ⊕ · · · ⊕ un−1,1 +⊕un,0

is a cycle in Tn(M••), i.e., such that we have

(∗j) dun−(j+1),j+1 = −d′un−j,j

0 ≤ j ≤ n − 1, and we proceed to make the construction by induction on j. Because
dun,0 = ζ is a cycle, d′∗dun,0 = 0, which implies dd′un,0 = 0. Since −d′un,0 is in the
kernel of d, it is in the image of d, and so we can choose un−1,1 ∈ Mn−1,1 such that
dun−1,1 = −d′un,0. This is (∗0). Now suppose that the un−h,h have been constructed such
that (∗h−1) holds, 1 ≤ h ≤ j, where j ≥ 1. In particular, we have (∗j−1), i.e.,

dun−j,j = −d′un−j+1,j−1.
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We want to choose un−j+1,j+1 such that

dun−(j+1),j+1 = −d′un−j,j

so that it suffices to see that −d′un−j,j is in the image of d, and, therefore, it suffices to
see that it is in the kernel of d. but

−dd′un−j,j = d′dun−j,j = d′(−d′un−j+1,j−1) = 0,

as required, since (d′)2 = 0. This shows that one can construct a cycle that maps to ζ. If
we let wn−j−1,j = d′un−j,j , we have this picture:

un,0 7→ z

↓

un−1,1 7→ ±wn−1,0

↓

±wn−2,1

. .
.

. .
.

. .
.

un−j,j 7→ ±wn−j,j−1

↓

un−j−1,j+1 7→ ±wn−j−1,j

↓

±wn−j−2,j+1

(4) Now suppose that we have a cycle in Tn(M••), call it

z = u0n ⊕ u1,n−1 ⊕ · · · ⊕ un−1,1 +⊕un,0

that maps to 0 in Hn(A•), which means that dun,0 ∈ An is the image of some an+1 =
dun+1,0 ∈ An+1 under the map induced by d′. This implies that d(un,0 − d′un+1,0) =
dun,0 − d′∗dun+1,0 = 0 in An, and therefore has the form dun,1 for some un,1 ∈ Mn,1. We
now use recursion on j to construct

un−1,2 ∈Mn−1,2, . . . , un−j,j+1 ∈Mn−j,j+1, . . . , u0,n+1 ∈M0,n+1

such that for all j, 0 ≤ j ≤ n,

(∗j) dun−j,j+1 + d′un−j+1,j = un−j,j .
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This will show that z is the image of

u0,n+1 ⊕ u1,n ⊕ · · · ⊕ un,1 ⊕ un+1,0,

as required. We have already done the case where j = 0. Suppose for a fixed j with
1 ≤ j ≤ n we have constructed these elements un+1−h, h, 0 ≤ h ≤ j, such that (∗h) holds
for 0 ≤ h ≤ j − 1. In particular, for h = j − 1, we have

(∗j−1) dun−j+1,j + d′un−(j−1)+1,j−1 = un−j+1,j−1,

and applying d′ to both sides we get:

(∗∗) d′dun+1−j,j = d′un+1−j,j−1

We want to construct un−j,j+1 such that (∗j) holds, i.e., such that

dun−j,j+1 = un−j,j − d′un+1−j,j .

To show that the element on the right is in the image of d, it suffices to prove that it is in
the kernel of d, i.e., that

dun−j,j = dd′un+1−j,j .

But dun−j,j = −d′un−j+1,j−1 because z is a cycle and by (∗∗),

−d′un+1−j,j−1 = −d′dun+1−j,j = dd′un+1−j,j ,

as required.

(5) R-linearity is immediate from the definitions of the maps, once we know that they are
well-defined, since, at the cycle level, the map Hn

(
T•(M••)

)
→ Hn(A•) is induced by re-

stricting the product projection
∏

i+j=n

Mij →Mn0 (identifying
⊕
i+j=n

Mij
∼=

∏
i+j=n

Mij). �

We immediately obtain the isomorphism TorRn (M, N) ∼= TorRn (N, M) for all n. Let
P• and Q• be projective resolutions of M and N , respectively. Then TorRn (M, N) ∼=
Hn(P• ⊗R N) ∼= Hn

(
T•(P• ⊗R Q•)

) ∼= Hn(M ⊗R Q•) ∼= Hn(Q• ⊗R M) ∼= TorRn (N,M).
The first and last isomorphisms follow from the definition of Tor, coupled with the fact that
any projective resolution may be used to compute it, the second and third isomorphisms
follow from the Theorem just proved, and the next to last isomorphism is a consequence
of the commutativity of tensor product.

This means that given a short exact sequence of modules 0 → M2
a−→ M1

b−→ M0 → 0
there is also a long exact sequence for Tor:

· · · → TorRn (M2, N)→ TorRn (M1, N)→ TorRn (M0, N)→ TorRn−1(M2, N)→ · · · .

This sequence can be derived directly without proving the commutativity of Tor, by con-
structing an exact sequence of projective resolutions of the modules Mj instead. The idea
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is to fix resolutions of M2 and M0, and use them to build a resolution of M1. Suppose that
we are given projective resolutions P (j)

• of Mj , for j = 2, 0, and call the differentials d(j),
j = 0, 2. From these we can construct a projective resolution P

(1)
• of M1 such that for all

n, P (1)
n = P

(2)
n ⊕ P (0)

n . To begin, the map d(0) : P (0)
0 → M0 lifts to a map f0 : P (0) → M1

by the universal mapping property of projective modules, because b : M1 � M0 is onto.
One gets a surjection d(1) : P (2) ⊕ P (0) �M1 using d(1) = a ◦ d(2) ⊕ f0. If one lets Z2, Z1,
and Z0 be the kernels of the d(j) one has a commutative diagram:

P
(2)
1 P

(0)
1y y

0 −−−−→ Z2 −−−−→ Z1 −−−−→ Z0 −−−−→ 0y y y
0 −−−−→ P

(2)
0 −−−−→ P

(2)
0 ⊕ P (0)

0 −−−−→ P
(0)
0 −−−−→ 0

d(2)

y y yd(0)
0 −−−−→ M2 −−−−→

a
M1 −−−−→

b
M0 −−−−→ 0y y y

0 0 0 .

where the sequence of kernels 0 → Z2 → Z1 → Z0 → 0 is easily checked to be exact, and
the problem of constructing the degree 1 part of the resolution of M1 is now precisely the
same problem that we had in constructing the degree 0 part.

Once one has the map P
(1)
1 = P

(2)
1 ⊕ P (0)

1 � Z1, the map

P
(1)
1 = P

(2)
1 ⊕ P (0)

1 → P
(2)
0 ⊕ P (0)

0 = P
(1)
0

is constructed as the composition of the map P
(2)
1 ⊕ P (0)

1 � Z1 with the inclusion of Z1

in P
(2)
0 ⊕ P (0)

0 . By a straightforward induction, one can continue in this way to build an
entire projective resolution P

(1)
• of M1, and a short exact sequence of complexes

0→ P
(2)
• → P

(1)
• → P

(0)
• → 0

such that for all n,
P (1)
n = P (2)

n ⊕ P (0)
n ,

and the induced sequence of maps on the augmentations Mj is the short exact sequence

0→M2
a−→M1

b−→M0 → 0 that we started with.

We next note that if r ∈ R and M, N are R-modules, then the map

TorRn (M, N)→ TorRn (M, N)
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induced by multiplication by r on N is given by multiplication by r on TorRn (M, N). This
may be seen as follows. Choose a projective resolution P• of M . When we tensor with
N

r−→ N , we get the map of complexes P• ⊗R N
r−→ P• ⊗R N induced by multiplication by

r, and this induces the map of homology. The same fact holds when we use M r−→ M to
induce a map

TorRn (M, N)→ TorRn (M, N),

by the symmetry of Tor. (Alternatively, use multiplication by r on every Pn to left M r−→M

to a map P•
r−→ P• of the projective resolution of M to itself. Then apply ⊗R N and

take homology.)

If r ∈ AnnRN , then multiplication N
r−→ N , is the zero map, and hence induces the 0

map
TorRn (M, N)→ TorRn (M, N),

which is also the map given by multiplication by r. In consequence, we have that AnnRN
kills every TorRn (M, N). The same holds for AnnRM , and so AnnRM+AnnRN kills every
TorRn (M, N).

The following fact, while very simple, is of great utility:

Proposition. If x ∈ R is not a zerodivisor and M is any R-module, then TorRn (M, R/xR)
(which is also TorRn (R/xR, M) ) is M/xM if n = 0, is AnnMx if n = 1, and is 0 if
n 6= 0, 1.

Proof. We may use the projective resolution 0 → R
x−→ R → 0, whose augmentation is

R/xR, to compute Tor. Here, the left hand copy of R is in degree 1 and the right hand
copy in degree 0. When we apply M ⊗R , we find that the values of Tor are given by
the homology of the complex 0→M

x−→M → 0. �

We next want to introduce Koszul complexes. In doing so, we first want to discuss
iterated total tensor products of complexes. Given k complexes M (1)

• , . . . , M
(k)
• , with

differential d(j) on M (j), we may define a total tensor product, which we denote

T•(M (1)
• ⊗R · · · ⊗RM (k)

• ),

recursively by the rule that for k = 1 it is simply the original complex, for k = 2 it is the
total tensor product of two complexes already defined, while for k > 2 it is

T•
(
(T•(M (1)

• ⊗R · · · ⊗RM (k−1)
• )⊗RM (k)

•
)
.

It is easy to work out that up to obvious isomorphism this is the complex T• such that

Tn =
⊕

j1+···jk=n

Mj1 ⊗R · · · ⊗RMjk .

The differential on Tn is determined by the formula

d(uj1 ⊗ · · · ⊗ ujk) =
k∑
ν=1

(−1)j1+···+jν−1uj1 ⊗ · · · ⊗ ujν−1 ⊗ d(jν)ujν ⊗ ujν+1 ⊗ · · · ⊗ ujk .
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We now define the Koszul complex of a sequence of elements x1, . . . , xk of the ring
R, which we denote K•(x1, . . . , xk; R), as follows. If k = 1, K•(x1;R) is the complex
0 → R

x1−→ R → 0, where the left hand copy of R is in degree 1 and the right hand copy
in degree 0. Recursively, for k > 1,

K•(x1, . . . , xk;R) = T•
(
K•(x1, . . . , xk−1; R)⊗R K•(xk; R)

)
Said differently,

K•(x1, . . . , xk;R) = T•
(
K•(x1; R)⊗R · · · ⊗R K•(xk; R)

)
.

We shall look very hard at these complexes. Very soon, we will prove that if x1, . . . , xk
is an improper regular sequence in R, then K•(x1, . . . , xk; R) is a free resolution of
R/(x1, . . . , xk). This fact can be used, in conjunction with tricks, to compute or gain
information about Tor in a remarkable number of instances.

Math 615: Lecture of February 8, 2012

We first prove that Koszul complexes give free resolutions for improper regular sequences
such that every element is a nonzerodivisor. The hypothesis that every element is a
nonzerodivisor is not needed: we will get rid of it shortly. But the case we prove is the
most important.

Theorem. Let x1, . . . , xk be an improper regular sequence in R such that every xj is a
nonzerodivisor in R. Then the Koszul complex K•(x1, . . . , xk; R) is acyclic, and gives a
free resolution of R/(x1, . . . , xk)R.

Proof. The case where k = 1 is obvious. We proceed by induction on k. Thus, we may
assume that k > 1, and then we know that K•(x1, . . . , xk−1; R) and K•(xk; R) give free
resolutions of R/(x1, . . . , xk−1)R and R/xkR respectively. We may use the homology of
the total tensor product to compute the values of

TorRn (R/(x1, . . . , xk−1)R, R/xkR).

This is
Tn
(
K•(x1, . . . , xk−1; R)⊗R K•(xk; R)

)
,

which is K•(x1, . . . , xk; R). By the Proposition from the previous lecture, when x is a
nonzerodivisor in R, TorRn (M,R/xR) vanishes when n 6= 0, 1, and

TorR1 (M, R/xR) ∼= AnnMx.

In our current situation, xk is not a zerodivisor on R/(x1, . . . , xk−1)R by the definition of
a regular sequence, and so all of the

TorRn (R/(x1, . . . , xk−1)R, R/xkR)
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vanish except possibly when n = 0, where one has

R/(x1, . . . , xk−1)R⊗R R/xkR ∼= R/(x1, . . . , xk)R,

since R/I ⊗R R/J ∼= R/(I + J) quite generally. This shows that K•(x1, . . . , xk; R) is a
free resolution of R/(x1, . . . , xk)R, as claimed. �

Koszul complexes of this sort are, by no small measure, the best understood free res-
olutions. We shall look at them closely. Later, we will use our understanding of Koszul
complexes to prove the following theorem, which as established by M. Auslander in the
equicharacteristic case and by S. Lichtenbaum in general.

Theorem (rigidity of Tor over regular rings). Let M and N be finitely generated mod-
ules over a Noetherian ring R whose local rings are regular. Suppose that TorRi (M, N) = 0.
Then TorRj (M, N) = 0 for all j ≥ i.

It will be quite a while before we can prove this.
We want to give a more explicit description of the Koszul complex. Experience has

shown that it is useful in considering the complexes

0→ R
xj−→ R→ 0

to give separate names to the generators of the free modules, instead of calling them all 1.
We therefore write

0→ Ruj
xj−→ Rvj → 0

for K•(xj ; R), although uj = vj = 1. The differential is described by the rule duj =
xjvj , although we might also write duj = xj . To describe the total tensor product of
k such complexes, we note that from our general description of total tensor products,
Ki(x1, . . . , xk; R) will consist of the direct sum of all k-fold tensor products consisting
of one term chosen from each complex, and such that the sum of the degrees from which
these terms come is i. Notice that there will by 2k terms if we look at all degrees. There
will be one term in degree i for every choice of terms such that exactly i of them are the
degree one copy of R from the complex. There are

(
k
i

)
such terms; if we choose the degree

one factors to be from
K(xj1 ; R), . . . , K(xji ; R)

with 1 ≤ j1 < · · · < ji ≤ k, we write uj1, ... ,ji for the obvious generator: it is a tensor
product of k terms, each of which is either ut or vt. Specifically, the generator can be
described as w1⊗ · · ·wk, where if t = ji for some i then wt = uji , while wt = vt otherwise.
Note that the degree in which uj1, ... ,ji occurs is i, the number of elements in the string of
subscripts. With this notation, we can write down the differential explicitly as follows:

duj1, ... ,ji =
i∑
t=1

(−1)t−1xjtuj1, ... , jt−1, jt+1, ... , ji .

The matrices of the maps with respect to the bases we are using will have entries each of
which is ±xs or 0.
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This is simpler than it may seem at first sight. Consider the case where k = 2. The
Koszul complex looks like this:

0→ Ru12
α2−→ Ru1 ⊕Ru2

α1−→ R→ 0.

u1 maps to x1 and u2 maps to x2, while u12 maps to x1u2 − x2u1 = −x2u1 + x1u2. Thus,
then matrices of the maps are α1 = (x1 x2 ) and

α2 =
(
−x2

x1

)
.

The map α1 sends r1u1 + r2u2 to r1x1 + r2x2. Its kernel is the set of relations on x1 and
x2. The “obvious” relations are given by the multiples of (−x2, x1), and when the Koszul
complex is acyclic (e.g., when the x1, x2 is a regular sequence), the “obvious” relations are
the only relations.

When k = 3 the Koszul complex is

0→ Ru123
α3−→ Ru23 ⊕Ru13 ⊕R12

α2−→ Ru1 ⊕Ru2 ⊕R3
α1−→ R→ 0.

The images of u1, u2, and u3 are x1, x2, and x3, respectively. The images of u23, u13, and
u12 are −x3u2 + x2u3, −x3u1 + x1u3, and −x2u1 + x1u2, respectively. The image of u123

is x1u23 + x2u1,3 + x3u12. If we use the obvious bases except that we replace u13 by −u13,
then the matrices of the maps are α1 = (x1 x2 x3 ),

α2 =

 0 x3 −x2

−x3 0 x1

x2 −x1 0

 ,

and

α3 =

 x1

−x2

x3

 .

The columns of each αi+1 give relations on the columns of αi, i = 1, 2. When the Koszul
complex is acyclic, these generate all the relations.

Note that over a Noetherian ring R, whenever M and N are finitely generated, so are
all the modules TorRn (M, N). To see this, note that we can choose a free resolution of
M by finitely generated free modules. The resolution may go on forever, but each new
kernel (or module of syzygies) is a submodule of a finitely generated free module, hence,
Noetherian, and one can map a finitely generated free module onto it. Applying ⊗R N
produces a complex of Noetherian modules, and it follows at once that all of its homology
modules are Noetherian.

Things are even better when we take free resolutions of finitely generated modules over
a local ring (R, m, K). We start with a free module M . We may choose a minimal set of
generators for M : these are elements whose images in K ⊗R M ∼= M/mM are K-vector
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space basis. This gives F0 �M where F0 is free. The kernel Z1 is a finitely generated R-
module. Again, we may choose a minimal set of generators of Z1 and map a free module
F1 onto Z1 using these generators. We can continue in this way, and so obtain a free
resolution

· · · αn+1−−−→ Fn
αn−−→ Fn−1

αn−1−−−→ · · · α2−→ F1
α1−→ F0

α0−→M → 0

such that the image of the free basis for Fi is a minimal set of generators for Zi = αi(Fi)
for all i ≥ 0. In this notation, Z0 = M itself. Such a free resolution is called a minimal
free resolution of M . If Fi = R⊕bi , the integer bi is called the i th Betti number of M : we
shall see momentarily that it is independent of the choice of the minimal resolution of M .

Note that the columns of the matrix αi generate the relations on the generators for
Zi given by the image of the the free basis for Fi. These generators will be minimal if
and only if none of them is a linear combination of the others, which is equivalent to the
condition that no coefficient on a relation among them be a unit. (If any coefficient is a
unit, one can solve for that generator in terms of the others.) Therefore, a resolution with
matrices αi is a minimal free resolution if and only if every entry of every matrix is in the
maximal ideal m of R.

Theorem. let (R, m, K) be a local ring, and let M be a finitely generated module. Let F•
be a minimal free resolution of M , and suppose that Fi ∼= Rbi . Then Tori(M, K) ∼= Kbi .
Thus, the i th Betti number of M is the same as dimKTorRi (M, K).

M has a finite resolution by free modules if and only if TorRi (M, K) = 0 for some
i ≥ 1, and then a minimal free resolution is finite and is at least as short as any other free
resolution of M .

Proof. When we use a minimal resolution F• to compute Tor, we form the complex of
K-vector spaces F• ⊗R K. At the i th spot we have

Fi ⊗R K ∼= R⊕bi ⊗R K ∼= K⊕bi .

Because all the matrices have entries in m, when we map to K all the matrices become 0.
Thus, all the maps in F• ⊗K are 0, and the complex is its own homology, i.e.,

Hi(F• ⊗K) ∼= Fi ⊗R K ∼= Kbi ,

as claimed.

If M has a finite free resolution of length h, it may be used to compute Tor. It follows
that TorRi (M, K) = 0 for i > h. On the other hand, suppose that TorRi (M, K) = 0. This
means that in a minimal free resolution of M , bi = 0, i.e., the i th module is 0. But then
the minimal free resolution continues with modules all of which are 0. �

Putting this together with our knowledge of the Koszul complex, we obtain the following
result with amazing ease:
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Theorem. Let (R,m,K) be a regular local ring of dimension d, and let x1, . . . , xd be a
minimal set of generators of m. Then K•(x1, . . . , xd; R) is a minimal free resolution of
K over R. In consequence, TorRi (K, K) ∼= K(di), 0 ≤ i ≤ d, and is 0 otherwise.

Moreover, every finitely generated R-module M has a finite free resolution over R of
length at most d.

Proof. We know that x1, . . . , xd is a regular sequence in R consisting of nonzerodivisors
(since R is a domain). Thus, K•(x1, . . . , xd; R) is a free resolution of R/(x1, . . . , xd) ∼= K.
Since every entry of every matrix is either ±xj for some j or 0, this is a minimal free
resolution of K. The calculation of TorRi (K, K) is immediate.

Now let M be any finitely generated R-module. Since K has a free resolution of length
d, TorRi (K, M) = 0 for i > d. But this is the same as TorRi (M, K), and therefore the
minimal resolution of M has length at most d. �

Notice that the symmetry of Tor plays a key role in the proof that M has a finite free
resolution: in some sense, the symmetry is a rather trivial fact, but it is often the case
that the information it provides is not easily obtained by other methods.

The final statement is a version of the Hilbert syzygy theorem. Hilbert did the case of
finitely generated graded modules over the polynomial ring in d variables over the complex
numbers. Note that the fact that one has a finite free resolution is equivalent to the
assertion that when one takes iterated modules of syzygies, one eventually gets one that
is free.

Horrocks raised the following question. Given a module M 6= 0 of finite length over a
regular local ring (R,m,K) of dimension d, is it true that the i th Betti number of M is
at least

(
d
i

)
, 0 ≤ i ≤ d? The question was given in a list by Hartshorne. Buchsbaum and

Eisenbud conjectured that this is true. The problem, although simple to state, is open.

We shall relate the homology of Koszul complexes to the notion of multiplicity of an
m-primary ideal discussed earlier. Recall that if A is m-primary in a local ring (R,m,K) of
Krull dimension d, then the Hilbert function `(R/An+1) agrees with a polynomial of degree
d in n for large n, whose leading term has the form

eA

d!
nd, where eA is a positive integer

called the multiplicity of A. We shall prove that if x1, . . . , xd is a system of parameters of
the local ring R and A = (x1, . . . , xd)R, then

eA =
d∑
i=0

(−1)i`
(
Hi

(
K•(x1, . . . , xd; R)

))
.

It does turn out that the modules Hi

(
K•(x1, . . . , xd; R)

)
have finite length, so that the

right hand side makes sense. We will prove this formula, which is due to Serre, using
spectral sequences. It will be a while before we are able to accomplish this.

Open questions in this area are abundant. Here is one that sounds very simple. First
recall that the multiplicity em of the maximal ideal m of R is also called the multiplicity
of R. Let

(R,m,K)→ (S, n, L)
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be a local homomorphism of local rings such that S is flat over R. Is the multiplicity of R
bounded by the multiplicity of S? I.e., is em ≤ en? This was conjectured by C. Lech, and
is open even when S is a finitely generated free R-module.

Math 615: Lecture of February 10, 2012

If x1, . . . , xn ∈ R and M is an R-module, we define the Koszul complex of M with
respect to x1, . . . , xn, denoted K•(x1, . . . , xn;M), as

K•(x1, . . . , xn; R)⊗RM.

At the i th spot we have R(ni) ⊗RM . When n = 2 we have

0→M
d2−→M ⊕M d1−→M → 0

where
d2(u) = −x2u⊕ x1u

and
d1(v ⊕ w) = x1v + x2w.

We shall often abbreviate x for x1, . . . , xn, and write K•(x; M) instead. The Koszul
homology modules H•(x; M) are then defined as

H•
(
K•(x;M)

)
.

We note the following facts:

(1) A an R-linear map f : M → N induces, in a covariantly functorial way, a map
of Koszul complexes K•(x; M) → K•(x; N) and, hence, a map of Koszul homology
H•(x; M) → H•(x;N). If M = N and the map is multiplication by r ∈ R, the in-
duced map on Koszul complexes and on their homology is also given by multiplication by
the ring element r.

(2) By the right exactness of tensor product,

H0(x; M) ∼=
(
R/(x1, . . . , xn)R

)
⊗RM ∼= M/(x1, . . . , xn).M

The last map
Kn(x; M) ∼= M →M⊕n ∼= Kn−1(x; M)

has the form
u 7→ (±x1u, . . . ,±xnu)

for some choice of signs (which depends on the choices of free basis). However, for any
choice, the kernel is clearly AnnM (x1, . . . , xn)R, i.e.,

Hn(x; M) ∼= AnnM (x1, . . . , xn)R.
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(3) Given a short exact sequence of modules

0→M2 →M1 →M0 → 0

there is a functorial short exact sequence of complexes

0→ K•(x; M2)→ K•(x; M1)→ K•(x; M0)→ 0

induced by forming the tensor product of the given short exact sequence with K•(x;R)
(which we think of as a column). The rows are all exact because each is obtained by
tensoring

0→M2 →M1 →M0 → 0

with a free R-module. By the snake lemma there is a functorial long exact sequence of
Koszul homology:

0→ Hn(x; M2)→ Hn(x; M1)→ Hn(x; M0)→ · · ·

→ Hi(x; M2)→ Hi(x; M1)→ Hi(x; M0)→ Hi−1(x; M2)→ · · ·

→ H0(x; M2)→ H0(x; M1)→ H0(x; M0)→ 0.

(4) Let h : R → S be a ring homomorphism and let x1, . . . , xn ∈ R. Let M be an
S-module. Then M becomes R-module by restriction of scalars, i.e., we let r ∈ R act by
the rule r · u = h(r)u. The Koszul complexes

K•(x1, . . . , xn; M)

and
K•(h(x1), . . . , h(xn);M)

are isomorphic in a very strong sense. As R-modules, the terms are identical. The maps
are also identical: each map is completely determined by the manner in which the xi
(respectively, the h(xi) ) act on M , and multiplication by xi is, by definition, the same
endomorphism of M as multiplication by h(xi). The only issue is whether one is “remem-
bering” or “forgetting” that M is an S-module as well as an R-module. Thus, there is a
sense in which H•(x1, . . . , xn; M) and H•(h(x1), . . . , h(xn); M) are equal, not just iso-
morphic. Even if one “forgets” for a while that M is an S-module, the S-module structure
on H•(x1, . . . , xn;M) can be recovered. If s ∈ S, multiplication by s gives an R-linear
map M → M , and so induces a map H•(x1, . . . , xn; M)→ H•(x1, . . . , xn; M), and this
recovers the S-module structure on H•(x1, . . . , xn; M).

5) We want to see that Koszul homology may be regarded as an instance of Tor. Let
x1, . . . , xn ∈ R and M be an R-module. Let A be any ring that maps to R. We may
always choose A = Z or A = R. If R happens to contain a field K we may want to choose
A = K. In any case, think of R as an A-algebra. Let X1, . . . , Xn be indeterminates over
A, and let B = A[X1, . . . , Xn], the polynomial ring in n variables over A. Extend A→ R
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to a ring homomorphism B → R by mapping Xi 7→ xi, 1 ≤ i ≤ n. We can do this by virtue
of the universal mapping property of polynomial rings. Then multiplication by Xi on M
is the same as multiplication by xi, 1 ≤ i ≤ n. In B, X1, . . . , Xn is a regular sequence,
and every Xi is a nonzerodivisor (this typically is not true at all for the xi in R). Then
K•(X1, . . . , Xn; B) is a free resolution of B/(X1, . . . , Xn)B ∼= A, but keep in mind that
when we view A as a B-module here, all of the Xi act trivially. Then TorBi (A, M) is the
i th homology module of

K•(X1, . . . , Xn; B)⊗B M = K•(X1, . . . , Xn;M) = K•(x; M),

which leads to an identification

TorBi (A, M) ∼= Hi(x; M).

The long exact sequence for Koszul homology is simply an instance of the long exact
sequence for Tor if one takes this point of view. The R-module structure of TorBi (A, M)
can be recovered: multiplication by an element r ∈ R is a B-linear map M → M , and so
induces a map

TorBi (A, M)→ TorBi (A, M)

which gives the action of multiplication by r on TorBi (A, M).

6) It is obvious that AnnRM kills all the Koszul homology modules Hi(x; M), since
it kills M and therefore every module in the complex K•(x; M). Less obvious is the fact
that (x1, . . . , xn)R kills every Hi(x;M). We may see this as follows. With notation as
in 5), we may view Hi(x; M) ∼= TorBi (A, M), and since every Xi kills A, multiplica-
tion by Xi kills TorBi (A, M). This implies that multiplication by Xi on M induces the
zero map TorBi (A, M) → TorBi (A, M). But that means that multiplication by xi acting
on M induces the zero map TorBi (A, M) → TorBi (A, M), and this implies that xi kills
TorBi (A, M) ∼= Hi(x; M), as required. In particular, if x1, . . . , xn generate the unit ideal,
then all of the Koszul homology modules Hi(x; M) = 0.

We have seen that Koszul homology can be viewed as an instance of Tor. It is worth
pointing out that it is often profitable to interpret Tor as some kind of Koszul homology
if one can: Koszul homology is typically better understood than other instances of Tor.

Suppose that we have a short exact sequence

0→M1 → P →M → 0,

i.e., that M1 is a first module of syzygies of M . Let N be any R-module. The long exact
sequence for Tor yields a four term exact sequence

0→ TorR1 (M N)→M1 ⊗R N → P ⊗R N →M ⊗R N → 0,

because TorRi (P, N) = 0 for i ≥ 1. In particular, TorR1 (P, N) = 0. This characterizes
TorR1 (M, N) as Ker (M1 ⊗R N → P ⊗R N). Because the higher values of TorRi (P, N) are
0, the long exact sequence also yields isomorphisms

TorRi+1(M N) ∼= Tori(M1, N)
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for i ≥ 1. More generally, if Mj is any j th module of syzygies of M , which means that
there is an exact sequence

0→Mj → Pj−1 → · · ·P1 → P0 →M → 0

such that the Pt are projective, 0 ≤ h ≤ j (but we also define M to be a zeroth module of
syzygies of M), then, by a trivial induction

TorRi+j(M, N) ∼= TorRi (Mj , N)

for i ≥ 1 and j ≥ 0. In particular,

TorRj+1(M, N) ∼= TorR1 (Mj , N).

If we also have an exact sequence

0→Mj+1 → Pj →Mj → 0,

with Pj projective then

TorRj+1(M, N) ∼= Ker (Mj+1 ⊗R N → Pj ⊗R N).

This reduces the calculation of Tor to the calculation of modules of syzygies and the kernels
of maps of tensor products. It also proves the assertion made earlier that Tor is completely
determined by the three conditions (1) TorR0 agrees with ⊗R, (2) higher Tor vanishes if
the first given module is projective, and (3) there is a functorial long exact sequence.

Modules of syzygies are not uniquely determined. But they are determined up to taking
direct sums with projective modules, as shown by the following result.

Theorem (Schanuel’s Lemma). Let

0→M1 → P
α−→M → 0

and
0→M ′1 → P ′

α′−→M → 0

be exact sequences, where P and P ′ are projective. Then

M1 ⊕ P ′ ∼= M ′1 ⊕ P.

Proof. We have a surjection β : P ⊕ P ′ � M that sends u ⊕ u′ to α(u) + α′(u′). Let N
be the kernel. It will suffice to show that N ∼= M ′1 ⊕ P . The isomorphism N ∼= M1 ⊕ P ′
then follows by symmetry. Consider the map π : N → P that sends u⊕ u′ ∈ N to u ∈ P .
Given u ∈ P , we can choose u′ ∈ P ′ such that α′(u′) = −α(u), since α′ is surjective. It
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follows that π is surjective. u ⊕ u′ ∈ Ker (π) iff u = 0 and u′ ∈ Ker (α′) = M ′1. Thus,
Ker (π) ∼= M ′1, and we have a short exact sequence

(∗) 0→M ′1 → N → P → 0.

Since P is projective, and since N → P → 0 is surjective, the identity map P → P lifts
to a map γ : P → N such that π ◦ γ is the identity map on P . This means that the short
exact sequence (∗) is split, and so N ∼= M ′1 ⊕ P , as required. �

It follows by a straightforward induction that for any two k th modules of syzygies Mk

and M ′k of M , there are projectives P and P ′ such that

Mk ⊕ P ′ ∼= M ′k ⊕ P.

Note that if R and M are Noetherian, we may take all the projectives used to be finitely
generated, and then all the modules of syzygies will be finitely generated. Given two
finitely generated k th modules of syzygies Mk and M ′k of M obtained in this way, we can
find finitely generated projectives P and P ′ such that

Mk ⊕ P ′ ∼= M ′k ⊕ P.

If R is local, the situation is simplified by the fact that finitely generated projective modules
are free. (This is also true for infinitely generated projective modules, by a theorem of
Kaplansky, but we have not proved it.)

Let R be a nonzero ring. A module M is said to have finite projective dimension if it has
a finite projective resolution. The projective dimension of the 0 module is defined to be −1.
The projective dimension of a nonzero projective module is defined to be 0. Recursively,
the projective dimension of a module M is defined to be n if it has a projective resolution

0→ Pn → · · · → P1 → P0 → 0

(where M ∼= P0/Im (P1) ) and it does not have projective dimension n − 1. That is, a
nonzero module M has projective dimension n if and only if a shortest projective resolution
of M has length n. Modules that do not have a finite projective resolution are said to have
infinite projective dimension, or projective dimension +∞. The projective dimension of
M is denoted pdRM or simply pdM .

From what we have said, if M is not 0, pdM ≤ n iff some (equivalently, every) n th
module of syzygies of M is projective. It is straightforward to see that if M is not projective
and M1 is a first module of syzygies of M , then pdM1 = pdM − 1, where we define
+∞− 1 = +∞.

From the results proved in the previous lecture, it is clear that a finitely generated
nonzero module M over a local ring has finite projective dimension if and only if its
minimal resolution is finite, which happens if and only if some TorRi (M, K) = 0, i ≥ 1, in
which case pdRM < i. What happens is that either no TorRi (M, K) vanishes for i ≥ 0,
which is the case where M has infinite projective dimension, or that these vector spaces
are nonzero up to the projective dimension of M , and then are all 0. In particular:
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Corollary. Let M be a finitely generated nonzero module over a local ring (R, m, K).
Then M has finite projective dimension if and only if some TorRi (M, K) = 0, i ≥ 1, and
the projective dimension is the largest value of i such that TorRi (M, K) 6= 0. �

Our next goal is to prove:

Theorem (Auslander-Buchsbaum-Serre). Let (R, m, K) be a local ring of Krull di-
mension d. Then the following conditions are equivalent:
(1) K has finite projective dimension over R.
(2) Some TorRi (K,K) vanishes for i ≥ 1.
(3) pdRK = d.
(4) Every finitely generated R-module has finite projective dimension.
(5) R is a regular local ring.

We have already shown that (5) implies both (3) and (4), both of which clearly imply
(1), and that (1) and (2) are equivalent. What remains to be done is to show that (1)
implies (4). Once we have proved this, we can show easily that if we localize a regular
local ring at any prime, we get a regular local ring. I do not know how to prove this
without using the equivalence of (1) and (5). It was an open question for a long time, until
homological methods were introduced into commutative algebra.

Math 615: Lecture of February 13, 2012

Note that if R = K[[x, y]], the formal power series ring in two variables, and m is the
maximal ideal of R, then we have a map m⊗R m→ m2 sending u⊗ v to uv. In problem
5. of Problem Set #4 in Math 614, one was asked to show for R = K[x, y] that the kernel
of this map is spanned by x⊗ y − y ⊗ x, which is killed by (x, y) and generates a copy of
K in m⊗R m. The present situation is entirely analogous. We want to see what the long
exact sequence for Tor implies here. We have a short exact sequence

0→ m→ R→ K → 0.

Applying ⊗R m we get:

0→ TorR1 (K, m)→ m⊗R m→ m→ m/m2 → 0,

where the map m⊗R m→ m is easily checked to send u⊗ v to uv and so has image m2.
Since m is a first module of syzygies of K,

TorR1 (K, m) ∼= TorR2 (K, K),

which we have already seen isK. Thus, understanding Tor tells us that Ker (m⊗Rm� m2)
will be a copy of K = R/m.

Note that if I and J are any two ideals of R, applying ⊗R R/J to

0→ I → R→ R/I → 0
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produces
0→ TorR1 (R/I, R/J)→ I/IJ → R/J → R/(I + J)→ 0

showing that
TorR1 (R/I, R/J) ∼= Ker (I/IJ → R/J),

where [i] mod IJ maps to [i] mod J . The kernel is evidently (I/ ∩ J)/IJ , so that

TorR1 (R/I, R/J) = (I ∩ J)/IJ.

The condition that TorR1 (R/I, R/J) = 0 may be thought of as saying that I and J are
“relatively prime.” It always holds when I and J are comaximal (since the Tor is killed by
I + J = R), and it holds for nonzero principal ideals I = fR and J = gR in a UFD R if
and only if f and g have no common prime factor.

We want to make one more observation about modules of syzygies. Suppose that an
R-module M has generators u1, . . . , un and that one maps a free module Rn � M by
sending (r1, . . . , rn) to

∑n
j=1 rjuj . The kernel is a first module of syzygies of M , but it

also the module of all relations on the generators u1, . . . , un of M , and is called the module
of relations on u1, . . . , un. Thus, when the projective used is free, we may think of the
first module of syzygies as a module of relations.

Proposition. Let (R,m,K) a local ring.
Given a finite exact sequence of finitely generated R-modules such that every term but

one has finite projective dimension, then every term has finite projective dimension.
In particular, given a short exact sequence

0→M2 →M1 →M0 → 0

of finitely generated R-modules, if any two have finite projective dimension over R, so does
the third. Moreover:
(a) pdM1 ≤ max {pdM0, pdM2}.
(b) If pdM1 < pdM0 are finite, then pdM2 = pdM0 − 1. If pdM1 ≥ pdM0, then

pdM2 ≤ pdM1.
(c) pdM0 ≤ max{pdM1,pdM2 + 1}.

Proof. Consider the long exact sequence for Tor:

· · · → TorRn+1(M1,K)→ TorRn+1(M0,K)→ Torn(M2,K)

→ TorRn (M1,K)→ TorRn (M0,K)→ · · ·

If two of the Mi have finite projective dimension, then two of any three consecutive terms
are eventually 0, and this forces the third term to be 0 as well.

The statements in (a), (b), and (c) bounding some pdMj above for a certain j ∈ {0, 1, 2}
all follow by looking at trios of consecutive terms of the long exact sequence such that the
middle term is TorRn (Mj ,K). For n larger than the specified upper bound for pdRMj , the
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Tor on either side vanishes. The equality in (b) for the case where pdM1 < pdM0 follows
because with n = pdM0 − 1, TorRn+1(M0, K) injects into TorRn (M2, K).

The statement about finite exact sequences of arbitrary length now follows by induction
on the length. If the length is smaller than three we can still think of it as 3 by using terms
that are 0. The case of length three has already been handled. For sequences of length 4
or more, say

0→Mk →Mk−1 → · · · →M1 →M0 → 0,

either Mk and Mk−1 have finite projective dimension, or M1 and M0 do. In the former
case we break the sequence up into two sequences

0→Mk →Mk−1 → B → 0

and
(∗) 0→ B →Mk−2 → · · · →M1 →M0 → 0.

The short exact sequence shows that pdB is finite, and then we may apply the induction
hypothesis to (∗). If M1 and M0 have finite projective dimension we use exact sequences

0→ Z →M1 →M0 → 0

and
0→Mk →Mk−1 → · · · →M2 → Z → 0

instead. �

Lemma. If M has finite projective dimension over (R,m,K) local, and m ∈ Ass (R),
then M is free.

Proof. If not, choose a minimal free resolution of M of length n ≥ 1 and suppose that the
left hand end is

0→ Rb
A−→ Ra −→ · · ·

where A is an a× b matrix with entries in m. The key point is that the matrix A cannot
give an injective map, because if u ∈ m − {0} is such that AnnRu = m, then A kills a
column vector whose only nonzero entry is u. �

Lemma. If M has finite projective dimension over R, and x is not a zerodivisor on R
and not a zerodivisor on M , then M/xM has finite projective dimension over both R and
over R/xR.

Proof. Let P• be a finite projective resolution of M over R. Then P• ⊗R R/xR is a finite
complex of projective R/xR-modules whose homology is TorRn (M, R/xR), which is 0 for
n ≥ 1 when x is not a zerodivisor on R or M . This gives an (R/xR)-projective resolution
of M over R/xR. The short exact sequence

0→ P
x−→ P → P/xP → 0

shows that each P/xP has projective dimension at most 1 over R, and then M/xM has
finite projective dimension over R by the Proposition above. �
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Lemma. Let (R,m,K) be local, let In denote the n×n identity matrix over R, let x be an
element of m−m2, and let A, B be n× n matrices over R such that xIn = AB. Suppose
that every entry of A is in m. Then B is invertible.

Proof. We use induction on n. If n = 1, we have that (x) = (a)(b) = (ab), where a ∈ m.
Since x /∈ m2, we must have that b is a unit. Now suppose that n > 1. If every entry of B
is in m, the fact that xIn = AB implies that x ∈ m2 again. Thus, some entry of B is a
unit. We permute rows and columns of B to place this unit in the upper left hand corner.
We multiply the first row of B by its inverse to get a 1 in the upper left hand corner. We
next subtract multiples of the first column from the other columns, so that the first row
becomes a 1 followed by a string of zeros. We then subtract multiples of the first row from
the other rows, so that the first column becomes 1 with a column of zeros below it. Each
of these operations has the effect of multiplying on the left or on the right by an invertible
n × n matrix. Thus, we can choose invertible n × n matrices U and V over R such that
B′ = UBV has the block form

B′ =
(

1 0
0 B0

)
,

where the submatrices 1, 0 in in the first row are 1× 1 and 1× (n− 1), respectively, while
the submatrices 0, B0 in the second row are (n− 1)× 1 and (n− 1)× (n− 1), respectively.

Now, with
A′ = V −1AU−1,

we have

A′B′ = V −1AU−1UBV = V −1(AB)V = V −1(xIn)V = x(V −1InV ) = xIn,

so that our hypothesis is preserved: A′ still has all entries in m, and the invertibility of B
has not been changed. Suppose that

A′ =
(
a ρ
γ A0

)
where a ∈ R (technically a is a 1× 1 matrix over R), ρ is 1× (n− 1), γ is (n− 1)× 1, and
A0 is (n− 1)× (n− 1). Then

xIn = A′B′ =
(
a(1) + ρ(0) a(0) + ρB0

γ(1) +A0(0) γ(0) +A0B0

)
=
(
a ρB0

γ A0B0

)
from which we can conclude that xIn−1 = A0B0. By the induction hypothesis, B0 is
invertible, and so B′ is invertible, and the invertibility of B follows as well. �

The following is critical in proving that if K has finite projective dimension over
(R,m,K) then R is regular.
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Theorem. If M is finitely generated and has finite projective dimension over R, and
x ∈ m−m2 kills M and is not a zerodivisor in R, then M has finite projective dimension
over R/xR.

Proof. We may assume M is not 0. M cannot be free over R, since xM = 0. Thus, we
may assume pdRM ≥ 1. We want to reduce to the case where pdRM = 1. If pdRM > 1,
we can think of M as a module over R/xR and map (R/xR)⊕h � M for some h. The
kernel M1 is a first module of syzygies of M over R/xR. By part (b) of the Proposition,
pdRM1 = pdRM − 1. Clearly, if M1 has finite projective dimension over R/xR, so does
M . By induction on pdRM we have therefore reduced to the case where pdRM = 1. To
finish the proof, we shall show that if x ∈ m−m2 is not a zerodivisor in R, xM = 0, and
pdRM = 1, then M is free over R/xR.

Consider a minimal free resolution of M over R, which will have the form

0→ Rn
A−→ Rk →M → 0

where A is an k× n matrix with entries in m. If we localize at x, we have Mx = 0, and so

0→ Rnx → Rkx → 0

is exact. Thus, k = n, and A is n×n. Let ej denote the j th column of the identity matrix
In. Since xM = 0, every xej is in the image of A, and so we can write xej = Abj for
a certain n × 1 column matrix bj over R. Let B denote the n × n matrix over R whose
columns are b1, . . . , bn. Then xIn = AB. By the preceding Lemma, B is invertible, and
so A and AB = xIn have the same cokernel, up to isomorphism. But the cokernel of xIn
is (R/xR)⊕n ∼= M = Coker (A), as required. �

We can now prove the result that we are aiming for, which completes the proof of the
Theorem stated at the end of the previous lecture.

Theorem. Let (R,m,K) be a local ring such that pdRK is finite. Then R is regular.

Proof. If m ∈ Ass (R), then we find that K is free. But K ∼= Rn implies that n = 1 and R
is a field, as required. We use induction on dim (R). The case where dim (R) = 0 follows,
since in that case m ∈ Ass (R).

Now suppose that dim (R) ≥ 1 and m /∈ Ass (R). Then m is not contained in m2 nor
any of the primes in Ass (R), and so we can choose x ∈ m not in m2 nor in any associated
prime. This means that x is not a zerodivisor in R. By the preceding Theorem, the fact
that K has finite projective dimension over R implies that it has finite projective dimension
over R/xR. By the induction hypothesis, R/xR is regular. Since x /∈ m2 and x is not
a zerodivisor, both the least number of generators of the maximal ideal and the Krull
dimension drop by one when we pass from R to R/xR. Since R/xR is regular, so is R. �

Math 615: Lecture of February 15, 2012

We can give some immediate corollaries of our homological characterization of regular
local rings. First note:



69

Proposition. Let R be a ring and M an R-module.
(a) If pdRM = n and S is flat over R, then pdSS ⊗R M ≤ n. In particular, this holds

when S is a localization of R.
(b) If (R,m) → (S,Q) is local homomorphism of local rings (i.e., m maps into Q), S

is R-flat, M is finitely generated, and pdRM = n (whether finite or infinite) then
pdSS ⊗RM = n.

Proof. For part (a) take a projective resolution P• of M . Then S ⊗R P• gives a projective
resolution of the same length for S ⊗RM : because S is flat, S ⊗R preserves exactness.
For part (b), choose P• to be a minimal projective resolution for M over R, whether finite
or infinite. Applying S ⊗R gives a minimal resolution of S ⊗R M : the entries of each
matrix occurring in P• map into Q because the homomorphism is local. The two minimal
resolutions have the same length. �

Corollary. If (R,m) is a regular local ring, then for every prime ideal Q of R, RQ is
regular.

Proof. pdRQRQ/QRQ ≤ pdRR/Q by (a) of the Proposition just above, and so is finite. �

Corollary. If (R,m)→ (S,Q) is a flat local homomorphism of local rings and S is regular,
then R is regular.

Proof. pdRR/m = pdSS ⊗R (R/m) and so is finite, by part (b) of the proposition just
above. �

We define a Noetherian ring to be regular if all of its local rings at prime ideals are
regular. By the first Corollary above, it is equivalent to require that its local rings at
maximal ideals be regular.

Corollary. Over a regular ring of Krull dimension d, pdM ≤ d for every finitely generated
R-module M .

Proof. Consider a projective resolution of M by finitely generated projective modules, say
P•, and let Md = Ker (Pd−1 → Pd−2), so that

0→Md → Pd−1 → Pd−2 → · · · → P1 → P0 →M → 0

is exact. It suffices to prove that Md is projective. By the Theorem proved at the beginning
of the Lecture Notes from November 7 for Math 614 last semester, projective is equivalent
to locally free (and to flat) for finitely generated modules over a Noetherian ring. Localize
the sequence at some prime ideal Q of R. Then RQ is regular of dimension at most d, and
so (Md)Q is RQ-free, since it is a d th module of syzygies over a regular local ring of Krull
dimension at most d. �

There are regular Noetherian rings of infinite Krull dimension. An example of such a
ring was given in problem 2. of Problem Set #6 from Math 614 last semester. But even
over such a ring, every finitely generated module has finite projective dimension, by the
result of 5. in the current problem set, #3.

Let R→ S be a homomorphism of Noetherian rings, let I be an ideal of R, and choose
generators of I, say I = (x1, . . . , xn)R. Let be M a finitely generated S-module. In this
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situation, we want to define the depth of of M on I: we let the depth be +∞ if IM = M ,
while if IM 6= M , we let it be the length of any maximal regular sequence in I on M . To
justify this definition we need to prove that all maximal regular sequences have the same
length: in the course of doing so, we shall show that the depth is at most the number of
generators of I.

Note first that IM = M iff IS + AnnSM = S. For IM = M iff ISM = M iff
S/IS ⊗S M = 0. By the Proposition at the top of the third page of the Lecture Notes
from November 5 for Math 614, the support of a tensor product of two finitely generated
modules over a Noetherian ring is the intersection of their supports: this means that
the tensor product is 0 if and only if the sum of the annihilators is the unit ideal, since
the support of a finitely generated module is the set of primes containing its annihilator.
Thus, in the situation where depth is taken to be +∞, the Koszul homology K•(x; M) all
vanishes, since it is killed by (x1, . . . , xn) and by AnnSM .

We shall prove very shortly that the length of a maximal regular sequence on M in
I = (x1, . . . , xn)R can be recovered by looking at the number of Koszul homology modules,
starting the count with Hn(x; M), that vanish. We prove a preliminary result that does
not need any finiteness hypotheses.

Lemma. Let R be any ring, let I = (x1, . . . , xn)R, and let M be any R-module. Suppose
that f1, . . . , fd ∈ I is an improper regular sequence on M . Then Hn−j(x; M) = 0, 0 ≤ j <
d. In particular, if x1, . . . , xn is an improper regular sequence on M , then Hi(x; M) = 0
for all i ≥ 1.

Proof. We use induction on d. Note that Hi(x; M) = 0 for i ≥ n+ 1 and any M . If d = 1,
we use the fact that Hn(x; M) ∼= AnnM (x1, . . . , xn): since f1 ∈ I is a nonzerodivisor on
M , then annihilator vanishes. Now suppose that d > 1 and that we know that the result
for smaller integers. We have the exact sequence

0→M
f1−→M →M/f1M → 0.

In the long exact sequence for Koszul homology, the maps given by multiplication by any
element of I, including f1, are 0. This implies that the long exact sequence can be broken
up into short exact sequences:

(∗j) 0→ Hj+1(x; M)→ Hj+1(x; M/f1M)→ Hj(x; M)→ 0.

But we know that f2, . . . , fd is a regular sequence on M/f1M , from which we deduce that
Hj+1(x; M/f1M) = 0 for all j + 1 > n− (d− 1) = n− d+ 1, by the induction hypothesis.
The result we want now follows at once from the sequences (∗j), since the vanishing of the
middle term implies the vanishing of both end terms. �

Theorem (Koszul complex characterization of depth). Let R, S be Noetherian
rings such that S is an R-algebra, let I = (x1, . . . , xn)R, and let M be a Noetherian S-
module. If IM 6= M then any regular sequence in I on M has length at most n, and if
d is the length of any maximal regular sequence, then Hn−j(x; M) = 0 for j < d, while
Hn−d(x; M) 6= 0. Thus, all maximal regular sequences on M in I have the same length.
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Moreover, depthIM = depthISM .

Proof. We already know from the Lemma that if there is a regular sequence of length
d, then Hn−j(x; M) = 0 for j < d. Since H0(x; M) = M/IM does not vanish here,
we immediately see that the length of any regular sequence on M in I is bounded by
n. It remains only to show that if f1, . . . , fd ∈ I is a maximal regular sequence, then
Hn−d(x;M) 6= 0.

We use induction on d. If d = 0, this means that (x1, . . . , xd)R consists entirely of
zerodivisors on M , which means in turn that it is contained in the union of inverse images
in R of the associated primes of M in S. Therefore, it is contained in one of these, and there
exists u ∈M−{0} killed by (x1, . . . , xd). But then u ∈ AnnM (x1, . . . , xn)R = Hn(x; M).
Now suppose that d > 0 and we know the result for smaller d. Now we know that f2, . . . , fd
is a maximal regular sequence on M/f1M , so that Hn−d+1(x; M/f1M) 6= 0. With notation
as in the proof of the Lemma, we have for j = n− d an exact sequence:

(∗n−d) 0→ Hn−d+1(x; M)→ Hn−d+1(x; M/f1M)→ Hn−d(x; M)→ 0.

We know that Hn−d+1(x; M) = 0 from the Lemma, and so the other two terms are
isomorphic, yielding that Hn−d(x; M) ∼= Hn−d+1(x; M/f1M) 6= 0.

The final statement follows because the Koszul complex of S with respect to the images
of the xj in S is the same as K•(x; M) over R. �

Thus, our notion of depth is well-defined. If (R, m) is local, depthM means depthmM .
Some authors ambiguously refer to depthIR as depth I, which can lead to confusion in the
case where I is an ideal of a local ring, where it might mean depthmI with I considered
as a module rather than an ideal. We shall not use depth I for depthIR.

We are now in a position to prove that a regular domain is normal.

Theorem. If R is a regular domain, then R is normal.

Proof. By the Theorem on the second page of the Lecture Notes of December 1 for Math
614, it suffices to see that an associated prime of a principal ideal has height one, and that
the localization at a height one prime is a DVR. To see the first statement, we can localize
at such an associated prime. Then we have a regular local ring (R, m) such that one
nonzero element gives a maximal regular sequence in m on R. Take x ∈ m−m2. Since all
maximal regular sequences have the same length, x also gives a maximal regular sequence.
But R/xR is a domain, and so this can only be true if m = xR is maximal. Finally, a
one-dimensional regular ring has a maximal ideal that is generated by one element, and so
it must be a DVR. �

Math 615: Lecture of February 17, 2012

We discuss a method for determining the ideal of all leading forms of an ideal generated
by polynomials with constant term zero in a formal power series ring K[[x1, . . . , xn]] over
a field K.
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Suppose that
f1, . . . , fh ∈ m = (x1, . . . , xn)R,

where R = K[[x1, . . . , xn]], a formal power series ring. Let I = (f1, . . . , fh). To find

L(I) ⊆ grmR ∼= K[x1, . . . , xn],

first note that if g 6= 0, g1, . . . , gn ∈ R are such that g =
∑m
i=1 figi, and deg L(g) = d,

then L(g) is unchanged if we drop all terms of degree > d from the gi, although the
value of g changes. Thus, we may assume that the gi ∈ K[x1, . . . , xn] ⊆ R. There is a
K-homomorphism

Θ : K[x1, . . . , xn]→ K[t, x1, . . . , xn] = B

with xi 7→ xit. Let f♦ denote Θ(f). Then g♦ = tdG, where G|t=0 = L(g). In other words,
when g♦ is regarded as a polynomial in t, its constant term is L(g).

Let
Js = (f♦1 , . . . , f

♦
n ) :B ts.

The argument above shows that every leading form of an element of I is the constant
term of some element of Js for some s. Note that the ideals Js ascend with s and so are
eventually all equal. The converse is also true: if tsG ∈ (f♦1 , . . . , f

♦
h )B, we may substitute

t = 1 to obtain that G(1, x1, . . . , xn) ∈ (f1, . . . , fn)K[x1, . . . , xn], and it follows that the
constant term of G when viewed as a polynomial in t is in L(I).

Therefore, to get generators of L(f1, . . . , fm), think of the generators of Js for s suffi-
ciently large as polynomials in t and take their constant terms.

Evidently, tu ∈ Js iff ts(tu) ∈ (f♦1 , . . . , f
♦
n ) = J0, and so Js+1 = Js :B t. Therefore, the

sequence Js is stable as soon as Js = Js+1 for one value of s, for then t is not a zerodivisor
on Js. We indicate how to find Js+1 once Js is known. Suppose that a1, . . . , ak ∈ B are
generators in Js. Then the elements b of Js+1 are those that satisfy bt =

∑k
j=1 qjaj for

some choice of qj . If we have a set of generators for the relations on t, a1, . . . , ak, the
coefficients of t will generate Js+1. In considering such relations, if qj = Qj + tHj where
Qj ∈ K[x1, . . . , xn], then we have

(b−
k∑
j=1

Hjaj)t =
k∑
j=1

Qjaj .

Since
∑k
j=1Hjaj ∈ Js, the additional generators for Js+1 over Js all come from re-

lations b′t =
∑k
j=1Qjaj where the Qj ∈ K[x1, . . . , xn]. Let aj = Aj + tWj with

Aj ∈ K[x1, . . . , xn]. Then the Qj must give a relation on the Aj . Each relation on
the Aj gives rise to a value of b′, and we get generators for Js+1 if we take the genera-
tors of Js and those values of b′ coming from generators for the relations on the Aj in
K[x1, . . . , xn].

We now consider the specific example in K[[x, y, z]] where f1 = x2 − y3 + z6 and
f2 = xy − z3.
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Then (x2−y3 +z6)♦ = t2a for a = x2− ty3 + t4z6 and (xy−z3)♦ = t2b for b = xy− tz3,
and so a, b ∈ J2. Then ya − xb = tc (using the obvious generator for the relations on
x2, xy) where c = −y4 + xz3 + t3yz6 ∈ J3. We will show that t is not a zerodivisor
mod (a, b, c) = J3. The constant terms of a, b, c are x2, xy, −y4 + xz3. Clearly, in any
relation Q1x

2 +Q2xy +Q3(−y4 + xz3) = 0, we must have that x |Q3. One such relation
is (−z3, y3, x). Given any other, we can subtract a multiple of (−z3, y3, x) from it so as to
make Q3 = 0. This leaves a relation of the form (Q′1, Q

′
2, 0), which is essentially a relation

on x2, xy, and so must be a multiple of (y, −x, 0). That is, (y,−x, 0) and (−z3, y3, x)
span the relations. ya− xb gives nothing new, while

−z3a+ y3b+ xc = ty3z3 − t4z9 − ty3z3 + t3xyz6 = t3xyz6 − t4z9 = t3z6b,

and so t2z6b ∈ J4. Since b ∈ J2 ⊆ J3, J4 = J3 and t is not a zerodivisor on (a, b, c) = J3.
This shows that L(I) = (x2, xy, −y4 + xz3).

Example. When the leading form of f in grmR is L and one kills an ideal A ⊆ m, even
if it is principal, it need not be true that the leading form of the image f in grm(R/I) is
the image of L. For example, suppose that R = K[[x, y, z]] with f = xy + y101z997. The
leading form of f is xy. But in the quotient R/xR, the leading form of the image of f is
y101z997.

Our next goal is to prove a famous theorem of Auslander and Buchsbaum connecting
depth and projective dimension. We first want to observe some basic facts about the
behavior of depth.

Proposition. Let R → S be a homomorphism of Noetherian rings, let M be a finitely
generated S-module, and let I be an ideal of R. Let I and J be ideals of R.
(a) Let T be a flat Noetherian S-algebra. Then depthIT ⊗SM ≥ depthIM , with equality

if T is faithfully flat. In particular, depth can only increase if T is a localization of S.
(b) depthIM = infQ∈Supp S(M/IM) depthIMQ = infQ∈Spec (S) depthIMQ. (The infimum

of the empty set is defined to be +∞.)
(c) If I and J have the same radical, depthIM = depthJM .

Proof. (a) Let I = (x1, . . . , xn). Then for all j,

Hj(x; T ⊗S M) ∼= T ⊗S Hj(x;M),

since T is S-flat. Thus, the number of vanishing Koszul homology modules cannot decrease
when we tensor with T . Moreover, if T is faithfully flat, neither can it increase. Note that
the case of infinite depth corresponds to the case where all Koszul homology vanishes.

(b) By part (a), localizing can only increase the depth. It suffices to show that if M 6= IM ,
we can localize at a prime while preserving the depth. Let f1, . . . , fd be a maximal regular
sequence in I on M . Then M/(f1, . . . , fd)M has depth 0, and so I is contained in the
union of the inverse images of the finitely many primes in Ass S

(
M/(f1, . . . , fd)M

)
. Thus,

it is contained in the inverse image of one of these primes: call it Q. Replace M by MQ.
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We still have QSQ ∈ Ass S
(
(M/(x1, . . . , xn)M)Q

)
, and so f1, . . . , fd ∈ I is a maximal

regular sequence on MQ.

(c) It suffices to consider the case where J is the radical of I. A regular sequence in I is
automatically a regular sequence in J . Given a regular sequence f1, . . . , fd in J , each fj

has a power fNjj ∈ I. By the final problem of Problem Set #3, fN1
1 , . . . , fNdd is a regular

sequence on M in I. �

The next result is very similar to the Proposition at the top of the second page of the
Notes from February 13, and its proof is very similar, although Koszul homology is used
instead of TorR• ( , K).

Proposition. Let R→ S be a homomorphism of Noetherian rings, let

0→M2 →M1 →M0 → 0

be an exact sequence of finitely generated S-modules, and let I be an ideal of R. The
following statements hold, even if one or more of the depths is +∞ (with the conventions
+∞± 1 = +∞ and if u ∈ N ∪ {+∞}, min {u,+∞} = u).
(a) depthIM1 ≥ min{depthIM0, depthIM2}.
(b) If

depthIM1 > depthIM0,

then
depthIM2 = depthIM0 + 1.

If depthIM1 ≤ depthIM0, then depthIM2 ≥ depthIM1.
(c) depthIM0 ≥ min{depthIM1,depthIM2 − 1}.

Proof. Let x1, . . . , xs denote generators of the ideal I and consider the long exact sequence
for Koszul homology:

· · · → Hn+1(x; M1)→ Hn+1(x; M0)→ Hn(x; M2)

→ Hn(x; M1)→ Hn(x; M0)→ · · ·
If M2 has infinite depth, then Hn(x; M1) ∼= Hn(x; M0) for all n, so that M1 and M0 have
the same depth, and all of (a), (b), (c) hold. If M1 has infinite depth, then Hn+1(x; M0) ∼=
Hn(x; M2) for all n and depthIM2 = depthIM0 + 1. Again, all three statements hold. If
M0 has infinite depth then Hn(x; M2) ∼= Hn(x; M1) for all n, and depthIM2 = depthIM1.
Again, all three statements hold. We may assume that all three depths are finite.

Part (a) follows from the long exact sequence because of Hn(x; M2) = 0 = Hn(x; M0)
for all n > d, then Hn(x; M1) = 0 for all n > d. All of the other statements follow similarly
from the long exact sequence for Koszul homology: each of the Koszul homology modules
one needs to vanish is surrounded by two Koszul homology modules that vanish from the
hypothesis. For the equality in part (b), let d = depthIM0. We must show as well that
Hs−(d+1)(x; M2) 6= 0. Let n = s− d− 1 in the long exact sequence, which becomes:

· · · → 0→ Hs−d(x; M0)→ Hs−d−1(x; M2)→ · · ·
and we know that Hs−d(x; M0) 6= 0. �

We also observe:
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Lemma. If (R,m,K) is local, M is a finitely generated nonzero R-module, pdRM is
finite, and x ∈ m is a nonzerodivisor on R and on M , then and pdR/xRM/xM = pdRM .

Proof. This sharpens the result of the second Lemma on the third page of the notes from
February 13. Take a minimal resolution P• of M over R. As in the proof of that Lemma,
R/xR⊗R P• is a resolution of M/xM over R/xR, but now we note that it is minimal, so
that the projective dimension does not change. �

Theorem (M. Auslander and D. Buchsbaum). Let (R, m, K) be local and M 6= 0 a
finitely generated R-module. If M has finite projective dimension then

pdRM + depthM = depthR.

Proof. If the depth of R is 0, then M is free, by the first Lemma on the third page of the
Notes from February 13, and the result is clear. If the depthR > 0, and depthM > 0 as
well, the maximal ideal of R is not contained in the union of all associated primes of R and
of M . Thus, we can choose x ∈ m that is not in any associated prime of M or of R, and so x
is a nonzerodivisor on both R and M . By the Lemma just above, pdR/xRM/xM = pdRM ,
and by the induction hypothesis this is

depthR/xR− depthM/xM = depthR− 1− (depthM − 1) = depthR− depthM,

as required. If the depth of R is positive and the depth of M is 0, form a short exact
sequence

0→M ′ → Rb →M → 0,

so that M ′ is a first module of syzygies of M . Then M ′ will have depth 0 + 1 = 1 by part
(b) of the preceding Proposition, while pdM ′ = pdM −1. Working with M ′ we have that
both depthR and depthM ′ are positive, and so we are in a case already done. Thus,

pdM = pdM ′ + 1 = (depthR− depthM ′) + 1 = depthR− 1 + 1 = depthR,

as required, since depthM = 0. �

Math 615: Lecture of February 20, 2012

We review some basic facts about the tensor and exterior algebras of a module over a
commutative ring R. See also the Lecture Notes from Math 614 for December 5.

The tensor product of n copies of M with itself is denoted M⊗n or TnR(M) = Tn(M).
By convention, T 0(V ) = R. Then

T (M) =
∞⊕
n=0

Tn(M)
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becomes an associative (usually non-commutative) N-graded ring with identity, with R in
the center: the multiplication is induced by the obvious bilinear maps

Tm(M)⊗R Tn(M)→ Tm+n(M)

(each of these maps is an isomorphism). Note that this tensor algebra is generated as a
ring over R by T 1(M), which we may identify with M . Of course, Tn(M) is the degree
n component. Note that if L : M → N is an R-linear map, there is an induced map
Tn(L) : Tn(M)→ Tn(N), and Tn(L′ ◦L) = Tn(L′)◦Tn(L) when the composition L′ ◦L is
defined. Together these maps give a degree preserving ring homomorphism T (M)→ T (N),
which is surjective whenever L is. T is a covariant functor from R-modules to N-graded
associative R-algebras such that R is in the center. Moreover, T has the following universal
property: if f : M → S is any R-linear map of the R-module M into an associative R-
algebra S with R in the center, then f extends uniquely to an R-linear ring homorphism
T (M)→ S.

An R-multilinear map Mn → N is called alternate or alternating if its value is 0 when-
ever two entries of an n-tuple are equal. (This implies that switching two entries negates
the value. Making an even permutation of the entries will not change the value, while an
odd permutation negates the value.) Let

∧n
R(M) =

∧n(M) denote the quotient of M⊗n

by the subspace spanned by all n-tuples two of whose entries are equal. We make the
convention that

∧0
R ∼= R, and note that we may identify M ∼=

∧1
M . Then∧

(M) =
⊕∞

n=0

∧n(M)

is an associative N-graded algebra with R in the center, with
∧n(M) as the component in

degree n.
∧

(M) is called the exterior algebra of M over R, and
∧n(M) is called the n th

exterior power of M over R. One can also construct
∧

(M) by killing the two-sided ideal
of T (M) generated by elements of the form u⊗ u, u ∈M .

The multiplication on
∧

(M) is often denoted ∧. If the elements uj span M , then the
elements uj1 ∧ · · · ∧ uji span

∧i(M). If v has degree m and w has degree n, then one can
easily check that v∧w = (−1)mnw∧v. Thus, the even degree elements are all in the center,
while any two odd degree elements anti-commute. If G is free with free basis u1, . . . , un,
then the elements uj1 ∧ · · · ∧ uji , 1 ≤ j1 < · · · < ji ≤ n form a free basis for

∧i(G), and∧i(G) has rank
(
n
i

)
. In particular,

∧N (G) = 0 if N > rank G (or, more generally, if G is
not necessarily free but is spanned by fewer than N elements).

Given a linear map L : M → N , there is an induced map
∧n(L) :

∧n(M) →
∧n(N),

and
∧n(L′ ◦L) =

∧n(L) ◦
∧n(L′) when the composition L′ ◦L is defined. Together these

maps give a ring homomorphism of
∧

(M) →
∧

(N) that preserves degrees. Thus,
∧

is a
covariant functor from R-modules to graded associative R-algebras with R in the center.

An associative N-graded R-algebra Λ such that R maps into the center of Λ and also
into Λ0 is called skew-commutative (or even commutative by some authors!) if whenever
u, v ∈ Λ are homogeneous,

uv = (−1)deg(u)deg(v)vu
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in Λ. Then
∧

(M) has the following universal property: if Λ is any skew-commutative
R-algebra and θ : M → Λ1 any R-linear map, θ extends uniquely to a degree-preserving
R-homomorphism

∧
(M)→ Λ.

If G is free of rank n with basis u1, . . . , un and L : G → G has matrix α, then∧n(L) :
∧n

G →
∧n

G sends u1 ∧ · · · ∧ un to det(α)u1 ∧ · · · ∧ un. To see this, note that
we have that∧n(u1 ∧ · · · ∧ un) = (a11u1 + · · ·+ un1vn) ∧ · · · ∧ (un1v1 + · · ·+ annun).

Expanding by the generalized distributive law yields nn terms each of which has the form
ai1,1 · · · ain,nui1 ∧ · · · ∧ uin . If two of the it are equal, this term is 0. If they are all
distinct, the vit constitute all the elements u1, . . . , un in some order: call the corresponding
permutation σ. Rearranging the vj gives sgn (σ)ai1,1 · · · ain,nv1 ∧ · · · ∧ vn. The sum of all
of the n! surviving terms is det(α)v1 ∧ · · · ∧ vn, using one of the standard definitions of
det(α). The fact that the determinant of a product of two n × n matrices is the product
of the determinants may be deduced from the fact that

∧n preserves composition.

Note also that if M → N is surjective, then
∧n

M →
∧n

N is surjective for all n. It
is straightforward to check that if R → S is any map of commutative rings, there is an
isomorphism

S ⊗R
∧n
RM →

∧n
S(S ⊗RM).

The map M → S ⊗M sending u 7→ 1⊗ u induces a degree-preserving map∧
RM →

∧n
S(S ⊗RM),

and hence a map

S ⊗R
∧
RM →

∧n
S(S ⊗RM).

On the other hand S ⊗
∧
RM is S ⊗RM in degree 1, giving an S-linear map of S ⊗RM

into the degree one part of S ⊗
∧
RM , and this yields a map∧n

S(S ⊗RM)→ S ⊗R
∧
RM ,

using the appropriate universal mapping properties. These maps are easily checked to be
mutually inverse degree-preserving S-algebra isomorphisms, under which

(s1 ⊗ u1) ∧ · · · ∧ (sn ⊗ un) ∈
∧n
S(S ⊗RM)

corresponds to

(s1 · · · sn)⊗ (u1 ∧ · · · ∧ un) ∈ S ⊗
∧
RM .

In particular, localization commutes with the formation of exterior algebras and exterior
powers.

We have previously introduced Ki(x1, . . . , xn; R) with a free R-basis consisting of ele-
ments uj1, ... ,ji where 1 ≤ j1 < · · · < ji ≤ n. In particular, u1, . . . , un is a free basis for
K1(x1, . . . , xn; R). It turns out to be convenient to think of Ki(x1, . . . , xn; R) as

∧i(G),
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where G = K1(x1, . . . , xn; R) is the free module on n generators, letting uj1, ... ,ji corre-
spond to uj1 ∧ · · · ∧ uji . We obviously have isomorphisms of the relevant free R-modules.
We still have d(uj) = xj , 1 ≤ j ≤ n. The formula for the differential d is

(∗) d(uj1 ∧ · · · ∧ uji) =
i∑
t=1

(−1)t−1xjtuj1 ∧ · · · ∧ ujt−1 ∧ ujt+1 · · · ∧ uji .

We shall refer to an R-linear map of a graded skew-commutative R-algebra Λ into itself
that lowers degrees of homogeneous elements by one and satisfies

(#) d(uv) = (du)v + (−1)deg(u)u dv

when u is a form as an R-derivation.

Once we identify K(x1, . . . , xn; R) with
∧

(G), the differential R is a derivation. By
the R-bilinearity of both sides in u and v, it suffices to verify (#) when u = uj1 ∧ · · ·ujh
and v = uk1 ∧ · · ·uki with j1 < · · · < jh and k1 < · · · < ki. It is easy to see that this
reduces to the assertion (∗∗) that the formula (∗) above is correct even when the sequence
j1, . . . , ji of integers in {1, 2, . . . , n} is allowed to contain repetitions and is not necessarily
in ascending order: one then applies (∗∗) to j1, . . . , jh, k1, . . . , ki. To prove (∗∗), note
that if we switch two consecutive terms in the sequence j1, . . . , ji every term on both sides
of (∗) changes sign. If the j1, . . . , ji are mutually distinct this reduces the proof to the
case where the elements are in the correct order, which we know from the definition of the
differential. If the elements are not all distinct, we may reduce to the case where jt = jt+1

for some t. But then uj1 ∧ · · · ∧ uji = 0, while all but two terms in the sum on the right
contain ujt ∧ ujt+1 = 0, and the remaining two terms have opposite sign.

Once we know that d is a derivation, we obtain by a straightforward induction on k
that if v1, . . . , vk are forms of degrees a1, . . . , ak, then

(∗ ∗ ∗) d(v1 ∧ · · · ∧ vi) =
∑
t=i

(−1)a1+···+at−1vj1 ∧ · · · ∧ vjt−1 ∧ dvjt ∧ vjt+1 ∧ · · · ∧ vji .

Note that the formula (∗) is a special case in which all the given forms have degree 1.

It follows that the differential on the Koszul complex is uniquely determined by what
it does in degree 1, that is, by the map G → R, where G is the free R-module K1(x; R),
together with the fact that it is a derivation on

∧
(G). Any map G→ R extends uniquely

to a derivation: we can choose a free basis u1, . . . , un for G, take the xi to be the values of
the map on the ui, and then the differential on K•(x1, . . . , xn; R) gives the extension we
want. Uniqueness follows because the derivation property forces (∗ ∗ ∗) to hold, and hence
forces (∗) to hold, thereby determining the values of the derivation on an R-free basis.

Thus, instead of thinking of the Koszul complex K(x1, . . . , xn; R) as arising from a
sequence of elements x1, . . . , xn of R, we may think of it as arising from an R-linear map
of a free module θ : G→ R (we might have written d1 for θ), and we write K•(θ; R) for the
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corresponding Koszul complex. The sequence of elements is hidden, but can be recovered
by choosing a free basis for G, say u1, . . . , un, and taking xi = θ(ui), 1 ≤ i ≤ n. The
exterior algebra point of view makes it clear that the Koszul complex does not depend
on the choice of the sequence of elements: only on the map of the free module G → R.
Different choices of basis produce Koszul complexes that look different from the “sequence
of elements” point of view, but are obviously isomorphic.

For example, if the sequence of elements is x1, . . . , xn and we compose the map Rn → R
these elements give with the automorphism of Rn → Rn with matrix A, where A is an
invertible n × n matrix (this is equivalent to taking a new free basis for Rn), we get the
Koszul complex of a new sequence of elements y1, . . . , yn, the elements of the row Y = XA
where X =

(
x1 . . . xn

)
and Y =

(
y1 . . . yn

)
. Since this amounts to using the same map

Rn → R with a new free basis for Rn, the Koszul complex we get from Y is isomorphic to
that we get from X, and its homology is the same.

Another, nearly equivalent, point of view is that the isomorphism A : Rn → Rn extends
to an isomorphism K•(y1, . . . , yn; R) ∼= K•(x1, . . . , xn; R): in degree i, we have the map∧i(A) :

∧i(Rn) ∼=
∧i(Rn). The commutativity of the squares is easily checked. Notice

that for i = 0, 1 we have the diagram:

Rn
Y−−−−→ R −−−−→ 0

A

y yid
y

Rn −−−−→
X

R −−−−→ 0

In particular, permuting the xi, multiplying them by units, and adding a multiple of
one of the xi to another are operations that do not change the Koszul complex nor Koszul
homology, up to isomorphism. In the local case, any two sets of generators of an ideal such
that the two sets have the same cardinality are equivalent via the action of an invertible
matrix.

To see this, note that if the set of generators is not minimal we can pick a subset
that is minimal and subtract sums of multiples of these from the redundant generators to
make them 0. Therefore it suffices to consider the case of two minimal sets of generators
x1, . . . , xn and y1, . . . , yn. We can choose an n × n matrices A, B over the local ring
(R,m,K) such that Y = XA (since the xi generate) and such that X = Y B (since the
yi generate). Then X = XAB, so that X(I − AB) = 0. Every column of I − AB is a
relation on the xj , and since these are minimal generators the coefficients in any relation
are in m. Thus, I −AB has all entries in m, and working mod m, I −AB ≡ 0, so that A
is invertible modulo m. This implies that its determinant of A is nonzero mod m, and so
is a unit of R. But then A is invertible over R. �

The exterior algebra point of view enables us to define the Koszul complex of a map
θ : P → R, where P is a finitely generated projective module that is locally free of
constant rank n. Note that P is a homomorphic image of a finitely generated free module
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G, and the map G � P will split, so that P is finitely presented. Recall that projective
is equivalent to locally free for finitely presented modules: see the Theorem on the first
page of the Math 614 Lecture Notes of November 7. The exterior powers

∧i(P ) of P are
likewise projective and locally free of constant rank

(
n
i

)
, 0 ≤ i ≤ n, since the formation of

exterior powers commutes with localization. They are also finitely generated and therefore
finitely presented. We need to define a map

∧i(P ) →
∧i−1(P ) for every i, and this

map is an element of HomR(
∧i(P ),

∧i−1(P )). Note that Hom(
∧i(P ), ) commutes with

localization here, because
∧i(P ) is finitely presented. We have a unique way of defining

these maps if we localize so that P becomes free (this can be achieved on a Zariski open
neighborhood of every point: this is the content of problem 5.(a) in Problem Set #3,
and this construction commutes with further localization. Therefore, unique maps exist
globally that give a differential for K•(θ; R), by the Theorem on the first page of the Math
614 Lecture Notes of November 26. We note that if f : P → P is an endomorphism of
a finitely generated projective module P , we can use the same idea to define a trace and
determinant for f , which will agree with the usual ones coming from a matrix for f once
we have localized sufficiently that P becomes free.

We want to develop some further sequences associated with Koszul complexes, and
we shall make use of the long exact sequence associated with a mapping cone, which we
describe next.

Given a map φ• : B• → A• of complexes, we can associate with it a double complex
with two nonzero rows (thought of as indexed by 1 and 0):

· · · −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ · · ·y y y
· · · −−−−→ Bn+1 −−−−→ Bn −−−−→ Bn−1 −−−−→ · · ·

φn+1

y φn

y φn−1

y
· · · −−−−→ An+1 −−−−→ An −−−−→ An−1 −−−−→ · · ·y y y
· · · −−−−→ 0 −−−−→ 0 −−−−→ 0 −−−−→ · · ·

The total complex is called the mapping cone of φ•. The bottom row A• is a subcomplex.
The quotient complex is the top row B• with degrees shifted down by one. Thus, if C• is
the mapping cone we have the short exact sequence

0→ A• → C• → B•−1 → 0

and so we get

· · · → Hn(A•)→ Hn(C•)→ Hn−1(B•)→ Hn−1(A•)→ · · · .

The connecting homomorphism is easily checked to be given, up to sign, by

φn−1∗ : Hn−1(B•)→ Hn−1(A•).
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To see this, we choose a cycle z ∈ Bn−1. We lift this to the element 0⊕z ∈ Cn = An⊕Bn−1

that maps to z, and now take the image of 0⊕ z in An−1 ⊕Bn−2, which is ±φn−1(z)⊕ 0,
and pull this back to ±φn−1(z) ∈ An−1, which gives the required result.

We now apply this to the Koszul complex K(x; M), where x = x1, . . . , xn. Let x− =
x1, . . . , xn−1. Then

K•(x1, . . . , xn; M) = T•
(
K•(x−; R)⊗K•(xn; R)

)
⊗M ∼= T•

(
(K•(x−; M)⊗K•(xn; R)

)
which is the mapping cone of the map from K•(x−; M) to itself induced by multiplication
by xn on every module. The long exact sequence of the mapping cone gives

Hn(x−; M) ±xn−−−→ Hn(x−; M)→ Hn(x; M)→ Hn−1(x−;M) ±xn−−−→ Hn−1(x−; M)

which in turn implies:

Theorem. Let M be any R-module and x1, . . . , xn any sequence of elements of R. Let
x denote x1, . . . , xn and x− denote x1, . . . , xn−1. Then for every i there is a short exact
sequence:

0→ Hn(x−; M)/xHn(x−; M)→ Hn(x; M)→ AnnHn−1(x−;M)xn → 0.

Proof. This is immediate from the long exact sequence above. �

We next note that if R is N graded and the xi are homogeneous, then K•(x; R) can
be N-graded with differentials that preserve degree. Moreover, if M is Z-graded but [M ]k
is 0 for k � 0, then K•(x; M) is Z-graded with differentials that preserve degree, and
all of the modules occurring are 0 in all sufficiently low negative degrees. This property
will also pass to all graded quotients of their graded submodules, and, in particular, every
Hi(x; M) will have the property that all modules it is zero in all sufficiently low negative
degrees.

To see this, note that if A,B are Z-graded R-modules that are 0 in low degree, we
may grade A ⊗R B by letting [A ⊗R B]k be the span of all a ⊗ b such that a ∈ Ai and
b ∈ Bj for some choice of i and j such that i + j = k. This gives a Z-grading that
vanishes in low degree: if Ai = 0 for i < c and Bj = 0 for j < d, then [A ⊗R B]k = 0
for k < c + d. Next, note that if xi has degree di, 1 ≤ i ≤ n, then K•(xi; R) may
be thought of as 0 → R(−di)

xi−→ R → 0, and this is graded with degree-preserving
differentials. The general Koszul complex is constructed by tensoring these together, and
then tensoring with M . Note that R(−d)⊗R R(−e) ∼= R(−d− e) as graded modules, and
that R(−d) ⊗R M ∼= M(−d) as graded modules. It follows that Ki(x; M) is the direct
sum of all the modules M

(
−(dj1 + · · ·+ dji)

)
for 1 ≤ j1 < · · · < ji ≤ n.

Theorem. Suppose that the R-module M 6= 0, and either that (1) M is Z-graded over
the N-graded ring R, with all sufficiently small negative graded pieces of M equal to 0, and
that x1, . . . , xn are forms of positive degree, or (2) that (R,m,K) is local, M is finitely
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generated, and that x1, . . . , xn ∈ m. Let I = (x1, . . . , xn)R. Then the following conditions
are equivalent:
(1) H1(x; M) = 0.
(2) Hi(x; M) = 0 for all i ≥ 1.
(3) In the case where R and M are Noetherian, depthIM = n.
(4) The elements x1, . . . , xn form a regular sequence on M .

Proof. The hypothesis implies that IM 6= M , by the local or graded form of Nakayama’s
lemma. We know that (2) and (3) are equivalent in the case where the ring and module are
Noetherian. We also know that (4) ⇒ (2) ⇒ (1). It will therefore suffice to show that (1)
⇒ (4). We use induction on n. The case n = 1 is obvious, since H1(x1; M) = AnnMx1.
Suppose that the result is known for n− 1 elements, n ≥ 2.

Taking i = 1 in the preceding Theorem we have a short exact sequence

0→ H1(x−; M)/xnH1(x−; M)→ H1(x; M)→ AnnH0(x−;M)xn → 0.

Assume that the middle term vanishes. Then all three terms vanish, and so

H1(x1, . . . , xn−1;M) = xnH1(x1, . . . , xn−1;M).

By Nakayama’s lemma, H1(x1, . . . , xn−1;M) = 0, which shows, using the induction hy-
pothesis, that x1, . . . , xn−1 is a regular sequence on M . The vanishing of the rightmost
term shows that xn is not a zerodivisor on

H0(x1, . . . , xn−1;M) ∼= M/(x1, . . . , xn−1)M.

Therefore, x1, . . . , xn is a regular sequence on M , as required. �

Math 615: Lecture of February 22, 2012

We note two important consequences of the final Theorem of the Lecture of February
20.

Corollary. Under the same hypothesis as for the preceding Theorem (i.e., in certain
graded and local situations) a regular sequence x1, . . . , xn on M is permutable. In other
words, if the elements form a regular sequence in one order, they form a regular sequence
in every order.

Proof. Permuting x1, . . . , xn can be viewed as the result of an action of an invertible
matrix — an appropriate permutation matrix. By the results of the preceding lecture,
the Koszul homology is not affected by such a permutation. But x1, . . . , xn is a regular
sequence on M if and only if H1(x1, . . . , xn; M) = 0, by the Theorem cited. �

This result can also be proved by elementary means. It suffices to show that any two
consecutive elements in the regular sequence can be switched: every permutation can be
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built up this way. One can work modulo the predecessors of the pair being switched, and
so we may assume that the elements are the first two, say x1, x2. It is easy to see that
it suffices to show that x2, x1 is a regular sequence, since M/(x1, x2)M = M/(x2, x1)M .
The only hard step is to show that x2 is not a zerodivisor on M . This still requires some
form of Nakayama’s lemma to hold. The statement that if x1, x2 is a regular sequence on
M then x1 is not a zerodivisor on M/x2M always holds.

Corollary. Let M be a Noetherian R-module and x = x1, . . . , xn ∈ R. If Hi(x; M) = 0
for some i then Hj(x; M) = 0 for all j ≥ i.

Proof. We may replace R by R/AnnRM without affecting the Koszul complex or its homol-
ogy. Therefore, we may assume that R is Noetherian. Let X1, . . . , Xn be indeterminates
over R, and extend the action of R on M to S = R[X1, . . . , Xn] by letting Xi act the way
xi does. This is equivalent to taking the R-algebra map S → R that fixes R ⊆ S and sends
Xi to xi for 1 ≤ i ≤ n, and restricting scalars from R to S. Then M is a finitely generated
R-module over the Noetherian ring S, and K•(X1, . . . , Xn; M) ∼= K•(x; M). The Xi form
a regular sequence in S. Replacing R by S and x1, . . . , xn by X1, . . . , Xn, we see that
we may assume without loss of generality that x1, . . . , xn is a regular sequence in R. If
Hj(x; M) 6= 0 we may choose a prime ideal P of the ring R such that Hj(x; M)P 6= 0. We
may replace R by RP and M by MP , since Ht(x1/1, . . . , xn/1; MP ) ∼= Ht(x; M)P for all
P . Thus, we may assume that (R, m) is local. We may also assume that x1, . . . , xn ∈ m:
if not, (x1, . . . , xn)R = R kills all the Koszul homology, and all of it vanishes.

If i = 1 we are done by the final Theorem of the Lecture of February 20: the vanishing
of H1(x; M) implies that x1, . . . , xn is a regular sequence on M , and that all the higher
Koszul homology vanishes. We can now complete the proof by induction on i. Assume
that i > 1 and the result is known for smaller integers. Form an exact sequence

0→M ′ → Rh →M → 0

by mapping a finitely generated free module onto M . Since x1, . . . , xn is a regular sequence
on R, it is a regular sequence on Rh, and Ht(x; Rh) = 0 for all t ≥ 1. The long exact
sequence for Koszul homology then implies at once that Ht(x; M) ∼= Ht−1(x; M ′) for all
t > 1, and so Hi−1(x; M ′) = 0 while Hj−1(x; M ′) 6= 0 with j − 1 ≥ i − 1, contradicting
the induction hypothesis. �

We shall eventually use this result to prove that if M , N are finitely generated modules
over a regular ring R and TorRi (M, N) = 0, then TorRj (M, N) = 0 for all j ≥ i. This
was proved by M. Auslander in the equicharacteristic case and by S. Lichtenbaum in
general. In the equicharacteristic case, after localization and completion the values of Tor
can be interpreted as Koszul homology over an auxiliary ring. This is not true in the
mixed characteristic case, where one also needs spectral sequence arguments to make a
comparison with the case where one can interpret values of Tor as Koszul homology. Both
arguments make use of the structure of complete regular rings.

We shall soon begin our study of spectral sequences, but before doing that we introduce
Grothendieck groups and use them to prove that regular local rings are unique factorization
domains, following M. P. Murthy.
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Let R be a Noetherian ring. Let M denote the set of modules

{Rn/M : n ∈ N, M ⊆ Rn}.

Every finitely generated R-module is isomorphic to one in M, which is all that we really
need about S: we can also start with some other set of modules with this property without
affecting the Grothendieck group, but we use this one for definiteness.

Consider the free abelian group with basis M, and kill the subgroup generated by all
elements of the form M −M ′ −M ′′ where

0→M ′ →M →M ′′ → 0

is a short exact sequence of elements ofM. The quotient group is called the Grothendieck
group G0(R) of R. It is an abelian group generated by the elements [M ], where [M ] denotes
the image of M ∈M in G0(R). Note that if M ′ ∼= M we have a short exact sequence

0→M ′ →M → 0→ 0,

so that [M ] = [M ′] + [0] = [M ′], i.e., isomorphic modules represent the same class in
G0(R).

A map L from M to an abelian group (A, +) is called additive if whenever

0→M ′ →M →M ′′ → 0

is exact, then L(M) = L(M ′)+L(M ′′). The map γ sending M to [M ] ∈ G0(R) is additive,
and is a universal additive map in the following sense: given any additive map L :M→ A,
there is a unique homomorphism h : G0(M) → A such that L = h ◦ γ. Since we need
L(M) = h([M ]), if there is such a map it must be induced by the map from the free
abelian group with basisM to A that sends M to h(M). Since h is additive, the elements
M −M ′ −M ′′ coming from short exact sequences

0→M ′ →M →M ′′ → 0

are killed, and so there is an induced map h : G0(R) → A. This is obviously the only
possible choice for h.

Over a field K, every finitely generated module is isomorphic with K⊕n for some n ∈ N.
It follows that G0(K) is generated by [K], and in fact it is Z[K], the free abelian group
on one generator. The additive map associated with the Grothendieck group sends M to
dimK(M)[K]. If we identify Z[K] with Z by sending [K] to 1, this is the dimension map.

If R is a domain with fraction field F , we have an additive map to Z that sends M to
dimFF ⊗RM , which is called the torsion-free rank of M . This induces a surjective map
G0(R)→ Z. If R is a domain and [R] generates G0(R), then G0(R) ∼= Z[R] ∼= Z, with the
isomorphism given by the torsion-free rank map.
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Notice that if L is additive and

0→Mn → · · · →M1 →M0 → 0

is exact, then
L(M0)− L(M1) + · · ·+ (−1)nL(Mn) = 0.

If n ≤ 2, this follows from the definition. We use induction. In the general case note that
we have a short exact sequence

0→ N →M1 →M0 → 0

and an exact sequence

0→Mn → · · · →M3 →M2 → N → 0,

since
Coker (M3 →M2) ∼= Ker (M1 →M0) = N.

Then
(∗) L(M0)− L(M1) + L(N) = 0,

and
(∗∗) L(N)− L(M2) + · · ·+ (−1)n−1L(Mn) = 0

by the induction hypothesis. Subtracting (∗∗) from (∗) yields the result. �

From these comments and our earlier results on regular local rings we get at once:

Theorem. If R is a regular local ring, G0(R) = Z[R] ∼= Z.

Proof. R is a domain, and we have the map given by torsion-free rank. It will suffice to
show that [R] generates G0(R). But if M is any finitely generated R-module, we know
that M has a finite free resolution

0→ Rbk → · · · → Rb1 → Rb0 →M → 0,

and so the element [M ] may be expressed as

[Rb0 ]−[Rb1 ]+· · ·+(−1)k[Rbk ] = b0[R]−b1[R]+· · ·+(−1)kbk[R] = (b0−b1+· · ·+(−1)kbk)[R]

�

Math 615: Lecture of February 24, 2012

Note that given a finite filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mn−1 ⊆Mn = M
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of a finitely generated R-module M and an additive map L we have that

L(M) = L(Mn/Mn−1) + L(Mn−1),

and, by induction on n, that

L(M) =
n∑
j=1

L(Mj/Mj−1).

In particular, [M ] ∈ G0(R) is
n∑
j=1

[Mj/Mj−1].

Theorem. Let R be a Noetherian ring. G0(R) is generated by the elements [R/P ], as P
runs through all prime ideals of R. If P is prime and x ∈ R− P , then [R/(P + xR)] = 0,
and so if R/Q1, . . . , R/Qk are all the factors in a prime filtration of [R/(P + xR)], we
have that [R/Q1] + · · ·+ [R/Qk] = 0. The relations of this type are sufficient to generate
all relations on the classes of the prime cyclic modules.

Proof. The first statement follows from the fact that every finitely generated module over
a Noetherian ring R has a finite filtration in which the factors are prime cyclic modules.
The fact that [R/(P + xR)] = 0 follows from the short exact sequence

0→ R/P
x−→ R/P → R/(P + xR)→ 0,

which implies [R/P ] = [R/P ] + [R/(P + xR)] and so [R/(P + xR)] = 0 follows.

Now, for every M ∈ M, fix a prime cyclic filtration of M . We need to see that if we
have a short exact sequence

0→M ′ →M →M ′′ → 0

that the relation [M ] = [M ′] + [M ′′] is deducible from ones of the specified type. We know
that M ′ will be equal to the sum of the classes of the prime cyclic module coming from its
chosen prime filtration, and so will M ′′. These two prime cyclic filtrations together induce
a prime cyclic filtration F of M , so that the information [M ] = [M ′]+ [M ′′] is conveyed by
setting [M ] equal to the sum of the classes of the prime cyclic modules in these specified
filtrations of [M ] and [M ′]. But F will not typically by the specified filtration of [M ], and
so we need to set the sum of the prime cyclic modules in the specified filtration of M equal
to the sum of all those occurring in the specified filtrations of M ′ and M ′′.

Thus, we get all relations needed to span if for all finitely generated modules M and
for all pairs of possibly distinct prime cyclic filtrations of M , we set the sum of the classes
of the prime cyclic modules coming from one filtration equal to the corresponding sum for
the other. But any two filtrations have a common refinement. Take a common refinement,
and refine it further until it is a prime cyclic filtration again. Thus, we get all relations
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needed to span if for every finitely generated module M and for every pair consisting of a
prime cyclic filtration of M and a refinement of it, we set the sum of the classes coming
from one filtration to the sum of those in the other. Any two prime cyclic filtrations may
then be compared by comaring each two a prime cyclic filtration that refines them both.

In refining a given prime cyclic filtration, each factor R/P is refined. Therefore, we
get all relations needed to span if for every R/P and every prime cyclic filtration of R/P ,
we set [R/P ] equal to the sum of the classes in the prime cyclic filtration of R/P . Since
Ass (R/P ) = P , the first submodule of a prime cyclic filtration of R/P will be isomorphic
with R/P , and will therefore have the form x(R/P ), where x ∈ R − P . If the other
factors are R/Q1, . . . , R/Qk, then these are the factors of a filtration of (R/P )/x(R/P ) =
R/(P + xR). Since [x(R/P )] = [R/P ], the relation we get is

[R/P ] = [R/P ] + [R/Q1] + · · ·+ [R/Qk],

which is equivalent to
[R/Q1] + · · ·+ [R/Qk] = 0,

and so the specified relations suffice to span all relations. �

Corollary. G0(R) ∼= G0(Rred).

Proof. The primes of Rred and those of R are in bijective correspondence, and the gener-
ators and relations on them given by the preceding Proposition are the same. �

Proposition. If R and S are Noetherian rings, then G0(R× S) ∼= G0(R)×G0(S).

Proof. If M is an (R× S)-module, then with e = (1, 0) and f = (0, 1) we have an isomor-
phism M ∼= eM × fM , where eM is an R-module via r(em) = (re)(em) and fM is an
S-module via s(fm) = (sf)(fm). There is an isomorphism M ∼= eM × fM . Conversely,
given an R-module A and an S-module B, these determine an R×S-module M = A×B,
where (r, s)(a, b) = (ra, sb) such that eM ∼= A over R and fM ∼= B over R. Thus,
(R×S)-modules correspond to pairs A,B where A is an R-module and B is an S-module.
Moreover, if h : M →M ′ then h induces maps eM → eM ′ and fM → fM ′ that determine
h. Said differently, a map from A×B → A′×B′ as (R×S)-modules corresponds to a pair
of maps A → A′ as R-modules and B → B′ as S-modules. Consequently, a short exact
sequence of (R × S)-modules corresponds to a pair consisting of short exact sequences,
one of R-modules and the other of S-modules. The stated isomorphism of Grothendieck
groups follows at once. �

Proposition. Let R be an Artin ring.
(a) If (R, m, K) is Artin local, G0(R) ∼= Z · [K] ∼= Z, where the additive map M 7→ `R(M)

gives the isomorphism with Z.
(b) If R has maximal ideals m1, . . . ,mk, then G0(R) is the free abelian group on the

[R/mj ].

Proof. For part (b), notice that the R/mk are generators by Theorem, and there are no
non-trivial relations, since if x /∈ mj , R/(mj + xR) = 0. Part (a) follows easily from part
(b). We may also deduce part (b) from part (a), using the fact that an Artin ring is a
finite product of Artin local rings and the preceding Proposition. �
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Proposition. Let R and S be Noetherian rings.
(a) If R→ S is a flat homomorphism, there is a a group homomorphism G0(R)→ G0(S)

sending [M ]R 7→ [S ⊗R M ]S. Thus, G0 is a covariant functor from the category of
rings and flat homomorphisms to abelian groups.

(b) If S = W−1R is a localization, the map described in (a) is surjective.
(c) If P is a minimal prime of R, there is a homomorphism G0(R)→ Z given by [M ] 7→

`RP (MP ). Of course, if R is a domain and P = (0), this is the torsion-free rank map.
(d) If R is a domain, the map Z → G0(R) that sends 1 to [R] is split by the torsion-free

rank map. Thus, G0(R) = Z[R] +G0(R), where G0(R) = G0(R)/Z · [R], the reduced
Grothendieck group of R. When R is a domain, the reduced Grothendieck group may
be thought of as the subgroup of G0(R) spanned by the classes of the torsion R-modules.

(e) If S is module-finite over R, there is a group homomorphism G0(S) → G0(R) send-
ing [M ]S to [RM ]R, where RM denotes M viewed as an R-module via restriction of
scalars. In particular, this holds when S is homomorphic image of I. Thus, G0 is a
contravariant functor from the category of rings and module-finite homomorphisms to
abelian groups.

Proof. (a) is immediate from the fact that S ⊗R preserves exactness.

To prove (b), note that if M is a finitely generated module over W−1R, it can be written
as the cokernel of a matrix of the form (rij/wij), where every rij ∈ R and every wij ∈W .
Let w be the product of all the wij . Then the entries of the matrix all have the form
r′ij/w. If we multiply every entry of the matrix by w, which is a unit in S, the cokernel
is unaffected: each column of the matrix is multiplied by a unit. Let M0 = Coker (r′ij).
Then S ⊗RM0

∼= M . This shows the surjectivity of the map of Grothendieck groups.

Part (c) is immediate from the fact that localization is exact coupled with the fact the
length is additive. The statement in (d) is obvious, since the torsion-free rank of R is 1.

One has the map in (e) because restriction of scalars is an exact functor from finitely
generated S-modules to finitely generated R-modules. One needs that S is module-finite
over R to guarantee that when one restricts scalars, a finitely generated S-module becomes
a finitely generated R-module. �

If S is faithfully flat or even free over R, the induced map [M ]R → [S ⊗R M ]S need
not be injective, not even if S = L⊗K R where L is a finite field extension of K ⊆ R: an
example is given in the sequel (see the last paragraph of today’s Lecture Notes).

An R-module M is said to have finite Tor dimension or finite flat dimension over R at
most d if TorRi (M, N) = 0 for all i > d. If M = 0, the Tor dimension is defined to be −1.
Otherwise, it is the smallest integer d such that TorRi (M, N) = 0 for all i > d, if such an
integer exists, and +∞ otherwise. We leave it as an exercise to show that M has finite
Tor dimension at most d if and only if some (equivalently, every) d th module of syzygies
of M is flat. Likewise, M has finite Tor dimension at most d if and only if M has a left
resolution by flat modules of length at most d. A nonzero module M has Tor dimension 0
if and only of M is flat over R. Of course, if M has finite projective dimension d, then M
has Tor dimension at most d.
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Proposition. If S is a Noetherian R-algebra of finite Tor dimension ≤ d over the Noe-
therian ring R, there is a map G0(R)→ G0(S) that sends [M ]R to

θ(M) =
d∑
i=0

(−1)i[TorRi (S, M)]S .

Proof. We simply need to check the additivity of the map. Let 0→M ′ →M →M ′′ → 0
be a short exact sequence of finitely generated R-modules. Then we get a long exact
sequence of finitely generated S-modules

0→ TorRd (S, M ′)→ TorRd (S, M)→ TorRd (S, M ′′)→ · · ·
→ TorR0 (S, M ′)→ TorR0 (S, M)→ TorR0 (S, M ′′)→ 0

and so the alternating sum Σ of the classes of these modules in G0(S) is 0. We think of
these 3d modules as in positions 3d − 1, 3d − 2, · · · , 2, 1, 0 counting from the left. The
terms involving M ′′ are in positions numbered 0, , 3, 6, . . . , 3(d−1). Their signs alternate
starting with +, and so their contribution to Σ is θ(M ′′). The terms involving M are in
positions numbered 1, 4, 7, . . . , 3(d − 1) + 1. Their signs alternate starting with −, and
so their contribution to Σ is −θ(M). Finally, the terms involving M ′ are in positions
numbered 2, 5, 8, . . . , 3(d − 1) + 2. Their signs alternate starting with +, and so their
contribution to Σ is θ(M ′). This yields 0 = Σ = θ(M ′)− θ(M) + θ(M ′′), as required. �

Corollary. If x is not a zerodivisor in the Noetherian ring R, there is a map G0(R) →
G0(R/xR) that sends [M ]R 7→ [M/xR]R/xR − [AnnM x]R/xR.

Proof. This is the special case of result just above when S = R/xR, which has projective
dimension at most 1 and, hence, flat dimension at most 1. We have that TorR0 (R/xR, M) ∼=
(R/xR) ⊗R M ∼= M/xM , and TorR1 (R/xR, M) ∼= AnnMx. An elementary proof of this
result may be given by showing that when

0→M ′ →M →M ′′ → 0

is exact then so is

0→ AnnM ′ x→ AnnM x→ AnnM ′′ x→M ′/xM ′ →M/xM →M ′′/xM ′′ → 0,

developing this special case of the long exact sequence for Tor from first principles. �

Corollary. Let R be Noetherian and let S denote either R[x] or R[[x]], where x is an
indeterminate. Since S is flat over R, we have an induced map G0(R) → G0(S). This
map is injective.

Proof. We have that S/xS ∼= R, where x is not a zerodivisor in S, and so we have a
map G0(S) → G0(R). Under the composite map, the class [M ]R of an R-module M
maps first to [M [x] ]S (respectively, [M [[x]] ]S), and then to [M [x]/xM [x] ]R (respectively,
[M [[x]]/xM [[x]] ]R), since x is not a zerodivisor on M [x] (respectively, M [[x]]). In both
cases, the quotient is ∼= M , and so the composite map takes [M ]R → [M ]R. Thus,
the composite G0(R) → G0(S) → G0(R) is the identity on G0(R), which implies that
G0(R)→ G0(S) is injective. �

We next aim to establish the following result, which will imply unique factorization in
regular local rings.
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Theorem (M. P. Murthy). Let R be a normal domain and let H be the subgroup of
G0(R) spanned by the classes [R/P ] for P a prime of height 2 or more. Then

C` (R) ∼= G0(R)/H.

Assuming this for the moment, note the failure of the injectivity of the map from
G0(R)→ G0(S) where R = R[x, y]/(x2 + y2− 1) and S = C⊗RR ∼= C[x, y]/(x2 + y2− 1).
We have seen in 6.(b) of Problem Set #6 from Math 614 that the maximal ideal P =
(x, y − 1)R is not principal in R, from which it will follow that [P ] is nonzero in C` (R),
and so that [R/P ] is nonzero in G0(R), and therefore [R/P ] is not zero in G0(R). But
P becomes principal when expanded to S. In fact, S is a UFD, for if we let u = x + yi
and v = x− yi, then C[x, y] ∼= C[u, v] (we have made a linear change of variables), and so
S ∼= C[u, v]/(uv − 1) ∼= C[u][1/u]. Thus, [S ⊗R/P ]S = [S/PS]S = 0 in G0(S).

Math 615: Lecture of March 5, 2012

Recall that if R is a normal domain, one defines the divisor class group of R, denoted
C` (R), as follows. First form the the free abelian group on generators in bijective corre-
spondence with the height one prime ideals of R. The elements of this group are called
divisors. The divisor div (I) of an ideal I 6= 0 whose primary decomposition only involves
height one primes (I is said to be of pure height one) is then obtained from the primary
decomposition of I: if the primary decomposition of I is P (k1)

1 ∩ · · · ∩ P (ks)
s where the

Pj are mutually distinct, then div (I) =
∑s
j=1 kjPj . We regard the unit ideal as having

pure height one in a vacuous sense, and define its divisor to be 0. The divisor div (r) of
an element r ∈ R − {0} is the divisor of rR, and, hence, 0 if r is a unit. Then C` (R) is
the quotient of the free abelian group of divisors by the span of the divisors of nonzero
principal ideals. The following is part of a Theorem on the third page of the Math 614
Lecture Notes from December 1, to which we refer the reader for the proof.

Theorem. Let R be a Noetherian normal domain. If I has pure height one, then so does
fI for every nonzero element f of R, and div (fI) = div (f) + div (I). For any two ideals
I and J of pure height one, div (I) = div (J) iff I = J , while the images of div (I) and
div (J) in C` (R) are the same iff there are nonzero elements f, g of R such that fI = gJ .
This holds iff I and J are isomorphic as R-modules. In particular, I is principal if and
only if div (I) is 0 in the divisor class group. Hence, R is a UFD if and only if C` (R) = 0.

While we are not giving a full proof here, we comment on one point. If I ∼= J as an
R-module, the isomorphism is given by an element of HomR(I, J). If we localize at the
prime (0), which is the same as applying F⊗R , where F is the fraction field of R, we see
that HomR(I, J) embeds in F ⊗R HomR(I, J) ∼= HomF (IF , JF) = HomF(F , F) ∼= F ,
that is, every homomorphism from I to J is induced by multiplying by a suitable fraction
f/g, f ∈ R, g ∈ R−{0}. When this fraction gives an isomorphism we have (f/g)I = J or
fI = gJ .
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Theorem (M. P. Murthy). Let R be a normal domain and let H be the subgroup of
G0(R) spanned by the classes [R/P ] for P prime of height 2 or more. Then C` (R) ∼=
G0(R)/H with the map sending [P ] 7→ [R/P ] for all height one primes P .

Before proving this, we note two corollaries. One is that regular local rings have unique
factorization. Whether this is true was an open question for many years that was first
settled by M. Auslander and D. Buchsbaum by a much more difficult method, utilizing
homological methods but based as well on a result of Zariski that showed it suffices to prove
the result for regular local rings of dimension 3. Later, I. Kaplansky gave a substantially
simpler proof. But I feel that Murthy’s argument gives the “right” proof. We have already
seen that for a regular local ring R, G0(R) = 0. Therefore:

Corollary. A regular local ring is a UFD. �

Corollary. If R is a Dedekind domain, then G0(R) ∼= C` (R) and G0(R) = Z · [R]⊕C` (R).

Proof. This is clear, since there are no primes of height two or more. �

We now go back and prove Murthy’s result.

Proof of the Theorem. We know that G0(R) is the free group on the classes of the R/P , P
prime, modulo relations obtained from prime cyclic filtrations of R/(P + xR), x /∈ P . We
shall show that if we kill [R] and all the [R/Q] for Q of height 2 or more, all relations are
also killed except those coming from P = (0), and the image of any relation corresponding
to a prime cyclic filtration of R/xR corresponds precisely to div (x). Clearly, if P 6= 0
and x /∈ P , any prime containing P + xR strictly contains P and so has height two or
more. Thus, we need only consider relations on the R/P for P of height one coming from
prime cyclic filtrations of R/xR, x 6= 0. Clearly, R does not occur, since R/xR is a torsion
module, and occurrences of R/Q for Q of height ≥ 2 do not matter. We need only show
that for every prime P of height one, the number of occurrences of R/P in any prime cyclic
filtration of R/xR is exactly k, where P (k) is the P -primary component of xR. But we can
do this calculation after localizing at P : note that all factors corresponding to other primes
become 0, since some element in the other prime not in P is inverted. Then xRP = P kRp,
and we need to show that any prime cyclic filtration of RP /xRP has k copies of RP /PRP ,
where we know that xRP = P kRP . Notice that (RP , PRP ) is a DVR, say (V, tV ), and
xRP = tkV . The number of nonzero factors in any prime cyclic filtration of V/tkV is the
length of V/tkV over V , which is k, as required: the only prime cyclic filtration without
repetitions is

0 ⊂ tk−1V ⊂ tk−2V ⊂ · · · ⊂ t2V ⊂ tV ⊂ V . �

Theorem. G0(R) ∼= G0(R[x]) under the map that sends [M ] 7→ [M [x] ], where we have
written M [x] for R[x]⊗RM .

Proof. We have already seen that the map is injective, and even constructed a left inverse
for it, which takes

[N ]R[x] 7→ [N/xN ]R − [AnnN x]R.

However, we shall not make use of this left inverse to prove surjectivity. Instead, we prove
that every [S/Q], Q prime, is in the image of G0(R)→ G0(R[x]) by Noetherian induction
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on R/(Q ∩ R). There are two sorts of primes lying over P ∈ Spec (R). One is PR[x].
The other is generated, after localization at R − P , by a polynomial f ∈ R[x] of positive
degree with leading coefficient in R − P such that the image of f is irreducible in κP [x],
where κP = RP /PRP ∼= frac (R/P ). To see this, note that every prime Q lying over P
corresponds, via contraction to R[x], to a prime of the fiber (R − P )−1(R/P )[x] ∼= κP [x].
The primes in κP [x] are of two types: there is the (0) ideal, whose contraction to R[x]
is PR[x], and there are the maximal ideals, each of which is generated by an irreducible
polynomial of positive degree in κP [x]. We can clear the denominators by multiplying by
an element of R−P , and then lift the nonzero coefficients to R−P , to obtain a polynomial
f with leading coefficient in R−P as described previously. Note that Q is recovered from
P and f as the set of all elements of R[x] multiplied into P +fR[x] by an element of R−P .
Briefly, Q = (PR[x] + fR[x]) :R[x] (R− P ).

Since R[x]/PR[x] = (R/P )⊗RR[x] is evidently in the image, we need only show that the
primes Q of the form (PR[x]+fR[x]) :R[x] (R−P ) are in the image of G0(R)→ G0(R[x]).
We have exact sequences

(∗) 0→ (R/P )[x]
f−→ (R/P )[x]→M → 0,

where M = R[x]/(PR[x] + fR[x]), and

(∗∗) N →M → R[x]/Q→ 0.

Because (R−P )−1M = (R−P )−1R[x]/Q, we have that N is a finitely generated module
that is a torsion module over R/P . Since every generator of N is killed by an element of
R − P , we can choose a ∈ R − P that kills N . From (∗), [M ] = 0 in G0(S). From (∗∗),
[R[x]/Q] = −[N ] in G0(R[x]). Therefore, it suffices to show that [N ] is in the image. In
a prime cyclic filtration of N , every factor is killed by P + aR, and therefore for every
R[x]/Q′ that occurs, Q′ lies over a prime strictly containing P . But then every [R[x]/Q′]
is in the image by the hypothesis of Noetherian induction. �

Theorem. Let R be a ring and S a multiplicative system. Then the kernel of G0(R) →
G0(S−1R) is spanned by the set of classes {[R/P ] : P ∩ S 6= ∅}. Hence, for any x ∈ R
there is an exact sequence

G0(R/xR)→ G0(R)→ G0(Rx)→ 0.

Proof. The final statement is immediate from the general statement about localization at
S, since G0(R/xR) is spanned by classes [R/P ]R/xR such that x ∈ P and x ∈ P iff P
meets {xn : n ≥ 1}, and so the image of G0(R/xR) in G0(R) is spanned by the classes
[R/P ]R for x ∈ P .

To prove the general statement about localization, first note that the specified classes
are clearly in the kernel. To show that these span the entire kernel, it suffices to show that
all the spanning relations on the classes [S−1R/QS−1RQ] hold in the quotient of G0(R)
by the span Γ of the classes [R/P ] for P ∩ S 6= ∅. Consider a prime cyclic filtration of
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S−1R/(PS−1R + (x)), where x may be chosen in R. We may contract (i.e., take inverse
images of) the submodules in this filtration to get a filtration of R/P . Each factor Ni
contains an element ui such that, after localization at S, ui generates S−1Ni ∼= S−1R/Qi.
Thus, for each i, we have short exact sequences

0→ Rui → Ni → Ci → 0 and 0→ Di → Rui → R/Qi → 0,

where Ci and Di vanish after localization at S and so have prime cyclic filtrations with
factors R/Qj such that Qj meets S. Here, we have that Q1 = P . We must show that the
relation

∑
i>1[S−1R/S−1Qi] = 0 comes from a relation on the [R/Qi] in G0(R)/Γ. But

[R/P ] = N1 +
∑
i>1[Ni], and for every i,

[Ni] = [Rui] + [Ci] = [R/Qi] + [Ci] + [Di].

Since Q1 = P , we have

0 = [C1] + [D1] +
∑
i>1

[R/Qi] + [Ci] + [Di]

in G0(R), and the conclusion we want follows: as aleady observed, every Ci and every Di

is killed by an element of S, and so has a prime cyclic filtration in which each prime cyclic
module has a class in Γ. �

We next define the Grothendieck group of projective modules over a Noetherian ring R by
forming the free abelian group on generators P inM (one can work with any set of finitely
generated projective modules containing a representative of every isomorphism class) and
killing the subgroup spanned by elements P − P ′ − P ′′, where 0→ P ′ → P → P ′′ → 0 is
exact. In this situation the short exact sequence of projectives is split (this only uses that
P ′′ is projective), and so P ∼= P ′⊕P ′′. Thus, the elements that we kill to construct K0(R)
have the form (P ′ ⊕ P ′′)− P ′ − P ′′. Note that isomorphic projectives represent the same
class in K0(R).

There is obviously a canonical map K0(R)→ G0(R) that takes [P ] in K0(R) to [P ] in
G0(R) for every finitely generated projective module over R.

Theorem. If R is regular, the map K0(R) ∼= G0(R) is an ismorphism.

Proof. We want to define a map from G0(R) to K0(R). Given a finitely generated R-
module M , we can choose a finite projective resolution of M by finitely generated projective
modules, say P•, and suppose that the length of this resolution is d. The obvious way to
define an inverse map is to send [M ] to

[P0]− [P1] + · · ·+ (−1)d[Pd] ∈ K0(R).

We must check that this is independent of the choice of the projective resolution. Given
another such projective resolution Q• of M we must show that the two alternating sums
are the same in K0(R) (this is obvious in G0(R), since both equal [M ], but M is not
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“available” in K0(R)). To prove this, choose a map of complexes φ• : P• → Q• such that
the induced map of augmentations M = H0(P•)→ H0(Q•) = M is the identity. Form C•,
the mapping cone of φ, which is a complex of projective modules. Then Cn = Pn ⊕Qn−1.
We claim that C• is exact (not just acyclic): all the homology vanishes. To see this,
consider the long exact sequence of the mapping cone:

· · · → Hn(Q•)→ Hn(C•)→ Hn−1(P•)→ Hn−1(Q•)→ · · · .

If n ≥ 2, Hn(C•) = 0 since Hn(Q•) and Hn−1(P•) both vanish. If n = 1, H1(C•)
vanishes because H1(Q•) = 0 and the connecting homomorphism H0(P•)→ H0(Q•) is an
isomorphism. If n = 0, H0(C•) = 0 because H0(Q•) and H−1(P•) both vanish.

Thus, the alternating sum of the classes in C• is 0 in K0(R), and this is exactly what
we want.

Additivity follows because given a short exact sequence of finitely generated modules
0 → M ′ → M → M ′′ → 0 and projective resolutions P ′• of M ′ and P ′′• of M ′′ by finitely
generated projective modules, one can construct such a resolution for M whose j th term
is P ′j ⊕ P ′′j : cf. the middle of page 4 of the Lecture Notes of February 6. �

Math 615: Lecture of March 7, 2012

Note that K0 is a functor on all maps of Noetherian rings (not just flat maps) because
short exact sequences of projectives are split and remain exact no matter what algebra one
tensors with. Restriction of scalars from S to R will not induce a map on K0 unless S is
module-finite and projective over R.

Observe also that K0(R) has a commutative ring structure induced by ⊗R , with [R]
as the multiplicative identity, since the tensor product of two finitely generated projective
modules is a projective module, and tensor distributes over direct sum.

Proposition. Let P and Q be finitely generated projective modules over a Noetherian ring
R. Then [P ] = [Q] in K0(R) if and only there is a free module G such that P ⊕G ∼= Q⊕G.

Proof. [P ] = [Q] if and only if [P ] − [Q] is in the span of the standard relations used to
define K0(R), in which case, for suitable integers h, k,

P −Q =
h∑
i=1

(
(Pi ⊕Qi)− Pi −Qi

)
+

k∑
j=1

(
P ′j +Q′j − (P ′j ⊕Q′j)

)
and so

P +
h∑
i=1

(Pi +Qi) +
k∑
j=1

(P ′j ⊕Q′j) = Q+
h∑
i=1

(Pi ⊕Qi) +
k∑
j=1

(P ′j +Q′j).
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The fact that this equation holds implies that the number of occurrences of any given
projective module on the left hand side is equal to the number of occurrences of that
projective module on the right hand side. Therefore, if we change every plus sign (+) to
a direct sum sign (⊕), the two sides of the equation are isomorphic modules: the terms
occurring in the direct sum on either side are the same except for order. Therefore:

P ⊕
h⊕
i=1

(Pi +Qi)⊕
k⊕
j=1

(P ′j ⊕Q′j) = Q⊕
h⊕
i=1

(Pi ⊕Qi)⊕
k⊕
j=1

(P ′j ⊕Q′j).

In other words, if we let

N =
h⊕
i=1

(Pi ⊕Qi)⊕
k⊕
j=1

(P ′j ⊕Q′j),

then P ⊕N = Q⊕N . But N is projective, and so we can choose N ′ such that N⊕N ′ ∼= G
is a finitely generated free module. But then

P ⊕N ⊕N ′ ∼= Q⊕N ⊕N ′,

i.e., P ⊕G ∼= Q⊕G. �

Corollary. let R be Noetherian. K0(R) is generated by [R] if and only if every projective
module P has a finitely generated free complement, i.e., if and only if for every finitely
generated projective module M there exist integers h and k in N such that P⊕Rh ∼= Rk. �

We know that

K0(K[x1, . . . , xn]) ∼= G0(K[x1, . . . , xn]) ∼= G0(K) ∼= Z

is generated by the class of R. Therefore, every finitely generated projective module
over R = K[x1, . . . , xn] has a finitely generated free complement. To prove that every
projective module over a R is free, it suffices to show that if P ⊕R ∼= Rn then P ∼= Rn−1.
The hypothesis implies precisely that P is the kernel of a map Rn � R. Such a map
is given by a 1 × n matrix (r1 . . . rn). The surjectivity of the map corresponds to the
condition that the rj generate the unit ideal of R. If

∑n
j=1 rjsj = 1, then the n×1 column

matrix whose entries are s1, . . . , sn mapping R→ Rn gives a splitting. P ∼= Rn−1 implies
that this column vector v can be extended to a free basis for Rn, since Rn = P ⊕ Rv.
Since P ∼= Rn/Rv, P will be free if and only if it has n − 1 generators, and so P will be
free if only if v can be extended to a free basis for Rn. This led to the following question:
if one is given one column of a matrix consisting of polynomials over K that generate the
unit ideal, can one “complete” the matrix so that it has determinant which is a unit in
the polynomial ring? This is equivalent to completing the matrix so that its determinant
is 1 if n ≥ 2: the unit can be absorbed into one of the columns other than the first. This
is known as the “unimodular column” problem. However, some authors, who use matrices
that act on the right, study the equivalent “unimodular row” problem.
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The question was raised by Serre in the mid 1950s and was open until 1976, when it
was settled in the affirmative, independently, by D. Quillen and A. Suslin. A bit later,
Vaserstein gave another proof which is very short, albeit very tricky. It is true that
projective modules over a polynomial ring over a field are free, but it is certainly a non-
trivial theorem.

We next want to develop the theory of spectral sequences. Fix a ring R. We work in
the category of R-modules, so that all maps are R-linear. But R will play almost no role
here. The entire theory works without changes in any abelian category. We shall talk a
bit about the notion of an abelian category later. In the sequel, it is understood that the
given objects are R-modules and the maps are R-linear.

Spectral sequences arise when a complex has a filtration, that is, a sequential chain of
subcomplexes. This may be ascending or descending, and one may also consider filtrations
indexed by Z. For simplicity, for the moment, we shall only consider descending filtrations.

We need to choose whether the complex is homological or cohomological, i.e., whether
the differential raises degree or lowers degree. This has virtually no effect on the theory,
except for whether one writes subscripts or superscripts. For definiteness, we shall assume
that the differential lowers degrees by 1. Thus, we assume that we have a complex K• with
a differential d• that lowers degrees: dn : Kn → Kn−1. (In this section K• has, in general,
no particular relation to the Koszul complex.) We allow n to take on negative values here,
so that the case of cohomology is covered simply by renumbering.

We also assume that we have a descending sequence of subcomplexes, which we write
as 〈K•〉p. Thus:

K• = 〈K•〉0 ⊇ 〈K•〉1 ⊇ 〈K•〉2 ⊇ · · · ⊇ 〈K•〉p ⊇ · · · ⊇ 〈K•〉∞ = 0.

Thus, for each n ∈ Z we have

Kn = 〈K〉0 ⊇ 〈Kn〉1 ⊇ 〈Kn〉2 ⊇ · · · ⊇ 〈Kn〉p ⊇ · · · ⊇ 〈Kn〉∞ = 0.

In discussing this material we shall, rather rigidly, reserve n to keep track of where we are
in the complex and p for where we are in the filtration.

It will be convenient to make the convention that

〈Kn〉−1 = 〈Kn〉−2 = · · · 〈Kn〉−∞ = Kn.

That is, as we move up in the filtration from 〈Kn〉p we eventually reach Kn = 〈Kn〉0 and
then are “stuck” there.

One can form from the filtered complex 〈K•〉• an associated graded complex whose term
in degree n is ⊕

p

〈Kn〉p/〈Kn〉p+1.
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We denote this complex E0
• . This associated graded complex is a function of the filtered

complex 〈K•〉•: we are omitting the argument from the notation. We shall write E1
•

for the homology of E0
• . On the other hand, we can take the homology of the original

complex H•(K•) and give it a filtration by letting 〈H•(K•)〉p be the image of H•(〈K•〉p).
Our objective is to compare the homology of the associated graded complex with the
associated graded of the homology of the original complex. There turns out to be a mildly
complicated way of making this comparison.

Let us return to E1
• for a moment. Ordinarily, when one takes homology, the new

complex has no differential on it other than 0. But it turns out that there is a (typically)
non-trivial differential on E1

• . The homology of E1
• is a new complex, E2

• , and this likewise
has a non-trivial differential on it defined by looking at the original filtered complex.
One can continue in this way to define a sequence of complexes Er• , each of which is the
homology of the preceding one. Under certain hypotheses on the original filtration, for
each n, Ern becomes stable for sufficiently large r � 0 (in the sense that the incoming
and outgoing differentials are both 0, and so taking homology again produces the same
object), and is the same as the associated graded of the homology of the original complex,
for which we write E∞n .

We now give the definitions. Keep in mind that Ern will be graded, and we will use p
to indicate graded pieces, so that we write

Ern =
∞⊕
p=0

Er,pn

When no limits are indicated for p, it is understood that p ranges over all of N. The
spectral sequence is the sequence of complexes {Er•}r and, again, we shall be rigid in our
use of r, which is tracking which term of the sequence of complexes we are considering.

We note that in doing the cohomological theory, where n becomes a superscript, one
converts r and p to subscripts, and writes Enr,p instead of Er,pn .

We build the theory by defining all the modules Er,pn at once, as well as some auxiliary
modules. We define

Zr,pn = Ker (〈Kn〉p
dn−→ Kn−1/〈Kn−1〉p+r)

and
Br,pn = 〈Kn〉p ∩ dn+1(〈Kn+1〉p−r),

where −1 ≤ r ≤ ∞. The elements of Zr,pn are approximately cycles for large r in the sense
that they are getting pushed r spots further down in the filtration from where they are by
the differential. Br,pn does not contain all boundaries: only those elements that are values
of the differential on elements at most r steps further up in the filtration.

Note that Z0,p
n = 〈Kn〉p, and that if r = −1, then Z−1,p+1

n = 〈Kn〉p+1 as well.

Observe that
B−1,p
n = 〈Kn〉p ∩ dn+1(〈Kn+1〉p+1).
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Note that
Z∞,pn = Ker (dn) ∩ 〈Kn〉p,

actual cycles, while
B∞,pn = Im (dn+1) ∩ 〈Kn〉p.

Let
Er,pn = Zr,pn /(Br−1,p

n + Zr−1,p+1
n ).

Let
Ern =

⊕
p

Er,pn ,

which is graded. Now let
dr,pn : Er,pn → Er,p+rn−1 .

Let
drn =

⊕
p

dr,pn .

Note that drn : Ern → Ern−1 is a map that shifts the p-grading by r. Then, with respect
to these maps, Er• with maps dr• is a complex of graded modules in which the maps lower
degree, but shift the p-grading by r. For every r, H•(Er•) = Er+1

• .

Note also that E0
• is the associated graded complex of K•, while E∞• is the associated

graded complex of H•(K•).

Math 615: Lecture of March 9, 2012

Verification of the basic assertions about spectral sequences. To see that E0
• is the associ-

ated graded complex of K•, note that

E0,p
n = Z0,p

n /(B−1,p
n + Z−1,p+1

n ) = 〈Kn〉p/
(
〈Kn〉p ∩ dn+1(〈Kn+1〉p+1) + 〈Kn〉p+1

)
.

Since dn+1(〈Kn+1〉p+1) ⊆ 〈Kn〉p+1, the denominator is simply 〈Kn〉p+1, and

E0,p
n = 〈Kn〉p/〈Kn〉p+1,

as claimed.

To see that E∞• is the associated graded complex of H•(K•), note that

E∞,pn = Z∞,pn /(B∞,pn + Z∞,p+1
n ) =

(Ker (dn) ∩ 〈Kn〉p)/(Im (dn+1) ∩ 〈Kn〉p + Ker (dn) ∩ 〈Kn〉p+1).

Here,
(Ker (dn) ∩ 〈Kn〉p)/(Im (dn+1) ∩ 〈Kn〉p
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is the image of Hn(〈K•〉p) in Hn(K•), while killing the image of Ker (dn) ∩ 〈Kn〉p+1 has
the effect of passing to the associated graded complex.

Recall that
Er,pn = Zr,pn /(Br−1,p

n + Zr−1,p+1
n ),

where
Zr,pn = Ker (〈Kn〉p

dn−→ Kn−1/〈Kn−1〉p+r)

and
Br,pn = 〈Kn〉p ∩ dn+1(〈Kn+1〉p−r).

Note quite generally that one has the alternative formula

(∗n,r,p) dn+1(Zr,p−rn+1 ) = Br,pn .

It is clear that dn induces a map Er,pn → Er,p+rn , that is,

Zr,pn /(Br−1,p
n + Zr−1,p+1

n )→ Zr,p+rn /(Br−1,p+r
n + Zr−1,p+r+1

n )

since dn(Zr,pn ) ⊆ Zr,p+rn−1 (the image of dn in fact consists of true cycles), the image of
Br−1,p
n is 0, while, by (∗n−1,r−1,p+r) above, the image of Znr − 1, p+ 1 is Br−1,p+r

n−1 .

Finally, we verify that the homology of Er• is Er+1
• . Notice that u ∈ Zr,pn represents

a cycle for the map Er,pn → Er,p+rn−1 precisely if dn(u) ∈ Br−1,p+r
n−1 + Zr−1,p+r+1

n−1 . Now,
Br−1,p+r
n−1 = dn(Zr−1,p+1

n ) by (∗n−1,r−1,p+r) and Zr−1,p+1
n ⊆ Zr,pn . Thus, the cycles are

represented precisely by the elements of Zr−1,p+1
n +V , where V is the set of elements in Zr,pn

that are mapped to Zr−1,p+r+1
n−1 . Since any element of dn(Zr,pn ) is a cycle, V is the same as

the set of elements of Zr,pn that map in into 〈Kn−1〉p+r+1, which is precisely Zr+1,p
n . Thus,

the cycles can be described as the image of Zr+1,p
n +Zr−1,p+1

n in Zr,pn /(Br−1,p
n +Zr−1,p+1

n ),
which is

(Br−1,p
n + Zr+1,p

n + Zr−1,p+1
n )/(Br−1,p

n + Zr−1,p+1
n ).

The image of Er,p−rn+1 within this module is the same as the image of the numerator of
Er,p−rn+1 , and the numerator is Zr,p−rn+1 , whose image is represented by dn+1(Zr,p−rn+1 ) = Br,pn ,
and this contains Br−1,p

n . Thus, the homology is

(Br−1,p
n + Zr+1,p

n + Zr−1,p+1
n )/(Br,pn + Zr−1,p+1

n ) ∼= Zr+1,p
n /

(
Zr+1,p
n ∩ (Br,pn + Zr−1,p+1

n )
)
.

We are now done provided that we can show that Zr+1,p
n ∩(Br,pn +Zr−1,p+1

n ) = Br,pn +Zr,p+1
n .

This follows from the elementary observation that Y ∩(B+Z) = B+(Y ∩Z) for R-modules
Y , B, and Z such that B ⊆ Y , along with the observations that B = Br,pn ⊆ Zr+1,p

n = Y
and Zr+1,p

n ∩ Zr−1,p+1
n = Znr, p+ 1. �

We next observe that if the filtrations begins with a term indexed by −p0 < 0, we
have the same theory without essential change. We note two cases in which convergence is
obvious. One is the case where the filtration is finite, i.e., all terms are eventually 0. The
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second is the case where for every n, the filtration of Kn is finite: we shall say that the
filtration is locally finite in this case. In fact, the behavior of the Ern only depends on the
filtrations for Kn+1, Kn, and Kn−1.

In particular, we do not need to develop a separate theory for ascending filtrations
provide that they are finite or locally finite.

Before proceeding further with the general theory of spectral sequences (in particular,
a more precise criterion for convergence), we want to consider two examples of filtered
complexes.

Let M be a Noetherian module over a Noetherian ring R, let x = x1, . . . , xd ∈ R and let
I = (x1, . . . , xd)R. We put a staggered I-adic filtration on the Koszul complex as follows:
we let 〈Kn(x; M)〉p = Ip−nKn(x; M), where It is defined to be R if t ≤ 0. The fact that
these are subcomplexes is a consequence of the fact that the entries of the matrices for the
Koszul complex are elements of I.

The associated graded complex is the E0
• term for a spectral sequence. It is easy to

see that it may be identified with the Koszul complex of the associated graded module
grI(M) over the associated graded ring grI(R) with respect to the sequence of elements
X1, . . . , Xd, where Xi is the image of xi in I/I2. We shall show soon that this Koszul
complex converges. The E∞• term is an associated graded complex of the the Koszul
homology H•(x; M).

Our second example is for a cohomological double complex A•• where we assume that
Ai,j = 0 if either i < 0 or j < 0, with differentials di,j : Ai,j → Ai,j+1 and ei,j : Ai,j →
Ai+1,j . Let HI(A••) denote the result of taking cohomology with respect to columns (i.e.,
with respect to the maps e): it is a new double complex in which the the vertical maps
are 0 and the horizontal maps are induced by d. Likewise, let HII(A••) denote the result
of taking cohomology with respect to rows (i.e., with respect to the maps d): it is a new
double complex in which the the horizontal maps are 0 and the vertical maps are induced
by e. Thus, we can take iterated cohomology HIHII(A••). We can do this in the other
order as well and consider HIIHI(A••). It is frequently of interest to compare what one
gets from each of these double complexes of iterated cohomology with the cohomology of
the total complex H•(T •(A••).

The comparison is done using spectral sequences. There is a spectral sequence such
that the E•2 term is HIIHI(A••) and such that the E•∞ term is an associated graded of
H•
(
T •(A••)

)
. Similarly, there is a spectral sequence whose E•2 term is HIHII(A••) and

whose E•∞ term is an associated graded of H•
(
T •(A••)

)
. In general, the two filtrations

used on T •(A••),and hence, on H•
(
T •(A••)

)
, are different. Nonetheless, there are many

situations where the information that comes out of this analysis is useful.

To see that one gets a spectral sequence whose E•2 term is HIIHI(A••), we filter the total
complex as follows. The double complex A•• has a double subcomplex 〈A••〉p obtained by
replacing all the Aij by 0 for i < p by their 0 subobjects by while leaving the Aij unchanged
for i ≥ p. The total complex T •(〈A••〉p) is then a subcomplex T •(〈A••〉)p of T •(A••) for
all p. This gives a locally finite filtration, and so a convergent spectral sequence. The E•0
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term, the associated graded complex, consists of the direct sum of the rows. The E•1 term
is HI(A••). The E•2 term is HIIHI(A••), although this description does not explain the
differential, d2.

Suppose that one has a cohomological double complex in which every row is exact ex-
cept at the 0 spot and every column is exact except at the 0 spot. The row cohomology
is a double complex with all 0 entries except for the 0 th column, which consists of the
augmentations of the rows. Then HIIHI is the cohomology of this single column. In this
case, the spectral sequence has already converged: the E•∞ term is the same as the E•2
term. The same is true, quite similarly, for HIHII. In this instance, the filtrations on the
cohomology of the total complex do turn out to agree, and one recovers a cohomologi-
cal version of the double complex lemma that we proved earlier: the cohomology of the
column of row augmentations, the cohomology of the row of column augmentations, and
the cohomology of the total complex all agree. The theory of spectral sequences gives a
similar result whenever one has that the rows of a double complex are all exact except in
the j0 spot and the columns are all exact except at the i0 spot. The cohomology of the
total complex in degree n is the same as Hn−j0 of the of the column formed by taking row
cohomology at each j0 spot, or Hn−i0 of the row formed by taking column cohomology at
each i0 spot.

Math 615: Lecture of March 12, 2012

There is an alternative convention for describing the terms of a spectral sequence that is
used a great deal, particularly in dealing with the spectral sequence of a double complex.
One lets q = n − p, and then Er,pn = Erp,q in the homological case and Enr,p = Ep,qr in the
cohomological case. The integer p is referred to as the filtration degree (or index) and the
integer q is referred to as the complementary degree (or index). Then n = p + q is called
the total degree.

With these notations

Ern =
⊕
p+q=n

Erp,q and Enr =
⊕
p+q=n

Ep,qr .

Note that
dr : Ep,qr → Ep+r,q−r+1

r

and
dr : Erp,q → Erp+r,q−r−1

in the homological case.

Our theory applies without essential change to a locally finite ascending filtration (we
can think of it as descending instead), but because it is numbered “backward,” so to speak,
the sign of r is reversed, so that

dr : Ep,qr → Ep−r,q+r+1
r
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and
dr : Erp,q → Erp−r,q−r−1.

Notice that if you think of p as negative its absolute value increases by r.

Observe that in the spectral sequence of a cohomological double complex whose E2 term
is HIIHI(A••), the d2 map sends Ep,q2 → Ep+2,q−1

2 . If we picture the objects Ep,q2 in a
double array, the map is making a knight’s move, as in chess, from its domain to its target.
Then d3 : Ep,q3 → Ep+3,q−2

3 , as well as the maps dr : Ep,qr → Ep+r,q−r+1
r for larger r, may

be thought of similarly as involving a sort of generalized knight’s move.

Consider a homological double complex A•• in which the objects are 0 if either index
is negative. Again we can filter by rows, taking the subcomplex 〈A••〉p in which every
Aij is replaced by 0 for i > p. (This is really the same filtration as in the cohomological
case if we index by −p instead of p.) This is an ascending filtration, but that is harmless
since it is locally finite. The total complex T•(A••) is likewise filtered, taking 〈T•(A••)〉p =
T•(〈A••〉p). The associated graded complex is the direct sum of the rows: this is E0. E1 is
the homology of the rows, and E2 is the iterated homology HIIHI(A••). We get a spectral
sequence converging to an associated graded complex of H•

(
T•(A••)

)
: this associated

graded is the E∞ term, and there is similarly a spectral sequence from HIHII(A••): the
E∞ term is the associated graded complex of H•

(
T•(A••)

)
with respect to a different

grading.

In dealing with the spectral sequence of a double complex, suppose that one has a
formula Fp,q for E2

p,q and that the total complex has homology Hn. One sometimes writes
Fp,q =⇒

p
Hn to mean that Fp,q is the E2 term of a spectral sequence that converges to an

associated graded complex of Hn. The presence of p under the arrow means that p is the
filtration degree.

We now give a characterization of convergence.

Theorem. The following two conditions are equivalent:
(1) For every n there exists r(n) <∞ such that

Er(n)
n
∼= Er(n)+1

n
∼= · · · ∼= Esn

∼= · · · ∼= E∞n ,

where this holds in the sense that for s ≥ r(n) we have (i) the incoming and outgoing
differentials dsn+1 and dsn for Esn are both 0 and (ii) the inclusion Z∞,pn ⊆ Zs,pn induces
an isomorphism of E∞,pn

∼= Es,pn for all p.
(2) For every integer n there exists an integer s(n) such that

(∗) 〈Kn−1〉p+s(n) ∩ dn(〈Kn〉) ⊆ dn(〈Kn〉p+1,

0 ≤ p.

We have already defined a spectral sequence to converge precisely when condition (1)
holds, and we have noted that convergence is automatic for locally finite filtrations.
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The second condition is sometimes referred to as a condition of Artin-Rees type. It
compares two filtrations on the module of boundaries dn(〈Kn〉), the quotient filtration
coming from the filtration on Kn, and the inherited filtration from Kn−1. It holds when
we use staggered I-adic filtrations on a Koszul complex: it is an immediate consequence
of the Artin-Rees lemma (see the Math 614 Lecture Notes of December 10, and the final
Theorem of these Lecture Notes from January 18). In fact, suppose that we have a map
N → M of finitely generated modules over a Noetherian ring R that carries an I-stable
filtration on N into a given I-stable filtration on M . Then the image B of N has an
I-stable filtration 〈B〉p using the images of the submodules in the filtration of N , while
the inherited filtration B ∩ 〈M〉p on B is also I-stable, by the Artin-Rees Lemma. The
existence of s such that B ∩ 〈M〉p+s ⊆ Bp+1 is then clear: for s sufficiently large we will
have B ∩ 〈M〉p+s ⊆ Ip+1B ⊆ Bp+1 for all p.

Proof of the Theorem. To see that (1) ⇒ (2), fix n and choose r(n) so that one has the
isomorphisms described in (1). We want to show that for all p,

〈Kn−1〉p+r(n) ∩ dn(Kn) ⊆ dn(〈Kn〉p+1).

Suppose that w is in the intersection on the left but not in dn(〈Kn〉p+1). For all choices of
z ∈ Kn such that dn(z) = w, choose z so that it lies in 〈Kn〉p′ for p′ as large as possible.

We must have p′ ≤ p, or else w = dn(z) ∈ dn(〈Kn〉p+1). Then z ∈ Z
r(n)+p−p′,p′
n , and

represents an element of Er(n)+p−p′,p′
n . This element must be in the image of Z∞,p

′

n , and
so we have that z ∈ Z∞,p

′

n + B
r(n)+p−p′−1,p′

n + Z
r(n)+p−p′−1,p′+1
n , where the sum of the

second and third terms give the denominator for Er(n)+p−p′,p′
n . Since the second term is

contained in the first term, this is Z∞,p
′

n + Z
r(n)+p−p′−1,p′+1
n . Modifying z by subtracting

an element of Z∞,p
′

n , which does not change dn(z), we obtain an element of 〈Kn〉p′+1 with
the same image, which contradicts the choice of p′.

Now assume condition (2): we want to prove that (1) holds. First observe that the
differential dr,pn : Er,pn → Er,p+rn−1 is 0 precisely when

dn(Zr,pn ) ⊆ Br−1,p+r
n−1 + Zr−1,p+r+1

n−1

Now if s ≥ s(n) and (∗) holds then any element of dn(Zs,pn ) is in

〈Kn−1〉p+s ∩ dn(Kn) ⊆ dn(〈Kn〉p+s−s(n)+1) ⊆ dn(〈Kn〉p+1).

However, an element of 〈Kn〉p+1 that maps into 〈Kn−1〉p+s is automatically in Zs−1,p+1
n ,

so that when (2) holds we actually have

dn(Zs,pn ) ⊆ dn(Zs−1,p+1
n ) = Bs−1,p+s

n

for all s ≥ s(n). This shows that ds,pn = 0 for all s ≥ s(n) and all p, and so dsn = 0 for all
s ≥ s(n). It remains only to check isomorphism with the term at infinity.
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Still assuming (2), note that for all s ≥ s(n+ 1) we have

Bs−1,p
n = dn+1(〈Kn+1〉p−(s−1)) ∩ 〈Kn〉p = dn+1(Kn+1) ∩ 〈Kn〉p = B∞,pn .

The second equality follows because we have that

dn+1(Kn+1) ∩ 〈Kn〉p ⊆ dn+1(〈Kn+1〉p−(s−1)),

which is an instance of (∗) with n+ 1 replacing n and p− s replacing p. Thus, we have a
map

E∞,pn = Z∞,pn /(B∞,pn + Z∞,p+1
n ) to Es,pn = Zs,pn /(Bs−1,p

n + Zs−1,p+1
n )

by virtue of the inclusions Z∞,pn ⊆ Zs,pn , Z∞,p+1
n ⊆ Zs−1,p+1

n and the fact that B∞,pn =
Bs−1,p
n . We simply want to see that this map is an isomorphism for large s. But for

s ≥ s(n), dn(Zs,pn ) ⊆ dn(Zs−1,p+1
n ), which implies that Zs,pn ⊆ Zs−1,p+1

n + Z∞,pn , and
surjectivity follows.

Finally, suppose that some element of E∞,pn maps to 0. Then it is represented by
z ∈ Z∞,pn and is also in Bs−1,p

n + Zs−1,p+1
n = B∞,pn + Zs−1,p+1

n . But then

z ∈ Z∞,pn ∩ (B∞,pn + Zs−1,p+1
n ) = B∞,pn + (Z∞,pn ∩ Zs−1,p+1

n ),

using the fact that Y ∩(B+Z) = B+(Y ∩Z) when B ⊆ Y , and this is B∞,pn +Z∞,p+1
n ), as

required. This completes the argument that condition (2) is sufficient for convergence. �

Let A• be a complex with only finitely many nonzero homology modules and let L be
an additive function defined on these homology modules with values in an abelian group
G. By the Euler characteristic of A• with respect to L, which we denote χL(A•) or, simply,
χ(A•), we mean

∑
i∈Z(−1)iL

(
Hi(A•)

)
∈ G. Note that we take homology before computing

the Euler characteristic: in fact, L need not, in general, be defined on the original modules
An.

The most important example for us will be the case where L = ` is length, so that for
χ(A•) to be defined, A• must be a complex with only finitely many nonzero homology
modules, each of finite length.

An important use of spectral sequences is the comparison of Euler characteristics. Sup-
pose that A• is a complex with only finitely many nonzero modules in it, and that L is an
additive function defined on these modules, on the modules of cycles Zi = Ker (Ai → Ai−1),
on the modules of boundaries Bi = Im (Ai+1 → Ai), and on the homology modules
Hi = Zi/Bi. A key observation is that∑

i∈Z
(−1)iL(Ai) =

∑
i∈Z

(−1)iL(Hi).

The point is that we have short exact sequences

0→ Zi → Ai → Bi−1 → 0
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and
0→ Bi → Zi → Hi → 0

for all i, so that∑
i∈Z

(−1)iL(Hi) =
∑
i∈Z

(−1)i
(
L(Zi)− L(Bi)

)
=
∑
i∈Z

(−1)iL(Zi) +
∑
i∈Z

(−1)i+1L(Bi) =

∑
i∈Z

(−1)iL(Zi) +
∑
i∈Z

(−1)iL(Bi−1) =
∑
i∈Z

(−1)i
(
L(Zi) + L(Bi−1)

)
=
∑
i∈Z

(−1)iL(Ai),

as claimed.

Because each term in a spectral sequence is the homology of the preceding term, we
may apply this in the case where L is length to obtain the following:

Proposition. Let K• be a complex with a descending filtration that has a convergent
spectral sequence. Assume (#) that the intersection of the submodules in the induced
filtration on H•(K•) is 0. Suppose that the associated graded complex gr(K•) has only
finitely many nonvanishing homology modules and that these are of finite length. Then K•
itself has only finitely many nonvanishing homology modules, these are of finite length, and
χ(K•) = χ(gr(K•).

Proof. gr(K•) is the E0
• term of the spectral sequence, and its homology is E1

• , which has
only finitely many nonzero modules, and these are of finite length. It follows that Er• has
nonzero terms at most in the spots where E1

• does, and that all the terms of every Er•
have finite length. Moreover, since each is the homology of the preceding, it follows by
induction on r that the Er• all have the same Euler characteristic as E0

• , r ≥ 0. Since there
are only finitely many spots with nonzero terms, the spectral sequence stabilizes at the
E∞• term after finitely many steps. Thus, E∞• has only finitely many nonzero terms, each
of finite length, and the alternating sum of those lengths is χ(E0

•). If the intersection of the
submodules in a descending filtration is 0, passing to an associated graded module does
not affect whether it is 0, nor whether it has finite length, nor what that length is. Since
E∞• is an associated graded complex of H•(K•), it follows that K• has only finitely many
nonzero homology modules, that they have finite lengths, and that χ(K•) = χ(E0

•). �

Note that the condition (#) is automatic for locally finite filtrations, and also for I-
stable filtrations on finitely generated modules over a local ring (R, m) with I ⊆ m. If zp
representing a cycle is in IpKn, then zp is in Ip−cdn(Kn+1) by the Artin-Rees Lemma, and
for c independent of p, and so the common image of zp in homology is in Ip−cHn(K•) for
all p, and is therefore 0.

If R is Noetherian x1, . . . , xd ∈ R are such that M/(x1, . . . , xd)M has finite length,
with M finitely generated, we denote by χ(x1, . . . , xd;M) the Euler characteristic of
K(x1, . . . , xd;M). The hypothesis that M/(x1, . . . , xd)M has finite length is equivalent
to the assumption that (x1, . . . , xd)R+ AnnRM is contained only in maximal ideals.
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Corollary. If (R, m) is local, M is finitely generated, and x1, . . . , xd ∈ m generate an
ideal I such that M/IM has finite length, then

χ(x1, . . . , xd;M) = χ
(
X1, . . . , Xd; grI(M)

)
where Xj is in the image of xj in I/I2, the degree one graded component of grI(R), and
the second Koszul complex is taken over grI(R). �

Math 615: Lecture of March 14, 2012

In connection with problem 3. of Problem Set #4: if one does not assume a local or
graded situation, the result is false. Let R = K[x, y1, . . . , yn] where K is a field, say, and
let I =

(
(1− x)y1, . . . , (1− x)yn

)
R ⊆ (1− x)R. Then depthIR ≤ depth(1−x)RR. But the

depth on a principal ideal is at most 1, and in this case it is exactly one, since any nonzero
element of I is a nonzerodivisor on R. On the other hand J = I + xR = (x, y1, . . . , yn),
and depthJR = n+ 1.

We are now ready to prove a result stated much earlier, related to the notion of the
multiplicity of an ideal generated by a system of parameters. If I is any m-primary ideal
of the local ring (R, m) and M 6= 0 is a finitely generated R-module, we may consider the
Hilbert function

HI,M (p) = `(M/Ip+1M),

which we know agrees with a polynomial in p of degree equal to the Krull dimension of
M for p � 0. (We may also do this when the image of I is primary to m/AnnRM in
R/AnnRM , but since we may typically replace R by R/AnnRM , we shall stick to the case
where I is actually m-primary.) The leading term of this polynomial has the form

e

d!
pd

where d is the Krull dimension of M and e is a positive integer, called the multiplicity of
M with respect to I. The multiplicity e can also be obtained as

d! lim
p→∞

`(M/Ip+1M)
pd

.

See the Lecture Notes of January 27.

If dim (R) = d but we allow M to be of Krull dimension ≤ d, when the Krull dimension
of M is < d there will still be a term of the form

e

d!
pd: now, e = 0 iff the dimension of M

is less than d: when dim (M) = d, we have that e > 0. The theorem that we want to prove
next asserts that the Euler characteristic of M with respect to a system of parameters for R
is the same as the multiplicity of M with respect to the ideal generated by the parameters
if dim (M) = dim (R). If dim (M) < dim (R), the Euler characteristic is 0. In any case, it
is d! times the coefficient of pd in the Hilbert polynomial of M .
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Before proving this result, we note the following. If Q is a polynomial in p, we have
defined ∆Q to be the polynomial given by the formula

∆Q(p) = Q(p)−Q(p− 1).

See the second page of the Lecture Notes of January 23. If Q is constant, ∆Q is identically
0. Otherwise ∆Q has degree exactly one less than the degree ofQ, and its leading coefficient
is the degree of Q times the leading coefficient of Q. If d is the degree of Q and a is its
leading coefficient, then ∆dQ is the constant polynomial d! a. It is also true that, by a
straightforward induction on k ≥ 1,

∆kQ(p) =
k∑

n=0

(−1)n
(
k

n

)
Q(p− n).

Here, the exponent on ∆ indicates iterated composition of the operator ∆. Note that when
k = 1 this is just the same as the definition: ∆Q(p) = Q(p)−Q(p− 1). When k = 2, we
can verify the formula as follows:

∆2Q(p) = ∆Q(p)−∆Q(p− 1) =
(
Q(p)−Q(p− 1)

)
−
(
Q(p− 1)−Q(p− 2)

)
=

Q(p)− 2Q(p− 1) +Q(p− 2).

The detailed induction is left to the reader.

Theorem. Let (R, m, K) be a local ring of Krull dimension d, let x = x1, . . . , xd be a
system of parameters for R, and let M be a nonzero finitely generated R-module. Let

e

d!
be

the coefficient of pd in the Hilbert polynomial H(p) of M with respect to I = (x1, . . . , xd)R,
(thus, H(p) = `(M/Ip+1M) for all p � 0). Then the Euler characteristic χ(x;M) of the
Koszul complex K(x;M) is equal to e, and therefore is 0 if dim (M) < d and is positive
and equal to the multiplicity of M with respect to I if dim (M) = d.

Proof. We already know that because of the spectral sequence using the staggered I-adic
filtration of K•(x; M) (where 〈Kn(x; M)〉p = Ip−nKn(x; M), with I−t = R for t ≥ 0) that
there is a spectral sequence whose E0

• term is the associated graded complex of this filtered
complex, and whose E∞• term is an associated graded complex of the Koszul homology.
The E0

• term may be identified with K
(
X1, . . . , Xd; grI(M)

)
, the Koszul complex of the

graded module grI(M) with respect to X = X1, . . . , Xd, where Xj is the image of xj
in I/I2, the first graded component of grI(R): this is a Koszul complex over grI(R). In
particular, χ(x; M) = χ

(
X; grI(M)

)
.

To calculate the latter, first note that, when we keep track of the grading, we see that
Kn
(
X; grI(M)

)
is the direct sum of

(
d
n

)
copies of grI(M)(−n): the matrix of each map

has entries that are either 0 or else ±Xj for some j, and so the maps increase degree by
1. With this grading, the maps preserve degree, and so for every degree one may take
homogeneous components in that degree and get an exact sequence in that degree. In each
degree all the homogeneous components are finitely generated modules over the Artin local
ring R/I (which is the degree 0 homogeneous component of grI(R)) , and all have finite
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length. The whole complex is the direct sum of these subcomplexes coming from the
various choices of degree, and its homology is therefore the direct sum of the homology of
these subcomplexes. Since the homology of the whole complex has finite length, it follows
that for all but finitely many degrees the complex is exact in that degree. Therefore we
may choose a fixed integer p > 0 such that the complex is exact in every degree that
exceeds p. Enlarging p if necessary, we may also assume that p ≥ d and that p ≥ p0 + d,
where p0 is so large that `(M/Ip

′+1M) is given by H(p′) for all p′ ≥ p0 (recall that H is
the Hilbert polynomial of M with respect to I).

We may form a subcomplex G• that is a direct summand of K•(X; grI(M)) over R/(x)R
by taking the direct sum of the subcomplexes corresponding to degrees that are ≤ p. The
complementary direct summand has homology 0. Therefore, G• is a complex consisting of
finite length modules over R/(x)R that has the same homology as K•(X; grI(M)). The
Euler characteristic of K•(X; grI(M)) is therefore the same as the Euler characteristic of
G•. But since the modules in G• have finite length already, this Euler characteristic can
be calculated as the alternating sum of the lengths of the modules in G•.

Notice that Gn is actually an associated graded module of M(dn)/Ip−nM(dn), and so has
the same length as this module. But that length is(

d

n

)
`(M/Ip−nM) =

(
d

n

)
H(p− n).

Thus, the alternating sum of the lengths of the modules in G• is
∑d
n=0(−1)n

(
d
n

)
H(p− n)

for any p� 0, and this is the same as (∆dH)(p), by the discussion preceding the statement
of the Theorem. But if the degree d term of H is

e

d!
pd, we know that this d th difference is

d!
e

d!
= e, which shows that the multiplicity e is the Euler characteristic of K•

(
X; grI(M)

)
and, hence, of the original Koszul complex K•(x; M), as claimed. �

We next want to discuss what is sometimes referred to as the associativity of Tor. Let
A, B, and C be R-modules. We want to relate the modules TorRi

(
Torj(A, B), C

)
and the

R-modules TorRi
(
A, TorRj (B, C)

)
. The general situation is complicated, but a relationship

can be given using two spectral sequences which converge to associated graded complexes
(with respect to two different gradings) of a new sequence of homology modules.

To carry this through we need to introduce the notion of triple Tor: we define

TorRn (A, B, C) = Hn

(
T•(N• ⊗R P• ⊗R Q•)

)
,

where N•, P•, and Q• are projective resolutions over the ring R of A, B, and C, respec-
tively. To remove ambiguity, we can use the canonical free resolutions of the three modules
described in our treatment of Tor, but the values are independent of the projective resolu-
tions used up to canonical isomorphism. For example, if one chooses a different projective
resolution N ′• of A, each of the resolutions N•, N ′• maps to the other so as to lift the
identity map on A, and these maps of complexes are determined up to homotopy. When
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one forms the total total tensor product complex, one still has maps each way unique up
to homotopy, and so there is a canonical identification of the homology using N• and the
homology using N ′•. Precisely the same comment applies to each of the resolutions P• and
Q•. As in the case of ordinary Tor, one may use a flat resolution instead of a projective
resolution.

Consider the complex D• = T•(N•⊗RP•). The homology of this complex is TorR• (A, B).
Now consider the double complex D• ⊗ Q•: at the i, j spot we have Dj ⊗R Qi. Suppose
we fix i = p and take the homology of the p th row, which is D• ⊗R Pp. Since Pp is
projective, the functor ⊗R Pp commutes with taking homology, and so this homology is
TorR• (A, B)⊗R Pp. If we fix j = q and take the homology of the q th column we get, from
the spectral sequence for HIHII,

TorRp
(
TorRq (A, B), C

)
=⇒
p

TorRn (A, B, C).

On the other hand, we may consider the double complex N• ⊗ E•, where we let E• =
T•(P• ⊗R Q•), so that at the i, j spot we have Nj ⊗R Ei. If we filter by columns, so that
we first take homology of columns and then of rows, we first get that the homology of the
q th column is Nq ⊗R TorR• (B, C). Next taking homology of rows, we see that the spectral
sequence for HIIHI gives

TorRq
(
A, TorRp (B, C)

)
=⇒
q

TorRn (A, B, C).

This gives a rather complicated comparison of the iterated Tors, but it does yield useful
information in many cases.

Math 615: Lecture of March 16, 2012

Example. Let K be a filtered complex with a descending filtration

K = 〈K•〉0 ⊇ 〈K•〉1 ⊇ 〈K•〉0 = 0.

Consider the spectral sequence of this filtered complex. The associated graded complex
is K•/〈K•〉1 ⊕ 〈K•〉1: this is E0

• . The E1
• term is its homology. Let us write Q• for the

quotient complex K•/〈K•〉1. Note that what we have is precisely a short exact sequence
of complexes:

0→ 〈K•〉1 → K• → Q• → 0.

Thus, the E1
• term is H•(Q•) ⊕ H•(〈K•〉1). The E2

• is the E∞• term, since of any two
objects whose degrees differ by two or more, at least one is 0, and so the E2

• term is an
associated graded of H•(K•). Thus, E2

• = Hn(E1
•) will be an associated graded complex

of H•(K•). Note that
d1,0
n : Hn(Q•)→ Hn−1(〈K•〉1).
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This is the connecting homomorphism in the snake lemma. Observe also that all of the
maps d1,1

n are 0. Thus, E2,0
n is the kernel of d1,0

n , and is also a quotient of Hn(K•) by E2,1
n ,

which is E∞,1n , and is the image of Hn(〈K•〉1) in Hn(K•). On the other hand, E2,1
n is the

homology at E1,1
n , which is Hn(〈K•〉1 mod the image of

d1,0
n+1 : Hn+1(Q•)→ Hn(〈K•〉1).

This tells us that
Hn+1(Q•)→ Hn(〈K•〉1)→ Hn(K•)

is exact, while the isomorphism of the cokernel of Hn(〈K•〉1) → Hn(K•) with the kernel
of d1,0

n : Hn(Q•)→ Hn−1(〈K•〉1) says precisely that

Hn(〈K•〉1)→ Hn(K•)→ Hn(Q•)→ Hn−1(〈K•〉1)

is exact. These exact sequences, as n varies, fit together into the long exact sequence given
by the snake lemma. Thus, the spectral sequence is providing the same information as the
snake lemma.

We next want to discuss the functor Ext: in order to do so, we need to discuss some
facts about injective modules.

If 0 → M → N → Q → 0 is an exact sequence of R-modules, we know that for any
R-module N the sequence

0→ HomR(Q, N)→ HomR(M, N)→ HomR(M, N)

is exact. An R-module E is called injective if, equivalently, (1) HomR( , E) is an exact
functor or (2) for any injection M ↪→ N , the map HomR(N, E) → HomR(M, E) is
surjective. In other words, every R-linear map from a submodule M of N to E can
be extended to a map of all of N to E.

Proposition. An R-module E is injective if and only if for every I ideal I of R and
R-linear map φ : I → E, φ extends to a map R→ E.

Proof. “Only if” is clear, since the condition stated is a particular case of the definition of
injective module when N = R and M = I. We need to see that the condition is sufficient
for injectivity. Let M ⊆ N and f : M → E be given. We want to extend f to all of N .
Define a partial ordering of maps of submodules M ′ of N to E as follows: g ≤ g′ means
that the domain of g is contained in the domain of g′ and that g is a restriction of g′ (thus,
g and g′ agree on the smaller domain, where they are both defined). The set of maps that
are ≥ f (i.e., extensions of f to a submodule M ′ ⊆ N with M ⊆ M ′) has the property
that every chain has an upper bound: given a chain of maps, the domains form a chain
of submodules, and we can define a map from the union to E by letting is value on an
element of the union be the value of any map in the chain that is defined on that element:
they all agree. It is easy to see that this gives an R-linear map that is an upper bound
for the chain of maps. By Zorn’s lemma, there is a maximal extension. Let f ′ : M ′ → N
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be this maximal extension. If M ′ = N , we are done. Suppose not. We shall obtain a
contradiction by extending f ′ further.

If M ′ 6= N , choose x ∈ N−M ′. It will suffice to extend f ′ to M ′+Rx. Let I = {i ∈ R :
ix ∈ M ′}, which is an ideal of R. Let φ : I → E be defined by φ(i) = f ′(ix) for all i ∈ I.
This makes sense since every ix ∈ M ′. By hypothesis, we can choose an R-linear map
ψ : R→ E such that ψ(i) = φ(i) for all i ∈ I. We have a map γ : M ⊕R→ E defined by
the rule γ(u⊕ r) = f ′(u) + ψ(r). We also have a surjection M ⊕R→M +Rx that sends
u⊕ r 7→ u+ rx. We claim that γ kills the kernel of this surjection, and therefore induces a
mapM ′+Rx→ E that extends f ′. To see this, note that if u⊕r 7→ 0 the u = −rx, and then
γ(u⊕ r) = f ′(u) + ψ(r). Since −u = rx, r ∈ I, and so ψ(r) = φ(rx) = f ′(−u) = −f ′(u),
and the result follows. �

Recall that a module E over a domain R is divisible if, equivalently,

(1) rE = E for all r ∈ R− {0} or

(2) for all e ∈ E and r ∈ R− {0} there exists e′ ∈ E such that re′ = e.

Corollary. Over a domain R, every injective module is divisible. Over a principal ideal
domain R, a module is injective if and only if it is divisible.

Proof. Consider the problem of extending a map of a principal ideal aR→ E to all of R.
If a = 0 the map is 0 and the 0 map can be used as the required extension. If a 6= 0, then
since aR ∼= R is free on the generator a, the map to be extended might take any value
e ∈ E on a. To extend the map, we must specify the value e′ of the extended map on 1
in such a way that the extended maps takes a to e: the condition that e′ must satisfy is
precisely that ae′ = e. Thus, E is divisible if and only if every map of a principal ideal
of R to E extends to a map of R to E. The result is now obvious, considering that in a
principal ideal domain every ideal is principal. �

It is obvious that a homomorphic image of a divisible module is divisible. In particular,
W = Q/Z is divisible Z-module and therefore injective as a Z-module. We shall use the
fact that W is injective to construct many injective modules over many other rings. We
need several preliminary results.

First note that if C is any ring and V is any C-module, we have a map

M → HomC(HomC(M, V ), V )

for every R-module M . If u ∈M , this maps sends u to

θu ∈ HomC

(
HomC(M, V ), V

)
,

define by the rule that θu(f) = f(u) for all f ∈ HomC(M, V ).

Now let ∨ denote the contravariant exact functor HomZ( , W ), where W = Q/Z
as above. As noted in the preceding paragraph, for every Z-module A we have a map
A→ A∨∨, the double dual into W .
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Lemma. With notation in the preceding paragraph, for every Z-module A, A the homo-
morphism θA = θ : A→ A∨∨ is injective.

If A happens to be an R-module then the map A → A∨∨ is R-linear, and for every
R-linear map f : A1 → A2 we have a commutative diagram of R-linear maps

A∨∨1
f∨∨−−−−→ A∨∨2

θA1

x xθA2

A1 −−−−→
f

A2

Proof. Given a nonzero element a ∈ A, we must show that there exists f ∈ HomZ(A, W )
such that the image of f under θa, is not 0, i.e., such that f(a) 6= 0. The Z-submodule
D of A generated by a is either Z or else a nonzero finite cyclic module, which will be
isomorphic to Z/nZ for some n > 1. In either case, there will exist a surjection D � Z/nZ
for some n > 1, and Z/nZ embeds in W : it is isomorphic to the span of the class of 1/n
in Q/Z. Thus, we have a nonzero map D → W , namely D � Z/nZ ↪→ W . Since D ⊆ A
and W is injective as a Z-module, this map extends to a map of f : A → W . Evidently,
f(a) 6= 0.

The verifications of the remaining statements are straightforward and are left to the
reader. �

Before proving the next result we observe the following. Let R be a C-algebra, let M
and N be R-modules, let Q be a C-module, and suppose that we are given a C-bilinear
map B : M ×N → Q such that B(ru, v) = B(u, rv) for all r ∈ R. Then there is a unique
C-linear map f : M ⊗R N → Q such that f(u ⊗ v) = B(u, v) for all u ∈ M and v ∈ N .
This is a consequence of the easily verified fact that M ⊗R N is the quotient of M ⊗C N
by the span of all elements of the form ru⊗ v − u⊗ rv for r ∈ R, u ∈M and v ∈ N . We
are now ready to establish the following easy but very important result:

Theorem (adjointness of tensor and Hom). Let C → R be a ring homomorphism,
let M be and N be R-modules, and let Q be a C-module. Then there is a natural isomor-
phism HomC(M ⊗R N, Q) → HomR(M, HomC(N, Q) as R-modules: the two sides are
isomorphic as functors of the three variables M, N , and Q.

Proof. We define mutually inverse maps explicitly. Given f : M ⊗RN → Q as C-modules,
let Θ(f) be the map M → HomC(N, Q) whose value on u ∈ M is βf,u, where βf,u(v) =
f(u⊗v). Note that the value of Θ(rf) on u for r ∈ R is βrf,u, where βrf,u(v) = (rf)(u⊗v) =
f
(
r(u ⊗ v)

)
= f

(
(ru) ⊗ v)

)
, while the value of rΘ(f) on u is Θ(f)(ru), and the value of

that map on v ∈ N is βf,ru(v) = f
(
(ru)⊗ v

)
. The R-linearity of Θ follows.

On the other hand, given g : M → HomC(N, Q), we can define a C-bilinear map
Bg : M × N → Q by letting Bg(u, v) = g(u)(v). Note that Bg(ru, v) = g(ru)(v) =(
rg(u)

)
(v) = g(u)(rv) = Bg(u, rv). Let

Λ : HomR(M, HomC(N, Q)→ HomC(M ⊗R N, Q)
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be such that Λ(g) is the linear map corresponding to Bg. The check that Λ and Θ are
mutually inverse is straightforward, as is the check of naturality: further details are left to
the reader. �

Corollary. Let R be a C-algebra, let F be a flat R-module, and let W be an injective
C-module. Then HomC(F, W ) is an injective R-module.

Proof. Because of the natural isomorphism

HomR(M, HomC(F, W )) ∼= HomC(M ⊗R F, W )

we may view the functor
HomR( , HomC(F, W ))

as the composition of two functors: ⊗R F followed by HomC( , W ). Since F is R-
flat, the first is exact, while since W is C-injective, the second is exact. Therefore, the
composition is exact. �

We can now put things together:

Theorem. Over every commutative ring R, every R-module embeds in an injective R-
module. In fact, this embedding can be achieved canonically, that is, without making any
arbitrary choices.

Proof. Let M be any R-module. In this construction, Z will play the role of C above.
We can map a free R-module F onto HomZ(M, W ), were W = Q/Z is injective over Z.
We can do this canonically, as in the construction of Tor, by taking one free generator
of F for every element of HomZ(M, W ). By the Corollary above, F∨ = HomZ(F, W )
is R-injective. Since we have a surjection F � M∨, we may apply HomZ( , W ) to
get an injection M∨∨ ↪→ F∨. But we have injection M ↪→ M∨∨, and so the composite
M ↪→M∨∨ ↪→ F∨ embeds M in an injective R-module canonically. �

While the embedding does not involve the axiom of choice, the proof that it is an em-
bedding and the proof that F∨ is injective do: both use that W is injective. The argument
for that used that divisible Z-modules are injective, and the proof of that depended on the
Proposition at the top of page 2, whose demonstration used Zorn’s lemma.

Math 615: Lecture of March 19, 2012

Note that if E ⊆ M are R-modules and E is injective, then the identity map E → E
extends to a map from all of M to E that is the identity on E. This means that E ⊆ M
splits, and so M ∼= E ⊕R (M/E). This is dual to the fact a surjection M � P , with P
projective, splits.

If M is a module, we refer to the cokernel of an embedding M ↪→ E, where E is injective,
as a first module of cosyzygies of M . Given 0 → M → E0 → C1 → 0 exact, where E0

is injective, we can repeat the process: embed C1 ↪→ E1 and then we get a cokernel C2,
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a second module of cosyzygies of M . Recursively, we can define a j + 1 st module of
cosyzygies to be a first module of cosyzygies of a j th module of cosyzygies. We have the
analogue of Schanuel’s lemma on syzygies: given two n th modules of cosyzygies, Cn and
C ′n, there are injectives E and E′ such that Cn ⊕ E ∼= Cn ⊕ E′. The main point is to see
this for first modules of syzygies. But if we have

0→M
ι−→ E

π−→ C → 0

and

0→M
ι′−→ E′

π′−→ C ′ → 0

then we also have

0→M
ι⊕ι′−−→ E ⊕ E′ → C ′′ → 0.

The image of M does not meet E⊕0 ∼= E, and so E injects into C ′′. The quotient is easily
seen to be isomorphic with E′/Im (M) ∼= C ′, i.e., there is an exact sequence

0→ E → C ′′ → C ′ → 0,

and so C ′′ ∼= E ⊕ C ′. Similarly, C ′′ ∼= E′ ⊕ C, and so C ⊕ E′ ∼= C ′ ⊕ E.

Constructing a sequence of modules of cosyzygies of M is equivalent to giving a right
injective resolution of M , i.e., a right complex E•, say

0→ E0 → E1 → E2 → · · · → En → · · · ,

such that all of the En are injective, n ≥ 0, and which is exact except possibly at the 0
spot, while M ∼= H0(E•), which is Ker (E0 → E1). An n th module of cosyzygies for
M is recovered from the injective resolution for every n ≥ 1 as Im (En−1 → En), or as
Ker (En → En+1).

We can define the injective dimension idRM of an R-module M as follows. If M = 0
it is −1. Otherwise, it is finite if and only if M has a finite injective resolution, and it is
the length of the shortest such resolution. Then idRM ≤ n, where n ≥ 0, if and only if M
has an injective resolution of length at most n. If M has no finite injective resolution we
define idRM = +∞. We note that the following are equivalent conditions on a nonzero
module M and nonnegative integer n :

(1) M has injective resolution of length at most n.
(2) Some n th module of cosyzygies of M is injective.
(3) Every n th module of cosyzygies of M is injective.

The reader may also check easily that if M is not injective then the injective dimension
of any module of cosyzygies of M is idRM−1. More generally, if M has injective dimension
≥ n ≥ 1 then any n th module of cosyzygies has injective dimension idRM − n.
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Given a projective resolution P• of M and an injective resolution E• of N , we can form
a cohomological double complex HomR(Pj , Ei) of which a typical square is

HomR(Pj , Ei+1) −−−−→ HomR(Pj+1, E
i+1)x x

HomR(Pj , Ei) −−−−→ HomR(Pj+1, E
i)

Every row and every column is exact except at the 0 spot. The homology of the to-
tal complex is denoted Ext•R(M, N). This is the same as the homology of the complex
HomR(M, E•) or of the complex HomR(P•, N). Notice that the arrows are reversed, so
that the maps raise the index: a typical map is

HomR(Pj , N) −→ HomR(Pj+1, N).

To remove the ambiguity from this definition, one may use the canonical free resolution
of M , as in the definition of Tor, for P•, and the canonical injective resolution of N , that
comes from embedding each successive module of cosyzygies C of N in an injective by map-
ping a free module F onto C∨ with one element of the free basis for every element of C∨,
and then using the embedding C ↪→ C∨∨ ↪→ F∨. However, the value of Ext is independent
of the resolutions chosen up to canonical isomorphism. One way to see this is to fix the
projective resolution and let the injective resolution vary. No matter how the injective
resolution is chosen, the cohomology of the total complex is H•(HomR(P•, N). Similarly,
if we fix the injective resolution and vary the projective resolution the cohomology of the
total complex is H•(HomR(M, E•), and so does not change.

One may also see independence of the projective resolution more directly, using the
theory of homotopy of maps of complexes. Given two different projective resolutions P•,
Q• of M , there are maps in each direction that lift the identity map on M , and these are
unique up to homotopy. It follows that the composition in either order is homotopic to
the identity map on the relevant complex, P• or Q•. After applying HomR( , N) we still
have the maps induced by the homotopy, although, like the maps of complexes, they have
reversed direction. This is a homotopy in the cohomological sense: hn maps the n th term
of one complex to the n− 1 st in the other.

If we develop the theory of Ext purely using injective resolutions, we find that given the
following set-up:

0 −−−−→ N −−−−→ E0 −−−−→ E1 −−−−→ E2 −−−−→ · · ·

f

x
0 −−−−→ M −−−−→ Q0 −−−−→ Q1 −−−−→ Q2 −−−−→ · · ·

where each row is a complex, the bottom row is exact, and the Ej are injective, one can
fill in the vertical arrows, i.e., one can give a map of complexes

0 −−−−→ N −−−−→ E0 −−−−→ E1 −−−−→ E2 −−−−→ · · ·

f

x φ0

x φ1

x φ2

x
0 −−−−→ M −−−−→ Q0 −−−−→ Q1 −−−−→ Q2 −−−−→ · · ·
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which is unique up to homotopy. The homotopy is given by R-linear maps hn : Qn → En−1,
and if φ•, ψ• are two different liftings of f , then

φn − ψn = en−1hn + hn+1dn

for all n for a suitably chosen homotopy h•.

This theory can be used to check the independence of the values of Ext from the choice
of injective resolution, just as in the case of Tor.

It is easy to verify that ExtnR(M, N) is a functor of the two variablesM , N , contravariant
in M (when N is held fixed) and covariant in N (when M is held fixed). Given a map
M →M ′, the map on Ext is induced by lifting it to a map of projective resolutions, unique
up to homotopy. (Note that applying HomR( , N) reverses the arrows.) Likewise, given
a map N → N ′ the map on Ext is induced by lifting it to a map of injective resolutions,
unique up to homotopy. The following result gives a number of basic properties of Ext:

Proposition. Let R be a ring, and let M, Mi, N ,and Nj be R-modules.
(a) ExtnR(M, N) = 0 if n < 0.
(b) Ext0

R(M, N) ∼= HomR(M, N) canonically, as functors of two variables.
(c) ExtnR(M, N) = 0 for all N and all n ≥ 1 iff Ext1R(M, N) = 0 for all N iff M is

projective.
(d) ExtnR(M, N) = 0 for all M and all n ≥ 1 iff Ext1R(M, N) = 0 for all M iff N is

injective.
(e) Given a short exact sequence 0 → M2 → M1 → M0 → 0 there is a functorial long

exact sequence for Ext, namely

0→ HomR(M0, N)→ HomR(M1, N)→ HomR(M2, N)→ Ext1
R(M0, N)→ · · ·

→ ExtnR(M0, N)→ ExtnR(M1, N)→ ExtnR(M2, N)→ Extn+1
R (M0, N)→ · · · .

(f) Given a short exact sequence 0→ N0 → N1 → N2 → 0 there is a functorial long exact
sequence for Ext, namely

0→ HomR(M, N0)→ HomR(M, N1)→ HomR(M, N2)→ Ext1
R(M, N0)→ · · ·

→ ExtnR(M, N0)→ ExtnR(M, N1)→ ExtnR(M, N2)→ Extn+1
R (M, N0)→ · · · .

(g) The map given by multiplication by r ∈ R, acting on the R-module M , induces the
map given by multiplication by r on ExtnR(M, N) for all n. The same is true for the
map given by multiplication by r on N .

Proof. Part (a) is immediate from the definition. Part (b) follows because the exactness
of · · · → P1 → P0 →M → 0 implies the exactness of

0→ HomR(M, N)→ HomR(P0, N)→ HomR(P1, N),

so that HomR(M, N) may be identified with

H0
(
HomR(P•, N)

)
= Ker

(
HomR(P0, N)→ HomR(P1, N)

)
.
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If M = P0 is projective it has the very short projective resolution 0 → P0 → 0, from
which it is clear that all the higher Extn(M,N) vanish, n ≥ 1. On the other hand, if all
Ext1(M, N) vanish, then map a free module P onto M , and consider

0→ N → F → P → 0.
When we apply HomR(P, ) we get

0→ HomR(P, N)→ HomR(P, F )→ HomR(P, P )→ Ext1
R(P, N),

from the long exact sequence for Ext, and the last term, Ext1
R(P, N), is 0 by hypothesis.

It follows that HomR(P, F ) → HomR(P, P ) is surjective, and so the identity map on P
is the image of some map g : P → F . But then g is a splitting of F � P , and so P is
a direct summand of F and therefore projective. The proof of (d) is entirely similar, and
the details are left to the reader. (At the last step, one shows that N is a direct summand
of an injective module in which it is embedded, and therefore injective.)

To prove (e) one may Hom the short exact sequence 0 → M2 → M1 → M0 → 0 into
an injective resolution E• for N and apply the snake lemma, while for (f) one may hom a
projective resolution P• for M into the short exact sequence 0→ N0 → N1 → N2 → 0 and
apply the snake lemma. Finally, (g) follows because the map given by multiplication by r
on every projective (respectively, injective) module of the resolution lifts multiplication by r
on M (respectively, on N) to a map of the projective (respectively, injective) resolution. �

An easy but important fact is that if M and N are finitely generated modules over a
Noetherian ring R, all of the modules ExtnR(M, N) are finitely generated. The point is
the one may compute Ext using a projective resolution P• of M by finitely generated free
modules over R. Then Hom(P•, N) has terms each of which consists of a direct sum of
finitely many copies of N , and so every term is a Noetherian module (although there may
be infinitely many terms). It follows that the cohomology is Noetherian. We record this
explicitly:

Proposition. Let R be Noetherian and let M and N be finitely generated R-modules.
Then the modules ExtnR(M, N) are all Noetherian. �

The following two results use the behavior of Ext to characterize injective dimension
and projective dimension.

Proposition. Let R be a ring, and n ≥ 0 an integer. The following conditions on the
R-module M are equivalent:
(1) pdRM ≤ n.
(2) Extn+1

R (M, N) = 0 for every R-module N .
(3) ExtjR(M, N) = 0 for all j > n and every R-module N .

Proof. It is clear that (1) ⇒ (3) since we may use a projective resolution of M of length
at most n to compute Extj(M, N), and (3) ⇒ (2) is obvious. We prove that (2) ⇒ (1) by
induction on n. The case n = 0 is (c) of the preceding Proposition. If n > 0, form a short
exact sequence 0 → M1 → P → M → 0. The long exact sequence for Ext shows that
Extn+1(M,N) ∼= Extn(M1, N) = 0 for all N , and so M1 a first module of syzygies of M
has projective dimension ≤ n− 1 by the induction hypothesis. It follows that pdRM ≤ n,
as required. �
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Proposition. Let R be a ring. Then N is injective if and only if Ext1
R(R/I, N) = 0 for

every ideal I of R.
Moreover, for every integer n ≥ 0 the following conditions on the R-module N are

equivalent:
(1) idRN ≤ n.
(2) Extn+1

R (R/I, N) = 0 for every ideal I ⊆ R.
(3) ExtjR(M, N) = 0 for all j > n and every R-module M .

Proof. Given an ideal I ⊆ R we have a short exact sequence 0 → I ⊆ R → R/I → 0
yielding that the following is exact from the long exact sequence for Ext:

0→ HomR(R/I, N)→ HomR(R, N)→ HomR(I, N)→ Ext1
R(R/I, N).

If the rightmost term vanishes, then the map HomR(R, N) → HomR(I, N) is surjective,
which means that every linear map I → N extends to a map R → N . This is sufficient
for N to be injective by the Proposition at the top of page 2 in the Lecture Notes from
March 16.

It remains to show the equivalence of (1), (2), and (3), which is quite similar to the proof
of the preceding result. First, (1) ⇒ (3) because an injective resolution of N of length at
most n may be use to compute Extj(M, N), and (3) ⇒ (2) is obvious. We prove that (2)
⇒ (1) by induction on n. The case n = 0 is the statement we proved in the preceding
paragraph. If n > 0 we form a short exact sequence 0 → N → E → N ′ → 0 where E is
injective. The long exact sequence for Ext shows that Extn+1(R/I,N) ∼= Extn(R/I,N ′) =
0 for all R/I, and so N ′, a first module of cosyzygies of N , has injective dimension ≤ n−1
by the induction hypothesis. It follows that idRN ≤ n, as required. �

We can now show that over a Noetherian regular ring R of Krull dimension d, the
projective dimension of every module is at most d. We already know this for finitely
generated modules. The argument is almost magically simple.

Corollary (J.-P. Serre). Let R be a Noetherian regular ring of Krull dimension d. Then
the projective dimension of every module, whether finitely generated or not, is at most d.
Thus, every d th module of syzygies is projective.

Proof. We know that for every ideal I of R, pdR(R/I) ≤ d, since R/I is finitely generated.
Thus, for all I and all N , ExtjR(R/I, N) = 0 for j > d, and this implies that for all N ,
idRN ≤ d. But then, for every R-module M , and every R-module N , ExtjR(M, N) = 0
for j > d, and since this holds for all N , it follows that pdRM ≤ d, as claimed. �

Math 615: Lecture of March 21, 2012

If R is a ring, M an R-module, and x = x1, . . . , xn ∈ R the cohomological Koszul
complex K•(x; M) is defined as HomR

(
K•(x; R), M

)
, and its cohomology, called Koszul

cohomology, is denoted H•(x; M). The cohomological Koszul complex of R (and, it easily
follows, of M) is isomorphic with the homological Koszul complex numbered “backward,”
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but this is not quite obvious: one needs to make sign changes on the obvious choices of
bases to get the isomorphism. To see this, take the elements

uj1, ... ,ji = uj1 ∧ · · · ∧ uji

with 1 ≤ j1 < · · · < ji ≤ n as a basis for Ki = Ki(x; R). Let ∗ indicate the func-
tor HomR( , R). We want to set up isomorphisms K∗n−i ∼= Ki that commute with the
differentials.

Note that there is a bijection between the two free bases for Ki and Kn−i as follows:
given 1 ≤ j1 < · · · < ji ≤ n, let k1, . . . , kn−i be the elements of the set {1, 2, . . . , n} −
{j1, . . . , ji} arranged in increasing order, and let uj1, ... ,ji correspond to uk1, ... ,kn−i which
we shall also denote as vj1, ... ,ji .

When a free R-module G has free basis b1, . . . , bt, this determines what is called a dual
basis b′1, . . . , b

′
t for G∗, where b′j is the map G→ R that sends bj to 1 and kills the other

elements in the free basis. Thus, K∗n−i has basis v′j1, ... ,ji . However, when we compute the
value of the differential d∗n−i+1 on v′j1, ... ,ji , while the coefficient of v′h1, ... ,hi−1

does turn out
to be zero unless the elements h1 < · · · < hi−1 are included among the ji, if the omitted
element is jt then the coefficient of v′h1, ... ,hi−1

is

d∗n−i+1(v′j1, ... ,ji)(vh1, ... ,hi−1) = v′j1, ... ,ji
(
dn−i+1(vh1, ... ,hi−1)

)
,

which is the coefficient of vj1, ... ,ji in dn−i+1(vh1, ... ,hi−1).

Note that the complement of j1, . . . , ji in {1, 2, . . . , n} is the same as the complement
of {h1, . . . , hi−1} in {1, 2, . . . , n}, except that one additional element, jt, is included in
the latter. Thus, the coefficient needed is (−1)s−1xjt , where s−1 is the number of elements
in the complement of {h1, . . . , hi−1} that precede jt. The signs don’t match what we get
from the differential in K•(x; R): we need a factor of (−1)(s−1)−(t−1) to correct (note that
t − 1 is the number of elements in j1, . . . , ji that precede jt). This sign correction may
be written as (−1)(s−1)+(t−1), and the exponent is jt − 1, the total number of elements
preceding jt in {1, 2, . . . , n}. This sign implies that the signs will match the ones in the
homological Koszul complex if we replace every v′ji by (−1)Σv′ji , where Σ =

∑i
t=1(jt − 1).

We next want to note that, as was the case for Tor, if we have an exact sequence
0 → M1 → P → M → 0, so that M1 is a first module of syzygies of M over R, the long
exact sequence for Ext yields both

0→ HomR(M, N)→ HomR(P, N)→ HomR(M1, N)→ Ext1
R(M, N)→ 0

and isomoorphisms
ExtiR(M1, N)→ Exti+1

R (M, N)

for i > 0.
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Thus, every element of Ext1
R(M, N) is represented by a map from a first module of

syzygies of M to N , and the element of Ext1
R(M, N) represents the obstruction to extend-

ing that map from M1 to all of P . By induction, if Mi is an i th module of syzygies of M ,
i ≥ 1, then

Exti+jR (M,N) ∼= ExtjR(Mi, N),

j ≥ 1. In particular, for i ≥ 1, we have that ExtiR(M,N) ∼= Ext1
R(Mi−1, N), and an

element of ExtiR(M, N) will be represented by a map Mi → N , giving the obstruction to
extending the map to Pi−1, where 0→Mi → Pi−1 →Mi−1 → 0 is exact.

This can be seen more directly. Let P• be a projective resolution of M , and let

Mi = Ker (Pi−1 → Pi−2) = Im (Pi → Pi−1)

for all i ≥ 1, so that Mi is an i th module of syzygies of M . An element of Exti(M, N)
is represented by a cycle in HomR(Pi, N), that is, a map Pi → N that kills the image of
Pi+1. But this is the same thing as a map of Pi/Im (Pi+1) ∼= Mi to N . The boundaries
are the maps Pi → N that arise by composing Pi → Pi−1 with a map Pi−1 → N . The
corresponding maps Mi → N are the ones that extend to Pi−1.

Entirely similar marks apply to cosyzygies: one can form 0→ N → E → N1 → 0, where
E is injective and N1 is a first module of cosyzygies of N , and the long exact sequence for
Ext yields:

0→ HomR(M, N)→ HomR(M, E)→ HomR(M, N1)→ Ext1
R(M, N)→ 0

and isomorphisms
ExtiR(M, N1)→ Exti+1

R (M, N)

for i ≥ 1. Likewise, one has isomorphisms

Exti+jR (M,N j) ∼= ExtjR(M, N i)

when Ni is an i th module of cosyzygies for N .

Proposition (flat base change in the Noetherian case). Let R be Noetherian, let S
be a flat R-algebra, and let M, N be R-modules. There is a natural isomorphism

S ⊗R Extj(M, N)→ ExtjS(S ⊗RM, S ⊗R N).

Proof. Let P• be a projective resolution of M by finitely generated (hence, finitely pre-
sented) projective modules. Then

S ⊗R Ext•R(M, N) ∼= S ⊗R H•
(
HomR(P•, N)

) ∼= H•
(
S ⊗R HomR(P•, N)

)
since S is flat, and since every Pj is finitely presented, this is

∼= H•
(
HomS(S ⊗R P•, S ⊗R N)

) ∼= Ext•S(S ⊗RM, S ⊗R N),
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since S ⊗R P• is a projective resolution of S ⊗RM over S. It is straightforward to verify
that these isomorphisms are independent of the choice of the resolution P•. �

In particular, when R, M , N are Noetherian, Ext commutes with localization and
completion.

We briefly describe an alternative approach to the construction of Ext in the category
of R-modules which does not use projective or injective modules in the definition. This
definition can be adapted to contexts in which there are not enough projective objects and
not enough injective objects. We shall not give a complete treatment here: these remarks
are only intended to introduce the reader to this circle of ideas. However, we do give
examples that show that this point of view leads to new insights about Ext.

We begin with Ext1. Notice that given a short exact sequence 0 → A → B → C → 0
(an extension of C by A) the long exact sequence for exact yields an exact sequence

HomR(A, A)→ HomR(B, A)→ HomR(A, A)→ Ext1
R(C, A),

and the identity map on A has an image in ε ∈ Ext1
R(C, A).

This element ε classifies the extension of C by A in the following sense. Call two such
exact sequences 0→ A→ B → C → 0 and 0→ A→ B′ → C → 0 equivalent if there is a
map from one to other as follows:

0 −−−−→ A −−−−→ B′ −−−−→ C −−−−→ 0

1A

x f

x 1C

x
0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

If there is such a map, f is forced to be an isomorphism, and so in this case there is a map
the other way. (When we consider higher Ext, there may be a map in one direction but
not the other.)

It turns out that two extensions of C by A are equivalent if and only if they give rise to
the same element in Ext1

R(C, A). In fact, suppose that we have such an extension. Write
C = P/C1, where P is projective and C1 is a first module of syzygies of C. Then the map
P � C will lift to a map P → B. Then A⊕ P will will map onto B (sending A to B via
the given injection A ↪→ B), and the map P → B will map C1 to A. This map h : C1 → A
is represents an element of Ext1(C, A). Conversely, given any element of Ext1

R(C, A), it
is represented by a map h : C1 → A, and we can construct an extension A→ B → C → 0
by taking B = (A⊕ P )/N , where N = {−h(u)⊕ u : u ∈ C1}, so that every element of C1

is identified in the quotient with its image in A. Notice that if we kill the image of A in
B, C1 ⊆ P is also killed, and the quotient is C. This explains the map from Ext1

R(C, A)
to equivalence classes of extensions. The remaining details of the proof that Ext1

R(C, A)
classifies extensions are reasonably straightforward.

In describing higher Ext, there is a set-theoretic problem, which we ignore for the
moment. Consider exact sequences of length n+ 2, where n ≥ 1, of the form

0→ A→ Bn−1 → · · · → B0 → C → 0.
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We define two such sequences to be immediately equivalent (not standard terminology) if
there is a map between them that is the identity on A and on C. The intermediate maps
need not be isomorphsims when n ≥ 1. Immediate equivalence generates an equivalence
relation. We claim that the equivalence classes are in bijective correspondence with the
elements of ExtnR(C, A), and we can define ExtnR(C, A) in terms of these equivalence
classes.

We first give the map in one direction: fix a projective resolution P• of C. Then the
identity map on C lifts to map of the resolution to the exact sequence, and thus proivdes a
map Pn → A that kills the image of Pn+1. This map represents an element of ExtnR(C, A).
In the other direction, given a map of an n th module of syzygies Cn of C to A, call it h,
we construct an exact sequence simply by modifying the last two terms of

0→ Cn → Pn−1 → · · · → P0 → C → 0.

We replace Cn by A, and Pn−1 by (A⊕ Pn−1)/N where N = {−h(u)⊕ u : u ∈ Cn}.

Here are four insights that come from this point of view.

Given
0→ A→ Bn−1 → · · · → B0

α−→ C → 0

representing an element of ExtnR(C, A) and

0→ C
β−→ Dm−1 → · · · → D0 → E → 0

representing an element of ExtmR (E,C), one can form an exact sequence that “merges”
them, dropping C, namely

0→ A→ Bn−1 → · · · → B0
β◦α−−→ Dm−1 → · · · → D0 → E → 0.

This gives a map ExtmR (E, C)×ExtnR(C, A)→ Extm+n
R (E, A) that turns out to be bilinear.

It is called the Yoneda pairing.

Second, given a ring homorphism R→ S and S-modules A, C, an exact sequence

0→ A→ B0 → · · · → Bn−1 → C → 0

is obviously an exact sequence of R-modules as well. This gives a very understandable
map ExtnS(M, N)→ ExtnR(M, N).

Third, given an exact sequence

0→ A→ B0 → · · · → Bn−1 → C → 0

of R-modules, if S is R-flat we get an exact sequence

0→ S ⊗R A→ S ⊗R B0 → · · · → S ⊗R Bn−1 → S ⊗R C → 0.
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This gives a rather obvious map ExtnR(C, A)→ ExtnS(S ⊗R C, S ⊗R A) and hence a map

S ⊗R ExtnR(C, A)→ ExtnS(S ⊗R C, S ⊗R A)

which is always defined when S is R-flat. We proved earlier that it is an isomorphism
under additional hypotheses (if R, C and A are Noetherian).

Fourth, given an exact sequence

0→ A→ B0 → · · · → Bn−1 → C → 0

of R-modules, representing an element of ExtnR(C, A), if E is injective over R and ∨

denotes HomR( , E), we get an exact sequence

0→ C∨ → B∨n−1 → · · · → B∨0 → A∨ → 0

representing an element of ExtnR(A∨, C∨), and so we get a transparently defined map

ExtnR(C, A)→ ExtnR(A∨, C∨).

Math 615: Lecture of March 23, 2012

There is a set-theoretic difficulty with the Yoneda definition of Ext: when n > 1 the
cardinalities of the modules that can occur are not bounded, and so, even if the isomor-
phism classes of the modules allowed are restricted, the possible exact sequences form a
class rather than a set. This is not an essential difficulty. We have given a construction
that provides at least one exact sequence for every element of ExtnR(C, A). If one chooses
an infinite cardinal that is at least as large as the cardinalities of R, C, and A, one can
represent any element of ExtnR(C, A) by an exact sequence, of length n+2, whose modules
are at most of that cardinality. Thus, for any sufficiently large cardinal, one can choose a
set of modules that include all isomorphism classes of modules of at most that cardinality,
and then consider the equivalence classes of exact sequences from A to C consisting of
modules of at most that cardinality. This set will be in bijective correspondence with the
elements of ExtnR(C, A). If the ring is Noetherian and one wants to work exclusively with
finitely generated modules, one can also do that.

It is not difficult to describe the functorial behavior of Ext from the Yoneda point of
view. Suppose that we are given R-modules A and C and a map f : A → A′. Given an
exact sequence

0→ A
α−→ Bn

β−→ Bn−1 → · · · → B1
δ−→ B0

γ−→ C → 0

representing an element of ExtnR(C, A), we expect to be able to construct an exact sequence
corresponding to the image of that element in ExtnR(C, A′). We replace Bn by

A′ ⊕Bn
{−f(a)⊕ α(a) : a ∈ A}
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and A by A′. α is replaced by the map α′ induced by the map A′ → A′ ⊕ Bn, which is
easily seen to be injective, while β is replaced by the homomorphism induced by the map
A′ ⊕B → Bn−1 that kills A′ and agrees with β on B.

Similarly, given a map g : C ′ → C and an exact sequence representing an element of
ExtnR(C, A) one expects to be able to construct an exact sequence representing an element
of ExtnR(C ′, A). One replaces B0 by

B′0 = {(b, c′) ∈ B × C ′ : γ(b) = g(c′)}

and C by C ′. γ is replaced by the restriction of the product projection of B ×C ′ � C ′ to
B′0: it is still surjective. δ is replaced by the map δ′ : b1 7→ (δ(b1), 0).

The multiplication by elements of R acting on ExtnR(C, A) is recovered by using one of
these two constructions either for f : A r−→ A or g : C r−→ C, which turn out to give the
same result.

Addition in Ext1
R(C,A) can be described as follows. Suppose that

0→ A
α−→ B

γ−→→ C → 0

and
0→ A

α′−→ B′
γ′−→→ C → 0

are exact. Let

B′′ =
{(u, u′} ∈ B ×B′ : γ(u) = γ(u′)}
{(−α(a), α′(a)) : a ∈ A}

Notice that we have a map γ′′ : B′′ � C whose value on the class of (u, u′) is γ(u), which
is the same as γ′(u′), and a map α′′ : A → b′′ whose value on A is the class of (α(a), 0),
which is the same as the class of (0, α′(a)). It is not difficult to verify that

0→ A
α′′−−→ B′′

γ′′−→ C → 0

is exact, and represents the sum of the elements corresponding to the two exact sequences
initially given.

Of great importance is that the 0 element in Ext1
R(C, A) corresponds to the split exact

sequence
0→ C → C ⊕A→ A→ 0.

In particular, Ext1
R(C, A) = 0 if and only if every exact sequence

0→ A→ B → C → 0

is split.



125

The Yoneda point of view gives a transparent interpretation of the connecting homo-
morphism in the long exact sequence for Ext. Suppose that

0→ A→ B → C → 0

is exact, and we apply HomR( , N). The connecting homomorphisms in the long exact
sequence for Ext are maps

ExtnR(A, N)→ Extn+1
R (C, N).

These are obtained, up to sign, from the Yoneda pairing: given an element of ExtnR(A, N)
represented by an exact sequence:

0→ N →Wn−1 → · · · →W0 → A→ 0,

because A ∼= Ker (B → C) we also have an exact sequence

0→ N →Wn−1 → · · · →W0 → B → C → 0.

Similarly, if we apply HomR(M, ) the connecting homomorphisms map

ExtnR(M, C)→ Extn+1
R (M, A).

Again, up to sign, they turn out to be given by the Yoneda pairing: the element represented
by

0→ C → Vn−1 → · · · → V0 →M → 0

maps to the element represented by

0→ A→ B → Vn−1 → · · · → V0 →M → 0.

We want to discuss a bit further the problem of showing that when xn is not a zerodivisor
on M , there is an isomorphism H•(x; M) ∼= H•(x−; M/xnM), where x = x1, . . . , xn in R
and x− = x1, . . . , xn−1. This is problem 6. in Problem Set #4. One method is to use the
fact that K(x; M) is the mapping cone of the injection induced by multiplication by xn
acting on K(x−; M). The quotient complex Q• may be identified with K(x−; M/xnM).
Thus, it suffices to check that the homology of the total complex (or mapping cone) is the
same as the homology of the quotient complex, which is done ad hoc in the solutions to
Problem Set #4. We want to point out three other ways to do this problem, all of which
are closely related.

One is to view the mapping cone as a double complex in which the rows are both
K•(x−;M) and use a spectral sequence argument, taking iterated homology first of columns
and then of rows. Each column has only one nonzero homology module, and the resulting
row is Q•. Thus, HIIHI is H•(Q•), and so this is the same as the homology of the



126

total complex. This argument is valid for any mapping cone arising from an injection of
complexes.

The second is to view Koszul homology as a Tor, and apply the spectral sequence that
express the associativity of Tor. If we consider any ring Λ, such as Z or R, that maps to R,
and introduce the auxiliary ring A = Λ[X1, . . . , Xn], making R into an algebra over this
ring by letting Xj 7→ xj , 1 ≤ j ≤ n, then with X = X1, . . . , Xn and X− = X1, . . . , Xn−1,
we have that

H•(x; M) = TorA• (A/(X), M)

and
H•(x−; M/xnM) ∼= TorA• (A/(X−), M/XnM).

Consider the three A-modules A/(X−), A/XnA, and M , The tensor product over A of
the first two is A/(X), while all higher Tors vanish because Xn is not a zerodivisor on
A/(X−). Then tensor product of the last two is M/XnM , while all higher Tors vanish
because xn (and, therefore, Xn) is not a zerodivisor on M . But then

TorA• (A/(X−)⊗A A/xnA, M) ∼= TorA• (A/(X−), A/xnA⊗AM),

from which the result follows.

The third method involves developing spectral sequences for iterated Koszul homology.
It is possible to view these as a particular case of the spectral sequences expressing the
associativity of Tor, but they are very easy to derive directly.

Let x1, . . . , xn ∈ R and y1, . . . , ym ∈ R. The K(x, y; M) may be viewed as the total
complex of the double complex

K(x; R)⊗R K•(y; M).

A typical column has the form Kp(x; R)⊗RK•(y; M) and so the homology of the columns
is

Kp(x; R)⊗R Hq(y; M) ∼= Kp
(
x; Hq(y; M)).

The q th row is therefore
K•
(
x; Hq(y; M)

)
,

and HIHII is
Hp

(
x;Hq(y;M)

)
,

the iterated Koszul homology. Thus,

Hp

(
x;Hq(y;M)

)
=⇒
p

Hp+q(x, y; M).

We may similarly consider
K•(x; M)⊗K(y; R)
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and take HIIHI to get

Hq(y; Hp(x; M) =⇒
q

Hp+q(x, y; M).

We may apply this in the context of problem 6. to the sequences x− and xn. Since
Hq(xn; M) = 0 except when q = 0, the E2 term has a single nonzero row, consisting of
H•(K(x−; M/xnM), which is then the same as the E∞ term H•(x; M).

The following result is of great utility, although quite easy to prove. It is similar in
spirit to several results that we have already established. It illustrates the fact that when
modules have large depth on an ideal, certain homology or cohomology is forced to vanish.

Theorem (Ext characterization of depth). Let R → S be a homomorphism of Noe-
therian rings, let I be an ideal of S, let N be a finitely generated R-module with annihilator
I, and let M be a finitely generated S-module. The modules ExtjR(N, M) are Noetherian
S-modules. If IM = M then all of the modules ExtjR(N, M) vanish. If IM 6= M , and
depthIM = d, then ExtjR(N, M) = 0 for j < d, and ExtdR(N, M) 6= 0.

Proof. To see that these Ext modules are Noetherian over S, compute them using a projec-
tive resolution P• of N over R by finitely generated free R-modules. Then HomR(P•; M)
consists of finite direct sums of copies of M , and so this complex and its homology consist
of Noetherian S-modules.

Next note that M/IM = 0 iff S/IS ⊗SM = 0 iff IS + AnnSM = S. In this case, since
the annihilator J of every ExtjR(N, M) in S contains IS (because I kills ExtjR(N, M)
and J is an ideal of S) and contains AnnSM , we have that J = S, so that, for every j,
ExtjR(N, M) = 0.

Now assume that M 6= IM , so that d = depthIM is finite. We prove the result by
induction on d. First suppose that d = 0. Let Q1, . . . , Qh be the associated primes of M
in S. Let Pj be the contraction of Qj to R for 1 ≤ j ≤ h. The fact that depthIM = 0
means that I consists entirely of zerodivisors on M , and so I maps into the union of
the Qj . This means that I is contained in the union of the Pj , and so I is contained
in one of the Pj : called it Pj0 = P . Choose u ∈ M whose annihilator in S is Qj0 , and
whose annihilator in R is therefore P . It will suffice to show that HomR(N, M) 6= 0, and
therefore to show that its localization at P is not 0, i.e., that HomRP (NP ,MP ) 6= 0. Since
P contains I = AnnRN , we have that NP 6= 0. Therefore, by Nakayama’s lemma, we
can conclude that NP /PNP 6= 0. This module is then a nonzero finite dimensional vector
space over κP = RP /PRP , and we have a surjection NP /PNP � κP and therefore a
composite surjection NP � κP . Consider the image of u ∈M in MP . Since AnnRu = P ,
the image v of u ∈ MP is nonzero, and it is killed by P . Thus, AnnRP v = PRP , and it
follows that v generates a copy of κP in MP , i.e., we have an injection κP ↪→ MP . The
composite map NP � κP ↪→MP gives a nonzero map NP →MP , as required.

Finally, suppose that d > 0. Then we can choose a nonzerodivisor x ∈ I on M , and we
have that x kills N . The short exact sequence 0 → M → M → M/xM → 0 gives a long
exact sequence for Ext when we apply HomR(N, ). Because x kills N , it kills all of the
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Ext modules in this sequence, and thus the maps induced by multiplication by x are all 0.
This implies that the long exact sequence breaks up into short exact sequences

(∗j) 0→ ExtjR(N, M)→ ExtjR(N, M/xM)→ Extj+1
R (N, M)→ 0

Since M/xM has depth d − 1 on N , we have from the induction hypothesis that the
modules ExtjR(N, M/xM) = 0 for j < d − 1, and the exact sequence above shows that
ExtjR(N, M) = 0 for j < d. Moreover, Extd−1

R (N, M/xM) 6= 0, and (∗d−1) shows that
Extd−1

R (N, M/xM) is isomorphic with ExtdR(N, M). �

Math 615: Lecture of March 26, 2012

Let ∗ denote the functor HomR( , R). An R-module is called reflexive if the map
θM : M → M∗∗ is an isomorphism. Observe also that the value of θM on u ∈ M is the
map that sends f ∈M∗ to f(u). Note that θM⊕N = θM ⊕ θN once we identify (M ⊕N)∗∗

with M∗∗ ⊕N∗∗. Thus, M ⊕N is reflexive if and only if both M and N are reflexive. R
itself is reflexive, and, hence, so is every finitely generated free module. It follows as well
that every finitely generated projective module is reflexive. If R and M are Noetherian,
reflexivity is preserved by localization at every multiplicative system, and may be tested
locally at maximal ideals, i.e., M is reflexive iff Mm is reflexive over Rm for every maximal
ideal m of R.

If R is a domain, reflexive modules are torsion-free: any module of the form M∗ is
torsion-free. If M is a finitely generated torsion-free module over a Noetherian domain R,
the map M →M∗∗ is injective, and becomes an isomorphism if we tensor with the fraction
field F = frac (R). Thus, M ⊆ M∗∗ ⊆ F ⊗RM . We may think of M∗∗ as obtained from
M by the adjunction of certain fractional elements u/r, where u ∈M and r ∈ R− {0}.

A Noetherian module M over a Noetherian ring R is said to satisfy the Serre condition
Si if for every prime P of R of height h, depthPRPMP ≥ min{height (P ), i}. The condition
may be limited to primes in Supp (M): it holds when MP = 0 because, by our conventions,
the depth is +∞ in that case.

We record the following facts, which will be helpful in understanding reflexive modules
over normal Noetherian domains.

Proposition. Let R be a Noetherian ring and let M, M ′ be finitely generated R-modules.
(a) If M satisfies the Serre condition Si and I is an ideal of R of height at least i, then

depthIM ≥ i.
(b) If R is a domain, M ⊆ M ′ are torsion-free R-modules, I = AnnR(M ′/M) and

depthIM ≥ 2, then M = M ′.
(c) If R is a normal domain and M is a torsion-free module, then the height of the

annihilator of M∗∗/M is at least 2.
(d) If R is normal and I is an ideal of height at least two, then depthIR ≥ 2.
(e) If x, y is an improper regular sequence in R then x, y is an improper regular sequence

on M∗. (This holds even when R and M are not Noetherian.)
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Proof. (a) By part (b) of the Proposition on the second page of the Lecture Notes from
February 17, depthIM is the infimum of depthIPMP for P ∈ Spec (R), and we need only
consider primes in Supp (M) that contain I. Once we have localized at P ⊇ I, we have
height (P ) ≥ i, and the result is immediate from the definition of Si.

(b) We have a short exact sequence

0→M →M ′ →M ′/M → 0.

Let N = M ′/M . This short exact sequence represents an element of Ext1
R(N, M), The

condition depthIM ≥ 2 with I = AnnRN implies that Ext1
R(N, M) = 0 by the final

Theorem of the Lecture Notes of March 23. Therefore, the displayed exact sequence is
split, and M ′ ∼= M ⊕M ′/M . But M ′ is torsion-free, while M ′/M has nonzero annihilator.
This is only possible if M ′/M = 0, i.e., M ′ = M , as required.

(c) If the result fails, we can find a prime P of R of height 0 or 1 that contains I =
Ann(RM∗∗/M). It follows that (M∗∗/M)P 6= 0, and this means that MP is not reflexive
over RP . But RP is a discrete valuation ring or field, since R is normal, and MP is
torsion-free and, therefore, free, so that it is reflexive.

(d) I cannot be 0. If I = R the depth is +∞, and we are done. Assume that I 6= 0 is
proper. Let x ∈ I − {0}. Since R is normal, principal ideals are unmixed, and so every
associated prime of xR as an ideal (these are the associated primes of R/xR as a module)
has height one. It follows that I is not contained in the union of these associated primes,
or it would be contained in one of them, and then could not have height ≥ 2. This implies
that there is an element y ∈ I not in an associated prime of R/xR, and so y is not a
zerodivisor on R/xR. Thus, x, y is a regular sequence in I.

(e) If x kills f ∈ HomR(M, R) then x kills every value of f . This implies that all the values
of f are 0, and so f = 0. Now suppose that f, g ∈ HomR(M, R) and yg = xf . For every
u ∈ M , we have that yg(u) = xf(u) in with g(u), f(u) ∈ R. It follows that g(u) = h(u)x
for some choice of h(u) ∈ R, and h(u) is unique because x is not a zerodivisor on R. It is
quite straightforward to verify that h : M → R is R-linear, since g is linear and x is not a
zerodivisor on R. Thus, g ∈ xHomR(M, R), as required. �

Since M ⊆ M∗∗ ⊆ F ⊗R M when M is torsion-free and R is a Noetherian domain, it
is natural to try to characterize the fractional elements in F ⊗RM that are in M∗∗. The
following result achieves this when R is normal, and also gives a useful characterization
of reflexive modules. If M is torsion-free over a domain R with fraction field F , and
v ∈ F ⊗RM , we write M :R v for {r ∈ R : rv ∈M}. This ideal is called the denominator
ideal for v. A nonzero element r ∈ R is in M :R v if and only if v can written as u/r for
some u ∈M .

Theorem. Let M be a finitely generated torsion-free module over a Noetherian ring nor-
mal domain R. Then M is reflexive if and only if M satisfies the Serre condition S2. For
any finitely generated R-module M , M∗ and M∗∗ are reflexive, and, if M is torsion-free,
M∗∗, the reflexivization of M , may be identified with {v ∈ F ⊗RM : height (M :R v) ≥ 2}.
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Proof. We first check that if M is S2 the M is reflexive. By part (c) of the preceding
Proposition, the annihilator I of M∗∗/M has height 2. By part (a) of the Proposition,
depthIM ≥ 2. Finally, by part (b), M∗∗ = M .

We next check that M∗ is S2 for any finitely generated R-module M . Note that if T is
the torsion submodule of M , M∗ ∼= (M/T )∗, since any homomorphism from M to R must
kill T . If M = 0 the result is vacuously true. Therefore assume that M 6= 0 is torsion-free.
Suppose that P is a prime in the support of M . If the height of P is one or zero then
(M∗)P is free over RP and there is nothing to check. If the height of P is two or more, then
then PRP contains a regular sequence on RP of length two. By part (e) of the preceding
Proposition, this will be a regular sequence on MP (Nakayama’s lemma implies that it is
a regular sequence, not just an improper regular sequence).

This implies that M∗ and M∗∗ are reflexive. Moreover, since every reflexive module has
the form M∗∗, every reflexive module is S2.

Finally, by part (c) of the preceding Proposition, the denominator ideal of every el-
ement of M∗∗ ⊆ F ⊗R M has height at least 2, since the denominator ideal contains
AnnR(M∗∗/M). On the other hand, if v ∈ F ⊗RM has denominator ideal J of height at
least two, we have an exact sequence

0→M →M +Rv → R/J → 0,

because (M + Rv)/M ∼= R/{r ∈ R : rv ∈ M} = R/J . When we apply HomR( , R), we
get

0→ 0→ HomR(M +Rv, R)→ HomR(M, R)→ Ext1
R(R/J, R)→ 0.

By part (d) of the preceding Proposition, since the height of J is at least two, depthIR ≥ 2,
and so Ext1

R(R/J, R) = 0 by the final result of the Lecture of March 23. Thus, M →
M +Rv induces an isomorphism (M +Rv)∗ →M∗ and, hence, an isomorphism

M∗∗ → (M +Rv)∗∗.

The injection
M +Rv ↪→ (M +Rv)∗∗ ∼= M∗∗

together with the compatibility of all of these maps with F ⊗R shows that

v ∈M∗∗ ⊆ F ⊗RM.

�

Math 615: Lecture of March 28, 2012

Given an ideal I in a Noetherian domain R we may choose to think of it simply as a
torsion-free R-module of torsion-free rank one. In fact, any finitely generated torsion-free
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module M of torsion-free rank one is isomorphic with an ideal: we know that if F is the
fraction field of R, then F ⊗RM ∼= F . If the images of a finite set of generators for M are
r1/s, . . . , rh/s ∈ F where r1, . . . , rh ∈ R and s ∈ R − {0} (we may use, for example, the
product of the denominators as a common denominator), then M is isomorphic with the
R-span of r1/s, . . . , rh/s ∈ F , and multiplication by s gives an isomorphism of M with
I = (r1, . . . , rh)R ⊆ R.

If R is a domain, and I is an ideal, then I∗∗ ⊆ R∗∗ = R is also an ideal. When R is
normal Noetherian we can characterize I∗∗ in terms of the primary decomposition of I.
The ideal (0) is reflexive and we assume I 6= 0.

Let R be a normal Noetherian domain, and let I 6= 0 be an ideal of R. Suppose that
the associated primes of I are P1, . . . , Ph and Q1, . . . , Qk, where P1, . . . , Ph have height
one and Q1, . . . , Qk have height > 1. Fix a primary decomposition

P
(n1)
1 ∩ · · · ∩ P (nh)

h ∩ A1 ∩ · · · ∩ Ak

for I, where each Aj is Qj-primary. The nj are unique, since the Pj must be minimal
primes of I (all ideals primary to height one primes of a normal Noetherian domain are
symbolic powers, since RP is a DVR).

Theorem. With hypotheses and notation as in the preceding paragraph,

I∗∗ = P
(n1)
1 ∩ · · · ∩ P (nh)

h ,

the “height one part” of a primary decomposition of I. If I is not contained in any height
one primes, the intersection on the right is taken over the empty set and is defined to be
R.

Proof. Let J = P
(n1)
1 ∩ · · · ∩ P (nh)

h or let J = R of I is not contained in any height one
prime. Note that I ⊆ J ⇒ I∗∗ ⊆ J∗∗ ⊆ F . We first want to prove that J is reflexive.
If u ∈ R is in J∗∗, it suffices to show that u ∈ P (nj)

j = Qj for all j, and u ∈ Q∗∗ since
J∗∗ ⊆ Q∗∗j . After localization at Pj , Pj and Qj become principal, Q∗∗j RPj = QjRPj is
reflexive, and so u ∈ QjRPj ∩R = Qj , since primary ideals are contracted with respect to
localization at the corresponding prime ideal. It follows that u ∈ J . Thus, I∗∗ ⊆ J . To
complete the proof, it will suffice to show that J ⊆ I∗∗, and for this is suffices to show
that J/I has a height two annihilator, by the characterization of reflexivization given in
the Lecture Notes of March 26. Let J ′ = A1 ∩ · · · ∩ Ak. Then J ′ has height at least two,
and I = J ∩ J ′, so that J ′J ⊆ I, and this shows that J ′ annihilates J/I, as required. �

Before beginning our study of abelian categories, we want to mention another appli-
cation of the theory of spectral sequences: one can extend the result on the adjointness
of tensor and Hom to a relationship on Tor and Ext. Given three modules A, B, C
take projective resolution P• and Q• of A and B and an injective resolution E• of C.
Let D• = T•(P• ⊗R Q•) and T • = T •

(
HomR(D•, E•)

)
, a cohomological complex. Then

the cohomology of a row of HomR(D•, E•) has the form HomR(TorRp (A,B), Eq), and the
iterated cohomology is ExtqR(TorRp (A,B), C). Thus,

ExtqR(TorRp (A,B), C) =⇒
p

Hp+q(T •).
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On the other hand, let G• = T •
(
HomR(Q•, E•)

)
, a cohomological complex. By the ad-

jointness of tensor and Hom, T •
(
HomR(P•,G•)

)
may be identified with T •. Fixing first

columns and then rows in HomR(P•,G•) we get a spectral sequence

ExtpR
(
A, ExtqR(B, C)

)
=⇒
q

Hp+q(T •).

The gradings on H•(T •) are different.

We next want to discuss the definitions and some basic properties of additive and abelian
categories. We first review some category-theoretic notions.

In this discussion of categories, we shall write HomA(X, Y ) for the set of morphisms
from X → Y in the category A, instead of MorA(X, Y ), since Hom is often the notation
used for the morphisms in an abelian category. The subscript A is frequently omitted.

A morphism f : A → B in a category A is called a monomorphism if for any two
morphisms g : X → A and h : X → A, whenever fg = fh then g = h. The composition
of two monomorphisms is a monomorphism. In the categories of sets, topological spaces,
groups and R-modules, monomorphisms correspond to morphisms that are injective on
the underlying sets.

Example. Consider the category whose objects are the subsets of the integers and whose
morphisms are functions f : X → Y such that are either (1) X = Y and f is the identity
map or (2) f(X) is a proper subset of the odd integers in Y . It is easy to verify that the
composition of two such functions is again such a function, and we get a subcategory of
the category of sets. In this category, a monomorphism need not be injective. A function
from X is a monomorphism if and only if it is injective when restricted to the odd integers
in X.

A morphism f : A → B in a category A is called an epimorphism if for any two
morphisms g : A → Y and h : A → Y , whenever gf = hf then g = h. In the categories
of sets, groups and R-modules, epimorphisms correspond to morphisms that are surjective
on the underlying sets. In the category of Hausdorff topological spaces, an epimorphism
is a continuous map whose image is dense: it need not be surjective. In the category of
commutative rings, if S is either a quotient or a localization of R, the map R → S is an
epimorphism. Thus, epimorphisms need not be surjective.

A morphism in A is a monomorphism if and only if it is an epimorphism in Aop. Thus,
one might speak of comonomorphisms instead of epimorphisms or coepimorphisms instead
of monomorphisms. However, this is terminology is not actually being used.

Examples. In the category of commutative rings, the inclusion Z ⊆ Q is both a monomor-
phism and an epimorphism, but not an isomorphism. In the category of topological spaces,
the map Q ⊆ R is both a monomorphism and an epimorphism but not an isomorphism.

A product for objects A and B in A consists of a triple (X, πA, πB) where X is an
object, πA : X → A, and πB : X → B, such that for every object Y the map

Hom (Y, X)→ Hom (Y, A)×Hom (Y, B)
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given by f 7→ (πAf, πBf) is an isomorphism of sets. Roughly speaking, to give a morphism
from Y to the product X is equivalent to giving a morphism from Y → A and a morphism
from Y → B. The product, if it exists, is determined up to unique isomorphism and is
denoted A × B or A

∏
B. We shall use the former notation. The morphisms πA, πB are

referred to as the product projections. They need not be epimorphisms in general. Let
f : Y → A and g : Y → B. In the Lecture Notes from Math 614 we used the notation
(f, g) for the corresponding morphism Y → X. This notation is suggested by the case
of the category of sets, where the category-theoretic notion of product coincides with the
Cartesian product, and the value of (f, g) on y ∈ Y is

(
f(y), g(y)

)
. Products exist in

the categories of sets, topological spaces, groups, abelian groups, commutative rings, R-
algebras, rings, and R-modules. In all cases, the underlying set is the Cartesian product,
and the product projections are given by the usual set-theoretic maps. In the case of
topological spaces, one uses the product topology. In the cases of groups, commutative
rings, and R-modules, one uses the Cartesian product with algebraic operations performed
coordinate-wise. In dealing with abelian categories, it will be useful to have an alternative

notation for (f, g), namely
[
f
g

]
.

The coproduct of two objects in A is the same as the product of two objects in Aop.
Explicitly, a coproduct for A and B consists of an object X and maps ιA : A → X and
ιB : B → X such that for every object Y the map

Hom (X, Y )→ Hom (A, Y )×Hom (B, Y )

given by f 7→ (fιA, fιB) is an isomorphism of sets. The morphisms ιA, ιB need not,
in general, be monomorphisms. (In the category of commutative rings with identity, the
coproduct of Z/2Z and Z/3Z turns out to be the zero ring.) Roughly speaking, to give
a morphism from the coproduct X to Y is equivalent to giving a morphism from A → Y
and a morphism from B → Y . The coproduct, if it exists, is determined up to unique
isomorphism and is denoted A ⊕ B or A

∐
B. We shall use the former notation. We

shall use the notation [ f g ] for the morphism Y → X corresponding to f : A → X
and g : B → X. Coproducts exist in the categories of sets, topological spaces, groups,
abelian groups, commutative rings, commutative R-algebras, and R-modules. In sets and
topological spaces the coproduct is the disjoint union. In groups it is the free join. Note that
the coproduct of two free groups on one generator in the category of groups is the free (non-
commutative) group on two generators. Coproducts in the categories of abelian groups
and of R-modules are given by direct sum. Coproduct in the category of commutative
R-algebras is given by tensor product over R: in the case of commutative rings, one uses
tensor product over Z.

To give a morphism A ⊕ B → C × D is equivalent to giving morphisms A → C × D
and B → C × D, which, in turn, is equivalent to giving four morphisms, f11 : A → C,
f21 : A→ D, f12 : B → C, and f22 : B → D. The corresponding morphism A⊕B → C×D
may be described as [ [

f11

f21

] [
f12

f22

] ]
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or [
[ f11 f12 ]
[ f21 f22 ]

]
,

but we shall prefer the notation [
f11 f12

f21 f22

]
.

An object in a category is call an initial object if there is a unique morphism from
it to every object in the category. Initial objects are unique up to unique isomorphism.
The categories of sets and topological spaces have ∅ is an initial object. The category of
commutative rings (recall that this means with multiplicative identity such the morphisms
preserve the identity) has Z as an initial object. The 0 ring is not an initial object, because
a homomorphism from it to a nonzero ring cannot preserve the identity. If we allow rings
without an identity, dropping the condition that ring homomorphisms preserve the identity,
then 0 is an initial object. The categories of groups, abelian groups, and R-modules have
an initial object which is the trivial group {1} in the first instance and the trivial abelian
group or R-module 0 in the latter two instances.

An object of an category is called a final object if every object has a unique morphism
to it. Final objects are unique up to unique isomorphism. An object is initial in A if and
only if it is final in Aop. In the categories of sets and of topological spaces, a one point set
or space is a final object. In the categories of groups, the trivial group is a final object. In
the categories of rings, abelian groups, and R-modules, 0 is a final object.

If an object of a category is both initial and final it is called a zero object, and is often
denoted 0. A zero object is unique up to unique isomorphism.

In a category with a 0 object we can define the notions of kernel, cokernel, image and
coimage (although they need not exist). However, each of these will be a morphism, rather
than an object. Thus, in the category of groups, a kernel for f : G → H will be a
monomorphism N → G whose image is the set of elements of G that map to the identity.
However, quite generally, if A → B has kernel N → A, we shall also refer to the kernel,
imprecisely, as N . Similar remarks apply to the other three terms.

Before defining these notions, we note that in a category with a zero object 0, we
can define the zero morphism A → B as the composite morphism A → 0 → B. The
composition of the zero morphism with any other morphism is again a zero morphism.
The usual practice is to denote all of these morphisms 0, although one should keep in mind
that 0 may denote either a zero object or one of many 0 morphisms with various domains
and targets.

A kernel for f : A → B is a morphism ι : N → A such that fι = 0 and for any
morphism g : X → A such that fg = 0, there is a unique morphism h : X → N such that
g = ιh. That is, for all X the map Hom (X, N) → Hom (X, A) induced by composition
with ι is a set-theoretic isomorphism of Hom (X, N) with {g ∈ Hom (X, A) : fg = 0}.
A kernel is automatically a monomorphism: if two maps h, h′ from X to N agree upon
composition with ι, they must be the same, or else g = ιh = ιh′ will have two different
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factorizations through N . Kernels exist in the categories of groups, rings without identity,
and R-modules, and coincide with the inclusion map of the subobject of elements that
map to the identity in the first case and to 0 in the latter two cases into the domain.

A cokernel for f : A → B is a morphism π : B → Q such that πf = 0 and for any
morphism g : B → Y such that gf = 0, there is a unique morphism h : C → Y such that
g = hπ. That is, for all Y the map Hom (Q, Y ) → Hom (B, Y ) induced by composition
with π is a set-theoretic isomorphism of Hom (Q, Y ) with {g ∈ Hom (B, Y ) : gf = 0}. A
cokernel is automatically an epimorphism. Note that a kernel for a morphism is the same
a cokernel for the corresponding morphism in Aop.

We can now define the coimage of f as the cokernel of the kernel of f and the image
of f as the kernel of the cokernel of f . We use the notations Ker (f), Coker (f), Coim(f),
and Im (f) for these. Each is a morphism. Note that the coimage of f : A → B is an
epimorphism A → C that kills the kernel ι : N → A under composition. Somewhat
imprecisely, C is also referred to as the coimage. Likewise, the image is a monomorphism
C ′ → B that is killed by composition with the cokernel B → Q. Since

A→ C → B → Q

is 0, and
A→ C

0−→ Q

is 0, we have that C → B → Q is 0, and this implies that C → B factors C → C ′ → B
(we are using that A→ C is an epimorphism). Thus, there is a canonical morphism from
the target of the coimage to the domain of image, which we refer to somewhat imprecisely
as a morphism from the coimage to the image.

Example. If f : A→ B is an R-linear map of R-modules the kernel N is the usual notion.
The coimage is A/N , which not only maps to the image C ′ ⊆ B, it is isomorphic with
the image. C ′ is indeed the kernel of the epimorphism B → Coker (f). However, in the
category of rings without identity, the cokernel of a map R→ S exists, but is the quotient
of S by the ideal generated by the set-theoretic image of R. The target of the coimage is
not isomorphic with the domain of the image.

In a category with zero object there is a canonical morphism A⊕B → A×B, given in
matrix notation by [

1A 0
0 1B

]
.

This gives a natural transformation of functors of two variables. Notice that for the
category of groups this natural transformation is not an isomorphism, but that it is for
the categories of abelian groups and R-modules.

We now consider six properties for a category A.

A0 A has a 0 object.
A1 All products and coproducts exist in A.
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A2 The canonical natural transformation A⊕B → A×B given by[
1A 0
0 1B

]
is an isomorphism.
A3 Every morphism that is both a monomorphism and an epimorphism is an isomor-
phism.
B0 Every morphism has a kernel and a cokernel.
B1 For every morphism f , the canonical morphism from the target of Coim(f) to the
domain of Im (f) is an isomorphism.

A category that satisfies the axioms A0, A1, A2 and A3 is called an additive category.
If, moreover, B0 and B1 hold, it is called an abelian category.

It is immediate from the axioms that if A is additive, so is Aop. Likewise, if A is abelian,
so is Aop.

Math 615: Lecture of March 31, 2012

Assuming that the relevant coproducts exist, note that given f : A→ C and g : B → D
we get a morphism [ ιCf ιDg ] : A ⊕ B → C ⊕ D: we write f ⊕ g for this morphism.
Dually, assuming that the relevant products exist, we have a morphism[

fπC
fπD

]
→ A×B,

which is denoted f × g. Observe that if A, B, C, and D are abelian groups or R-modules
then (f ⊕ g)(a ⊕ b) = f(a) ⊕ g(b), and if A, B, C, and D are sets, topological spaces,
groups, rings, or R-modules, (f × g)(a, b) =

(
f(a), g(b)

)
.

We also note there is a morphism ∆A : A → A × A when the product exists, given by

∆A =
[

1A
1A

]
: if A is a set, ∆A(a) = (a, a). ∆A is called the diagonal morphism for A.

Dually, there is a morphism ΣB : B⊕B → B given by ΣB = [ 1A 1A ]. If B is an abelian
group or R-module, ΣB(b⊕ b′) = b+ b′. ΣB is called the sum morphism for B.

We next observe that in an additive category, for any two objects A, B, Hom (A, B)
has the structure of an abelian group. Given f, g ∈ Hom (A, B) we want to define

f + g : A→ B.

Consider the following commutative diagram:

A
�q∆A

�y[fg ]

A×A
∼=−−−−→ A⊕Ayf×g f⊕g

y
B ×B

∼=−−−−→ B ⊕B

�y
[f g]

�qΣB
B
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In this diagram, the horizontal isomorphisms are the inverses of[
1A 0
0 1A

]
and [

1B 0
0 1B

]
,

respectively. We define f +g as the composite map A→ B obtained from any of the paths
traversing this diagram.

The fact that this notion of addition on Hom (A, B) gives a commutative associative
operation with additive identity 0 already follows from the conditions A0, A1, and A2 in the
definition of additive category. It also follows that composition on either side distributes
over addition when defined.

Condition A3 implies the existence of inverses under addition, so that one gets an abelian
group. The idea of the proof is as follows. Given objects A, B and f ∈ Hom (A, B), identify

A⊕B ∼= A×B,

and consider the morphism

θ =
[

1A 0
f 1B

]
: A⊕B → A⊕B

It is straightforward to verify that compositions of maps described by matrices are given by
“matrix multiplication,” where one makes an automatic identification of the direct sums
and the direct products that arise. One shows that θ is both a monomorphism and an
epimorphism, and then it follows from A3 that it has an inverse. An easy calculation shows
that the inverse must have the form [

1A 0
g 1B

]
for g ∈ Hom (A, B) where f + g = 0.

A functor F from one additive category A to another A′, whether covariant or con-
travariant, is called an additive functor if it preserves coproducts and products. It is then
automatic that it preserves addition of maps, e.g., in the covariant case that

F : HomA(A, B)→ HomA′
(
F (A), F (B)

)
is a homomorphism of abelian groups for all objects A, B of A.

In an abelian category we can define exact sequences and homology. For example

M2
f−→M1

g−→M0
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is exact at M1 provided that gf = 0 and the induced monomorphism from the target of
Im (f) to the domain of Ker (g) is an isomorphism. Thus, if we write B → M1 for Im (f)
and Z →M1 for Ker (g), both of which are monomorphisms, the condition that gf = 0 is
equivalent to the condition that B →M1 factor

B
α−→ Z →M1.

The condition for exactness is that α be an isomorphism. In general, when gf = 0, we can
define the homology at M1 as Coker (α), and it is 0 iff the sequence is exact at M1. We can
define complexes as in the category of R-modules: the composition of any two consecutive
maps is 0. We then have the notion of the homology or cohomology of a complex defined
in any abelian category.

A functor from an abelian category A to another A′, whether covariant or contravariant,
is called an exact functor if it preserves exactness.

The following two results show that our abstract notion of abelian category is not so far
removed from categories of abelian groups and R-modules. A proof the first theorem may
be found in [P. Freyd, Abelian Categories, Harper and Row, 1964], and also in [B. Mitchell,
Theory of Categories, Academic Press, 1965], where the second theorem is also proved. A
readable introduction to this material that is more detailed than our treatment here (but
without proofs of the embedding theorems) may be found in [H. Bass, Algebraic K-Theory,
Benjamin, 1968].

Theorem (P. Freyd, S. Lubkin, A. Grothendieck). For any abelian category A
whose objects form a set, there is an exact covariant functor F from A into the category
of abelian groups that is injective on both objects and modules.

This functor necessarily will preserve products, direct sums, kernels, cokernels, images,
and coimages. One consequence of this result is that results like the five lemma, the snake
lemma, the double complex lemma, and the basic theory of spectral sequences that are
typically proved by a diagram chase involving elements all follow for arbitrary abelian cat-
egories: one can “pretend” that the object in an arbitrary abelian category have elements.

The second theorem is quite a bit sharper:

Theorem (B. Mitchell). For any abelian category A whose objects form a set, there is
a not necessarily commutative ring with identity R and an exact covariant functor G from
A into the category of R-modules that is injective on both objects and modules, and whose
image is a full subcategory of the category of R-modules.

Math 615: Lecture of April 2, 2012

It is easy to verify that Hom (M, ) and Hom ( , N) have the same exactness prop-
erties in any abelian category that they do in the category or R-modules, i.e., if

0→ N0 → N1 → N2
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is exact then
0→ Hom (M, N0)→ Hom (M, N1)→ Hom (M, N2)

is exact (we have that Hom (M, N0) → Hom (M, N1) is injective by the definition of
monomorphism applied toN0 → N1, and exactness in the middle is essentially the universal
mapping property for the kernel N0 → N1), while if

M0 →M1 →M2 → 0

is exact then
0→ Hom (M2, N)→ Hom (M1, N)→ Hom (M0, N)

is exact similarly.

An object P of an abelian category is called projective if, equivalently, Hom (P, ) is
exact, or if whenever h : M → N is an epimorphism and f : P → N , there is a morphism
g : P → M such that hg = f . An abelian category is said to have enough injectives if for
every object M there exists a projective object P and an epimorphism P → M . In this
case we can construct projective resolutions for M : if P0 →M is an epimorphism and

Pi → Pi−1 → · · · → P1 → P0 →M → 0

has been constructed, with the Pj projective, so as to be exact at M, P0, P1, . . . , Pi−1, we
can continue by choosing an epimorphism from a projective Pi+1 to Zi = Ker (Pi → Pi−1).
We can even define Zi−1 to be an i th syzygy of M . Given an acyclic left complex

· · · → Ni → · · · → N1 → N0 → 0

with augmentation N (so that

· · · → Ni → · · · → N1 → N0 → N → 0

is exact) and a projective complex P• with augmentation M , a morphism M → N lifts to
a morphism P• → N• that is unique up to homotopy.

The theory of injectives is simply the dual theory: an injective in A is the same as
a projective in Aop. However, we make the theory explicit. An object E of an abelian
category is called injective if, equivalently, Hom ( , E) is exact, or if whenever h : M → N
is a monomorphism and f : M → E, there is a morphism g : N → E such that gh = f .
An abelian category is said to have enough injectives if for every object M there exists an
injective object E and a monomorphism M → E. In this case we can construct injective
resolutions for M : if M → E0 is a monomorphism and

0→M → E0 → E1 → · · · → Ei−1 → Ei

has been constructed, with the Ej injective, so as to be exact at M, E0, E1, . . . , Ei−1, we
can continue by choosing a monomorphism from Ci = Coker (Ei−1 → Ei) to an injective
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Ei+1. We can even define Ci−1 to be an i th cosyzygy of M . Given an acyclic right
complex

0→M0 →M1 → · · · →Mi → · · ·

with augmentation M (so that

0→M →M0 →M1 → · · · →Mi → · · ·

is exact) and an injective right complex E• with augmentation N , a morphism N → M
lifts to a morphism of M• → E• that is unique up to homotopy.

We next want to define derived functors of F : A → B. For simplicity we give definitions
only for covariant functors: contravariant functors can simply be regarded as covariant
functors to Bop.

A functor F : A → B between abelian categories is called left exact if whenever

0→M0 →M1 →M2

is exact, so is
0→ F (M0)→ F (M1)→ F (M2).

If F is left exact and A has enough injectives, we define the right derived functors RnF
as follows: RnF (A) = Hn(F (E•)) where E• is an injective resolution of A. Given two
different resolutions one has morphisms in both directions, unique up to homotopy, and
their compositions in either order are homotopic to the identity on the relevant injective
resolution. The homotopies persist when one applies F , and homotopic morphisms of
complexes induce the same morphism of cohomology. Thus, RnF (A) is independent of the
resolution. It vanishes for n < 0, while

R0F (A) ∼= Ker
(
F (E0)→ F (E1)

)
may be identified canonically with F (A): by the left exactness of F , we have that

0→ F (A)→ F (E0)→ F (E1)

is exact.

A morphism of objects lifts to a morphism of injective resolutions, and so R•(F ) is a
covariant functor. Given a short exact sequence of modules

0→M0 →M1 →M2 → 0

one can choose injective resolutions E•0 ofM0 and E•2 ofM2, and then construct a resolution
of M1 in which the then n th object is En0 ⊕En2 . Just to get started, we have a morphism
M1 → M2 → E0

2 , and the morphism M0 → E0
0 extends to a morphism M1 → E0

0 . This
gives a morphism

M1 → E0
0 × E0

2
∼= E0

0 ⊕ E0
2 .
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One proceeds further by replacing

0→M0 →M1 →M2 → 0

by the sequence of cokernels. For the corresponding construction for projective resolutions
see p. 4 of the Lecture Notes for February 6, which was used to give one of the proofs that
there is a long exact sequence for Tor: that case is formally dual to this one. Applying F
and using the snake lemma gives a long exact sequence for cohomology that is functorial
in the short exact sequence:

0→ F (M0)→ F (M1)→ F (M2)→ R1F (M0)→ R1F (M1)→ R1F (M2)→

· · · → RnF (M0)→ RnF (M1)→ RnF (M2)→ Rn+1F (M0)→ · · ·

One may similarly define the left derived functors of a right exact functor if the abelian
category has enough projectives. The remarks of the preceding two paragraphs apply
without essential change. This theory is the dual theory: i.e., it is the theory of right
derived functors for Aop. The details are left to the reader.

In an abelian category with enough injectives we may therefore define Extn(M, N)
as RnF (N) where F = Hom (M, ). If there are enough projectives we may define
Extn(M, N) as LnG(M), where G = Hom ( , N) taking values in the opposite of the
category of R-modules (so that we may think of it as covariant). However, in a small
abelian category we may also define Ext even if there are neither enough injective nor
enough projectives, using the analogue of the Yoneda definition that we discussed for R-
modules, in which the elements of ExtnR(M, N) correspond to equivalence classes of exact
sequences

0→ N → Bn−1 → · · · → B1 → B0 →M → 0.

Of course, working in the category of R-modules, we have that

TorRn (M, N) = LnF (N) ∼= LnG(M),

where F is M ⊗R , and G is ⊗R N .

The Yoneda pairing generalizes to a Yoneda-Cartier pairing. Let A have enough injec-
tives and B be arbitrary. Let F : A → B be a left exact functor. Then there is pairing

RpF (A)× Extq(A, B)→ Rp+qF (B)

for all objects A and B. This pairing is compatible with the connecting homomorphisms
arising from short exact sequences. To see this, choose injective resolutions E• of A and
I• of B. An element of Extq(A, B) is represented by an element of Hom (A, Iq) that is
killed when one composes with Iq → Iq+1: it therefore factors through Im (Iq−1 → Iq):
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call this object Cq, so that we may think of an element of Extq(A, B) as represented by a
map φ : A→ Cq. Then φ lifts to a morphism of complexes:

Cq −−−−→ Iq −−−−→ Iq+1 −−−−→ · · · −−−−→ Ip+q −−−−→ · · ·x x x x
A −−−−→ E0 −−−−→ E1 −−−−→ · · · −−−−→ Ep −−−−→ · · ·

and so induces a morphism Ep → Ip+q, unique up to homotopy, for all p ≥ 0. This
morphism induces morphisms F (Ep)→ F (Ip+q) which in turn give morphisms

RpF (A) ∼= Hp
(
F (E•)

)
→ Hp+q

(
F (I•)

) ∼= Rp+qF (B).

This gives a morphism

Extq(A, B)→ Hom
(
RpF (A), Rp+qF (B)

)
and, hence, a pairing

RpF (A)× Extq(A, B)→ Rp+qF (B).

If A = B and F is Hom (C, ), we get a pairing

Extp(C, A)× Extq(A, B)→ Extp+q(C, A)

which agrees with the Yoneda pairing discussed earlier in case A is the category of R-
modules.

Finally, we discuss the spectral sequence of a composite functor. Let A be an abelian
category with enough injectives and 0→ K0 → K1 → · · · a right complex.

By a Cartan-Eilenberg resolution of K• we mean a cohomological double complex of
injective objects E•• with the following properties:

(1) For all j, the j th column E•,j is an injective resolution of Kj .

(2) For all i, j, if Zi,j denotes the cocycles in Ei,j with respect to Ei,j → Ei+1,j , then Z•,j

is an injective resolution of the cocycles Zj in Kj .

(3) For all i, j, if Bi,j denotes the coboundaries in Ei,j with respect to Ei−1,j → Ei,j , then
B•,j is an injective resolution of the coboundaries Bj in Kj .

(4) For all i, j, if Hi, j
II (E••) denotes the cohomology Zi,j/Bi,j of the i th row at the j th

spot, then H•, jII (E••) is an injective resolution of Hj(K•).

Cartan-Eilenberg resolutions exist. For every j choose injective resolutions E•Hj of
Hj(K•) and E•Bj of Bj . We for all j we have short exact sequences

0→ Bj → Zj → Hj(K•)→ 0
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from which we can construct injective resolutions E•Zj of the Zj , where EiZj = EiHj ⊕E
i
Bj

as in the paragraph on the second page of today’s Lecture Notes describing the proof that
there is a long exact sequence for derived functors. Note, however, that the morphisms
in the resolution require choices of certain extension morphisms. Then, from the exact
sequences

0→ Zj → Kj → Bj+1 → 0

we also get injective resolutions E•Kj of the objects Kj by the construction just described,
where

EiKj = EiZj ⊕ E
i
Bj+1 = EiHj ⊕ E

i
Bj ⊕ E

i
Bj+1 .

The morphism EiKj → EiKj+1 kills EiHj ⊕ E
i
Bj and morphisms EiBj+1 to

EiHj+1 ⊕ EiBj+1 ⊕ EiBj+2

via the obvious direct sum injection.
A key point about Cartan-Eilenberg resolutions is that if we apply any additive func-

tor to the rows, the action of that functor commutes with the calculation of cocycles,
coboundaries, and cohomology: all of the modules involved in any of the short exact
sequences relating these are injective, and the sequences are therefore split.

Theorem (spectral sequence of a composite functor). Let G : A → B and F : B →
C where A and B have enough injectives, F is left exact and G is an additive functor that
takes injectives to F -acyclic objects (that is, if I is injective in B, then RiF

(
G(I)

)
= 0 for

i ≥ 1). Then for all objects A in A there is a spectral sequence

RpF (RqG(A)) =⇒
p

Rp+q(F ◦G)(A).

Proof. Choose an injective resolution I• of A in A. Then G(I•) is a right complex in
B and has a Cartan Eilenberg resolution E••. All of the rows can be decomposed into
split short exact sequences of injectives relating cohomology, coboundaries, cocycles, and
objects. Now apply F to the E••. The cohomology of the column corresponding to j = q
is the cohomology of F applied to an injective resolution of G(Iq) which vanishes except
in degree 0, where it is FG(Iq): the higher terms vanish because G(Iq) is F -acyclic. Thus,
the iterated cohomology HIHII in degree n is the same as the cohomology of the total
complex and is Rn(F ◦G)(A). On the other hand if we fix the row corresponding to i = p
the cohomology is is simply F (EpHj ), and then taking cohomology of columns gives that
HIHII is RpF (RqG(A)). Thus, the spectral sequence we seek is simply one of the spectral
sequences associated with the double complex. �

While we shall return to the subject of spectral sequences, and, in particular, apply
them, we next want to aim towards proving the result that over a regular Noetherian ring
R, if M and N are finitely generated R-modules then whenever TorRi (M, N) vanishes so
does TorRj (M, N) for all j ≥ i. Note that if there is a counterexample, we can localize at a
prime in the support of TorRj (M, N): Tor commutes with localization, and with flat base
change more generally. Therefore, there is no loss of generality in assuming that the ring
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is local. Likewise, we may complete, and so we may assume that R is a complete regular
local ring. If R contains a field, we know that such a ring has the form K[[x1, . . . , xd]],
where K is a field and x1, . . . , xd are formal indeterminates. In the equicharacteristic
case the idea of the proof is to show that the Tors may be viewed as Koszul homology.
If we were working over a polynomial ring R = K[x1, . . . , xd] instead, we could consider
M ⊗K N as a module over S = R ⊗K R which is a polynomial ring over K in the 2n
variables x1⊗1, . . . , xn⊗1, 1⊗x1, . . . , 1⊗xn, which we rename x1, . . . , xn, y1, . . . , yn.
It turns out that TorRi (M, N) may be identified with TorSi (M ⊗K N, S/I) where I =
(x1 − y1, . . . , xd − yd)S is generated by a regular sequence. Let zj = xj − yj , and let
z = z1, . . . , zd. A Koszul complex can be used to resolve S/I and calculate the values of
Tor, and we have that

TorRi (M, N) ∼= TorSi (M ⊗K N, S/I) ∼= Hi(z; M ⊗K N).

The result on vanishing of Tor then follows because we already know the corresponding
fact for Koszul homology.

The complete local case can be handled by a similar technique. However, R ⊗K R is
not Noetherian: one can define a complete version of the tensor product, denoted R⊗̂KR,
which turns out to be ∼= K[[x1, . . . , xd, y1, . . . , yd]] when R = K[[x1, . . . , xd]], and one
has a completed module M⊗̂KN over R⊗̂KR as well. One can now imitate the proof
above, and one obtains that TorRi (M, N) ∼= Hi(z;M⊗̂KN).

We shall do these arguments in detail later. Notice that this method gives the result
when the ring contains a field. When that is not assumed, the argument becomes more
complicated. One needs to understand the structure of complete local rings in the case
when the ring does not contain a field, including the structure of complete regular local
rings. One also needs some spectral sequence arguments.

Math 615: Lecture of April 4, 2012

Consider a complete local ring (R, m, K). If K has characteristic 0, then Z→ R→ K
is injective, and Z ⊆ R. Moreover, no element of W = Z−{0} is in m, since no element of
W maps to 0 in R/m = K, and so every element of Z− {0} has an inverse in R. By the
universal mapping property of localization, we have a unique map of W−1Z = Q into R,
and so R is an equicharacteristic 0 ring. We already know that R has a coefficient field.
We also know this when R has prime characteristic p > 0, i.e., when Z/pZ ⊆ R.

We now want to develop the structure theory of complete local rings when R need not
contain a field. From the remarks above, we only need to consider the case where K
has prime characteristic p > 0, and we shall assume this in the further development of
the theory. The coefficient rings that we are about to describe also exist in the complete
separated quasi-local case, but, for simplicity, we only treat the Noetherian case.

We shall say that V is a coefficient ring if it is a field or if it is complete local of the
form (V, pV, K), where K has characteristic p > 0. If R is complete local we shall say
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that V is a coefficient ring for R if V is a coefficient ring, V ⊆ R is local, and the induced
map of residue fields is an isomorphism. We shall prove that coefficient rings always exist.

In the case where the characteristic of K is p > 0, there are three possibilities. It may
be that p = 0 in R (and V ), in which case V is a field: we have already handled this case.
It may be that p is not nilpotent in V : in this case it turns out that V is a Noetherian
discrete valuation domain (DVR), like the p-adic integers. Finally, it may turn out that p
is not zero, but is nilpotent. Although it is not obvious, we will prove that in this case,
and when V is a field of characteristic p > 0, V has the form W/pnW where n ≥ 1 and W
is a DVR with maximal ideal pW .

We first note:

Lemma. Let (R,m,K) be local with K of prime characteristic p > 0. If r, s ∈ R are such
that r ≡ s mod m, and n ≥ 1 is an integer, then for all N ≥ n− 1, with q = pN we have
that rq ∼= sq mod mn.

Proof. This is clear if n = 1. We use induction. If n > 1, we know from the induction
hypothesis that rq ≡ yq mod mN if N ≥ n− 2, and it suffices to show that rpq ≡ ypq mod
mN+1. Since rq = sq + u with u ∈ mN , we have that rpq = (sq + u)p = spq + puw + up,
where puw is a sum of terms from the binomial expansion each of which has the form(
pq
j

)
sjup−j for some j, 1 ≤ j ≤ p − 1, and in each of these terms the binomial coefficient

is divisible by p. Since u ∈ mN and p · 1R ∈ m, puw ∈ mN+1, while up ∈ mNp ⊆ mN+1 as
well. �

Recall that a p-base for a field K of prime characteristic p > 0 is a maximal set of
elements Λ of K −Kp such that for every finite subset of distinct elements λ1, . . . , λh of
Λ, [K(λ1, . . . , λh) : K] = ph. K has a p-base by Zorn’s lemma. The empty set is a p-base
for K if and only if K is perfect. The set of monomials in the the elements of the p-base Λ
such that every exponent is at most p−1 is a Kp-basis for K over Kp, and, more generally,
(∗) for every q = pN , the set of monomials in the elements of Λ such that every exponent
is at most q − 1 is a basis for K over Kq = {aq : a ∈ K}. See the third and fourth pages
of the Lecture Notes from January 11.

The following Proposition, which constructs coefficient rings when the maximal ideal
of the ring is nilpotent, is the heart of the proof of the existence of coefficient rings.
Before giving the proof, we introduce the following notation, which we will use in another
argument later. Let x, y be indeterminates over Z. Let q be a power of p, a prime.
Then (x + y)q − xq − yq is divisible by p in Z[x, y], since the binomial coefficients that
occur are all divisible by p, and we write Gq(x, y) ∈ Z[x, y] for the quotient, so that
(x+ y)q = xq + yq + pGq(x, y).

Proposition. Suppose that (R, m, K) is local where K has characteristic p > 0, and that
mn = 0. Choose a p-base Λ for K, and a lifting of the p-base to R: that is, for every λ ∈ Λ
choose an element τλ ∈ R with residue λ. Let T = {τλ : λ ∈ Λ}. Then R has a unique
coefficient ring V that contains T . In fact, suppose that we fix any sufficiently large power
q = pN of p (in particular, N ≥ n − 1 suffices) and let SN be the set of all expressions
of the form

∑
µ∈M rqµµ, where the M is a finite set of mutually distinct monomials in
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the elements of T such that the exponent on every element of T is ≤ q − 1 and every
rqµ ∈ Rq = {rq : r ∈ R}. Then we may take

V = SN + pSN + p2SN + · · ·+ pn−1SN ,

which will be the same as the smallest subring of R containing Rq and T .

Before giving the proof, we note that it is not true in general that Rq is closed under
addition, and neither is SN , but we will show that for large N , V is closed under addition
and multiplication, and this will imply at once that it is the smallest subring of R containing
Rq and T .

Proof of the Proposition. We first note if r ≡ s mod m then rq ≡ sq mod mn if N ≥ n−1,
by the preceding Lemma. Therefore Rq maps bijectively onto Kq = {aq : a ∈ K} when we
take residue classes mod m. By the property (*) of p-bases, the residue class map R→ K
sends SN bijectively onto K.

Suppose that W is a coefficient ring containing T . For each r ∈ R, if w ≡ r mod m,
then wq = rq. Thus, Rq ⊆W . Then SN ⊆W , and so V ⊆W . Now consider any element
w ∈W . Since Sn contains a complete set of representatives of elements of K, every element
of W has the form σ0 + u where u ∈ m ∩W = pW , and so w = σ0 + pw1. But we may
also write w1 in this way and substitute, to get an expression w = σ0 + pσ1 + p2w2, where
σ0, σ1 ∈ Sn and w2 ∈W . Continuing in this way, we find, by a straightforward induction,
that

W = SN + pSN + · · ·+ pjSN

for every j ≥ 1. We may apply this with j = n and note that pn = 0 to conclude that
W = V . Thus, if there is a coefficient ring, it must be V . However, at this point we do
not even know that V is closed under addition.

We next claim that V is a ring. Let V ′ be the closure of V under addition. Then we can
see that V ′ is a ring, since, by the distributive law, it suffices to show that the product of
two elements pirqµ and pjr′qµ′ has the same form. The point is that µµ′ can be rewritten
in the form νqµ′′ where µ′′ has all exponents ≤ q − 1, and pi+j(rr′ν)qµ′′ has the correct
form. Thus, V ′ is the smallest ring that contains Rq and T .

We next prove that V itself is closed under addition. We shall prove by reverse induction
on j that pjV = pjV ′ for all j, 0 ≤ j ≤ n. The case that we are really aiming for is, of
course, where j = 0. The statement is obvious when j = n, since pnV ′ = 0. Now suppose
that pj+1V = pj+1V ′. We shall show that pjV = pjV ′, thereby completing the inductive
step. Since pjV ′ is spanned over pj+1V ′ = pj+1V by pjSn, it will suffice to show that
given any two elements of pjSn, their sum differs from an element of pjSn by an element
of pj+1V ′ = pj+1V . Call the two elements

v = pj
∑
µ∈M

rqµµ

and
v′ = pj

∑
µ∈M

r′mu
qµ,
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where rµ, r′mu ∈ R and M is a finite set of monomials in elements of T , with exponents
≤ q−1, large enough to contain all those monomials that occur with nonzero coefficient in
the expressions for v and v′. Since Sn gives a complete set of representatives of K and rq

only depends on what r is mod m, we may assume that all of the rµ and r′µ are elements
of Sn. Let

v′′ = pj
∑
µ∈M

(rµ + r′µ)qµ.

Then
v′′ − v − v′ = pj

∑
µ∈M

pGq(rµ, r′µ)µ = pj+1
∑
µ∈M

Gq(rµ, r′µ)µ ∈ pj+1V ′,

as required, since all the rµ, r′µ ∈ SN and V ′ is a ring. This completes the proof that
V ′ = V , and so V is a subring of R.

We have now shown that V is a subring of R, and that it is the only possible coefficient
ring. It is clear that pV ⊆ m, while an element of V − pV has nonzero image in K: its
constant term in SN is nonzero, and SN maps bijectively to K. Thus, m ∩ V = pV , and
we know that V/pV ∼= K, since SN maps onto K. It follows that pV is a maximal ideal of
V generated by a nilpotent, and so pV is the only prime ideal of V . Any nonzero element
of the maximal ideal can be written as ptu with t as large as possible (we must have that
t < n), and then u must be a unit. Thus, every nonzero element of V is either a unit, or
a unit times a power of p. It follows that every nonzero proper ideal is generated by pk

for some positive integer k, where k is as small as possible such that pk is in the ideal. It
follows that V is a principal ideal ring. Thus, V is a Noetherian local ring, and, in fact,
an Artin local ring. �

Math 615: Lecture of April 6, 2012

Theorem. Let K, K ′ be isomorphic fields of characteristic p > 0 and let g : K → K ′

be the isomorphism. Let (V, pV,K) and (V ′, pV ′,K ′) be two coefficient rings of the same
characteristic, pn > 0. We shall also write a′ for the image of a ∈ K under g. Let Λ be
a p-base for K and let Λ′ = g(Λ) be the corresponding p-base for K ′. Let T be a lifting of
Λ to V and let T ′ be a lifting of Λ′ to T ′. We have an obvious bijection g̃ : T → T ′ such
that if τ ∈ T lifts λ ∈ Λ then g̃(τ) ∈ T ′ lifts λ′ = g(λ). Then g̃ extends uniquely to an
isomorphism of V with V ′ that lifts g : K → K ′.

Proof. As in the proof of the Proposition in the Lecture Notes of April 4 showing the
existence of a coefficient ring when mn = 0, we choose N ≥ n − 1 and let q = pN . For
every element a ∈ K there is a unique element ρa ∈ V q that maps to aq ∈ Kq. Similarly,
there is a unique element ρ′a′ ∈ V ′

q that maps to a′
q for every a′ ∈ K ′. If there is an

isomorphism V ∼= V ′ as stated, it must map ρa → ρ′a′ for every a ∈ K. Said otherwise,
we have an obvious bijection V q → V ′

q, and g̃ must extend it. Just as in the proof of the
Proposition, we can define SN = S to consist of linear combinations of distinct monomials
in T such that in every monomial, every exponent is ≤ q−1, and such that every coefficient
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is in V q. Then S will map bijectively onto K. We define S′N = S′ ⊆ V ′ analogously. Since
S′ maps bijectively onto K ′, we have an obvious bijection g̃ : S → S′. We use σ′ for the
element of S′ corresponding to σ ∈ S.

Every element v ∈ V must have the form σ0 + pv1 where σ0 is the unique element of
S that has the same residue as v modulo pV . Continuing this way, as in the proof of the
previous Proposition, we get a representation

v = σ0 + pσ1 + p2σ2 + · · ·+ pn−1σn−1

for the element v ∈ V , where the σj ∈ S. We claim this is unique. Suppose we have
another such representation

v = σ∗0 + pσ∗1 + · · ·+ pn−1σ∗n−1.

Suppose that σi = σ∗i for i < j. We want to show that σj = σ∗j as well. Working in
V/pj+1V we have that σjpj = σj+1p

j , i.e., that (σj − σ∗j ) kills pj working mod pj+1. By
part (a) of the Lemma that follows just below, we have that σj − σ∗j ∈ pV , and so σj and
σ∗j represent the same element of K = V/pV , and therefore are equal.

Evidently, any isomorphism V ∼= V ′ satisfying the specified conditions must take

σ0 + pσ1 + · · ·+ pn−1σn−1

to
σ′0 + pσ′1 + · · ·+ pn−1σ′n−1.

To show that this map really does give an isomorphism of V with V ′ one shows simul-
taneously, by induction on j, that addition is preserved in pjV , and that multiplication is
preserved when one multiplies elements in phV and piV such that h + i ≥ j. For every
element a ∈ K, let σa denote the unique element of S that maps to a. Note that we may
write ρa as σqa, since σa has residue a mod pV .

Now,
pjρaµ+ pjρbµ = pj(σqa + σqb )µ = pj

(
(σa + σb)q − pGq(σa, σb)

)
,

where Gq(x, y) ∈ Z[x, y] is such that (x + y)q = xq + yq + pGq(x, y). Since σa + σb has
residue a+ b mod pV , we have that (σa + σb)q = ρa+b, and it follows that

pjρaµ+ pjρbµ = pjρa+bµ− pj+1Gq(σa, σb)µ.

We have similarly that

pjρ′a′µ+ pjρ′b′µ
′ = pjρ′a′+b′µ

′ − pj+1Gq(σ′a′ , σ
′
b′)µ

′,

and it follows easily that addition is preserved by our map pjV → pjV ′: note that
pj+1Gq(σa, σb)µ maps to pj+1Gq(σ′a′ , σ

′
b′)µ

′ because all terms are multiples of pj+1 (the
argument here needs the certain multiplications are preserved as well addition).
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Once we have that our map preserves addition on terms in pjV , the fact that it preserves
products of pairs of terms from phV × piV for h+ i ≥ j follows from the distributive law,
the fact that addition in pjV is preserved, and the fact that there is a unique way of writing
µ1µ2, where µ1 and µ2 are monomials in the elements of T with all exponents ≤ q − 1, in
the form νqµ3 where all exponents in µ3 are ≤ q − 1, and

(phρaµ1)(piρbµ2) = ph+i(σaσbν)qµ3

in V , while
(phρ′a′µ

′
1)(piρ′b′µ

′
2) = ph+i(σ′a′σ

′
b′ν
′)qµ′3

in V ′. �

Lemma. Let K be a field of characteristic p > 0 and let (V, pV, K), (W, pW,K) and
(Vn, pVn, K), n ∈ N, be coefficient rings.
(a) If pt = 0 while pt−1 6= 0 in V , which is equivalent to the statement that pt is the

characteristic of V , then AnnV pjV = pt−jV , 0 ≤ j ≤ t. Moreover, if ps = 0 while
ps−1 6= 0 in W , and W � V is a surjection, then V = W/ptW .

(b) Suppose that
V0 � V1 � · · ·� Vn � · · ·

is an inverse limit system of coefficient rings and surjective maps, and that the char-
acteristic of Vn is pt(n) where t(n) ≥ 1. Then either t(n) is eventually constant, in
which case the maps hn : Vn+1 � Vn are eventually all isomorphisms, and the inverse
limit is isomorphic with Vn for any sufficiently large n, or t(n) → ∞ as n → ∞, in
which case the inverse limit is a complete local principal ideal V with maximal ideal
pV and residue class field K. In particular, the inverse limit V is a coefficient ring.

Proof. (a) Every ideal of V (respectively, W ) has the form pkV (respectively, pW )for a
unique integer k, 0 ≤ k ≤ t (respectively, 0 ≤ k ≤ s) The first statement follows because
k+j ≥ n iff k ≥ n−j. The second statement follows because V must have the form S/pkS
for some k, 0 ≤ k ≤ S, and the characteristic of S/pkS is pk, which must be equal to pt.

(b) If t(n) is eventually constant it is clear that all the maps are eventually isomorphisms.
Therefore, we may assume that t(n)→∞ as n→∞. By passing to an infinite subsequence
of the Vn we may assume without loss of generality that t(n) is strictly increasing with n.
We may think of an element of the inverse limit as a sequence of elements vn ∈ Vn such
that vn is the image of vn+1 for every n. It is easy to see that one of the vn is a unit if
and only if all of them are. Suppose on the other hand that none of the vn is a unit. Then
each vn can be written as pwn for wn ∈ Vn. The problem is that while pwn+1 maps to
pwn, for all n, it is not necessarily true that wn+1 maps to wn.

Let hn be the map Vn+1 → Vn. For all n, let w′n = hn(wn+1). We will show that for all
n, vn = pw′n and that hn(w′n+1) = w′n for all n. Note first that hn(pwn+1) = pwn = vn,
and it is also pw′n. This establishes the first statement. Since p(wn+1 − w′n+1) = 0, it
follows that wn+1 − w′n+1 = pt(n+1)−1δ, by part (a). Then

w′n = hn(wn+1) = hn(w′n+1) + pt(n+1)−1hn(δ) = hn(w′n+1),
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as required, since pt(n+1)−1 is divisible by pt(n), the characteristic of Vn.

It follows that the inverse limit has a unique maximal ideal generated by p. No nonzero
element is divisible by arbitrarily high powers of p, since the element will have nonzero
image in Vn for some n, and its image in this ring is not divisible by arbitrarily high powers
of p. It follows that every nonzero element can be written as a power of p times a unit,
and no power of p is 0, because the ring maps onto V/pt for arbitrarily large values of t. It
is forced to be an a principal ideal domain in which every nonzero ideal is generated by a
power of p. The fact that the ring arises as an inverse limit implies that it is complete. �

Theorem. Let K be a field of characteristic p > 0. Then there exists a complete Noe-
therian valuation domain (V, pV, K) with residue class field K.

Proof. It suffices to prove that there exists a Noetherian valuation domain (V, pV, K): its
completion will then be complete with the required properties. Choose a well-ordering of
K in which 0 is the first element. We construct, by transfinite induction, a direct limit
system of Noetherian valuation domains {Va, pVa, Ka} indexed by the well-ordered set K
and injections Ka ↪→ K such that

(1) K0
∼= Z/pZ

(2) The image of Ka in K contains a.
(3) The diagrams

Vb � Kb ↪→ K
↑ ↑ ||
Va � Ka ↪→ K

commute for all a ≤ b ∈ K.

Note the given a direct limit system of Noetherian valuation domains and injective local
maps such that the same element, say, t (in our case t = p) generates all of their maximal
ideals, the direct limit, which may be thought of as a directed union, of all of them is a
Noetherian discrete valuation domain such that t generates the maximal ideal, and such
that the residue class field is the directed union of the residue class fields. Every element of
any of these rings not divisible by t is a unit (even in that ring): thus, if W is the directed
union, pW is the unique maximal ideal. Every nonzero element of the union is a power of
t times a unit, since that is true in any of the valuation domains that contain it, and it
follows that every nonzero ideal is generated by the smallest power of p that it contains.
The statement about residue class fields is then quite straightforward.

Once we have a direct limit system as described, the direct limit will be a discrete
Noetherian valuation domain in which p generates the maximal ideal and the residue class
field is isomorphic with K.

It will therefore suffice to construct the direct limit system.

We may take V0 = ZP where P = pZ. We next consider an element b ∈ K which
is the immediate successor of a ∈ K. We have a Noetherian discrete valuation domain
(Va, pVa, Ka) and an embedding Ka ↪→ K. We want to enlarge Va suitably to form Vb. If b
is transcendental over Ka we simply let Vb be the localization of the polynomial ring Va[x]
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in one variable over Va at the expansion of pVa: the residue class field may be identified
with Ka(x), and the embedding of Ka ↪→ K may be extended to the simple transcendental
extension Ka(x) so that x maps to b ∈ K.

If b is already in the image of Ka we may take V − b = Va. If instead b is algebraic
over the image of Ka, but not in the image, then it satisfies a minimal monic polynomial
g = g(x) of degree at least 2 with coefficients in the image of Ka. Lift the coefficients to
Va so as to obtain a monic polynomial G = G(x) of the same degree over Va. We shall
show that Vb = Va[x]/

(
G(x)

)
has the required properties. If G were reducible over the

fraction field of Va, by Gauss’ Lemma it would be reducible over Va, and then g would be
reducible over the image of Ka in K. If follows that

(
G(x)

)
is prime in Va[x]m and so Vb

is a domain that is a module-finite extension of Va. Consider a maximal ideal m of Vb.
Then the chain m ⊃ (0) in Vb lies over a chain of distinct primes in Va: since Va has only
two distinct primes, we see that m lies over pVa and so p ∈ m. But

Vb/pVa ∼= Im (Ka)[x]/g(x) ∼= Im (Ka)[b],

and so p must generate a unique maximal ideal in Vb, and the residue class field behaves
as we require as well.

Finally, if b is a limit ordinal, we first take the direct limit of the system of Noetherian
discrete valuation domains indexed by the predecessors of b, and then enlarge this ring as
in the preceding paragraph so that the image of its residue class field contains b. �

Corollary. If p is a positive prime integer and K is field of characteristic p, there is, up
to isomorphism, a unique coefficient ring of characteristic p > 0 with residue class field
K and characteristic pt, and it has the form V/ptV , where (V, pV,K) is a Noetherian
discrete valuation domain.

Proof. By the preceding Theorem, we can construct V so that it has residue field K. Then
V/ptV is a coefficient ring with residue class field K of characteristic p, and we already
know that such all rings are isomorphic, which establishes the uniqueness statement. �

Corollary. Let p be a positive prime integer, K a field of characteristic p, and suppose
that (V, pV, K) and (W, pW, K) are complete Noetherian discrete valuation domains with
residue class field K. Fix a p-base Λ for K. Let T be a lifting of Λ to V and T ′ a lifting
to W . Then there is a unique isomorphism of V with W that maps each element of T to
the element with the same residue in Λ in T ′.

Proof. By our results for the case where the maximal ideal is nilpotent, we get a unique
such isomorphism V/pnV ∼= W/pnW for every n, and this gives an isomorphism of the
inverse limit systems

V/pV � V/p2V � · · ·� V/pnV � · · ·

and
W/pW �W/p2W � · · ·�W/pnW � · · ·

that takes the image of T in each V/pnV to the image of T ′ in the corresponding W/pnW .
This induces an isomorphism of the inverse limits, which are V and W , respectively. �
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Theorem (I. S. Cohen). Every complete local ring (R, m, K) has a coefficient ring. If
the residue class field has characteristic p > 0, there is a unique coefficient ring containing
a given lifting T to R of a p-base Λ for K.

Proof. We may assume that K has characteristic p > 0: we already know that there is a
coefficient field if the characteristic of K is 0.

Any coefficient ring for R containing T must map onto a coefficient ring for R/mn

containing the image of T . Here, there is a unique coefficient ring Vn, which may be
described, for any sufficiently large q = pN , as the smallest subring containing all q th
powers and the image of T . We may take q large enough that it may be used in the
description of coefficient rings Vn+1 for Rn+1 and Vn for Rn, and it is then clear that
Rn+1 � Rn induces Vn+1 � Vn. If we construct lim

←− n
Vn and lim

←− n
Rn as sequences of

elements {rn}n such that rn+1 maps to rn for all n, it is clear that lim
←− n

Vn ⊆ lim
←− n

Rn. By

part (b) of the Lemma on p. 2, V = lim
←− n

Vn is a coefficient ring, and so V is a coefficient
ring for R. �

Math 615: Lecture of April 9, 2012

Corollary. Every complete local ring (R, m, K) is a homomorphic image of a complete
regular local ring. In the equicharacteristic case, this may be taken to be a formal power
series ring over a field. If R does not contain a field, we may take the regular ring to be
formal power series over a Noetherian discrete valuation ring that maps onto a coefficient
ring for R.

Proof. We already know this in the equicharacteristic case. In the remaining cases, K
has characteristic p and R has a coefficient ring which is either a Noetherian discrete
valuation ring (V, pV, K) or of the form V/pnV for such a ring V . Let p, u1, . . . , us be
generators for the maximal ideal of R, and map V [X1, . . . , Xs]→ R as a V -algebra such
that Xj 7→ uj , 1 ≤ j ≤ s, which induces a map V [[X1, . . . , Xs]] → R. By part (c) of
the second Proposition on the third page of the Lecture Notes of January 9, this map is
surjective. �

Corollary. Let (R, m, K) be a complete local ring of mixed characteristic p > 0. Let
(V, pV, K) be a coefficient ring for R, and let x1, . . . , xd−1 ∈ R have images that are a
system of parameters for R/pR. Map V [[X1, . . . , Xd−1]]→ R as V -algebras by sending Xj

to xj, 1 ≤ j ≤ d−1. Then R is module-finite over the image of V [[X1, . . . , Xd−1]], and if R
is a domain, or, more generally, if p is part of a system of parameters for R (equivalently, p
is not in any minimal prime of R such that dim (R/P ) = dim (R)), then V is a Noetherian
discrete valuation domain, and R is a module-finite extension of V [[X1, . . . , Xd−1]].

Proof. That R is module-finite over the image is immediate form part (b) of the second
Proposition on the third page of the Lecture Notes of January 9. If p is part of a system
of parameters, then dim (R) = d. It follows that the kernel of the map from the domain



153

V [[X1, . . . , Xd−1]] to R is (0), or else R will be module-finite over a domain of dimension
d− 1. �

Note, however, that R = V [[x]]/px is not module-finite over a formal power series ring
over a coefficient ring. V is a coefficient ring, but p is not part of a system of parameters.
R is one dimensional, and it is not module-finite over V .

A regular local ring (R, m, p) of mixed characteristic p is called unramified if, equiva-
lently:

(1) p /∈ m2.
(2) R/pR is also regular.

Recall from the problem 4. of Problem Set #2 that a quotient of a regular local ring
by an ideal J is regular if and only if J is generated by part of a minimal set of generators
for the maximal ideal of the regular local ring. In particular, R/pR is regular if and only
if p is part of a minimal set of generators for m, and this holds if and only if p /∈ m2. Note
that if Q is a prime ideal of an unramified regular local ring of mixed characteristic, then
if p /∈ Q we have that RQ is an equicharacteristic 0 regular local ring, while if p ∈ Q then
RQ is again unramified, because RQ/pRQ is a localization of R/pR and therefore is again
regular.

Theorem. Let (R, m, K) be a complete regular local ring of Krull dimension d. If R
is equicharacteristic then R ∼= K[[X1, . . . , Xd]]. If R is mixed characteristic with K of
characteristic p > 0 then R is unramified if and only if R ∼= V [[X1, . . . , Xd−1]], a formal
power series ring, where (V, pV, K) is a coefficient ring (and so is a complete Noetherian
discrete valuation domain). If R is mixed characteristic with K of characteristic p > 0 then
R is ramified regular iff R ∼= T/(p−G) where V is a coefficient ring that is a Noetherian
discrete valuation domain, T = V [[x1, . . . , xd]] is a formal power series ring with maximal
ideal mT , and and G ∈ m2

T − pT .

Proof. In the unramified case, p may be extended to a minimal set of generators for m,
say p, x1, . . . , xd−1. We are now in the situation of both preceding corollaries: we get a
map V [[X1, . . . , Xd−1]] → R such that the residue field of V maps onto that of R, while
the images of p, x1, . . . , xd−1 generate m. This implies that the map is onto. But, as
in preceding Corollary, the map is injective. Thus, R ∼= V [[X1, . . . , Xd−1]]. Conversely,
with (V, pV,K) a Noetherian complete discrete valuation domain, V [[X1, . . . , Xd−1]] is a
complete regular local ring of mixed characteristic and p /∈ m2.

Now suppose that p ∈ m2. Choose a minimal set of generators x1, . . . , xd for m. The we
still get a surjection V [[X1, . . . , Xd]]� R. Since R is regular it is a domain, and the kernel
must be a height one prime of T = V [[x1, . . . , xd]], since dim(R) = d. But V [[x1, . . . , xd]]
is regular, and therefore a UFD, and so this height one prime P is principal. Since p ∈ m2

and m2
T maps onto m2, we get an element of Ker (T � R) of the form p − G, where

G ∈ m2
T . The element G cannot be divisible by p: if it were, G = pG0 with G0 ∈ m, and

then p−G = p(1−G0) generates pT , since 1−G0 is a unit, while p 6= 0 in R. Conversely,
if G ∈ m2

T and G /∈ pT , then p − G ∈ mT − m2
T , and so it is part of a minimal set of

generators for mT . Therefore R = T/(p − G) is regular. Since G /∈ pT , p − G and p are
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not associates, and, in particular, p is not a multiple of p−G. Since p is nonzero in R, R
is of mixed characteristic. Since G ∈ m2

T , p is in the square of the maximal ideal of R, i.e.,
R is a ramified regular local ring. �

We shall retain the following hypotheses for a while. Let A be a Noetherian ring, let R
and S be A-algebras that are Noetherian rings, let m ⊆ R and n ⊆ S be ideals such that
R/m has finite length as an A-module, and S/n has finite length as an A-module. Let M
be a finitely generated R-module and N be a finitely generated S-module.

We note that for all s and t, the modules M/msM and N/ntN have finite length as
A-modules. (E.g., the former has a finite filtration by modules mhM/mh+1 each of which
is finitely generated over R and killed by m, and so finitely generated over R/mR, which
has finite length over A). When U and V have finite length over A (or even if one has
finite length and the other is finitely generated), every TorAj (U, V ) has finite length: a
finitely generated module has finite length if and only if its support consists of a finite set
of maximal ideals, and we know that

Supp
(
TorAj (U, V )

)
⊆ Supp (U) ∩ Supp (V ),

since Tor commutes with localization.

Therefore the modules TorAn (M/msM, N/ntN) have finite length as A-modules. The
set N× N is directed, since given (s, t) and (s′, t′), both pairs are bounded by the pair

(max {s, s′}, max {t, t′}).

Therefore, we may consider N×N as a directed set under the partial ordering (s, t) ≤ (s′, t′)
if s ≤ s′ and t ≤ t′, and we may take inverse limits over this set. Note that if s ≤ s′ and
t ≤ t′ we have A-linear maps M/ms′M �M/msM and N/nt

′
N � n/ntN and therefore

a map
TorAj (M/ms′M, N/nt

′
N)→ TorAj (M/msM, N/ntN).

We may therefore define

TôrAj (M, N) = lim
←− s, t

TorAj (M/msM, N/ntN).

For j = 0 we write M⊗̂AN for

TôrA0 (M, N) = lim
←− s, t

(M/msM)⊗A (N/ntN).

Note that given s, t ∈ N we can choose n = max {s, t}, and then (n, n) ≥ (s, t). Thus,
the elements (n, n) are cofinal in the directed set N× N, and we may also write

TôrAj (M, N) = lim
←− n

TorAj (M/mnM, N/nnN),
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and
M⊗̂AN = lim

←− n
M/mnM⊗̂AN/nnN.

By a coset in an A-module B we mean a subset of the form u + D where D is an
A-submodule of B. D is recoverable from the coset C as {v−w : v, w ∈ C}. On the other
hand, u is not unique unless D = 0: if v is any element of a coset C, the C = v+D as well.
The image of a coset under an A-linear map is evidently a coset. Notice that if f : B′ → B
is linear then the inverse image of u ∈ B is either empty, if u is not in Im (f), or else a
coset in B′: if v is one element of the inverse image, then the inverse image is v+ Ker (f).
If C ⊆ C ′ are cosets and the associated modules are the same, then C = C ′: if u ∈ C, and
D is the module, then C = u + D and C ′ = u + D. It follows that in a module of finite
length (or one with DCC), the set of all cosets has DCC: given a descending sequence of
cosets, the associated sequence of submodules is also descending, and therefore eventually
constant. But then the sequence of cosets is eventually constant as well.

Notice that the intersection of two cosets u+D1 and v+D2 may be empty, but if w is
in the intersection it will have the form w + (D1 ∩D2).

Studying cosets in modules is completely analogous to studying linear subspaces of
vector spaces that need not contain 0: this is simply the special case where the base ring
is a field.

In general, although a direct limit of exact sequences is exact, an inverse limit of exact
sequences is not: consider the inverse limit system of exact sequences of Z-modules:

0 → 2Z ⊆ Z � Z/2Z → 0
∪ || ↑↑

0 → 4Z ⊆ Z � Z/4Z → 0
∪ || ↑↑
...

...
...

∪ || ↑↑
0 → 2nZ ⊆ Z � Z/2nZ → 0

∪ || ↑↑
0 → 2n+1Z ⊆ Z � Z/2n+1Z → 0

∪ || ↑↑
...

...
...

The inverse limits corresponding to the three nonzero columns are
⋂
n 2nZ = 0, Z, and the

2-adic integers ẐP where P = 2Z, respectively. But the sequence

0→ 0→ Z→ ẐP → 0

is not exact, since Z→ ẐP is not surjective.

However, we have the following:
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Theorem. The inverse limit of a sequence of exact sequences of finite length A-modules
is exact.

Proof. Suppose the typical three consecutive terms at the n th spots are

B′n → Bn → B′′n

It is clear that the composite map

(lim
←− n

Bn → lim
←− n

B′′n) ◦ (lim
←− n

B′n → lim
←− n

Bn)

is zero. Let {un}n be a sequence of elements, with un ∈ Bn, representing an element of
lim
←− n

Bn, so that un+1 maps to un under the inverse limit system map Bn+1 → Bn for

all n. Suppose that this element maps to 0 in lim
←− n

B′′n. This simply means that every un
maps to 0 in B′′n. Let Cn denote the inverse image of un in B′n. Then the coset Cn is
nonempty for all n, since every

B′n → Bn → B′′n

is exact. For every i, let Qi,n denote denote the image of Cn in B′i for n ≥ i. Evidently,
for fixed i, Qi,n is descending as n increases. Since these are cosets in a module of finite
length, we have that Qi,n is stable for all sufficiently large n � i. Call the stable value
Q∞i . Evidently, the map B′i+1 → B′i maps Q∞i+1 → Q∞i . Even better, the restricted map
Q∞i+1 → Q∞i is onto: for large n the images of Cn in B′i+1 and in B′i are both stable, and
the image in B′i+1 maps onto the image in B′i. Since the maps Q∞i+1 → Q∞i are surjective
and the Q∞i are nonempty, we have that lim

←− n
Q∞n is nonempty. An element of this inverse

limit is an element of lim
←− n

B′n mapping to {un}n, as required. �

Corollary. If 0 → M2 → M1 → M0 → 0 is an exact sequence of finitely generated
R-modules such that each Mi/mMi has finite length over A, then there is a long exact
sequence for complete Tor:

· · · → TôrAn (M2, N)→ TôrAn (M1, N)→ TôrAn (M0, N)→ TôrAn−1(M2, N)→

· · · → TôrA1 (M0, N)→M2⊗̂AN →M1⊗̂AN →M0⊗̂AN → 0.

If 0→ N2 → N1 → N0 → 0 is an exact sequence of finitely generated S-modules such that
each Nj/nNj has finite length over A, there is an analogous long exact sequence for Tôr
as well.

Proof. For all s and t there is a short exact sequence

0→M2/(msM1 ∩M2)→M1/m
sM1 →M0/m

sM0 → 0,

and we may form the long exact sequence for TorA• with N/ntN . By the preceding Propo-
sition, the inverse limit of these sequences is exact. Because the inherited m-adic filtration
(msM1) ∩M2 on M2 is stably m-adic,

lim
←− s,t

TorAj
(
M2/(msM1 ∩M2), N/ntN

) ∼= lim
←− s,t

TorAj (M2/m
sM2, N/n

tN),
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which gives the required result. �

Math 615: Lecture of April 11, 2012

We continue with the following fixed notations: A is a Noetherian ring, R and S are
Noetherian A-algebras, m ⊆ R and n ⊆ S are ideals such that R/m and S/n have finite
length over A, M is a finitely generated R-module, and N is a finitely generated S-module.

Theorem. With hypothesis as above, let T = R⊗AS and let qs,t be the sum of the images
of ms⊗AS and S⊗Ant in T , so that T/qs,t ∼= R/ms⊗AS/nt. Let q = q1,1. Then R⊗̂AS
is the q-adic completion of R ⊗A S, and M⊗̂AN is the q-adic completion of M ⊗A N .
Moreover, R⊗̂AS is a Noetherian ring, and M⊗̂AN is a finitely generated module over
R⊗̂AS.

Proof. Let m have generators u1, . . . , uh and let n have generators v1, . . . , vk. Of course,
qn,n ⊆ qs,t if n ≥ min {s, t} and the sequences of ideals qn,n and qn are cofinal as well:
qn,n ⊆ qn, and q(h+k)n is generated by monomials of degree (h+ k)n in the images of the
elements u1, . . . , uh, v1, . . . , vk, and either some ui or some vj must occur with exponent
at least n in each of these monomials. It follows that, q(h+k)n ⊆ qn,n. Consequently,
R⊗̂AS ∼= lim

←− n
T/qn, the q-adic completion of T , as claimed.

Let X = X1, . . . , Xh and Y = Y1, . . . , Yk. Map the polynomial ring A[X, Y ] to
R ⊗A S = T as an A-algebra by sending Xi to ui and Yj to vj . Then there is an induced
map A[[X, Y ]] → R⊗̂AS with the same property. By the Proposition on page 2 of the
Lecture Notes from January 9, R⊗̂AS is module-finite over A[[X, Y ]]: the quotient by the
expansion of (X, Y ), which is q(R⊗̂AS), is R/m ⊗A S/n, which has finite length over A
and so is finitely generated over A. Likewise,

(M⊗̂AN)/
(
(X, Y )(M⊗̂AN)

) ∼= (M ⊗A N)/q(M ⊗A N) ∼= (M/mM)⊗A (N/nN),

which is a finite length module over A, and so is finitely generated as an A-module. It
then follows, from the same Proposition, that M⊗̂AN is finitely generated as an A[[X, Y ]]-
module, and, hence, as a module of R⊗̂AS. �

Note that we have an A-bilinear map

M ×N →M⊗̂AN

since we have a map M ⊗A N →M⊗̂N : the image of (u, v) is denoted u⊗̂v. Likewise we
have A-algebra homomorphisms R → R⊗̂AS and S ≤ R⊗̂AS sending r to r⊗̂1 and s to
1⊗̂s, respectively.
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Theorem. Let (A, µ) be regular local of Krull dimension n, let hypotheses be as in the
first paragraph, and suppose thatdepthµM ≥ d. Then TôrAj (M, N) = 0 for all j > n− d.

Proof. We first reduce to the case where N has been replaced by Nt = N/ntN and so has
finite length over A (since it has a finite filtration with factors niN/ni+1N , 0 ≤ i < t,
that are finitely generated (S/nS)-modules). Assuming that case, for j > n − d we have
0 = lim

←− t
TôrAj (M,Nt) (since every term is 0) and this is

lim
←− t

(
lim
←− s

TorAj (M/msM, Nt/n
sNt)

)
.

Since nsNt = 0 for s ≥ t, this is the same as

lim
←− t

(
lim
←− s

TorAj (M/msM, Nt)
)

= lim
←− s,t

TorAj (M/msM, N/ntN) = TôrAj (M, N).

Thus, we may assume without loss of generality that N has finite length over A, and so is
killed by a power of µ.

Since depthµM ≥ d, we may choose a sequence of elements a1, . . . , ad ∈ µ that is a
regular sequence on M . Replacing them by powers if necessary, we may assume that each
of these elements kills N . We now prove by induction on d that the existence of such a
sequence forces the stated vanishing of complete Tor.

If d = 0, we know that since A is regular of Krull dimension d, every TorAj (U, V ) = 0 for
j > n = n−d, and this forces the vanishing of all the complete Tor modules as well, because
each of them is an inverse limits of Tor modules that vanish. Now suppose that d > 0 and
apply the induction hypothesis to M/a1M and the sequence a2, . . . , ad. Because a = a1

kills N , it kills all complete Tors with N , and the short exact sequence

0→M
a−→M −→M/aM → 0

yields a long exact sequence for complete Tor that breaks up into short exact sequences as
follows:

0→ TôrAj+1(M, N)→ TôrAj+1(M/aM, N)→ TôrAj (M, N)→ 0

By the induction hypothesis, TôrAj+1(M/aM, N) = 0 for j + 1 > n− d− 1, i.e., j ≥ n− d,
and the vanishing of the middle term gives the vanishing of both end terms. �

Now suppose that (A, µ) is regular local of Krull dimension n and that depthµR = n.
Fix N . Then the functor F = ⊗̂AN is right exact (from the terms of degree 0 in the long
exact sequence for complete Tor), and vanishes on finitely generated projective R-modules,
which are free, and have depth n on µ. Moreover, there is a functorial long exact sequence
for TôrA• ( , N). This implies that TôrAj ( ,N) agrees with the j th left derived functor
LjF of F = ⊗̂AN . That is, TôrAj (M, N) may be computed from a projective resolution
P• of M by finitely generated projective (≡ free) R-modules by applying F and taking
homology:

TôrAj (M, N) = Hj(P•⊗̂AN).
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The point is that the left derived functors of ⊗̂AN agree with complete Tor in degree 0,
vanish in higher degree on finitely generated projective modules, and also have a functorial
long exact sequence for Tor. Thus, if we write 0 → M ′ → P → M → 0 where P is a
finitely generated free module, the two long exact sequences break up in the same way to
give:

0→ TôrA1 (M, N)→M ′⊗̂AN → P ⊗̂AN →M⊗̂AN → 0

and
0→ L1F(M)→M ′⊗̂AN → P ⊗̂AN →M⊗̂AN → 0,

which yields an isomorphism

L1F(M) ∼= TôrA1 (M, N).

The long exact sequences also yield:

0→ TôrAj+1(M, N)→ TôrAj (M ′, N)→ 0

and
0→ Lj+1F(M) ∼= LjF(M ′)→ 0

for j ≥ 1. The long exact sequence for Tôr shows that TôrA1 (M, N) is always finitely gener-
ated over R⊗̂AS, and then it follows that all of the TôrAj (M, N) are, since TôrAj (M, N) ∼=
Tôr1(Mj−1, N) for j ≥ 2, where Mj−1 is a finitely generated (j − 1) st module of syzygies
for M . Thus:

Theorem. Let (A, µ) be regular local of Krull dimension n, let hypotheses be as in the
first paragraph, and suppose thatdepthµR ≥ d. Then all of the modules TôrAj (M, N) are
finitely generated over R⊗̂AS, and one may compute them from a resolution P• of M by
finitely generated free R-modules as Hj(P•⊗̂AN). That is, TôrAj ( , N) is the j th left
derived functor LjF( ), where F( ) = ⊗̂AN . �

We now want to consider the situation where A is either a field K or a complete Noe-
therian discrete valuation domain V , where R = A[[x1, . . . , xn]], and S = A[[y1, . . . , ym]],
and m, n are the respective maximal ideals in R and S respectively. Let x = x1, . . . , xn
and y = y1, . . . , ym. It is then straightforward to verify that R⊗̂AS is A[[x, y]]. In fact,

R⊗A S/qs ∼= A[x, y]/(µ, x, y)s,

and so the inverse limit is A[[x, y]]. If A = K is field, both of the functors M⊗̂K and
⊗̂KN are exact, from the long exact sequence, since it is evident that all higher complete

Tor modules vanish.

If A = V is a Noetherian discrete valuation domain, then all TôrVj (M, N) vanish for
j ≥ 2: we have only TôrV1 (M, ,N) to be concerned about among the higher complete Tor
modules. Moreover, we also know that TôrV1 (M, N) = 0 if either M or N is torsion-free
over V .
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We want to use these ideas to reinterpret Tor modules over a complete regular local
ring as Koszul homology. In the equicharacteristic case this is relatively easy. Suppose
that R = S = K[[x1, . . . , xn]] and let

T = R⊗̂KS ∼= K[[x1, . . . , xn, y1, . . . , yn]],

where we are writing xj instead of xj⊗̂1 and yj instead of 1⊗̂xj . Notice that there is a
map T → R that is the identity on the images of R and S in T , and its kernel is the ideal
(x1− y1, . . . , xn− yn)T , which is generated by a regular sequence. We want to prove next
that if M and N are finitely generated R-modules then

TorRj (M, N) ∼= TorTj (M⊗̂KN, R)

where R = T/(x1 − y1, . . . , xn − yn)T . The ideal is generated by a regular sequence in T ,
and so the quotient R may be resolved using a Koszul complex. We shall consequently be
able to show that

TorRj (M, N) ∼= Hj(x1 − y1, . . . , xn − yn; M⊗̂KN).

From this, it will follow that if TorRj (M, N) = 0, then then TorRk (M, N) = 0 whenever
k ≥ j.

Math 615: Lecture of April 13, 2012

Suppose that we are interested in studying the intersection of two closed algebraic sets
X = V (I) and Y = V (J), both embedded in AnK over an algebraically closed field K.
Set-theoretically, X ∩ Y ∼= (X × Y ) ∩∆ where ∆ is the diagonal {(z, z) : z ∈ AnK}. The
idea of studying (X × Y )∩∆ instead of X ∩ Y directly is called reduction to the diagonal,
and it is useful in many forms of geometry.

Algebraically, let R = K[x1, . . . , xn] be the coordinate ring of AnK and T = R⊗K R =
K[x1, . . . , xn, y1, . . . , yn] where we think of xj as corresponding to xj ⊗ 1 and yj as
corresponding to 1 ⊗ yj . X ∩ Y has coordinate ring R/(I + J) (up to nilpotents, and
in the theory of schemes it is preferable to let the nilpotents stay, so to speak), and
R/I ⊗R R/J = R/(I + J). Therefore, heuristically, when one tensors two cyclic modules
one should think of intersecting corresponding varieties (or schemes). However, experience
has shown that information about the intersection is carried not only by the tensor product
itself but by all the Tor modules collectively. Moreover, since every finitely generated
module has a filtration by cyclic modules, it is reasonable to extend the analogy and think
of studying all the TorRj (M, N) as doing some sort of intersection theory (and, in fact,
the alternating sum of the classes [TorRj (M, N)], interpreted in a suitable Grothendieck
group, carries significant numerical information about the intersection). This suggests
that instead of studying the Tor modules directly, one might want to use reduction to the
diagonal. Algebraically, X × Y has coordinate ring K[X] ⊗K K[Y ] ∼= (R/I) ⊗K (R/J),
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and K[∆] may be identified with R thought of as a module over R⊗K R, where the map
R⊗K R� R sends r ⊗ s 7→ rs: the kernel is (x1 − y1, . . . , xn − yn), the defining ideal of
the diagonal ∆. Algebraically,

(R/I)⊗R (R/J) ∼=
(
(R/I)⊗K (R/J)

)
⊗T R

and, more generally,
M ⊗R N ∼= (M ⊗K N)⊗T R.

There is a corresponding fact about Tor, namely that for all j,

TorRj (M, N) ∼= TorTj (M ⊗K N, R),

which we won’t prove explicitly, although the proof is essentially the same as for the
complete local version that we will do explicitly in the sequel.

We next want to develop the machinery to study TorR• (M, N) over a complete regular
local ring R by the method of reduction to the diagonal. The method is very similar to
preceding discussion when R contains a field, except that the complete tensor product is
used instead of the ordinary tensor product. However, since we will also need correspond-
ing tools over a Noetherian discrete valuation domain V , we build the theory in greater
generality.

Therefore, let (A, µ) be a complete regular local ring and let R = A[[x1, . . . , xn]]. Let
M and N be finitely generated R-modules. Let P• and Q• be finite free resolutions of
M and N respectively by finitely generated free R-modules. Form the double complex
D•• = P•⊗̂AQ• and its total complex T•. Let T = R⊗̂AR and let K• be a free resolution
of

R = T/(x1 − y1, . . . , xn − yn)

as a T -module. We may use

K• = K•(x1 − y1, . . . , xn − yn; T ).

Note that each module occurring in D••, and, hence, also in T•, has the form Rs⊗̂ARt ∼=
(R⊗A R)st = T st. Thus, T is a free complex of T -modules. Since R⊗̂A and ⊗̂AR are
both exact, all rows and columns in D•• are exact except at the 0 spot. One gets a single
row of augmentations of columns and a single column of augmentations of rows. We know
that the homology of either one is TôrA• (M, N). We also know that this is the homology
of the total complex T . If A is a field K, all the higher complete Tor modules vanish, and
this tells us that T• is free resolution of M ⊗K N over T .

Also note that
(∗) (M⊗̂AN)⊗T R ∼= M ⊗R N

as functors of M and N . In one direction we have a bilinear map (u, v) 7→ (u⊗̂v)⊗1. Note
that (ru⊗̂v)⊗ 1 = (u⊗̂v)⊗ r = (u⊗̂rv)⊗ 1. Thus, we have a map

M ⊗R N → (M⊗̂AN)⊗R
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which is natural. The verification that this map is an isomorphism is straightforward,
since the map is easily checked to be an isomorphism for M1 ⊕M2 (respectively N1 ⊕N2)
iff it is an isomorphism for each summand separately, and to be an isomorphism when
M = N = R. It follows that it is an isomorphism when M and N are finitely generated
free modules. One can then do the case where M is free by taking a presentation of
N , and, finally, the general case by taking a presentation of M , in each instance using a
presentation by finitely generated free modules.

From the identification (∗) it follows readily that D••⊗T R ∼= P•⊗RQ•, and so T ⊗T R
is isomorphic with the total complex of P• ⊗R Q•.

We now specialize for the moment to the case where A = K is a field. Since the higher
Tôr modules all vanish over a field K, in this case T is a free resolution of M⊗̂KN over
T . Now,

TorT• (M⊗̂KN, R) ∼= H•(T ⊗T R)

and T ⊗T R is the same as the total complex of D•• ⊗T R, which is the total complex of
P• ⊗R Q•. Thus,

TorT• (M⊗̂KN, R) ∼= H•(T (P• ⊗R Q•) = TorR• (M, N),

the result we have been targeting for a while. We state this formally:

Theorem (reduction of Tor to the diagonal in the complete equicharacteristic
case). Let R = K[[x1, . . . , xn]], a formal power series ring over a field K, and let T =
R⊗̂KR ∼= K[[x1, . . . , xn, y1, . . . , yn]], where xj ∈ T corresponds to xj⊗̂1 and yj ∈ T to
1⊗̂xj. View R as a T -module via the continuous map T � R that sends r⊗̂s to rs, whose
kernel is (x1 − y1, . . . , xn − yn)T . Let M and N be finitely generated T -modules. Then
for all j,

TorRj (M, N) = TôrTj (M⊗̂KN, R) ∼= Hj(x1 − y1, . . . , xn − yn; M⊗̂KN),

since x1 − y1, . . . , xn − yn is a regular sequence in T . �

Although we have sketched the argument earlier, before all the tools for the proof were
available, we now give it more formally:

Theorem (M. Auslander). Let R be an equicharacteristic regular ring and let M and
N be finitely generated R-modules. If TorRi (M, N) = 0, then TorRj (M, N) = 0 for all
j ≥ i.

Proof. Suppose that one has a counterexample. If Torj(M, N) 6= 0 we may localize at
a prime in its support, and so obtain a counterexample over a regular local ring R. We
are using that calculation of Tor commutes with localization. We may likewise apply
R̂ ⊗R , using that R̂ is faithfully flat over R to get a counterexample over a complete
equicharacteristic regular ring. But then R ∼= K[[x1, . . . , xn]], a formal power series ring.
By reduction to the diagonal, as described in the preceding Theorem, we may consider
Hj(x1−y1, . . . , xn−yn; M⊗̂KN) instead, where Hi(x1−y1, . . . , xn−yn; M⊗̂KN) = 0.
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But we know the corresponding result for Koszul homology: see the second Corollary on
the first page of the Lecture Notes from February 20. �

We are aiming to prove the same result, which is sometimes referred to as the rigidity of
Tor over regular rings, without the assumption that the regular ring R is equicharacteristic.
This is quite a bit harder, and we will need to use more spectral sequence results.

We return to the study of reduction to the diagonal when R = A[[x1, . . . , xn]] and
(A,µ) is complete regular local. If P• and Q• are free resolutions of the finitely generated
R-modules M and N respectively by finitely generated free R-modules, we still know that
D•• = P•⊗̂AQ• is a double complex consisting of finitely generated free T -modules, where
T = R⊗̂AR, and that the homology of its total complex T• is TôrA• (M, N). We view R
as a T -module as before, so that the kernel of T � R is (x1 − y1, . . . , xn − yn). Let
K• be a free resolution of R over T : in fact, we may take K• to be the Koszul complex
K•(x1 − y1, . . . , xn − yn; T ). We want to consider the spectral sequences associated with
double complex T• ⊗T K•, in which a typical term is Tq ⊗T Kp. If we take the homology
of the column obtained by fixing Tq, we get a nonzero result only in the 0 spot, namely,
Tq ⊗T R, which may be identified with the total complex of P• ⊗R Q•. Therefore, if we
take the homology of this single nonzero row of column augmentations, we see that the
homology of the total complex of T• ⊗R K• is simply TorR• (M, N). On the other hand, if
we fix the row indexed by p and take homology we get TôrA• (M, N)⊗T Kp. Thus, the E2

term of the spectral sequence for HIHII is TorTp (TôrAq (M, N), R), and we have

TorTp (TôrAq (M, N), R) =⇒
p

TorRp+q(M, N).

This is sometimes referred to as the spectral sequence of reduction to the diagonal. When
A = K is a field, we get nonzero terms in E2 only if q = 0, and we recover the result that we
derived earlier for the field case. The only other instance of this spectral sequence that we
need to study in detail is the case where A = V , a Noetherian discrete valuation domain.
Now, there are only two nonzero rows, corresponding to q = 0 and q = 1. We shall show
that whenever the E2 term of the spectral sequence of a double complex with filtration
index p has nonzero terms only for q = 0, 1, the information given by the spectral sequence
can be encoded in a long exact sequence. We are considering here the homological case,
and so dr : E2

p,q → E2
p−r,q+r−1. We shall work this out in complete generality.

We have that dr = 0 for r ≥ 3, since, of any two terms indexed by values of q that differ
by 2 or more, at least one is 0. Thus, the E∞ term, which is an associated graded of the
homology of the total complex T•, is the same as the E3 term, and there are only two q
indices to worry about, 0 and 1. In particular, we have

E∞p,0 = E3
p,0 = Ker (E2

p,0 → E2
p−2,1)

since Im (Ep+2,−1) = Im (0) = 0, and

E∞p,1 = E3
p,1 = Ker (E2

p,1 → E2
p−2,2)/Im (E2

p+2,0) = E2
p,1/Im (E2

p+2,0)
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since E2
p−2,2 = 0. Thus, the associated graded of Hj(T•) has only two graded pieces that

might not be zero: one is the cokernel of E2
p+2,0 → E2

p,1 for p = j − 1, which will be a
submodule of Hj(T•), so that

E2
j+1,0 → E2

j−1,1 → Hj(T•)

is exact, and the other, which will be quotient of Hj(T•) by by the image of E2
j−1,1, is

Ker (E2
j,0 → E2

j−2,1).

This fits together to give an exact sequence

E2
j+1,0 → E2

j−1,1 → Hj(T•)→ E2
j,0 → E2

j−2,1

and these obviously paste together to give a long exact sequence:

· · · → E2
j−1,1 → Hj(T•)→ E2

j,0 → E2
j−2,1 → · · ·

where we may think of the leftmost three terms as a “typical” trio, and the rightmost term
as the first term of the “next” trio.

We now make the resulting long exact sequence explicit in the case of the spectral
sequence for reduction to the diagonal for the case where A = V , a complete Noetherian
discrete valuation domain. The long exact sequence is:

· · · → TorTj−1(TôrV1 (M, N), R)→ Torj(M, N)→ TorTj (M⊗̂VN, V )

→ TorTj−2(TôrV1 (M, N), R)→ · · ·

Math 615: Lecture of April 16, 2012

Let R→ S be a ring homomorphism, let M be an R-module and let N be an S-module.
Let P• be a projective resolution of M over R and let Q• be a projective resolution of
N over S. We consider the spectral sequences of the double complex P• ⊗R Q•. The
homology of the column indexed by q is zero except in the zero spot, and so one gets a
single row of column augmentations P• ⊗R N whose homology is TorR• (M, N), and this
is also the homology of the total complex. The homology of the row indexed by p may
be identified with TorR• (M,Qp) ∼= TorR• (M,S)⊗S Qp, and then the homology of columns
is TorSp (TorRq (M, S), N) and we have TorSp (TorRq (M, S), N) =⇒

p
TorRp+q(M, N). This is

called the spectral sequence for change of rings for Tor.

Now suppose that S is R/fR where f is not a zerodivisor in R. Then TorRq (M, S) =
0 except for q = 0, 1. Moreover, TorR0 (M,R/fR) = M ⊗R R/fR ∼= M/fM , while
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TorR1 (M, R/fR) ∼= AnnMf . The spectral sequence degenerates to give a long exact se-
quence:

· · · → TorSj−1(AnnMf, N)→ TorRj (M, N)→ TorSj (M/fM, N)

→ TorRj−2(AnnMf, N)→ · · ·

Here, M is an R-module while N is an R/fR-module.

Suppose that x1, . . . , xn ∈ R and M is an R-module. Let A be any ring that maps to
R such as Z or R and let B = A[X1, . . . , Xn]. Make R into a B-algebra via the A-algebra
map that sends Xj to xj for all j. Let N = B/(X1, . . . , Xn). Let B play the role of
R in the long exact sequence of the preceding paragraph, and Xn the role of f , so that
S = A[X1, . . . , Xn−1]. (We had to pass to the auxiliary ring B because xn might not be a
nonzerodivisor in R.) Note that when N is considered as a module over B, a Tor module
with N over B may be calculated as Koszul homology with respect to X1, . . . , Xn, but if
N is regarded as a module over S = B/XnB, a Tor module over with N over S may be
calculated as Koszul homology with respect to X1, . . . , Xn−1. The long exact sequence
above yields at once:

Proposition. Let M be any R-module, and x = x1, . . . , xn ∈ R. Then there is a long
exact sequence:

· · · → Hj−1(x1, . . . , xn−1; AnnMxn)→ Hj(x; M)→ Hj(x1, . . . , xn−1; M/xnM)

→ Hj−2(x1, . . . , xn−1; AnnMxn)→ · · · .

Recall that over a local ring (R, m, K), if x = x1, . . . , xn ∈ m, then χ(x1, . . . , xn; M)
is defined whenever `

(
M/(x)M

)
is finite, i.e., whenever AnnRM + (x)R is m-primary, in

which case

χ(x; M) =
n∑
j=0

(−1)n`
(
Hj(x; M)

)
.

Immediately from the long exact sequence in the Proposition, we get:

Corollary. Let M be a finitely generated module over a local ring (R, m), and let x =
x1, . . . , xn ∈ m. Then

χ(x; M) = χ(x1, . . . , xn−1;M/xnM)− χ(x1, . . . , xn−1; AnnMxn)

when these are defined.

We can define truncated Euler characteristics as well. If x = x1, . . . , xn and all of the
modules Hj(x; M) are finite length for j ≥ i, we can let

χi(x; M) =
n∑
j=i

(−1)j−i`
(
Hj(x; M)

)
.
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Note that χ0(x; M) = χ(x; M) and that

χ1(x; M) = `
(
M/(x)M

)
− χ(x; M)

whenever these are defined.

We already know the following result following the proof of Serre (cf. the proof of the
Theorem on p. 2 of the Lecture Notes of March 14), but we give a new proof based on
Lichtenbaum’s ideas.

Theorem (J.-P. Serre). Let M be finitely generated over a local ring (R, m, K) and
let x1, . . . , xn ∈ m. If M/(x)M has finite length, then χ(x;M) ≥ 0 with equality iff
dim (M) < n.

Proof. (S. Lichtenbaum) Note that this is true even if n = 0, where x is empty and
(x)R = 0: we interpret H0(∅; M) as M/(0)M ∼= M , and so χ(∅; M) = `(M) ≥ 0, and is 0
iff M = 0, i.e., iff dim (M) = −1 < 0.

We use induction on n. If n ≥ 1 and xn is nilpotent on M then xtn kills M for some t, and
then M has a finite filtration by modules xinM/xi+1

n M for 0 ≤ i < t, each of which is killed
by xn. It suffices to prove that each of these has dimension at most n−1, and that χ(x; )
vanishes for every factor, for χ(x; ) is additive. Thus, this case reduces to the case where
xn kills M . Then dim (M) = dim (R/I) where I = AnnRM , and the image of xn is already
0 in this ring. Since M/(x)M has finite length, (x1, . . . , xn)(R/I) = (x1, . . . , xn−1)R/I
is primary to m/I, which shows that dim (R/I) ≤ n− 1, as required. Moreover, when xn
kills M , we have from the preceding Corollary that, if x− = x1, . . . , xn−1, then

χ(x;M) = χ(x−; M/xnM)− χ(x−,AnnMxn) = χ(x−; M)− χ(x−; M) = 0.

In the general case, let N =
⋃
t AnnMxtn: the union stabilizes, and is equal to AnnMxtn

for any t� 0, so that N is killed by a power of xn. Since χ(x; M) = χ(x; M/N)+χ(x; N),
and we know that the last term is 0 by the preceding paragraph, and it follows that we
may replace M by M/N (note that we know dim (N) ≤ n− 1, and so the issue of whether
dim (M) ≤ n − 1 is also unaffected by this replacement). But xn is not a zerodivisor on
M/N : if u ∈ M represents an element killed by xn and xtn kills N , then xtn(xnu) = 0,
which implies that u ∈ N . Thus, we may assume without loss of generality that xn is not a
zerodivisor on M . But then χ(x; M) = χ(x1, . . . , xn−1; M/xnM), and the result follows
from the induction hypothesis. �

We next want to prove a subtle result about the behavior of truncated Euler character-
istics of Koszul homology. We need a preliminary result, which generalizes 2. in Problem
Set #4.

Lemma. Let (R, m, K) be a local ring and M a finitely generated R-module of depth ≥ d.
Then M has no nonzero submodule N of dimension < d.

Proof. We use induction on d. If d = 0 the statement is clear. Assume that d ≥ 1.
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If there were such a submodule there would be a maximal such submodule, since M
has ACC. Let N be maximal, and let N ′ be any other submodule of M of dimension < d.
Then N ⊕ N ′ maps onto N + N ′ ⊆ M , and so N ⊆ N + N ′ and N + N ′ has dimension
< d. It follows that N ′ ⊆ N , and N is actually a largest submodule of M of dimension
≤ d. Let J = AnnRN . Let x1, . . . , xd be a regular sequence on M . Then x1 is not a
zerodivisor on M , and, hence, not a zerodivisor on N ⊆M .

We claim that x1 is not a zerodivisor on M/N . To see this, suppose that u ∈ M −N
were such that x1u ∈ N . Then Jx1u = 0, and since x1 is not a zerodivisor, we have that
Ju = 0 as well. Then dim (N) = dim (R/J) ≥ dim (Ru), and it follows that u ∈ N after
all.

ThenN/x1N injects intoM/x1M , for if v ∈ N represents an element ofN/x1N mapping
to 0, we have that v = x1u with u ∈ M , and since x1u is 0 in M/N , u ∈ N . But
depthM/x1M ≥ d− 1, while dim (N/x1N) = dim (N)− 1 ≤ d− 2 and N/x1N is nonzero
by Nakayama’s lemma, contradicting the induction hypothesis. �

We note for emphasis that in the result that follows we are assuming that the modules
Hj(x; M) have finite length for j ≥ i ≥ 1: but that we do not, however, need to assume
this for j < i. Also note that if Hi(x; M) has finite length, where M is Noetherian, then
Hj(x; M) has finite length for all j ≥ i: if we localize at a prime not in the support of
Hi(x; M), it vanishes, and then the localization of Hj(x; M) vanishes for all j ≥ i as well.
Thus, supports of Koszul homology modules are descending with i. For a finitely generated
module, finite length is characterized by the condition that the support be a finite set of
maximal ideals (in the local case, that the support be at most the unique maximal ideal).

Theorem. If (R,m) is local, x1, . . . , xn ∈M , and χi(x; M) is defined for a certain i ≥ 1,
then χi(x; M) ≥ 0, with equality iff Hj(x; M) = 0 for all j ≥ i.

Proof. If i > 1 we want to reduce to the case where i = 1 by taking modules of syzygies:
the problem is that we do not necessarily know that x1, . . . , xn is a regular sequence in R.
However, we may adjoin indeterminates X1, . . . , Xn to R and map S = R[X1, . . . , Xn]→
R by sending Xj 7→ xj , 1 ≤ j ≤ n. The maximal ideal m of R contracts to M =
(m,X1, . . . , Xn)S, a maximal ideal of S, and we have a local map SM → R such that
Xj 7→ xj , 1 ≤ j ≤ n. The Koszul homology H•(X1, . . . , Xn; M) is the same as the Koszul
homology H•(x1, . . . , xn; M), and so the problem does not change if we replace R by S,
and think of M as a module over the local ring S.

We may therefore assume without loss of generality that x1, . . . , xn is a regular sequence
in R. We use induction on i to reduce to the case where i = 1. If i > 1, we may form a
short exact sequence 0 → M ′ → Rb → M → 0 for a suitable positive integer b, and since
x1, . . . , xn is a regular sequence in R, we have that Hj(x; Rb) = 0 for all j ≥ 1. The long
exact sequence for Koszul homology then implies that

Hj(x; M) ∼= Hj−1(x; M ′)

for j ≥ 2, and by studying M ′ instead of M we reduce to the case where i is replaced by
i− 1.
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It remains to prove the result when i = 1. We use induction on n. The case n ≤ 1
is obvious, and we assume that n ≥ 2. We write −x = x2, . . . , xn. From the long
exact sequence for change of rings for Tor we have a finite long exact sequence for Koszul
homology which has the following form (with x1 now playing the role of xn):

0→ Hn−1(−x; AnnMx1)→ Hn(x; M)→ Hn(−x; M/x1M)→ · · · →

Hj−1(−x; AnnMx1)→ Hj(x; M)→ Hj(−x; M/x1M)→ Hj−2(−x; AnnMx1)

→ · · · → H0(−x; AnnMx1)→ H1(x; M)→ H1(−x;M/x1M)→ 0

where the final (i.e., rightmost) 0 displayed is H−1(−x; AnnMx1) = 0. The first three
terms of the middle displayed line are a typical trio of terms. We know that H1(x; M)
has finite length. We claim that all the other modules in this sequence have finite length:
the point is that if we localize at any prime ideal P strictly contained in M , all terms
vanish. To see this, note that since H1(x; M)P vanishes, either the images of x1, . . . , xn
in RP generate the unit ideal, or else the images form a regular sequence in RP . All of the
modules in the sequence are killed by x1 and by (x2, . . . , xn), and so vanish if (x1, . . . , xn)
expands to the unit ideal. On the other hand, if x1, . . . , xn is a regular sequence in RP
then AnnMx1 localizes to become 0, and it is evident that all terms vanish because the
images of x2, . . . , xn are a regular sequence on the localization of M/x1M . Since all terms
have finite length, we may take the alternating sum of the lengths to conclude that

(#) χ1(x; M) = χ1(x2, . . . , xn; M/x1M) + χ(x2, . . . , xn; AnnMx1).

The first term is nonnegative by the induction hypothesis and the second by the Theorem
on p. 2. This shows that χ1(x; M) ≥ 0.

It remains only to show that if χ1(x; M) = 0 then x1, . . . , xn is a regular sequence on
M . But the vanishing of χ1(x; M) implies that both terms in the sum on the right in (#)
vanish. The induction hypothesis and the vanishing of the first of the two terms shows that
x2, . . . , xn is a regular sequence on M/x1M , which has depth ≥ n−1 in consequence. The
vanishing of the second term shows that dim (AnnMx1) ≤ n− 2, again by the Theorem on
p. 2.

Let x = x1. Let W = AnnMx. We only need to show that W = 0. Assume that
W 6= 0, and choose s such that W ⊆ xs−1M but W 6⊆ xsM : with W 6= 0, we cannot have
W ⊆ xsM for all s. We claim that M/xM ∼= xjM/xj+1M for j ≤ s− 1 via the map that
sends the class of u to the class of xju. This evidently gives a well-defined map M � xjM
that maps xM to xj+1M . Thus, we have a surjection M/xM � xjM/xj+1M . We show
that the map is injective by induction on j: the case where j = 0 is obvious. If u represents
an element of the kernel, then xju = xj+1v with v ∈M . Then x(xj−1u−xjv) = 0, so that
xj−1u− xjv ∈W ⊆ xjM , and so xj−1u ∈ xjM . This shows that the class of u in M/xM
maps to 0 in M/xj−1M , and now the induction hypothesis shows that u ∈ xM .

Thus, we have M/xM ∼= xs−1/xsM , and so the second module has depth at least
n − 1. But the image of W in xs−1M/xsM is nonzero, since W 6⊆ xsM , and this gives
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a submodule of xs−1M/xsM that has dimension ≤ n − 2, contradicting the preceding
Lemma. �

Math 615: Supplementary Lecture of April 18, 2012

If M and N are finitely generated modules over a Noetherian regular ring R, we can
define χi(M, N) whenever TorRj (M, N) has finite length for j ≥ i as∑

j≥i

(−1)j−i`
(
TorRj (M, N)

)
.

If it is necessary to indicate over which ring we are calculating χi(M, N), we use the ring
as a superscript, and write χRi (M, N).

The sum will be finite, since over a regular ring, every finitely generated module has
finite projective dimension, and all the Tor modules will vanish for j > pdRM (and for
j > pdR(N)). For χ0(M, N) one writes instead χ(M, N): this was defined in the local
case in the first Extra Credit Problem in Problem Set #5: it is the Serre intersection
multiplicity. We are almost ready to prove that if TorRi (M, N) = 0 over the regular ring
R, then TorRj (M, N) = 0 for all j ≥ i. We first need to observe:

Corollary (S. Lichtenbaum). Let R be a regular local ring whose completion is isomor-
phic with a formal power series ring over a field K or over a complete Noetherian discrete
valuation domain (V, zV ). Let M and N be finitely generated R-modules. Suppose that
i ≥ 1 and that either
(1) the base ring is a field or
(2) the base ring is a Noetherian discrete valuation domain and z is not a zerodivisor on

M (or on N) or
(3) i ≥ 2.

Then TorRi (M, N) = 0 implies that Torj(M, N) ≥ 0 for j ≥ i, and if χi(M, N) is
defined it is nonnegative and vanishes iff TorRj (M, N) = 0 for j ≥ i.

Proof. Note that (3) follows from (2) by replacing M by a module of syzygies M ′, and
using that TorRj (M, N) ∼= TorRj−1(M, N) for j ≥ 2. Note that M ′ is torsion-free over V ,
since it is a submodule of a free module.

In cases (1) and (2)
TorRj (M, N) ∼= TorTj (M⊗̂N, R).

We have already seen this if the base is K. In case (2), when the base is V , the fact that
z is not a zerodivisor on M , say, implies that TôrVj (M, N) = 0 for j ≥ 1, by the Theorem
on the first page of the Lecture Notes of April 11. The long exact sequence that concludes
the Lecture Notes of April 13 gives the required isomorphisms at once.

We can now rewrite the Tors as Koszul homology, and the result is immediate from our
prior results on Koszul homology: in particular, the last statement follows from the final
Theorem of the Lecture Notes of April 16. �
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The restriction that i ≥ 2 was removed independently by O. Gabber, unpublished,
and in [M. Hochster, Euler characteristics over unramified regular local rings, Illinois J.
Math. 28 (1984) 281–5] making additional use of the spectral sequence of reduction to the
diagonal over V .

Theorem (S. Lichtenbaum). Let R be a regular Noetherian ring and let M and N be
finitely generated R-modules. If Tori(M, N) = 0 then TorRj (M, N) = 0 for all j ≥ i.

Moreover, if j ≥ i then Supp
(
TorRj (M, N)

)
⊆ Supp

(
TorRi (M, N)

)
and if TorRi (M, N)

has finite length then so does TorRj (M, N).

Proof. The final statements are immediate from the first statement and the fact that Tor
commutes with localization, so that we need only prove the first statement.

If i > 1 we may reduce to the case i = 1 by repeatedly replacing M by its first module
of syzygies: i decreases by 1 with each such replacement. Therefore, we may assume that
i = 1. If there is a counterexample we may localize at a prime in the support of TorRj (M, N)
for j > 1. Thus, we may assume that R is local, say of Krull dimension d. Now localize
at a minimal prime of the support of

⊕d
j=2 TorRj (M, N). We may consequently assume

that R is regular local, that TorR1 (M, N) = 0, that some TorRj (M, N) 6= 0 for j > 1, but
that all TorRj (M, N) have finite length for j > 1. Since R̂ is faithfully flat over R, we may
apply R̂⊗R , and so assume that R is complete as well.

We already know the case where R contains a field. In general, in the case where R does
not contain a field, we may assume from the structure theory of complete regular local
rings that R = T/fT , where T is formal power series over a Noetherian discrete valuation
domain: see the Theorem at the top of p. 2 of the Lecture Notes of April 9. The long
exact sequence for change of rings for Tor yields

· · · → TorRj−1(M, N)→ TorTj (M, N)→ TorRj (M, N)→ TorRj−2(M, N)→

· · · → TorR1 (M, N)→ TorT2 (M, N)→ TorR2 (M, N)→W → 0

where W is the image of TorR2 (M, N) in TorR0 (M, N) = M ⊗R N . All the TorTj (M, N)
for j ≥ 2 have finite length, since each is both preceded and followed in the exact sequence
above by a value of TorRi (M, N) of finite length. The alternating sum of the lengths of
the terms is 0, and this yields

`(W ) + χT2 (M,N) = χR2 (M, N) + χR1 (M, N)

But almost all of the terms in χR2 (M, N) + χR1 (M, N) cancel, leaving `
(
TorR1 (M, N)

)
=

0. Therefore `(W ) = 0 + χT2 (M,N) = 0, and by part (3) of the preceding Corollary,
χT2 (M, N) ≥ 0. It follows that W = 0, and that χT2 (M,N) = 0. Again, by part (3) of
the preceding Corollary we have that TorTj (M, N) = 0 for all j ≥ 2. From the long exact
sequence, we have that TorR2 (M,N) = 0, and we also get TorRj (M, N) ∼= TorRj−2(M, N)
for j ≥ 3. It follows that all of the modules TorRj (M, N) = 0 for j ≥ 1, as required, �


