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Lecture of January 9, 2019

These lectures will deal with several advanced topics in commutative algebra, includ-
ing the Lipman-Sathaye Jacobian theorem and its applications, including, especially, the
Briançon-Skoda theorem, and the existence of test elements in tight closure theory: basic
tight closure theory will be developed as needed. In turn, tight closure theory will be
used to prove theorems related to the Briançon-Skoda theorem. Moreover, intersection
multiplicities, Hilbert-Samuel multiplicities of local rings, Hilbert-Kunz multiplicities, and
other notions will be studied, and interactions with the theory of integral closure of ideals
will be developed.

A special (but very important) case of the Lipman-Sathaye theorem is as follows:

Theorem (Lipman-Sathaye). Let R ⊆ S be a homomorphism of Noetherian domains
such that R is regular and S is a localization of a finitely generated R-algebra. Assume
that the integral closure S′ of S is module-finite over S and that the extension of fraction
fields frac (S)/frac (R) is a finite separable algebraic extension. Then the Jacobian ideal
JS/R multiplies S′ into S.

Both the Jacobian ideal and the notion of integral closure will be treated at length
below. We shall also prove a considerably sharper version of the theorem, in which several
of the hypotheses are weakened. An algebra S that is a localization of a finitely generated
R-algebra is called essentially of finite type over R. The hypothesis that the integral closure
of S is module-finite over S is a weak assumption: it holds whenever S is essentially of finite
type over a field or over a complete local ring, and it tends to hold for the vast majority of
rings that arise naturally: most of the rings that come up are excellent, a technical notion
that implies that the integral closure is module-finite.

While the Briançon-Skoda theorem can be proved in equal characteristic by the method
of reduction to characteristic p > 0, where tight closure methods may be used, the only
known proof in mixed characteristic uses the Lipman-Sathaye theorem. Another applica-
tion is to the calculation of the integral closure of a ring, while a third is to the construction
of test elements for tight closure theory. Our emphasis is definitely on the Briançon-Skoda
theorem which, in one of its simplest forms, may be formulated as just below. We shall
denote by J the integral closure of the ideal J : integral closure of ideals will be discussed
in detail in the sequel.
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Theorem (Briançon-Skoda). If I is an ideal of a regular ring and is generated by n
elements, then In ⊆ I.

Before beginning our discussion of integral closure, we mention two corollaries of the
Briançon-Skoda theorem that are of some interest. First:

Corollary. Suppose that f ∈ C{z1, . . . , zn} is a convergent power series in n variables
with complex coefficients that defines a hypersurface with an isolated singularity at the
origin, i.e., f and its partial derivatives ∂f/∂zi, 1 ≤ i ≤ n, have an isolated common zero
at the origin. Then fn is in the ideal generated by the partial derivatives of f in the ring
C{z1, . . . , zn}.

This answers affirmatively a question raised by John Mather. Second:

Corollary. Let f1, . . . , fn+1 be polynomials in n variables over a field. Then fn1 · · · fnn ∈
(fn+1

1 , . . . , fn+1
n+1 ).

For example, when n = 2 this implies that if f, g, h ∈ K[x, y] are polynomials in two
variables over a field K then f2g2h2 ∈ (f3, g3, h3). This statement is rather elementary:
the reader is challenged to prove it by elementary means.

We shall need to develop the subject a bit before we can see why these are corollaries:
we postpone the explanation for the moment.

In these notes all given rings are assumed to be commutative, associative, and to have a
multiplicative identity 1, unless otherwise stated. Most often given rings will be assumed
to be Noetherian as well, but we postpone making this a blanket assumption.

Our next objective is to review some facts about integral elements and integral ring
extensions.

Recall that if R ⊆ S are rings then s ∈ S is integral over R if, equivalently, either

(1) s satsifies a monic polynomial with coefficients in R or

(2) R[s] is finitely generated as an R-module.

The elements of S integral over R form a subring of S containing R, which is called the
integral closure of R in S. If S is an R-algebra, S is called integral over R if every element is
integral over the image of R in S. S is called module-finite over R if it is finitely generated
as an R-module. If S is module-finite over R it is integral over R. S is module-finite over
R if and only if it is finitely generated as an R-algebra and integral over R. S is integral
over R if and only if every finitely generated R-subalgebra is module-finite over R.

Given a commutative diagram of algebras

S
f−−−−→ Ux x

R −−−−→ T
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and an element s ∈ S integral over the image of R, the image of S in U is integral over
the image of T . One can see this simply by applying the homomorphism f to the monic
equation s satisfies. When the vertical maps are inclusions, we see that the integral closure
of R in S maps into the integral closure of T in U .

Note also that if R→ S and S → T are both module-finite (respectively, integral) then
R→ T is also module-finite (respectively, integral).

The total quotient ring of the ring R is W−1R, where W is the multiplicative system of
all nonzerodivisors. We have an injection R ↪→W−1R. If R is a domain, its total quotient
ring is its field of fractions. If R is reduced, R is called normal or integrally closed if it is
integrally closed in its total quotient ring. Thus, a domain R is integrally closed if and
only if every fraction that is integral over R is in R.

Let (H, +) be an additive commutative semigroup with additive identity 0. A commu-
tative ring R is said to be H-graded if it has a direct sum decomposition

R ∼=
⊕
h∈H

Rh

as abelian groups such that 1 ∈ R0 and for all h, k ∈ H, RhRk ⊆ Rh+k. Elements of
Rh are then called homogeneous elements or forms of degree h. If s is the sum of nonzero
forms s1 + · · ·+ sn of mutually distinct degrees hi, then si ∈ Rhi is called the homogenous
component of s of degree hi. The homogeneous components in other degrees are defined
to be 0. The most frequent choices for H are the nonnegative integers N and the integers
Z.

Theorem. Let R ⊆ S be an inclusion of N-graded (or Z-graded) rings compatible with
the gradings, i.e., such that Rh ⊆ Sh for all h. Then the integral closure of R in S is also
compatibly graded, i.e., every homogeneous component of an element of S integral over R
is integral over R.

Proof. First suppose that R has infinitely many units of degree 0 such that the difference
of any two is a unit. Each unit u induces an endomorphism θu of R whose action on forms
of degree d is multiplication by ud. Then θuθv = θuv, and θu is an automorphism whose
inverse is θu−1 . These automorphisms are defined compatibly on both R and S: one has a
commutative diagrams

S
θu−−−−→ Sx x

R −−−−→
θu

S

for every choice of unit u. If s ∈ S is integral over R, one may apply θu to the equation of
integral dependence to obtain an equation of integral dependence for θu(s) over R. Thus,
θu stabilizes the integral closure T of R in S. (This is likewise true for θu−1 , from which
one deduces that θu is an automorphism of T , but we do not really need this.)
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Suppose we write
s = sh+1 + · · ·+ sh+n

for the decomposition into homogeneous components of an element s ∈ S that is integral
over R, where each sj has degree j. What we need to show is that each sj is integral over
R. Choose units u1, . . . , un such that for all h 6= k, uh − uk is a unit — we are assuming
that these exist. Letting the θui act, we obtain n equations

uh+1
i sh+1 + · · ·+ uh+n

i sh+n = ti, 1 ≤ j ≤ n,

where ti ∈ T . Let M be the n × n matrix
(
uh+j
i

)
. Let V be the n × 1 column vector sh+1

...
sh+n

 and let W be the n × 1 column vector

 t1
...
tn

. In matrix form, the displayed

equations are equivalent to MV = W . To complete this part of the argument, it will suffice
to show that the matrix M is invertible over R, for then V = M−1W will have entries
in T , as required. We can factor uh+1

i from the i th row for every i: since all the ui are

units, this does not affect invertibility and produces the Van der Monde matrix
(
uj−1
i

)
.

The determinant of this matrix is the product∏
j>i

(uj − ui)

(see the Discussion below), which is invertible because every uj − ui is a unit.

In the general case, suppose that

s = sh+1 + · · ·+ sh+n

as above is integral over R. Let t be an indeterminate over R and S. We can give this
indeterminate degree 0, so that R[t] = R0[t] ⊗R0

R is again a graded ring, now with 0 th
graded piece R0[t], and similarly S[t] is compatibly graded with 0 th graded piece S0[t]. Let
U ⊆ R0[t] be the multiplicative system consisting of products of powers of t and differences
tj − ti, where j > i ≥ 0. Note that U consists entirely of monic polynomials. Since all
elements of U have degree 0, we have an inclusion of graded rings U−1R[t] ⊆ U−1S[t]. In
U−1R[t], the powers of t constitute infinitely many units of degree 0, and the difference
of any two distinct powers is a unit. We may therefore conclude that every sj is integral
over U−1R[t], by the case already done. We need to show sj is integral over R itself.

Consider an equation of integral dependence

sdj + f1s
d−1
j + · · ·+ fd = 0,

where every fi ∈ U−1R[t]. Then we can pick an element G ∈ U that clears denominators,
so that every Gfi = Fi ∈ R[t], and we get an equation

Gsdj + F1s
d−1
j + · · ·+ Fd = 0.
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Let G have degree m, and recall that G is monic in t. The coefficient of tm on the left hand
side, which is an element of S, must be 0, and so its degree jd homogeneous component
must be 0. The contribution to the degree jd component of this coefficient from Gsdj is,

evidently, sdj , while the contribution from Fis
d−i
j clearly has the form ris

d−i
j , where ri ∈ R

has degree ji. This yields the equation

sdj + r1s
d−1
j + · · ·+ rd = 0,

and so sj is integral over R, as required. �

Discussion: Van der Monde matrices. Let u1, . . . , un be elements of a commutative
ring. Let M be the n× n matrix

(
uj−1
i

)
.

(a) We want to show that the determinant of M is
∏
j>i(uj − ui). Hence, M is invertible

if uj − ui is a unit for j > i. It suffices to prove the first statement when the ui are
indeterminates over Z. Call the determinant D. If we set uj = ui, then D vanishes
because two rows become equal. Thus, uj − ui divides D in Z[u1, . . . , un]. Since the
polynomial ring is a UFD and these are relatively prime in pairs, the product P of the
uj − ui divides D. But they both have degree 1 + 2 + · · · + n − 1. Hence, D = aP for
some integer a. The monomial x2x

2
3 · · ·xn−1

n obtained from the main diagonal of matrix
in taking the determinant occurs with coefficient 1 in both P and D, so that a = 1. �

(b) We can also show the invertibility of M as follows: if the determinant is not a unit,
it is contained in a maximal ideal. We can kill the maximal ideal. We may therefore
assume that the ring is a field K, and the ui are mutually distinct elements of this field.
If the matrix is not invertible, there a nontrivial relation on the columns with coefficients
c0, . . . , cn−1 in the field. This implies that the nonzero polynomial

cn−1x
n−1 + · · ·+ c1x+ c0

has n distinct roots, u1, . . . , un, in the field K, a contradiction. �

Lecture of January 11, 2019

Corollary. If a R is integrally closed in S, then R[t] is integrally closed in S[t]. If R is
a normal domain, then R[t] is normal.

Proof. The integral closure ofR[t] in S[t] will be graded and so spanned by integral elements
of S[t] of the form stk, where s is homogenous. Take an equation of integral dependence
for stk of degree, say, n on R[t]. The coefficient of tkn is 0, and this gives an equation of
integral dependence for s on R. For the second part, R[t] is integrallly closed in K[t], where
K = frac (R), and K[t] is integrally closed in K(t) = frac (R[t]) since K[t] is a UFD. �

We next want to discuss integral closure of ideals.

Let R be any ring and let I be an ideal of R. We define an element u of R to be integral
over I or to be in the integral closure I of I if it satisfies a monic polynomial f(z) of
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degree n with the property that the coefficient of zn−t is in It, 1 ≤ t ≤ n. We shall use the
temporary terminology that such a monic polynomial is I-special . Note that the product
of two I-special polynomials is I-special, and hence any power of an I-special polynomial
is I-special.

Let t be an indeterminate over R and let R[It] denote the subring of the polynomial
ring R[t] generated by the elements it for i ∈ I. This ring is called the Rees ring of I. It
is N-graded, with the grading inherited from R[t], so that the k th graded piece is Itk.

It follows easily that the integral closure of R[It] in R[t] has the form

R+ J1t+ J2t
2 + · · ·+ Jkt

k + · · ·

where, since this is an R-algebra, each Jk is an ideal of R. We note that with this notation,
J1 = I. To see this, note that if rt, where r ∈ R is integral over R[It], satisfying an equation
of degree n, then by taking homogeneous components of the various terms we may find an
equation of integral dependence in which all terms are homogeneous of degree n. Dividing
though by tn then yields an equation of integral dependence for r on I. This argument
is reversible. (Exercise: in this situation, show that Jk is the integral closure of Ik.) We
note several basic facts about integral closures of ideals that follow easily either from the
definition or this discussion.

Proposition. Let I be an ideal of R and let u ∈ R.

(a) The integral closure of I in R is an ideal containing I, and the integral closure of I is
I.

(b) If h : R → S is a ring homomorphism and u is integral over I then h(u) is integral
over IS. If J is an integrally closed ideal of S then the contraction of J to R is
integrally closed.

(c) u is integral over I if and only if its image modulo the ideal N of nilpotent elements
is integral over I(R/N). In particular, the integral closure of (0) is N .

(d) The element u is integral over I if and only if for every minimal prime P of R, the
image of u modulo P is integral over I(R/P ).

(e) Every prime ideal of R and, more generally, every radical ideal of R is integrally
closed.

(f) An intersection of integrally closed ideals is integrally closed.

(g) In a normal domain, a principal ideal is integrally closed.

(h) If S is an integral extension of R then IS ∩R = I.

Proof. That I ⊆ I is obvious. If r is in the integral closure of I then rt is integral over
R[It]. But this ring is generated over R[It] by the elements r1t such that r1 ∈ I, i.e., such
that r1t is integral over R[It]. It follows that R[It] is integral over R[It], and then rt is
integral over R[It] by the transitivity of integral dependence. This proves (a).
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The first statement in (b) is immediate from the definition of integral dependence: apply
the ring homomorphism to the equation of integral dependence. The second statement in
(b) is essentially the contrapositive of the first statement.

The “only if” part of (c) follows from (b) applied with S = R/N . The “if” part follows
from (d), and so it will suffice to prove (d).

The “only if” part of (d) likewise follows from (b). To prove the “if” part note that the
values of I-special polynomials on u form a multiplicative system: hence, if none of them
vanishes, we can choose a minimal prime P of R disjoint from this multiplicative system,
and then no I(R/P )-special polynomial vanishes on the image of u in R/P .

(e) follows from the second statement in (c) coupled with the second statement in (b),
while (f) is immediate from the definition. To prove (g), suppose that b is an element of
R and a ∈ bR. If b = 0 it follows that a = 0 and we are done. Otherwise, we may divide
a degree n equation of integral dependence for a on bR by bn to obtain an equation of
integral dependence for a/b on R. Since R is normal, this equation shows that a/b ∈ R,
and, hence, that a ∈ bR.

Finally, suppose that r ∈ R is integral over IS. Then rt is integral over S[ISt], and
this ring is generated over R[It] by the elements of S, each of which is integral over R. It
follows that S[ISt] is integral over R[It], and so rt is integral over R[It] by the transitivity
of integral dependence. �

Recall that a domain V with a unique maximal ideal m is called a valuation domain if
for any two elements one divides the other. This implies that for any finite set of elements,
one of the elements divides the others, and so generates the same ideal that they all do
together. We shall use the term discrete valuation ring , abbreviated DVR, for a Noetherian
valuation domain: in such a ring, the maximal ideal is principal, and every nonzero element
of the maximal ideal is a unit times a power of the generator of the maximal ideal. A DVR
is the same thing as a local principal ideal domain (PID).

We recall the following terminology: (R,m,K) is quasilocal means that R has unique
maximal ideal m and residue class field K = R/m. Sometimes K is omitted from the
notation. We say that (R,m,K) is local if it is quasilocal and Noetherian.

The next result reviews some facts about integral closures of rings and integrally closed
rings.

Theorem. Let R be an integral domain.

(a) R is normal if and only if R is an intersection of valuation domains with the same
fraction field as R. If R is Noetherian, these may be taken to be the discrete valuation
rings obtained by localizing R at a height one prime.

(b) If R is one-dimensional and local, then R is integrally closed if and only if R is a
DVR. Thus, a local ring of a normal Noetherian domain at a height one prime is a
DVR.



8

(c) If R is Noetherian and normal, then principal ideals are unmixed, i.e., if r ∈ R is not
zero not a unit, then every associated prime of rR has height one.

Proof. For (a) and (b) see [M.F. Atiyah and I.G. Macdonald, Introduction to Commutative
Algebra, Addison-Wesley, Reading, Massachusetts, 1969], Corollary 5.22, Proposition 9.2
and Proposition 5.19, respectively, and [O. Zariski and P. Samuel, Commutative Algebra, D.
Van Nostrand Company, Princeton, New Jersey, 1960], Corollary to Theorem 8, p. 17; for
(c) see H. Matsumura, Commutative Algebra, W.A. Benjamin, New York, 1970], §17. �

For the convenience of the reader we shall give a proof of (a) below in the case where
R is not necessarily Noetherian.

Lecture of January 14, 2019

Examples of integral closure of ideals. Note that whenever r ∈ R and I ⊆ R is
an ideal such that rn = in ∈ In, we have that r ∈ I. The point is that r is a root of
zn − in = 0, and this polynomial is monic with the required form.

In particular, if x, y are any elements of R, then xy ∈ (x2, y2), since (xy)2 =
(x2)(y2) ∈ I2. This holds even when x and y are indeterminates.

More generally, if x1, . . . , xn ∈ R are any elements and I = (xn1 , . . . , x
n
k )R, then

every monomial r = xi11 · · ·x
ik
k of degree n (here the ij are nonnegative integers whose sum

is n) is in I, since

rn = (xn1 )i1 · · · (xnk )ik ∈ In,

since every xnj ∈ I and
∑k
j=1 ij = n.

Now let K be any field of characteristic 6= 3, and let X, Y, Z be indeterminates over
K. Let

R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z],

which is a normal domain with an isolated singularity. Here, we are using lower case letters
to denote the images of corresponding upper case letters after taking a quotient: we shall
frequently do this without explanatory comment. Let I = (x, y)R. Then z3 ∈ I3, and so
z ∈ I. This shows that an ideal generated by a system of parameters in a local ring need
not be integrally closed, even if the elements are part of a minimal set of generators of the
maximal ideal. It also follows that z2 ∈ I2, where I is a two generator ideal, while z2 /∈ I.
Thus, the Briançon-Skoda theorem, as we stated it for regular rings, is not true for R.
(There is a version of the theorem that is true: it asserts that for an n-generator ideal I,
In ⊆ I∗, where I∗ is the tight closure of I. But we are not assuming familiarity with tight
closure here.)

Here is another example. Let x, y, u, v be indeterminates over a field K and R =
K[x, y, u, v]. Let J = (x, y) ∩ (u, v) = (x, y)(u, v) = (xu, yu, xv, yv). Then J is integral
over I = (xu, yv, xv+ yu), since the generators of J not in I, namely xv, yu, are the roots
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of the equation z2 − (xv + yu)z + (xv)(yu) = 0, where the second coefficient is in I and
the third coefficient = (xu)(yv) ∈ I2.

We next want to give a proof that, even when a normal domain R is not Noetherian,
it is an intersection of valuation domains. We first show:

Lemma. Let L be a field, R ⊆ L a domain, and I ⊂ R a proper ideal of R. Let x ∈ L−{0}.
Then either IR[x] is a proper ideal of R[x] or IR[1/x] is a proper ideal of R[1/x].

Proof. We may replace R by its localization at a maximal ideal containing I, which only
makes the problem harder. If IR[1/x] is not proper we obtain an equation

(#) 1 = j0 + j1(1/x) + · · · jm(1/xm),

where all of ji ∈ I ⊆ m. This yields

(##) (1− j0)xm = j1x
m−1 + · · · jm.

Since 1− j0 is a unit, this shows that x is integral over R. Hence m lies under a maximal
ideal of R[x], and mR[x] is proper. �

Corollary. Let R ⊆ L, a field, and let I ⊂ R be a proper ideal of R. Then there is a
valuation domain V with R ⊆ V ⊆ L such that IV 6= V .

Proof. Consider the set S of all rings S such that R ⊆ S ⊆ L and IS 6= S. This set
contains R, and so is not empty. The union of a chain of rings in S is easily seen to be in
S. Hence, by Zorn’s lemma, S has a maximal element V . We claim that V is a valuation
domain with fraction field L. For let x ∈ L− {0}. By the preceding Lemma, either IV [x]
or IV [1/x] is a proper ideal. Thus, either V [x] ∈ S or V [1/x] ∈ S. By the maximality of
V , either x ∈ V or 1/x ∈ V . �

We now can prove the result we were aiming for.

Corollary. Let R be a normal domain with fraction field L. Then R is the intersection
of all valuation domains V with R ⊆ V ⊆ L.

Proof. Let x ∈ L−R. It suffices to find V with R ⊆ V ⊆ L such that x /∈ V . Let y = 1/x.
We claim that y is not a unit in R[y], for its inverse is x, and if y were a unit we would
have

x = r0 + r1(1/x) + · · ·+ rn(1/x)n

for some positive integer n and rj ∈ R. Multiplying through by xn gives an equation of
integral dependence for x on R, and since R is normal this yields x ∈ R, a contradiction.
Since yR[y] is a proper ideal, by the preceding Corollary we can choose a valuation domain
V with R[y] ⊆ V ⊆ K such that yV is a proper ideal of V . But this implies that x /∈ V . �
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We note the following example of a non-Noetherian valuation domain. Let R = K[x, y]
be a polynomial ring in two variables over a field K, which has fraction field L = K(x, y).
Then we have a chain of polynomial rings K[x, y] ⊆ K[x, y/x] ⊆ K[x, y/x2] ⊆ · · · ⊆
K[x, y/xn] ⊆ L. Let S be the union of the rings Rn = K[x, y/xn]: since a directed union
of normal domains is normal, S is normal. The ideal m = (x)S + (y/xn : n ≥ 1)S is a
maximal ideal, and there exists a valuation domain (V,M) with S ⊆ V ⊆ L such that mV
is proper ideal, i.e., m ⊆ M. Then V is not Noetherian, since x is in the maximal ideal
and y is a nonzero element in the intersection of the ideals xnV .

The following important result can be found in most introductory texts on commu-
tative algebra, including [M.F. Atiyah and I.G. Macdonald, Introduction to Commuta-
tive Algebra, Addison-Wesley, Reading, Massachusetts, 1969], which we refer to briefly as
Atiyah-Macdonald.

Theorem. If R is a normal Noetherian domain, then the integral closure S of R in a
finite separable extension G of its fraction field F is module-finite over R.

Proof. See Proposition 5.19 of Atiyah-MacDonald for a detailed argument. We do mention
the basic idea: choose elements s1, . . . , sd of S that are basis for G over F , and then
the discriminant D = det

(
TraceG/F sisj

)
, which is nonzero because of the separability

hypothesis, multiplies S into the Noetherian R-module
∑d
i=1Rsi. �

Theorem (Nagata). Let R be a complete local domain. Then the integral closure of R
in a finite field extension of its fraction field is a finitely generated R-module.

Proof. Because R is module-finite over a formal power series ring over a field, or, if R does
not contain a field, over a DVR whose fraction field has characteristic zero, we may replace
the original R by a formal power series ring, which is regular and, hence, normal. Unless R
has characteristic p the extension is separable and we may apply the Theorem just above.

Thus, we may assume that R is a formal power series ring K[[y1, . . . , yn]] over a
field K of characteristic p. If we prove the result for a larger finite field extension, we
are done, because the original integral closure will be an R-submodule of a Noetherian
R-module. This enables us to view the field extension as a purely inseparable extension
followed by a separable extension. The separable part may be handled using the Theorem
just above. It follows that we may assume that the field extension is contained in the

fraction field of K1/q[[x1, . . . , xn]] with xi = y
1/q
i for all i. We may adjoin the xi to

the given field extension, and it suffices to show that the integral closure is module-finite
over K[[x1, . . . , xn]], since this ring is module-finite over K[[y1, . . . , yn]]. Thus, we have
reduced to the case where R = K[[x1, . . . , xn]] and the integral closure S will lie inside
K1/q[[x1, . . . , xn]], since this ring is regular and, hence, normal.

Now consider the set L of leading forms of the elements of S, viewed in the ring
K1/q[[x1, . . . , xn]]. Let d be the degree of the field extension from the fraction field of R
to that of S. We claim that any d + 1 or more F1, . . . , FN of the leading forms in L are
linearly dependent over (the fraction field of) R for, if not, choose elements sj of S which
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have them as leading forms, and note that these will also be linearly independent over R,
a contradiction (if a non-trivial R-linear combination of them were zero, say

∑
j rjsj = 0,

where the rj are in R, and if Fj has degree dj while the leading form gj of rj has degree
d′j , then one also gets

∑
j gjFj = 0, where the sum is extended over those values of j for

which dj + d′j is minimum). Choose a maximal set of linearly independent elements fj of
L. Let K ′ denote the extension of K generated by all of their coefficients. Since there are
only finitely many, T = K ′[[x1, . . . , xn]] is module-finite over R. But T contains every
element L of L, for each element of L is linearly dependent over R on the fj , and so is in
the fraction field of T , and has its q th power in R ⊆ T . Since T is regular, it is normal,
and so must contain L.

Thus, the elements of L span a finitely generated R-submodule of T , and so we can
choose a finite set L1, . . . , Lk ⊆ L that span an R-module containing all of L,. We can
then choose finitely many elements s1, . . . , sk of S whose leading forms are the L1, . . . , Lk.

Let S0 be the module-finite extension of R generated by the elements s1, . . . , sk. We
complete the proof by showing that S0 = S. We first note that for every element L of L,
S0 contains an element s whose leading form is L. To see this, observe that if we write L
as an R-linear combination

∑
j rjLj , the same formula holds when every rj is replaced by

its homogeneous component of degree degL− degLj . Thus, the rj may be assumed to be
homogeneous of the specified degrees. But then

∑
j rjsj has L as its leading form.

Let s ∈ S be given. Recursively choose u0, u1, . . . , un, . . . ∈ S0 such that u0 has the
same leading form as s and, for all n, un+1 has the same leading form a s− (u0 + · · ·+un).
For all n ≥ 0, let vn = u0 + · · ·+un. Then {vn}n is a Cauchy sequence in S0 that converges
to s in the topology given by the powers mh

T of the maximal ideal of T = K ′[[x1, . . . , xn]].
Since S0 is module-finite over K[[x1, . . . , xn]], S0 is complete. By Chevalley’s lemma,
which is discussed below, when we intersect the mh

T with S0 we obtain a sequence of ideals
cofinal with the powers of the maximal ideal of S0. Thus, the sequence, which converges
to s, is Cauchy with respect to the powers of the maximal ideal of S0. Since, as observed
above, S0 is complete, we have that s ∈ S0, as required. �

Lecture of January 16, 2019

In the proof of the preceding Theorem, we used Chevalley’s Lemma:

Theorem. Let M be a finitely generated module over a complete local ring (R, m, K).
Let {Mn}n be a decreasing sequence of submodules whose intersection is 0. Then for all
k ∈ N there exists N such that Mn ⊆ mkM .

Proof. For all h, the modules Mn +mhM are eventually stable (we may consider instead
their images in the Artinian module M/mhM , which has DCC), and so we may choose
nh such that Mn + mhM = Mn′ + mhM for all n, n′ ≥ nh. We may replace nh by any
larger integer, and so we may assume that the sequence nh is increasing. We replace the
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original sequence by the {Mnh}h. Thus we may assume without loss of generality that
Mn + mhM = Mn′ + mhM for all n, n′ ≥ h. We claim Mk ⊆ mkM for all k: if not,
choose k and vk ∈Mk−mkM . Now choose vk+1 ∈Mk+1 such that vk+1 ≡ vk mod mkM ,
and, recursively, for all s ≥ 0 choose vk+s ∈Mk+s such that vk+s+1 ≡ vk+s mod mk+sM :
this is possible because Mk+s ⊆ Mk+s+1 + mk+sM . This gives a Cauchy sequence with
nonzero limit. Since all terms are eventually in any given Mn, so is the limit (each Mn is
m-adically closed), which is therefore in the intersection of the Mn. �

We have been assuming that valuation domains V are integrally closed. It is very
easy to see this: if f is in the fraction field L of V but not in V , then x = 1/f is in the
maximal ideal m of V . Some maximal M of the integral closure V ′ lies over m, and so x
is not a unit of V ′, i.e., f /∈ V ′. Thus, V ′ = V .

It is also easy to see that if K ⊆ L are fields and V is a valuation domain with fraction
field L, then V ∩K is a valuation domain with fraction field K. Moreover, if V is a DVR,
then V ∩K is a DVR or is K. For the first statement, each f ∈ K −{0} has the property
that f or 1/f is in V , and, hence, in V ∩K, as required. Now suppose that V is a DVR
and that x generates the maximal ideal. Let W = V ∩K 6= K. Each nonzero element of
the maximal ideal m of W has the form uxk in V , where k is a positive integer. Choose
an element y of the maximal ideal of W such that k is minimum. Then every z ∈ m is a
multiple of y in V , and the multiplier is in W . Thus, m is principal. It follows that every
nonzero element m has the form uyt, where t > 0, since it is clear that the intersection of
the powers of m is zero.

We next want to prove:

Theorem. Let R be a Noetherian domain. Then the integral closure R′ of R is the
intersection of the discrete valuation rings between R and its fraction field L.

Proof. Let f = b/a be an element of L not in R′, where a, b ∈ R and b 6= 0. It suffices
to find a DVR containing R and not b/a: we may then intersect it with L. Localize at a
prime of R in the support of the R-module (R′ + Rf)/R′. Since localization commutes
with integral closure we may assume that (R,m,K) is local. Nonzero elements of R are

nonzerodivisors in R̂ by flatness, and so the fraction field of R embeds in the total quotient

ring of R̂, and we may view b/a as an element of the total quotient ring of R̂. If b + p is

in the integral closure of a(R/p) for every minimal prime p of R̂, then b is integral over

aR̂. If the equation that demonstrates the integral dependence has degree n, we find that

bn ∈ (bn−1a, bn−2a2, . . . , ban−1, an)R̂, and since R̂ is faithfully flat over R, this implies
that bn ∈ (bn−1a, bn−2a2, . . . , ban−1, an)R as well. Dividing by an then shows that b/a

is integral over R, a contradiction. Thus, we can choose a minimal prime p of R̂ such that

b+ p is not integral over aR̂/p. It follows that b/a is not integral over R̂/p, where the bars

over the letters indicate images in R̂/p. Note that R injects into R̂/p. Thus, the integral

closure (R̂/p)′ of R̂/p does not contain b/a, and since it is module-finite over R̂/p by the
last Theorem of the Lecture of January 14, it is a normal Noetherian ring. Thus, it is an
intersection of DVR’s by part (a) of the last Theorem of the Lecture of January 11, and
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we can choose a DVR V containing (R̂/p)′ and not b/a, which is the image of b/a, so that
V contains the isomorphic image of R but not the image of b/a. Now we may intersect V
with the fraction field of R. �

Theorem. Let R be any ring and let I ⊆ J be ideals of R.

(a) r ∈ R is integral over I if and only if there exists an integer n such that (I+rR)n+1 =
I(I + rR)n. Thus, if J is generated over I by one element, then J is integral over I
if and only if there exists an integer n ∈ N such that Jn+1 = IJn.

(b) If Jn+1 = IJn with n ∈ N then Jn+k = IkJn for all k ∈ N.

(c) If Jn+1 = IJn and Q ⊇ J is an ideal and r ∈ N an integers such that Qr+1 = JQr,
then Qn+r+1 = IQn+r.

(d) If J is integral over I and generated over I by finitely many elements, then there is
an integer n ∈ N such that Jn+1 = IJn. If R is Noetherian then J is integral over I
if and only if there exists an integer n ∈ N such that Jn+1 = IJn.

(e) If R is a domain and M is a finitely generated faithful R-module such JM = IM then
J is integral over I. If R is a Noetherian domain, then J is integral over I if and only
if there is a finitely generated faithful R-module M such that JM = IM .

Proof. Note that

(I + rR)n = In + rIn−1 + · · ·+ rtIn−t + · · ·+ rnR.

Comparing the expansions for (I + rR)n+1 and I(I + rR)n, we see that the condition for
equality is simply that rn+1 be in I(I + rR)n = rnI + · · ·+ In+1, and this is precisely the
condition for r to satisfy an equation of integral dependence on I of degree n + 1. This
proves (a).

We prove (b) by induction on k. The result is clear if k = 0 and holds by hypothesis
if k = 1. Assuming that Jn+k = IkJn, for k ≥ 1 we have that

Jn+k+1 = Jn+kJ = (IkJn)J = IkJn+1 = IkIJn = Ik+1Jn,

as required. This proves (b).

For (c), note that Qr+n+1 = Jn+1Qr = (IJn)Qr = I(JnQr) = IQn+r.

It follows by induction on the number of elements needed to generate J over I that if
J is finitely generated over I and integral over I then there is an integer n such thatJn+1 =
IJn.

Next, we want to show that if R is Noetherian and Jn+1 = IJn then J is integral over
I. The condition continues to hold if we consider the images of I, J modulo a minimal
prime of R, and so it suffices to consider the case where R is a domain. Moreover, if
I = (0) the result is immediate, and so we may assume that I 6= 0. Thus, Jn is a faithful
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R-module, and so the proof will be complete once we have established the first sentence
of part (e).

Suppose that JM = IM and let u1, . . . , un be generators for M . Let r be an element
of J . Then for every ν we can write ruν =

∑n
µ=1 iµνuµ where the iµν ∈ I. Let 1 denote

the size n identity matrix, and let B denote the size n matrix (iµν). Let U be an n × 1
column vector whose entries are the ui. Then, in matrix notation, rU = BU , so that
(r1−B)U = 0. Let C be the transpose of the cofactor matrix of r1−B. Then C(r1−B)
is D1, where D = det(r1 − B) is the characteristic polynomial of B evaluated at r. It
is easy to see that the characteristic polynomial of a matrix with entries in I is I-special.
Now, when we multiply the equation (r1−B)U = 0 on the left by C we find that D1U = 0,
i.e., that DU = 0, and since D kills all the generators of M and M is faithful, it follows
that D = 0, giving an equation of integral dependence for r on I. This proves the first
sentence of part (e), and also completes the proof of (d).

Finally, if R is a Noetherian domain and J is integral over I, then if I = (0) we have
that J = (0) and we may choose M = R, while if I 6= (0) then J 6= (0). In this case we
can choose n such that Jn+1 = IJn, and we may take M = Jn. �

Lecture of January 18, 2019

The next Theorem gives several enlightening characterizations of integral closure. We
first note:

Lemma. Let I be an ideal of the ring R, r ∈ I, and h : R → S a homomorphism to a
normal domain S such that IS is principal. Then h(r) ∈ IS.

Proof. By persistence of integral closure, h(r) ∈ IS. But IS is a principal ideal of a normal
domain, and so integrally closed, which implies that r ∈ IS. �

Theorem. Let R be a ring, let I be an ideal of R, and let r ∈ R.

(a) r ∈ I if and only if for every homomorphism from R to a valuation domain V , r ∈ IV .

(b) r ∈ I if and only if for every homomorphism f from R to a valuation domain V such
that the kernel of f is a minimal prime P of R, f(r) ∈ IV . (Thus, if R is a domain,
r ∈ I if and only if for every valuation domain V containing R, r ∈ IV .) Moreover,
it suffices to consider valuation domains contained in the fraction field of R/P .

(c) If R is Noetherian, r ∈ I if and only if for every homomorphism from R to a DVR
V , r ∈ IV .

(d) If R is Noetherian, r ∈ I if and only if for every homomorphism f from R to a DVR
V such that the kernel of f is a minimal prime of R, f(r) ∈ IV . (Thus, if R is a
domain, r ∈ I if and only if for every DVR V containing R, r ∈ IV .) Moreover, it
suffices to consider valuation domains contained in the fraction field of R/P .
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(e) If R is a domain and I = (u1, . . . , un)R is a finitely generated ideal, let

Si = R[
u1

ui
, . . . ,

un
ui

] ⊆ Rui ,

and let Ti be the integral closure of Si. Then r ∈ R is in I if and only if r ∈ ITi for
all i.

(f) Let R be a Noetherian domain. Then r ∈ I if and only if there is a nonzero element
c ∈ R such that crn ∈ In for all n ∈ N. (Note: I0 is to be interpreted as R even if
I = (0).)

(g) Let R be a Noetherian domain. Then r ∈ I if and only if there is a nonzero element
c ∈ R such that crn ∈ In for infinitely many values of n ∈ N.

Proof. We first observe that in any valuation domain, every ideal is integrally closed:
every ideal is the directed union of the finitely generated ideals it contains, and a directed
union of integrally closed ideals is integrally closed. In a valuation domain every finitely
generated is principal, hence integrally closed, since a valuation domain is normal, and it
follows that every ideal is integrally closed.

Now suppose that r ∈ I. Then for any map of f of R to a valuation domain V , we
have that r ∈ IV = IV . This shows the “only if” part of (a). To complete the proof
of both (a) and (b) it will suffice to show that if f(r) ∈ IV whenever the kernel of f
is a minimal prime, then r ∈ I. But if r /∈ I this remains true modulo some minimal
prime by part (d) of the Proposition whose statement begins on the second page of the
Lecture Notes for Janaury 11, and so we may assume that R is a domain, and that rt is
not integral over R[It]. But then, by the last Corollary on the second page of the Lecture
Notes of January 14, we can find a valuation domain V containing R[It] and not rt (in
the Noetherian case V may be taken to be a DVR by the second Theorem on the first
page of the Lecture Notes from January 16). Then r ∈

∑n
j=1 ijvj with the ij ∈ I and the

vj ∈ V implies rt =
∑n
j=1(ijt)vj ∈ V (since each ijt ∈ It ⊆ V ), a contradiction. The fact

that it suffices to consider only those V within the fraction field of R/P follows from the
observation that one may replace V by its intersection with that field.

The proofs of (c) and (d) in the Noetherian case are precisely the same, making use
of the parnthetical comment about the Noetherian case given in the paragraph above.

To prove (e) first note that the expansion of I to Si is generated by ui, since uj =
uj
ui
ui,

and so ITi = uiTi as well. If r ∈ I then r ∈ ITi by the preceding Lemma. Now suppose
instead that we assume that r ∈ ITi for every i instead. Consider any inclusion R ⊆ V ,
where V is a valuation domain. Then in V , the image of one of the uj , say ui, divides all
the others, and so we can choose i such that Si ⊆ V . Since V is normal, we then have
Ti ⊆ V as well, and then r ∈ ITi implies that r ∈ IV . Since this holds for all valuation
domains containing R, r ∈ I.

Finally, it will suffice to prove the “only if” part of (f) and the “if” part of (g). If
I = (0) we may choose c = 1, and so we assume that I 6= 0. Suppose that J = I +Rr and
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choose h ∈ N so that Jh+1 = IJh, so that Jn+h = InJh for all n ∈ N: see parts (a) and
(c) on the second page of the Lecture Notes from January 16. Choose c to be a nonzero
element of Jh. Then, for all n, crn ∈ Jn+h = InJh ⊆ In, as required.

Now suppose that c is a nonzero element such that crn ∈ In for arbitrarily large
values of n. If r /∈ I we can choose a discrete valuation v such that the value of v on r
is smaller than the value of v on any element of I: then v(r) + 1 ≤ v(u) for all u ∈ I.
Choose n > v(c). Then nv(r) + n ≤ v(w) for all w ∈ In. But if we take w = crn we have
v(w) = v(c) + nv(r) < nv(r) + n ≤ v(w), a contradiction. �

For those familiar with the theory of schemes, we note that the condition in part
(e) can be described in scheme-theoretic terms. There is a scheme, the blow-up Y of
X = SpecR along the closed subscheme defined by I, which has a finite open cover by
open affines corresponding to the affine schemes SpecSi. The normalization Y ′ of Y , i.e.,
the normalized blow-up, has a finite open cover by the open affines SpecTi. I corresponds
to a sheaf of ideals on X, which pulls back (locally, via expansion) to a sheaf of ideals J
on Y ′. The integral closure of I is then the ideal of global sections of J intersected with
R.

Discussion: the notion of analytic spread. Let (R,m,K) be a local ring and let
J ⊆ m be an ideal of R. It is of interest to study the least integer a such that J is
integral over an ideal generated by a elements. If I ⊆ J and J is integral over I, then I is
called a reduction of J . Thus, we are interested in the minimum number of generators of
a reduction.

We recall that the associated graded ring, denoted grI(R), of R with respect to the
ideal I is the N-graded ring

R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · ⊕ In/In+1 ⊕ · · · ,

so that the k th graded piece is Ik/Ik+1. The multiplication is such that if u ∈ Ij represents
a j-form u ∈ Ij/Ij+1 and v ∈ Ik represents a k-form v ∈ Ik/Ik+1, then uv represents the
product u v ∈ Ij+k/Ij+k+1. This ring is generated by its forms of degree 1: moreover,
given a set of generators of I as an ideal, the images of these elements in I/I2 generate
grI(R) as an (R/I)-algebra. Thus, if R is Noetherian, so is grI(R).

Now suppose that (R, m, K) is a local ring, and view K = R/m as an R-algebra.
The ring K ⊗R grI(R) is a finitely generated K-algebra. We may also write this as

K ⊕ I/mI ⊕ I2/mI2 ⊕ · · · ⊕ In/mIn ⊕ · · · .

The analytic spread of I ⊆ R is defined to be the Krull dimension of the ring K⊗R grI(R).
This ring is generated over K by its forms of degree 1, and the images in I/mI of any
set of generators for I as an ideal generate K ⊗ grI(R) as a K-algebra. We use an(I) to
denote the analytic spread of I. Our next main objective is to prove:
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Theorem. Let (R, m, K) be a local ring and J a proper ideal. Then the number of
generators of any reduction of J is at least an(J), and if K is infinite, J has a reduction
with an(J) generators.

Lecture of Janaury 23, 2019

We have already noted that when (R, m, K) is a local ring and I ⊆ m an ideal we
may identify

K ⊗R grI(R) ∼= R/m⊕ I/mI ⊕ I2/mI2 ⊕ · · · ⊕ In/mIn ⊕ · · · .

S is called a standard graded A-algebra if S is finitely generated as an A-algebra, N-graded
with S0 = A, and the 1-forms S1 of S generate S as an A-algebra. In this case, Sn is
finitely generated as an A-module for all n, by the monomials of degree n in the finite set
of algebra generators in S1. If S is a standard graded K-algebra, where K is a field, then
R has a unique homogeneous maximal ideal m =

⊕∞
n=1 Sn, the K-span (and even the

span as an abelian group) of all elements of positive degree.

We note as well that if R[It] ⊆ R[t] is the Rees ring, then

(R/I)⊗R R[It] ∼= R[It]/IR[It] =
R+ It+ I2t2 + · · ·+ Intn + · · ·
I + I2t+ I3t2 + · · ·+ In+1tn + · · ·

,

and it is quite straightforward to identify this with grIR.

Since (R/m)⊗R (R/I) ∼= R/m, it follows that

K ⊗R grI(R) ∼= (R/m)⊗R
(
(R/I)⊗R R[It]

) ∼= (R/m)⊗R (R/I)
)
⊗R R[It] ∼= K ⊗R R[It],

so that we may also view K ⊗R gr(R) as K ⊗R R[It].

We give two preliminary results. Recall that in Nakayama’s Lemma one has a finitely
generated module M over a ring (R, m) with a unique maximal ideal, i.e., a quasilocal ring.
The lemma states that if M = mM then M = 0. By applying the result to M/N , one can
conclude that if M is finitely generated (or finitely generated over N), and M = N +mM ,
then M = N . In particular, elements of M whose images generate M/mM generate M : if
N is the module they generate, we have M = N +mM . Less familiar is the homogeneous
form of the Lemma: it does not need M to be finitely generated, although there can be
only finitely many negative graded components (the detailed statement is given below).

First recall that if H is an additive semigroup with 0 and R is an H-graded ring, we
also have the notion of an H-graded R-module M : M has a direct sum decomposition

M =
⊕
h∈H

Mh
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as an abelian group such that for all h, k ∈ H, RhMk ⊆ Mh+k. Thus, every Mh is an
R0-module. A submodule N of M is called graded (or homogeneous) if

N =
⊕
h∈H

(N ∩Mh).

An equivalent statement is that the homogeneous components in M of every element of N
are in N , and another is that N is generated by forms of M .

Note that if we have a subsemigroup H ⊆ H ′, then any H-graded ring or module can
be viewed as an H ′-graded ring or module by letting the components corresponding to
elements of H ′ −H be zero.

In particular, an N-graded ring is also Z-graded, and it makes sense to consider a
Z-graded module over an N-graded ring.

Nakayama’s Lemma, homogeneous form. Let R be an N-graded ring and let M be
any Z-graded module such that M−n = 0 for all sufficiently large n (i.e., M has only
finitely many nonzero negative components). Let I be the ideal of R generated by elements
of positive degree. If M = IM , then M = 0. Hence, if N is a graded submodule such that
M = N + IM , then N = M , and a homogeneous set of generators for M/IM generates
M .

Proof. If M = IM and u ∈ M is nonzero homogeneous of smallest degree d, then u is a
sum of products itvt where each it ∈ I has positive degree, and every vt is homogeneous,
necessarily of degree ≥ d. Since every term itvt has degree strictly larger than d, this is a
contradiction. The final two statements follow exactly as in the case of the usual form of
Nakayama’s Lemma. �

Lemma. Let S → T be a degree preserving K-algebra homomorphism of standard graded
K-algebras. Let m ⊆ S and n ⊆ T be the homogeneous maximal ideals. Then T is a
finitely generated S-module if and only if the image of S1 in T1 generates an n-primary
ideal.

Proof. By the homogeneous form of Nakayama’s lemma, T is finitely generated over S if
and only if T/mT is a finite-dimensional K-vector space, and this will be true if and only if
all homogeneous components [T/mT ]s are 0 for s� 0, which holds if and only if ns ⊆ mT
for all s� 0. �

Proposition. Let (R, m, K) be a local ring. If I ⊆ J ⊆ m are ideals, then J is integral
over I if and only if the image of I in J/mJ = [K ⊗R gr(R)]1 generates an n-primary
ideal in T = K ⊗R grJ(R), where n is the homogeneous maximal ideal in T .

Proof. First note that J is integral over I if and only if R[Jt] is integral over R[It], and this
is equivalent to the assertion that R[Jt] is module-finite over R[It], since R[Jt] is finitely
generated as an R-algebra, and, hence, as an R[It]-algebra.
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If this holds, we have that K⊗RR[Jt] is a finitely generated module over K⊗RR[It],
and, since the image of I generates the maximal ideal m in S = K⊗RgrI(R) ∼= K⊗RR[It],
the preceding Lemma implies that the latter statement will be true if and only if the image
of I in J/mJ = [K ⊗R grJ(R)]1 generates an n-primary ideal in T = K ⊗R grJ(R).

The proof will be complete if we can show that when T is module-finite over S, then
R[Jt] is module-finite over R[It]. Let j1 ∈ Jd1 , . . . , jh ∈ Jdh be elements whose images
in Jd1/mJd1 , . . . , Jdh/mJdh , respectively, generate T as an S-module. We claim that
jd1t

d1 , . . . , jdht
dh generate R[Jt] over R[It]. To see this, note that the fact that these

elements generate T over S implies that for every N ,

JN =
∑

1≤i≤h such that di≤n

IN−dijdi +mJN .

For each fixed N , we may apply the usual form of Nakayama’s Lemma to conclude that

JN =
∑

1≤i≤h such that di≤n

IN−dijdi .

and so, for all N , we have

JN tN =
∑

1≤i≤h such that di≤n

IN−ditN−dijdit
di ,

which is just what we need to conclude that jd1t
d1 , . . . , jdht

dh generateR[Jt] overR[It]. �

The following fact is often useful.

Proposition. Let K be an infinite field, V ⊆ W vector spaces, and let V1, . . . , Vh be

vector subspaces of W such that V ⊆
⋃h
i=1 Vi. Then V ⊆ Vi for some i.

Proof. If not, for each i choose vi ∈ V − Vi. We may replace V by the span of the vi and
so assume it is finite-dimensional of dimension d. We may replace Vi by Vi ∩V , so that we
may assume every Vi ⊆ V . The result is clear when d = 1. When d = 2, we may assume
that V = K2, and the vectors (1, c), c ∈ K − {0} lie on infinitely many distinct lines. For
d > 2 we use induction. Since each subspace of V ∼= Kd of dimension d− 1 is covered by
the Vi, each is contained in some Vi, and, hence, equal to some Vi. Therefore it suffices to
see that there are infinitely many subspaces of dimension d− 1. Write V = K2⊕W where
W ∼= Kd−2. The line L in K2 yields a subspace L⊕W of dimension d− 1, and if L 6= L′

then L⊕W and L′ ⊕W are distinct subspaces. �

Also note:

Proposition. Let M be an N-graded or Z-graded module over an N-graded or Z-graded
Noetherian ring S. Then every associated prime of M is homogeneous. Hence, every
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minimal prime of the support of M is homogeneous and, in particular the associated (hence,
the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u of M , and then
every nonzero multiple of u 6= 0 can be thought of as a nonzero element of S/P ∼= Su ⊆M ,
and so has annihilator P as well. Replace u by a nonzero multiple with as few nonzero
homogeneous components as possible. If ui is a nonzero homogeneous component of u of
degree i, its annihilator Ji is easily seen to be a homogeneous ideal of S. If Jh 6= Ji we can
choose a form F in one and not the other, and then Fu is nonzero with fewer homgeneous
components then u. Thus, the homogeneous ideals Ji are all equal to, say, J , and clearly
J ⊆ P . Suppose that s ∈ P −J and subtract off all components of s that are in J , so that
no nonzero component is in J . Let sa /∈ J be the lowest degree component of s and ub be
the lowest degree component in u. Then sa ub is the only term of degree a + b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary. Let S be a standard graded K-algebra of dimension d with homogeneous max-
imal ideal m, where K is an infinite field. Then there are forms L1, . . . , Ld of degree 1 in
R1 such that m is the radical of (L1, . . . , Ld)S.

Proof. The minimal primes of a graded algebra are homogenous, and dim (S) is the same
as dim (S/P ) for some minimal prime P of R. Then P ⊆ m, and

dim (S) = dim (S/P ) = dim (S/P )m ≤ dimSm ≤ dim (S),

so that dim (S) = dim (Sm) = heightm. If dim (S) = 0, m must be the unique minimal
prime of S, and therefore is itself nilpotent. Otherwise, S1 cannot be contained in the
union of the minimal primes of S, or the Proposition just above would imply that it is
contained in one of them, and S1 generates m. Choose L1 ∈ S1 not in any minimal
prime, and then dim (S/L1) = d − 1. Use induction. If L1, . . . , Lk have been chosen in
S1 such that dim

(
S/(L1, . . . , Lk)S

)
= d − k < d, choose Lk+1 ∈ S1 not in any minimal

prime of (L1, . . . , Lk)S (if S1 were contained in one of these, m would be, and it would
follow that heightm ≤ k, a contradiction). Thus, we eventually have L1, . . . , Ld such
dim (S/

(
L1, . . . , Ld)S

)
= 0, and then by the case where d = 0 we have that m is nilpotent

modulo (L1, . . . , Ld)S. �

We are now ready to prove the result that we have been aiming for:

Theorem. Let (R, m, K) be local and J ⊆ R an ideal. Then any reduction I of J has
at least an(J) generators. Moreover, if K is infinite, there is a reduction with an(J)
generators.

Proof. The problem of giving i1, . . . , ia ∈ J such that J is integral over (i1, . . . , ia)R
is equivalent to giving a elements of J/mJ that generate an m-primary ideal of S =
K ⊗R grJ(R), where m is the homogeneous maximal ideal of S. Clearly, we must have
a ≥ dim (S) = an(J). If K is infinite, the existence of suitable elements follows from the
Corollary just above. �
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Discussion. If (R, m, K) is local and t is an indeterminate over R, let R(t) denote the
localization of the polynomial ring R[t] at mR[t]. Then R → R(t) is a faithfully flat map
of local rings of the same dimension, and the maximal ideal of R(t) is mR(t) while the
residue class field of R(t) is K(t). If J ⊆ m, an(J) is the least number of generators of an
ideal over which JR(t) is integral. In fact, K(t)⊗ grJR(t)R(t) ∼= K(t)⊗K

(
K ⊗R grJ(R)

)
,

so that an(J) = an
(
JR(t)

)
.

Remark. If I and J are any two ideals of any ring R, I J ⊆ IJ . There are many ways
to see this. E.g., if r ∈ I, s ∈ J and R→ V is any homomorphism to a valuation domain,
then r ∈ IV and s ∈ JV , whence rs ∈ (IV )(JV ) = (IJ)V . Thus, rs ∈ IJ for every such
r and s, and the elements rs generate I J . �

We shall prove below that if R is local and J is any proper ideal, then dim (R) =
dim (grJR). Assume this for the moment. It then follows that dim

(
K ⊗R grJ(R)

)
≤

dim (R). We define the big height of a proper ideal J of a Noetherian ring to be the largest
height of any minimal prime of J . (The height is the smallest height of any minimal prime
of J .) We then have:

Proposition. For any proper ideal J of a local ring (R, m, K), the analytic spread of J
lies between the big height of J and dim (R).

Proof. That an(I) ≤ dim (R) follows from the discussion above, once we have shown
that dim (R) = dim (grJR). Let P be a minimal prime of J . We want to show that
heightP ≤ an(J). After replacing R by R(t), if necessary, we have that J is integral over
an ideal I with a = an(J) generators. Then J is contained in the radical of I. In RP we
have that P is the radical of JRP , since P is a minimal prime of J , and so is contained in
the radical of IRP . Thus, heightP ≤ a = an(J), as required. �

Corollary. If K is infinite, every proper ideal J of a local ring (R, m, K) of Krull di-
mension d is integral over an ideal generated by at most d elements. �

Proposition. Let (R, m, K) be local, and J a proper ideal. Then for every positive integer
n, the ideals J and Jn have the same analytic spread.

Proof. The Rees ring of Jn may be identified with R[Jntn] since tn is an indeteminate
over R, and this is a subring of R[Jt] over which the larger ring is module-finite, since the
n th power of any element of Jt is in R[Jntn]. The injectivity is retained when we apply
K⊗R , since tensor commutes with direct sum, and the module-finite property continues
to hold as well. It follows that K ⊗ grJ(R) is a module-finite extension of K ⊗R grJnR,
and so these two rings have the same dimension. �

In general, if X is a matrix and B is a ring, B[X] denotes the ring generated over B
by the entries of X. We frequently use this notation when these entries are indeterminates,
in which case B[[X]] denotes the formal power series ring over B in which the variables
are the entries of X. If M =

(
rij
)

is a matrix over a ring R and t is a nonnegative integer,
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It(M) denotes the ideal of R generated by the size t minors of M . By convention, this
ideal is R if t = 0 and is (0) if t is strictly larger than either of the dimensions of the matrix
M .

Example. Let I ⊆ (R, m, K) and let r be a nonzerodivisor. Then R[It] ∼= R[rIt]: in
fact rt is algebraically independent of R, so that there is an R-isomorphism R[t] → R[rt]
mapping t 7→ rt, and this induces an R-isomorphism RI[t] ∼= R[rIt]. It follows that
K ⊗R R[It] ∼= K ⊗R R[rIt], and so an(I) = an(Ir). Ir ⊆ rR which has analytic spread
one. If I = m, or if I is m-primary, the analytic spread of I and of Ir is dim (R). Thus,
the smaller of two ideals may have a much larger analytic spread than the larger ideal.

Example. Let K be a field and let X =

(
x1 x2 . . . xn
y1 y2 . . . yn

)
be a 2×n matrix of formal

indeterminates over K. Let K[X] be the polynomial ring in the entries of X, and let
A = K[X]/I2(X). This ring is known to be a normal ring with an isolated singularity of
dimension n+1. One can see what the dimension is as follows: we may tensor with algebraic
closure of K without changing the dimension (this produces an integral extension), and
so we may assume that K is algebraically closed. The algebraic set Z in A2n defined by
I2(X) corresponds to 2 × n matrices of rank at most one. We can map An × A1 to Z by
sending (v, c) to the matrix whose first row is v and whose second row is cv. This map
is not onto, but its image contains the open set consisting of matrices whose first row is
not 0. It follows that the dimension of Z is n+ 1. (This ring is also known to be Cohen-
Macaulay. Cf. [M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and
the generic perfection of determinantal loci, Amer. J. of Math. 93 (1972), 1020–1058].) The
same properties hold if we localize A at the ideal generated by the entries of X (and if we
complete). Call the local ring obtained S. Let P be the prime ideal (x1, . . . , xn)R. Then
A = S/P is either the localization of K[y1, . . . , yn] at (y1, . . . , yn) or its completion. In
any case, R/P has dimension n, so that P is a height one prime of S. But its analytic
spread is n. In fact, grP (S) has the form A[u1, . . . , un] where the ui satisfy the relations
yiuj − yjui = 0. If we kill only these relations we get a domain of dimension n + 1 that
maps onto grP (S). Since grP (S) has the same dimension as S (we have not proved this
yet, but will shortly), the map onto grP (S) cannot have a nonzero kernel, i.e., it is an
isomorphism. But then K ⊗ grP (S) ∼= K[u1, . . . , un] has dimension n.

We next want to prove the assertion that the local ring (R, m, K) and the ring grJR
have the same dimension. In order to do so, we review the dimension formula. Recall that a
Noetherian ring R is catenary if for any two prime ideals P ⊆ Q, any two saturated chains
of prime ideals joining P to Q have the same length. Localizations and homomorphic
images of catenary rings are clearly catenary. R is universally catenary if every polynomial
ring in finitely many variables over R is catenary. It is equivalent to assert that every
algebra essentially of finite type over R is catenary. A ring is called Cohen-Macaulay if in
each of its local rings some (equivalently, every) system of parameters is a regular sequence.
Cohen-Macaulay rings are catenary and, therefore, universally catenary, since a polynomial
ring over a Cohen-Macaulay ring is Cohen-Macaulay. Regular rings are Cohen-Macaulay,
and, hence, universally catenary. A complete local ring is a homomorphic image of a
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regular ring and so is also universally catenary. If F ⊆ G are fields, tr. deg.(G/F) denotes
the transcendence degree over G over F .

Theorem (dimension formula). Let R ⊆ S be Noetherian domains such that S is
finitely generated over R, and call the fraction fields F and G, respectively. Let Q be a
prime ideal of S lying over P in R. Let K and L be the residue class fields of RP and SQ,
respectively. Then

heightQ− heightP ≤ tr. deg.(G/F)− tr. deg.(L/K),

with equality if R is universally catenary.

Lecture of January 25, 2019

We shall soon return to our treatment of the dimension formula, which was stated in
the Lecture of January 23, but we first want to make some additional remarks about the
behavior of analytic spread.

Theorem. Let K be a field, and T a finitely generated N-graded K-algebra with T0 = K.
LetM be the homogenous maximal ideal of T . Let F1, . . . , Fs be homogeneous polynomials
of the same positive degree d in T , and let I = (F1, . . . , Fs)T . Then an(ITM) is the Krull
dimension of the ring K[F1, . . . , Fs] ⊆ T , and hence is the same as the maximum number
of algebraically independent elements in K[F1, . . . , Fs]. over K.

Proof. We shall show that K[F1, . . . , Fs] ∼= K ⊗TM grI(TM). We view the latter is

K ⊗TM TM[ITMt] ∼= (K ⊗T T [It])M

and the ring on the right is the same as K ⊗T T [It], because elements of T −M map to
units in K and so already are invertible in this ring. Note that K here is T/M, and so
this ring is also the same as T [It]/MT [It].

Now there is a map K[F1, . . . , Fs] → T [It] that sends Fj 7→ Fjt, 1 ≤ j ≤ s. To see
that this is well-defined, note that the ideal of relations on the Fj over K is homogeneous.
Thus, it suffices to see that if H ∈ K[Y1, . . . , Ys] is a homogeneous polynomial of degree
µ such that H(F1, . . . , Fs) = 0, then H(F1t, . . . , Fst) = 0. But the left hand side is
tµH(F1, . . . , Fd) = tµ · 0 = 0. We then get a composite map

K[F1, . . . , Fs]→ T [It] � T [It]/MT [It].

This map is clearly surjective, since the image of T in the quotient is K and It is generated
by the Fjt. We need only prove that the kernel is 0. It is homogeneous: let G be an element
of the kernel that is homogeneous of degree h in F1, . . . , Fs. Then G has degree hd in
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x1, . . . , xn. If G is in the kernel then Gth is in MIhth, and G ∈ MIh. However, all
nonzero elements of this ideal have components of degree at least hd+ 1 in x1, . . . , xn, a
contradiction unless G = 0.

The final statement is a general characterization of Krull dimension in finitely gener-
ated K-algebras. �

Remark. This result gives another way to compute the analytic spread of the height one
prime in a determinantal ring analyzed in the last Example (beginning at the bottom of
p. 5) in the Lecture Notes of January 23. It is immediate that the analytic spread is n.

Example. The Example discussed in the Remark just above shows that height one primes
that have arbitrarily large analytic spread. In a regular local ring a height one prime is
principal, and so its analytic spread is 1. But there are height two primes of arbitarily
large analytic spread. Let X be an n × (n + 1) matrix of indeterminates over a field K
and let P be the ideal generated by the size n minors of X in the polynomial ring K[X].
Then the analytic spread of P in K[X]M, where M is generated by the entries of X, is
n + 1 by the Theorem above, for the minors of algebraically independent over K. (This
is true even if we specialize the leftmost n × n submatrix to be yIn. The minors are yn

and, up to sign, the products yn−1xi,n+1, 1 ≤ i ≤ n.) These primes have height two: the
algebraic set of n× (n+ 1) matrices of rank at most n− 1 has dimension n2 + n− 2. (On
the open set where the first n− 1 rows are algebraically independent, the space consisting
of choices for the first n − 1 rows has dimension (n − 1)(n + 1); the choices for the final
row are linear combinations of the first n− 1 rows, and are parametrized by An−1, giving
dimension n2 − 1 + (n− 1).)

Recall that a map of quasilocal rings h : (R, m) → (S, n) is called local if h(m) ⊆ n.
(The map of a local ring onto its residue class field is local, while the inclusion of a local
domain that is not a field in its fraction field is not local.)

Proposition. Let (R, m, K) be local.

(a) If h : (R, m, K) → (S, n, L) is a local homomorphism, and I ⊆ m is an ideal of R,
then an(I) ≥ an(IS).

(b) If I and J are proper ideals of R, then an(I + J) ≤ an(I) + an(J).

(c) Let I and J are proper ideals of R. If either an(I) or an(J) is 0, then an(IJ) = 0.
If the analytic spreads are positive, an(I J) ≤ an(I) + an(J)− 1.

Proof. We replace R → S by R(t)→ S(t) if necessary, and the ideals considered by their
expansions. We may therefore assume the residue class fields are infinite.

For part (a), if I is integral over an ideal I0 with a = an(I) generators, then IS is
integral over I0S.

For part (b) simply note that if I0 is as above and J is integral over J0 with b = an(J)
generators, then I + J is integral over I0 + J0, which has at most a+ b generators.
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To prove part (c), first note that the analytic spread of I is 0 if and only if I consists
of nilpotents. Thus, if either a or b is 0, then IJ consists of nilpotents and an(I J) = 0 as
well. Now suppose that both analytic spreads are positive and that I0 and J0 are as above.
Map the polynomial ring T = Z[X1, . . . , Xa, Y1, . . . , Yb]→ R so that (X1, . . . , Xa)T maps
onto I0 and (Y1, . . . , Yb)T maps onto J0. Since IJ is integral over I0J0, it suffices to show
that an(I0J0) ≤ a + b − 1. Let M be the inverse image of m in T . Then M is a prime
ideal of T that is either (X1, . . . , Xa, Y1, . . . , Yb)T or pT + (X1, . . . , Xa, Y1, . . . , Yb)T .
Let A = TM. Let I = (X1, . . . , Xa)A and J = (Y1, . . . , Yb)A. Then we have an induced
local map TM → R such that IR = I0 and JR = J0. By part (a), it will suffice to show
that an(I J ) ≤ a+ b− 1.

Let A denote the ideal (X1, . . . , Xa, Y1, . . . , Yb) ⊆ T , and let B denote the ideal
(X1, . . . , Xa)(Y1, . . . , Yb)T . There are two cases. First suppose that M = A. Then
TM contains the rational numbers, and may be viewed instead as the localization of the
polynomial ring Q[X1, . . . , Xa, Y1, . . . , Yb] at (X1, . . . , Xa, Y1, . . . , Yb). Then, since the
elements XiYj are forms of the same degree, the Theorem above applies, and the analytic
spread is the transcendence degree of Q[XiYj : 1 ≤ i ≤ a, 1 ≤ j ≤ b] over Q. But
the fraction field of this domain is generated by the elements X1Y1, . . . , X1Yb and the
elements Xj/X1, 2 ≤ i ≤ a, since (Xi/X1)(X1Yj) = XiYj (which also shows that each
Xj/X1 is in the fraction field). These b+(a−1) elements are easily seen to be algebraically
independent. Exactly the same calculation of transcendence degree if Q is replaced by any
other field κ.

In the remaining case, M = A + pT . In this case, note that since Bn and Bn+1

are both free Z-modules spanned by the monomials in X1, . . . , Xa, Y1, . . . , Yb that they
contain, each Bn/Bn+1 is free over Z. It follows that p is not a zerodivisor on grBT . Let
κ = T/M∼= Z/pZ. Then

κ⊗T grBT
∼= κ⊗T/pT

(
(Z/pZ)⊗Z grBT

)
.

Let
T = T/pT ∼= κ[X1, . . . , Xa, Y1, . . . , Yb],

and B = BT , Because p is not a zerodivisor on grB(T ), we have that

(Z/pZ)⊗Z grBT
∼= grBT ,

and this is the ring whose dimension we need to calculate: as in the proof of the Theorem
above, localization at M has no effect on this ring, since the image of T −M consists
of units in κ. We are now in the same situation as in the first case, except that we are
working with κ[X1, . . . , Xa, Y1, . . . , Yb] instead of Q[X1, . . . , Xa, Y1, . . . , Yb]. �

We are now ready to continue with our treatment of the dimension formula, stated
in the Lecture of January 23. Recall that we are assuming that R ⊆ S are Noetherian
domains with fraction fields F and G respectively, that Q is a prime ideal of S lying over
P in R, that K = RP /PRP , and that L = SQ/QSQ. We must show that

heightQ− heightP ≤ tr. deg.G/F − tr. deg.L/K,
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with equality of R is universally catenary. Equality also holds if S is a polynomial ring
over R.

Before beginning the proof, we make the following observation. Let P0 be a prime
ideal of a local domain D. In general, dim (D/P0) ≤ dim (D) − heightP0, while equality
holds if D is catenary. The inequality, which is equivalent to the statement that dim (D) ≥
heightP0+dim (D/P0), follows from the following observation. We can “splice” a saturated
chain of primes of length k = dim (D/P0) ascending from P0 to the maximal ideal m of D
(corresponding to a chain of primes of length k in D/P0) with a chain of primes of length
h descending from P0 to (0). This yields a chain of saturated primes from m to (0) in D
that has length h+ k. If, moreover, D is catenary then all saturated chains from m to (0)
have the same length, and this is dim (D), so that h+ k = dim (D).

Proof of the dimension formula. By adjoining generators of S to R one at a time, we can
construct a chain of rings

R = S0 ⊆ S1 ⊆ · · · ⊆ Sn

such that for each i, 0 ≤ i ≤ n, we have that Si+1 is generated over Si by one element. Let
Qi = Q ∩ Si for each i. Note that when R is universally catenary, every Si is universally
catenary. It will suffice to prove the dimension formula (whether the inequality or the
equality) for each inclusion Si ⊆ Si+1. When we add the results, each term associated
with Si for i different from 0 and n occurs twice with opposite signs. The intermediate
terms all cancel, and we get the required result.

We henceforth assume that S = R[x], where x need not be an indeterminate over R.
By replacing R and S by RP and RP ⊗R S, we may assume that (R,P,K) is local. We
consider two cases, according as whether x is transcendental or algebraic over R.

Case 1. x is transcendental over R. Then the primes of S = R[x] lying over P correspond
to the primes of R[x]/PR[x] ∼= K[x], a polynomial ring in one variable. There are two
subcases.

Subcase 1a. Q corresponds to the prime ideal (0) in K[x], i.e., Q = PR[x]. In this case
SQ ∼= R(x) has the same dimension as R, so that heightQ = heightP . We have that
tr. deg.(G/F) = 1, and L ∼= K(x), so that tr. deg.(L/K) = 1 as well. Since 0 = 1 − 1, we
have the required equality whether R is universally catenary or not.

Subcase 1b. Q is generated by PR[x] and a monic polynomial g of positive degree whose
image g mod P is irreducible in K[x]. The height of Q is evidently has height heightP +1:
a system of parameters for P together with g will give a system of parameters for R[x]Q.
The left hand side of the inequality is therefore 1, while the right hand side is 1−0, because
L ∼= K[x]/

(
g
)
. Again, we have the required equality whether R is universally catenary or

not.

Case 2. x is algebraic over R. Let X be an indeterminate and map R[X] � R[x] = S as
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R-algebras by sending X 7→ x. We have a commutative diagram:

F [X] −−−−→ Gx x
R[X] −−−−→ S

where the horizontal arrows are surjective and the vertical arrows are inclusions. By hy-
pothesis, the top horizontal arrow has a kernel, which will be the principal ideal generated
by a monic polynomial h of positive degree: the minimal polynomial of x over F . The
kernel P0 of R[X] � S may therefore be described as hF [X] ∩R[X]. We claim that P0 is
a height one prime of R[X]. To see this, we calculate R[X]P0

. Since R ⊆ S, P0 does not
meet R, and R− {0} becomes invertible in RP0

. Thus, RP0
is the localization of F [X] at

the expansion of P0, which is hF [x], and is a one-dimensionsial ring. Let Q denote the
inverse image of Q in R[X]. Then Q contains P and, in fact, lies over P . It also contains
P0. There are again two subcases, depending on what Q is.

Subcase 2a. Q = PR[X]. In this subcase the right hand side of the dimension formula is
0− 1. The height of Q is the same as heightP , and killing P0 decreases it at least by 1 as
required. If R is universally catenary it decreases by exactly 1.

Subcase 2b. Q has the form PR[X] + fR[X], where f ∈ R[X] is monic of positive degree
and irreducible mod P . The right hand side of the dimension formula is 0− 0. The height
of Q is heightP + 1. Killing P0 decreases it by least 1, and by exactly 1 in the universally
catenary case. �

Remark. If S is a polynomial ring over R, we can choose the chain so that Si+1 is always
a polynomial ring in one variable over Si. We are always in Case 1 of the proof, and so
equality holds in the dimension formula without assuming that R is universally catenary.

Lecture of January 28, 2019

Let R be any ring and I ⊆ R any ideal. By the extended Rees ring or second Rees
ring of I over R we mean the ring R[It, 1/t] ⊆ R[t]. In this context we shall standardly
write v for 1/t. Note that if I is proper, v is not a unit of R[It, v]. This ring is Z-graded.
Written out as a sum of graded pieces

R[It, v] = · · ·+Rvk + · · ·+Rv2 +Rv +R+ It+ I2t2 + · · ·+ Intn + · · · .

The element v generates a homogeneous principal ideal, and

vR[It, v] = · · ·+Rvk + · · ·+Rv2 +Rv + I + I2t+ I3t2 + · · ·+ In+1tn + · · · .

From this it follows easily that R[It, v]/(v) ∼= grIR. There is a composite surjection

R[It, v] � grIR� R/I.
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When I is the unit ideal of R we have that R[It, v] = R[t, t−1].

When (R, m, K) is local and I is proper we further have a composite surjection

R[It, v] � R/I → R/m = K,

and the kernel is a maximal ideal M of R[It, v]. Explicitly,

M = · · ·+Rvk + · · ·+Rv2 +Rv +m+ It+ I2t2 + · · ·+ Intn + · · · .

Theorem. Let (R, m, K) be local, let I ⊆ R be proper, and let R[It, v] and M be as in
the paragraphs just above,

(a) The Krull dimension of R[It, 1/t] is dim (R) + 1, and this is the height of M.

(b) dim
(
grI(R)

)
= dim (R).

Proof. Let

P = · · ·+mvk + · · ·+mv2 +mv +m+ It+ I2t2 + · · ·+ Intn + · · · ,

which is the contraction of mR[t, 1/t] to R[It, v]. Then P ⊆M and R[It, v]/P ∼= K[v], a
polynomial ring in one variable over a field. The height of P is the same as the height of m:
when we localize at P in R[It, v], v becomes invertible, so that t = 1/v becomes an element
of the localized ring. But R[It, v][t] = R[t, v], and the expansion of P is mR[t, 1/t]. The
localization at the expansion is just R(t) (note that when we localize R[t] at mR[t], v
becomes an element of the ring), which we already know has the same dimension as R.
Thus, heightP = dim (R). Since M = P + vR[It, v] is strictly larger than P, we have
that heightM ≥ dim (R) + 1. To complete the proof of (a), it will suffice to show that
dim (R[It, v]) ≤ dim (R) + 1, for then heightM≤ dim (R) + 1 as well.

We first reduce to the case where R is a domain. To do so, we want to understand the
minimal primes of S = R[It, v]. If q is any prime of S, it lies over some prime of R, and
this prime contains a minimal prime p of R. We shall show that there is a unique minimal
prime p̃ of S containing p, and it will follow that every minimal prime has the form p̃. To
see this, note that q cannot contain v, for v is not a zerodivisor in S. Hence, q corresponds
via expansion to a minimal prime of Sv containing p. But Sv ∼= R[t, v], and pR[t, 1/t] is
already a minimal prime of R[t, 1/t]. It follows that q = pR[t, 1/t] ∩ S, and this is the
minimal prime p̃. Note that R[It, 1/t]/p̃ embeds in (R/p)[t, 1/t], and that the image is
the extended Rees ring of I(R/p). Therefore, it suffices to show that the dimension of
each of these Rees rings over a domain D obtained by killing a minimal prime of R has
dimension at most dim (D) + 1 ≤ dim (R) + 1, and we may therefore assume without loss
of generality that R is a local domain.

But S is then a domain finitely generated over R. If the fraction field of R is F , then
the fraction field of S is F(t). If Q is any prime ideal of S, Q lies over, say, P in R, and the
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residue class fields of RP and SQ are κP and κQ respectively, then the dimension formula
yields

heightQ ≤ heightP + tr. deg.(F(t)/F)− tr. deg.(κQ/κP ) ≤ heightP + 1 ≤ dim (R) + 1,

as required.

But killing a nonzerodivisor in a local domain drops the dimension by one. If µ
denotes the maximal ideal of the grIR that is the sum of R/I and the graded components
of positive degree, we leave it as an exercise to see that the Krull dimension of grIR is
the same as the Krull dimension of (grIR)µ. Since (grIR)µ is obtained by killing the
nonzerodivisor v in SM, we have that dim

(
grI(R)

)
= dim (SM)− 1 = dim (R). �

Corollary. Let x1, . . . , xn be a system of parameters in a local ring (R, m, K). Let F
be a homogenous polynomial of degree d in R[X1, . . . , Xn] such that F (x1, . . . , xn) = 0.
That is, F gives a relation over R on the monomials of degree d in x1, . . . , xn. Then all
coefficients of F are in m.

Proof. Consider the associated graded ring grI(R), where I = (x1, . . . , xn)R. This
ring is generated by the images x1, . . . , xn of x1, . . . , xn in I/I2 = [grI(R)]1. Let
A = R/I, an Artin local ring. By the preceding Theorem, dim

(
grI(R)

)
= n. But

grI(R) = A[x1, . . . , xn]. Killing the maximal ideal m/I of A does not affect the dimen-
sion of this ring. It follows that the quotient has dimension n, so that K[x1, . . . , xn] is a
polynomial ring in x1, . . . , xn. If F (x1, . . . , xn) = 0 and has a coefficient outside m, we
find the F (z1, . . . , zn) = 0 in K[x1, . . . , xn], where F is the image of F mod m and so is
a nonzero polynomial in the K[x1, . . . , xn]. This forces the dimension of K ⊗R grI(R) to
be smaller than n, a contradiction. �

We next want to prove two consequences of the Briançon-Skoda Theorem that were
stated without proof in as Corollaries at the bottom of p. 1 and the top of p. 2 of the
Lecture Notes of January . 9 The next result generalizes the first Corollary.

Theorem (corollary of the Briançon-Skoda Theorem). Let R be a regular Noether-
ian ring of Krull dimension n and let f1, . . . , fn+1 be elements of R. Then

fn1 · · · fnn+1 ∈ (fn+1
1 , . . . , fn+1

n+1 )R.

Proof. Call the product on the left g and the ideal on the right I. If g /∈ I, then (I+Rg)/I
is not zero, and we can localize at a prime in its support. Therefore, we may without loss
of generality that assume that (R, m, K) is a regular local ring of dimension at most n.
Second, if g /∈ I this remains true when we replace R by R(t), since R(t) is faithfully flat
over R. We also have that R(t) and R have the same dimension. Thus, we may assume
that R has an infinite residue class field. Let h = f1 · · · fn+1, so that g = hn. Since
hn+1 ∈ In+1, h ∈ I. Since an(I) ≤ dim (R) ≤ n and the residue class field is infinite, I is
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integral over an ideal I0 with at most n generators. Then h ∈ I0, and it follows from the
Briançon-Skoda theorem that hn ∈ I0 ⊆ I, as required. �

Discussion: consequences of the condition that grIR be a domain. Let I be
a proper ideal of R. We assume that

⋂
n I

n = (0). This is automatic if R is a Noetherian
domain. Suppose that grIR is a domain. Then it follows that R must be a domain,
for if fg = 0 with f, g 6= 0 we have f ∈ Ir − Ir+1 for some r (we call r the I-adic
order of f) and g ∈ Is − Is+1 for some s. Then the product of the nonzero elements
[f ] ∈ [grIR]r = Ir/Ir+1 and [g] ∈ [grIR]s in Is/Is+1 is nonzero in the domain grIR, and
this shows that fg ∈ Ir+s − Ir+s+1 has I-adic order r + s and is not 0. This proves that
R is a domain, and also shows that I-adic order is a valuation on R taking values in Z. R
is contained in the corresponding Noetherian discrete valuation ring (V, tV ) of its fraction
field, where the generator t of the maximal ideal of V can be taken to be the image of any
element in I − I2. Moreover, since In is the inverse image of the integrally closed ideal
tnV (this is a principal ideal in a normal domain), all of the ideals In are integrally closed.

Note that when (R,m,K) of Krull dimension d is regular, if f1, . . . , fd is any minimal
set of generators of the maximal ideal (called a regular system of parameters), then grmR
is a homomorphic image of K[x1, . . . , xd], where the xi are the images of the fi in m/m2.
Since grmR has the same Krull dimension d as R, R[x1, . . . , xd] � grmR cannot have
a nonzero kernel, which shows that R is regular if and only grmR is isomorphic with a
polynomial ring in d variables over the residue class field. Since this ring is a domain, R
is a domain, and we have an m-adic valuation on R, which gives a map (R,m) ↪→ (V, tV )
that carries m into tV , the maximal ideal of V . Hence:

Corollary. If (R,m) is a local Noetherian domain, there exists a valuation ring (V, tV )
of frac (R) such that R is a subring of V and m ⊆ tV .

Proof. It suffices to find an injection R ⊆ (V, tV ) such that m ⊆ tV for any Noetherian
valuation domain V , since we may intersect V with frac (R).

Because R ↪→ R̂ is flat, nonzero elements of R are nonzerodivisors in R̂, and R− {0}
is disjoint from any minimal prime P of R̂. Hence, R ↪→ R̂/P , and so we may assume
without loss of generality that R is a complete local domain. By the structure theory of
complete local rings, R is then module-finite over a complete regular local ring (A,mA).
The mA-adic valuation on A gives an injection A ↪→ W were W is a Noetherian discrete
valuation domain, and we may replace W by its completion and so assume it is complete.
We may think of W as a subring of the algebraic closure of its fraction field F , and we
may think of the generators of R as elements of F . Then the ring W1 = W [R] ⊆ F is
generated over W by finitely many integral elements, and so is a domain module-finite over
W . By the lemma below, W1 is local, and its integral closure W2, which is a module-finite
extension domain of W1 by Nagata’s theorem, is local. But a normal local domain of
dimension one is a Noetherian discrete valuation domain. �

Lemma. Let (R,m,K) be a complete local ring and let S be a module-finite extension of
R. Then S is a finite product of local rings. Hence, if S is a domain, then S is local.
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Proof. S/mR is a module finite extension of K and so it is an Artin ring. The maximal
ideals of S correspond bijectively to the maximal ideals of S/mS (they must lies over m)
and so there are finitely many, Q1, . . . , Qs. Then Q1 ∩ · · · ∩Qs is the radical of mS, and
has a power contained in mS. Since S is module-finite over R, it is complete with respect
to mS. Thus, S is the inverse limit of the rings S/mtS, and so it is also the inverse limit
of the rings S/(Q1 ∩ · · · ∩Qs)t. But the ideals Q1, . . . , Qs are pairwise comaximal, since
they are maximal, and so are their t th powers. It follows that

(Q1 ∩ · ∩Qs)t = (Q1 · · ·Qs)t = Qt1 · · ·Qts = Qt1 ∩ · · · ∩Qts.
By the Chinese remainder theorem,

S/(Q1 ∩ · · · ∩Qs)t ∼= S/(Qt1 ∩ · · · ∩Qts) ∼= (S/Qt1)× · · · × (S/Qts),

by the Chinese remainder theorem. But S/Qtj is already local and so is it is naturally

isomorphic with SQj/Q
t
jSQj . Since inverse limit commutes with finite products, S is

isomorphic with the product of the completions of the local rings SQj . �

A homomorphism h : (B,P )→ (C,Q) of quasilocal rings is called local if h(P ) ⊆ Q.

Theorem. Let (R,m,K) be a local ring and I ⊆ m an ideal. Then x ∈ I if and only if
for every local map of R to a Noetherian valuation domain V , x ∈ IV . Moreover, we need
only consider local maps R→ V such that the kernel is a minimal prime P of R and V is
a valuation of frac (R/P ).

In consequence, I is the intersection of the m-primary integrally closed ideals that
contain I.

Proof. Since integral closure may be tested modulo every minimal prime, we reduce at once
to the case where R is a domain, and since we may intersect a Noetherian valuation domain
with te fraction field of R, it suffices to show that if x /∈ I there exists a local inclusion
map R ⊆ V ,where V is a Noetherian valuation domain, such that x 6 inIV . Consider the
ring T = R[I/x] = R[f/x : f ∈ I] ⊆ frac (R), which is a finitely generated R-algebra,
and so Noetherian, since if I = (f1, . . . , fs)R this is the same as R[fi/x : 1 ≤ i ≤ s].
Then (m, I/x)R[I/x] = m + I/x + I2/x2 + · · · + Ik/xk + · · · , where any single element
is a finite sum. I We shall show that this is a proper ideal of R[I/x]. Otherwise, we have
1 = u + i1/x + i2/x

2 + · · · + ik/x
k with ij ∈ Ij , 1 ≤ j ≤ k. If we have this equation,

multiply by xk to get (1 − u)xk − i1xk−1 − · · · − ik = 0. Since u ∈ m, 1 − u is a unit
and we may multiply by its inverse to get an equation of integral dependence for x on I, a
contradiction. Since (m, I/x)R[I/x] is a proper ideal of T , we can localize T at prime Q
that contains it, and then choose a Noetherian valuation domain V such that TQ ⊆ V is
a local map. If x ∈ IV , then since IV = fV for some generator f of I, we x ∈ fV , i.e.,
x/f ∈ V . This is a contradiction, since f/x ∈ Q is in the maximal ideal of V .

For the second statement, note that if x /∈ IV , then x is not in the contraction of IV
to R, which contains I, is integrally closed, since IV is, and is m-primary (contractions of
ideals primary to a given prime are primary to the contraction of the prime). �

We next observe:
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Theorem. Let R denote C{{z1, . . . , zn}} or C[[z1, . . . , zn]], the convergent or formal pow-
ers series ring in n variables. Let f be in the maximal ideal of R, and let I be the ideal
generated by the partial derviatives ∂f/∂zi of f . Then f is integrally dependent on I.

Proof. If not, we can chnoose a local inclusion of R to a discrete valuation ring V in such
a way that the image f is not in IV . Note that V cannot be just a field here, for then f
maps to 0. Replace V by its completion: we may assume that V is complete. Since we
are in the equal characteristic 0 case, the image of C in V can be extended to a coefficient
field. Thus, we may assume that V = L[[x]], where C ⊆ L and m maps into (x).

Let h : R → L[[x]] be the map, and h(zi) = gi(x), 1 ≤ i ≤ n. Then f maps
to f

(
g1(x), . . . , gn(x)

)
. The key point is that the chain rule holds here, by a formal

calculation. Thus,

d

dx

(
h(f)

)
=

n∑
i=1

h(∂f/∂zi)
dgi(x)

dx
.

It follows that the derivative of h(f) is in IV . But over a field of characteristic 0, the
derivative of a nonzero non-unit v has order exactly one less than that of v. Hence,
f ∈ IV as well. �

Theorem (corollary of the Briançon-Skoda theorem). With hypotheses as in the
preceding Theorem, fn is in the ideal generated by its partial derivatives.

Proof. This is immediate from the preceding Theorem and the Briançon-Skoda Theo-
rem. �

Lecture of January 30, 2019

Following Lipman and Sathaye [J. Lipman and A. Sathaye, Jacobian ideals and a the-
orem of Briançon-Skoda, Michigan Math. J. 28 (1981), 199–222] we present the Briançon-
Skoda Theorem in a generalized form:

Briançon-Skoda Theorem (Lipman-Sathaye version). Let R be a Noetherian nor-
mal domain, and let I0 be an ideal of R such that grI0(R) is regular. Let n ≥ 1 and let I
be an ideal of R generated over I0 by n elements, say f1, . . . , fn. Let k ≥ 1 be any positive

integer. Then In+k−1 ⊆ Ik.

The version stated in the Lecture of January 9 is the case where I0 = 0 and k = 1.
Notice that the result is non-trivial even when n = 1, where it states that all the powers
of I are integrally closed.

We shall first explain how this result follows from the Lipman-Sathaye Jacobian The-
orem (although this will take a while), and then focus on the proof of the latter. We need
an intermediate result:
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Theorem (Lipman-Sathaye). Let B be a Noetherian normal integral domain, and let
v ∈ B − {0} be such that B/vB is regular. Let t denote the inverse of v in the fraction
field of B. Let f1, . . . , fn ∈ B and let S = B[f1t, . . . , fnt]. Let S′ be the integral closure
of S in its field of fractions. Then vn−1S′ ⊆ S.

We want to see that the second theorem implies the first. We need some preliminary
facts.

Lemma. Let be any ring, and I an ideal of R.

(a) The integral closure of the extended Rees ring R[It, v] in R[t, v] in degree k is Iktk (if
k ≤ 0, let Ik = R). That is, the integral closure in R[t, v] is

· · ·+Rvk + · · ·+Rv2 +Rv +R+ It+ I2t2 + · · ·+ Imtm + · · · .

If R is a normal domain, this is also the integral closure of R in its fraction field.

(b) Suppose that R is a Noetherian domain and that grIR is an integral domain (or that
its localization at every prime ideal of R is an integral domain). Then every power of
I is integrally closed.

Proof. (a) The integral closure in R[IT, v] is Z-graded. The result for nonnegative degrees
is clear. In positive degree k, if rtk is integral over R[It, v] it satisfies a monic polynomial
of degree d for some d, and the sum of the coefficients of tdk must be 0. Just as in the case
of R[It], this yields an equation establishing the integral dependence of r on Ik. The final
statement follows because when R is normal, so is R[t, v], and so R[t, v] must contain the
normalization of R[It, v].

(b) If In/In 6= 0, we may preserve this while localizing. Since integral closure com-
mutes with localization, we may assume that R is local. If I expands to the unit ideal,
there is nothing to prove. Otherwise, grI(R) is N-graded over the local ring R/I. When
grI(R) is a domain, we can define a valuation on R whose value on a nonzero element r is
the unique nonnegative integer h such that r ∈ Ih − Ih+1. In is then the contraction of
the n th power of the maximal ideal of a discrete valuation ring. �

Proof that the second theorem implies the Briançon-Skoda theorem. Let B =
R[I0t, v]. Then B/vB ∼= grI0(R) is regular, and B is normal by the Lemma above.
Then S = B[f1t, . . . , fnt] = R[It, v] is the extended Rees ring of I over R. It fol-

lows that in degree n+ k − 1, S′ is In+k−1tn+k+1. The fact that vn−1S′ ⊆ S implies that

vn−1[S′]n+k−1 ⊆ [S]k = Iktk, and so In+k−1 ⊆ Ik. �

Until further notice, R denotes a Noetherian domain with fraction field K, and S
denotes an algebra essentially of finite type over R (i.e., a localization at some multiplicative
system of a finitely generated R-algebra) such that S is torsion-free and generically étale
over R, by which we mean that L = K⊗R S is a finite product of finite separable algebraic
field extensions of K. Note that L may also be described as the total quotient ring of S.
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We shall denote by S′ the integral closure of S in L. We shall prove that S′ is module-finite
over S if R is regular (and more generally).

If A and B are subsets of L we denote by A :LB the set {u ∈ L : uB ⊆ A}. If C is a
subring of L and A is a C-module, then A :LB is also a C-module.

We shall write JS/R for the Jacobian ideal of S over R. If S is a finitely generated
R-algebra, so that we may think of S as R[X1, . . . , Xs]/(f1, . . . , fh), then JS/R is the
ideal of S generated by the images of the size s minors of the Jacobian matrix (∂fj/∂xi)
under the surjection R[X] → S. This turns out to be independent of the presentation,
as we shall show below. Moreover, if u ∈ S, then JSu/R = JS/RSu. From this one sees
that when S is essentially of finite type over R and one defines JS/R by choosing a finitely

generated subalgebra S0 of S such that S = W−1S0 for some multiplicative system W of
S0, if one takes JS/R to be JS0/RS, then JS/R is independent of the choices made. We
shall consider the definition in greater detail later. The result we aim to prove is:

Theorem (Lipman-Sathaye Jacobian theorem). Let R be regular domain1 with frac-
tion field K and let S be an extension algebra essentially of finite type over R such that
S is torsion-free and generically étale over R. Let L = K ⊗R S and let S′ be the integral
closure of S in L. Then S′ :L JS′/R ⊆ S :L JS/R.

Note that, since JS′/R is an ideal of S′, we have that S′ ⊆ S′ :L JS′/r. The statement
that S′ ⊆ S :L JS/R implies that JS/RS′ ⊆ S, i.e., that JS/R “captures” the integral
closure S′ of S (all we mean by this is that it multiplies S′ into S).

We next want to explain why the Jacobian ideal is well-defined. We assume first that
S is finitely presented over R. To establish independence of presentation we first show
that this ideal is independent of the choice of generators for the ideal I. Obviously, it
can only increase as we use more generators. If we have two different sets of generators,
we can compare the Jacobian ideal obtained from each with the one obtained from their
union. It suffices to show that the Jacobian ideal does not change when we enlarge the
set of generators. By enlarging the set of generators still further we may assume that the
new generators are obtained from the original ones by operations of two kinds: enlarging
the set of generators with one which is a multiple of one of the original generators by an
element of the ring, or by one which is the sum of two of the original generators. Let us
denote by ∇f the column vector consisting of the partial derivatives of f with respect to
the variables. Since ∇(gf) = g∇f+f∇g and the image of a generator f in S is 0, it follows
that the image of ∇(gf) in S is the same as the image of g∇f when f ∈ I. Therefore, the
minors formed using ∇(gf) as a column are multiples of corresponding minors using ∇f
instead, once we take images in S. Since ∇(f1 + f2) = ∇f1 +∇f2, minors formed using
∇(f1 + f2) as a column are sums of minors from the original matrix. Thus, independence
from the choice of generators of I follows.

1We can weaken the regularity hypotheses on R quite a bit: instead, we may assume that R is a

Cohen-Macaulay Noetherian normal domain, that the completion of every local ring of R is reduced, and
that for every height one prime Q of S′, if P = Q ∩R, then RP is regular.
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Now consider two different sets of generators for S over R. We may compare the
Jacobian ideals obtained from each with that obtained from their union. This, it suffices
to check that the Jacobian ideal does not change when we enlarge the set of generators
f1, . . . , fs of the algebra. By induction, it suffices to consider what happens when we
increase the number of generators by one. If the new generator is f = fs+1 then we may
choose a polynomial h ∈ R[X1, . . . , Xs] such that f = h(f1, . . . , fs), and if g1, . . . , gh
are generators of the original ideal then g1, . . . , gh, Xs+1−h(X1, . . . , Xs) give generators
of the new ideal. Both dimensions of the Jacobian matrix increase by one: the original
matrix is in the upper left corner, and the new bottom row is (0 0 . . . 0 1). The result is
then immediate from

Lemma. Consider an h + 1 by s + 1 matrix M over a ring S such that the last row is
(0 0 . . . 0 u), where u is a unit of S. Let M0 be the h by s matrix in the upper left corner
of M , obtained by omitting the last row and the last column. Then Is(M0) = Is+1(M).

Proof. If we expand a size s+ 1 minor with respect to its last column, we get an S-linear
combination of size s minors of M0. Therefore, Is+1(M) ⊆ Is(M0). To prove the other
inclusion, consider any s by s submatrix ∆0 of M0. We get an s+ 1 by s+ 1 submatrix ∆
of M by using as well the last row of M and the appropriate entries from the last column
of M . If we calculate det(∆) by expanding with respect to the last row, we get, up to sign,
udet(∆0). This shows that Is(M0) ⊆ Is+1(M). �

This completes the argument that the Jacobian ideal JS/R is independent of the
presentation of S over R.

We next want to observe what happens to the Jacobian ideal when we localize S at one
(or, equivalently, at finitely many) elements. Consider what happens when we localize at
u ∈ S, where u is the image of h(X1, . . . , Xs) ∈ R[X1, . . . , Xs], where we have chosen an
R-algebra surjection R[X1, . . . , Xs] � S. We may use 1/u as an additional generator, and
introduce a new variable Xs+1 that maps to 1/u. We only need one additional equation,
Xs+1h(X1, . . . , Xs)− 1, as a generator. The original Jacobian matrix is in the upper left
corner of the new Jacobian matrix, and the new bottom row consists of all zeroes except for
the last entry, which is h(X1, . . . , Xs). Since the image of this entry is u and so invertible
in S[u−1], the Lemma above shows that the new Jacobian ideal is generated by the original
Jacobian ideal. We have proved:

Proposition. If S is a finitely presented R-algebra and T is a localization of S at one (or
finitely many) elements, JT/R = JS/RT . �

Lecture of February 1, 2019

We next want to extend the definition of the Jacobian ideal to the case where S is
a localization of a finitely generated R-algebra, even though S itself may not be finitely
generated over R.
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Suppose that S = W−1S1 where S1 is finitely generated over the Noetherian ring R.
As mentioned earlier, we want to define JS/R to be JS1/RS = W−1JS1/R. We only need
to check that the result is independent of the choice of S1 and W . First note that we may
replace S1 by its image in S (and W by its image as well). To see this, let A be the kernel
of the map S1 → S. Then A is killed by some element of w ∈W , and, by the Proposition
at the end of the Lecture Notes for January 29, we may replace S1 by its localization at
w. But (S1)w injects into S. Let T ∼= S1/A be the image of S1 in S. Then Tw ∼= (S1)w,
and so JS1/R and JT/R both expand to JTw/R. It follows that JS1/R and JT/R will have
the same expansion to S. Now suppose that S is the localization of finitely generated
R-subalgebras Si ⊆ S at the multiplicative systems Wi, i = 1, 2. We want to show that
JSi/RS is independent of i.

First note that each element in a finite set of generators for S2 over R is multiplied
into S1 by an element of W1. By multiplying these elements of W1 together, we can
find w1 ∈ W1 such that S2 ⊆ (S1)w1 . Since S1 and (S1)w1 produce the same result
when their Jacobian ideals are expanded to S, we may replace S1 by (S1)w1

, and so
assume that S2 ⊆ S1. But we can similarly find w2 ∈ W2 such that S1 ⊆ (S2)w2

. Then
(S1)w2

= (S2)w2
= S0, say. It is then clear that JSi/RS = JS0

S for i = 1, 2. This shows
that JS/R is well-defined independent of choices.

There is another approach to defining JS/R for localizations of finitely generated R-
algebras. First note that given a derivation D of a ring T , i.e., a map D : T → T that is
a homomorphism of additive groups and satisfying D(f1f2) = f1D(f2) + D(f1)f2 for all

f1, f2 ∈ T , it induces a unique derivation D̃ : W−1T →W−1T such that diagram

WT
D̃−−−−→ WTx x

T
D−−−−→ T

commutes. One gets D̃ by letting

D̃(f/w) =
wDf − fDw

w2
.

(One needs to check that this is well-defined.) In consequence the partial differentiation

operators
∂

∂Xj
extend uniquely from the polynomial ring R[X1, . . . , Xs] to any localization

W−1R[X1, . . . , Xs]. Given a finitely generated R-algebra S0 and a multiplicative system
W0 ⊆ S0, we can choose a surjection T = R[X1, . . . , Xs] � S0, and let W be the inverse
image of W0 in T , which is a multiplicative system in T . Then we have a surjection
W−1T � W−1

0 S0 = S, and so we can write S ∼= W−1R[X1, . . . , Xs]/(f1, . . . , fh). We
can then define JS/R as the expansion of Is

((
∂fj/∂Xi

))
to S. We leave it to the reader

to show that this produces the same ideal as our earlier definition of JS/R

Remark. Suppose that we are calculating the Jacobian ideal of S = R[X1, . . . , Xs]/I
over R. If we modify the elements f1, . . . , fs ∈ I by adding elements g1, . . . , gs ∈ I2, the
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image of the Jacobian minor det (∂fj/∂xi) does not change. The point is that each of the
partial derivatives of an element of I2 is in I, by the product rule, and so the image of
every partial derivative of any gj in S is 0. We shall make use of this trick later.

Definition: the conductor. Let S be a reduced Noetherian ring and S′ its integral
closure. The conductor, denoted CS′/S , for S ⊆ S′ is {s ∈ S : S′s ⊆ S}.

It is easily checked that CS′/S , which by definition is contained in S, is actually an
ideal of S′. Thus, it is an ideal of both S and S′. It may also be characterized as the
largest ideal of S which is an ideal of S′.

Examples. Let x be an indeterminate over the field K, and let S = K[x2, x3] ⊆ K[x].
Then S′ = K[x], and the conductor is the maximal ideal (x2, x3)S, which contains all
powers of x. However if we let T = K[x3, x5] ⊆ K[x], then T may also be described as
K[x3, x5, x6, x8, x9, x10, . . . ]. It is still the case that T ′ = K[x], but now the conductor is
(x8, x9, x10)T .

We next state an easy Corollary of the Jacobian theorem (but keep in mind that we
have not yet proved the Jacobian theorem).

Corollary. . Let R be a regular local ring and let f1, . . . , fn, v1, . . . , vn ∈ R, with the
vi 6= 0. Let S = R[f1/v1, . . . , fn/vn]. Then v1 · · · vn ∈ JS/R and, hence, v1 · · · vnS′ ⊆ S.
In other words, v1 · · · vn ∈ CS/R.

Proof. S = R[X1, . . . , Xn]/I for an a suitable ideal I, where Xj maps to fj/vj . Hence,
we can include the elements vjXj − fj as the first n generators of I, and it follows that
the first n rows of the Jacobian matrix form a diagonal matrix with v1, . . . , vn on the
diagonal. Hence, v1 · · · vn is one of the minors. �

We want to restate the Jacobian theorem with a slight refinement that makes use
of the basic facts about the conductor. The statement that S′ :L JS′/R ⊆ S :L JS/R is
equivalent to the statement JS/R(S′ :L JS′/R) ⊆ S. Since S′ :L JS′/R is an S′-module, so
is the left hand side. Therefore, the left hand side is an ideal of S′ that is contained in S,
and so it is contained in CS′/S . Therefore, we can reformulate the Jacobian theorem as
follows:

Theorem (Lipman-Sathaye Jacobian theorem). Let R be regular domain2 with frac-
tion field K and let S be an extension algebra essentially of finite type over R such that
S is torsion-free and generically étale over R. Let L = K ⊗R S and let S′ be the integral
closure of S in L. Then JS/R(S′ :L JS′/R) ⊆ CS′/S.

We have already proved that the second Theorem of Lipman and Sathaye (stated on
the first page of the Lecture Notes of January 30) implies the Lipman-Sathaye version of

2Or: let R be a Cohen-Macaulay Noetherian normal domain such that the completion of every local
ring of R is reduced, and such that for every height one prime Q of S′, if P = Q ∩R, then RP is regular.
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the Briançon-Skoda Theorem. The conclusion of this second Theorem can be phrased as
follows: vn−1 ∈ CS′/S . The easy Corollary of the Jacobian theorem stated above gives
a weakened version of the result we want right away: we can take v1 = · · · = vn = v,
and we find that vn ∈ CS′/S under the hypotheses of the second Theorem. This gives a
likewise weakened version of the Briançon-Skoda theorem, in which the conclusion is that

In+k ⊆ Ik for k ≥ 1. We will need to do quite a bit of work to decrease the exponent on
the left by one.

The Lemma we need to do this, whose proof will occupy us for a while, is the following:

Key Lemma. Let S be essentially of finite type, torsion-free and genercially étale over
R, a regular domain. Let v ∈ R be such that R/vR is regular. Suppose f ∈ R − vR, and
f/v ∈ S. Then JS′/R ⊆ vS′.

The conclusion implies that 1/v ∈ S′ :L JS′/R. Coupled with the Jacobian Theorem,
which tell us that JS/R(S′ :L JS′/R) ⊆ I, we have that JS/R · (1/v) ⊆ I, and since we

already know that vn ∈ JS/R, we can conclude that vn/v ∈ I. Thus, vn−1S′ ⊆ S, as
required.

Remark. For the moment we have been assuming that S′ is module-finite over S: we shall
prove this later.

There are two proofs that are still hanging besides the fact that S′ is module-finite
over S: one is for the Key Lemma stated just above, and the other is for the Jacobian
theorem itself. We shall address the Key Lemma first. We need several preliminaries.

Recall that the embedding dimension of a local ring (T, m, L) is the least number of
generators of m, and, by Nakayama’s Lemma, is the same the L-vector space dimension
of m/m2. Also recall that a local ring is regular if its embedding dimension and Krull
dimension are equal. By a theorem, a regular local ring is an integral domain. A minimal
set of generators of m is always a system of parameters and is called a regular system of
parameters. If we kill one element in a regular system of parameters, the Krull dimension
and embedding dimension both drop by one, and the ring is still regular. It follows that a
regular system of parameters for a regular local ring T is a regular sequence, and that the
quotient of T by the ideal generated by part of a regular system of parameters is again a
regular local ring. The converse is true:

Lemma. Let (T,m) be a regular local ring and A ⊆ m an ideal. Then S = T/A is regular
if and only if A is generated by part of a regular system of parameters (equivalently, part
of a minimal set of generators for m). In particular, if T and S are both regular than A
must be generated by dim (T )− dim (S) elements.

Proof. It remains only to show that if T/A is regular, then A is generated by part of a
regular system of parameters. If A = 0 we may use the empty subset of a regular system of
parameters as the set of generators. Assume A 6= 0. We use induction on d = dim (T ). If
A ⊆ m2, then killing A decreases the Krull dimension, but the embedding dimension stays
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the same. But then the quotient cannot be regular. Therefore, we may choose an element
of x1 of A that is not in m2. The element x1 is part of a regular system of parameters. If
d = 1 then x1 generates m, which must be A, and we are done. If not, we have that T/x1T
is regular and we may apply the induction hypothesis to conclude A/x1T is generated
by part of regular system of parameters x2, . . . , xk for T/x1T . Let xj in T map to xj ,
2 ≤ j ≤ d − 1. Then (x1, . . . , xk) = T and x1, . . . , xk is part of a regular system of
parameters for T . �

Notation. Given m polynomials F1, . . . , Fm ∈ R[X1, . . . , Xm], we write
∂(F1, . . . , Fm)

∂(X1, . . . , Xm)
for det

(
∂Fj/∂Xi

)
.

Also note that if T is a ring and W is a multiplicative system such that W−1T is
quasilocal, then W−1T ∼= TQ, where Q is the contraction of the maximal ideal of W−1T
to T . On the one hand, we have a map T → W−1T such that the image of T − Q is
invertible, and this induces a map TQ →W−1T that lifts the identity map T → T . On the
other hand, the map T → TQ must carry W outside QTQ, and so we get an induced map
W−1T → TQ that lifts the identity on T . It is then easy to check that these are mutual
inverses.

Lemma. Let (R, m, K) ⊆ (S, m, L) be a local map of regular local rings such that S is
essentially of finite type over R and the extension of fraction fields is algebraic. Then for
some integer m, S is a localization of R[X1, . . . , Xm]/(F1, . . . , Fm) for suitable polyno-

mials F1, . . . , Fm, and, hence, JS/R is the principal ideal
∂(F1, . . . , Fm)

∂(X1, . . . , Xm)
S.

Proof. Choose a surjection R[X1, . . . , Xm] � S, and let Q be the inverse image of the
maximal ideal of S in R[X1, . . . , Xm]. Thus, S ∼= R[X]Q/A. We need to see that the
number of generators of A is m: we can assume that they are in R[X] by clearing de-
nominators if necessary, since elements of R[X]−Q are units. By the preceding Lemma,
since both R[X]Q and its quotient by A are regular, A is generated by heightQ− dim (S)
elements, and we therefore want to show that heightQ − dim (S) = m. To see this, first
note that by the dimension formula,

(∗) dim (S) = dim (R)− tr. deg.(L/K).

Since Q ⊇ m, Q corresponds to a prime P of K[X1, . . . , Xm], and

(∗∗) heightQ = dim (R) + heightP,

while L is the fraction field of K[X1, . . . , Xm]/P , and so

(∗ ∗ ∗) tr. deg.(L/K) = dim (K[X1, . . . , Xm]/P ) = m− heightP.

Thus, using (∗) and (∗∗), we have:

heightQ− dim (S) = dim (R) + heightP −
(
dim (R)− tr. deg.(L/K)

)
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and using (∗ ∗ ∗) this is

heightP + tr. deg.(L/K) = heightP + (m− heightP ) = m,

as required. �

Corollary. Let R0 ⊆ R1 ⊆ R2 be regular domains such that Ri is essentially of finite type
over R0 for i = 1, 2 and frac (R2) is algeraic over frac (R0). Then

JR2/R0
= JR2/R1

JR1/R0
.

Lecture of February 4, 2019

We prove the Corollary stated at the end of the Lecture of February 1.

Proof. If the ideals are different, we may localize at a prime of R2 in the support of the
module which is their sum modulo their intersection. Thus, we may assume without loss
of generality that R2 is local. We may replace R1 by its localization at the contraction of
the maximal ideal of R2, and R0 by its localization at the contraction of the maximal ideal
of R2 (or of R1: the contractions are the same). Thus, we may assume that we are in the
case where R0 ↪→ R1 ↪→ R2 are local and the homomorphisms are local. By the Lemma
near the bottom of the page 4 of the Lecture Notes of February 1, we have that

R1
∼= R0[X1, . . . , Xm]P/(F1, . . . , Fm)

for some m and prime P of R0[X1, . . . , Xm]. Then JR1/R0
is generated by the image of

∂(F1, . . . , Fm)

∂(X1, . . . , Xm)
. Likewise,

R2
∼= (R1[Y1, . . . , Ys])Q/(G1, . . . , Gs).

Again, JR2/R1
is generated by the image of

∂(G1, . . . , Gs)

∂(Y1, . . . , Ys)
. It follows that we can write

R2 as a localization of

R0[X1, . . . , Xm, Y1, . . . , Ys]/(F1, . . . , Fm, G1, . . . , Gs),

where the Fj do not involve the Yi. This means that the Jacobian matrix has the block
form (

MF N
0 MG

)
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where MF is
(
∂Fj/∂Xi

)
and MG is

(
∂Gj/∂Yi

)
. We have that JR2/R0

is generated by the
image of the determinant of this matrix. No matter what N is, this determinant is

det(MF ) det(MG) =
∂(F1, . . . , Fm)

∂(X1, . . . , Xm)

∂(G1, . . . , Gs)

∂(Y1, . . . , Ys)

as required. �

There are now three results whose proof are hanging: one is the proof that S′ is
module-finite over S, the second is the proof of the Key Lemma, which is stated on p. 3
of the Lecture Notes of February 1, and the third is the proof of the Jacobian Theorem
itself. We begin with the proof of the Key Lemma. This will involve studying quadratic
transforms of a regular local ring along a valuation. We first indicate our approach to the
proof of the Key Lemma.

Proof of the Key Lemma: step 1. We are trying to show that JS′/R ⊆ vS′. Assume the
contrary. Consider the primary decomposition of vS′. Since we are assuming that S′ is
module-finite over S (we still need to prove this), S′ is a normal Noetherian ring, and the
associated primes of vS′ have height one. We may choose such a prime Q such that JS′/R
is not contained in the corresponding primary ideal in the primary decomposition of vS′.
Since the elements of S′ −Q are not zerodivisors on this primary ideal, we also have that
JS′

Q
/R is not contained in S′Q = V . Thus, for the purpose of proving the Key Lemma,

we may replace S′ by V , which is a discrete valuation ring, and we may replace R by its
localization at the contraction of Q to R. Note that because f/v ∈ S with f /∈ vR, we
have that f = (f/v)v ∈ vS ⊆ vS′ ⊆ Q and the contraction of Q to R contains both v and
f , and has height at least 2, since vR is prime.

In the remainder of the argument we may therefore assume3 that (R, m, K) is regular
local, and we may replace S′ by a discrete value ring V = S′Q essentially of finite type over
R, where the map R ⊆ V is local.

We now digress to discuss quadratic transforms. We first want to prove:

Lemma. Let (R, m, K) be regular local with regular system of parameters x1, . . . , xd.
Then T = R[x2/x1, . . . , xd/x1] = R[m/x1] is regular, and the images of x2, . . . , xd are
algebraically independent over K in T/x1T ∼= K[x2, . . . , xd].

Proof. If we localize T at a prime that does not contain x1, the resulting ring is a localiza-
tion of Rx1

, and is therefore regular. For primes that contain x1, it suffices to show that
the localization is regular after killing x1, and this follows from the fact that T/x1T is
regular even without localizing. It therefore suffices to prove that T/x1T is a polynomial
ring.

3Note that in the refined version of the Jacobian theorem, it was assumed that RP is regular if P
lies under a height one prime of S′, so that we may make this reduction even in that case.
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First note that
T =

⋃
k

mk/xk1 ,

where mk/xk1 = {u/xk1 : u ∈ mk}, and this is an increasing union since mk/xk1 =

x1m
k/xk+1

1 . (It is clear that mk/xk1 ⊆ T , and the product of the j th and k th terms
in the union is the (j + k) th term.) Hence, if there is a relation among the xj , 2 ≤ j ≤ n,
we may lift it obtain a nonzero polynomial g whose nonzero coefficients are units of R
(we get them by lifting elements of K to R) such that g(x2/x1, . . . , xd/x1) = x1t where
t ∈ mk/xk1 . We multiply both sides by xN1 where N ≥ k is also larger than the absolute
value of any negative exponent on x1 occurring on the left. The left hand side becomes a
nonzero homogeneous polynomial G of degree N in x1, . . . , xd whose nonzero coefficients
are units. The right hand side is in x1 · xN−k1 mk ⊆ x1+N−k

1 mk ⊆ mN+1. This gives a
nonzero relation of degree N on the images of x1, . . . , xd in grm(R), a contradiction, since
when R is regular this is a polynomial ring in the images of the xj . �

Definition. Let (R, m, K) be a regular local ring of Krull dimension d ≥ 2 and let
suppose that R ⊆ V is a local map to discrete valuation ring V . Let ord V = ord denote
the corresponding valuation. By the immediate or first quadratic transform of R along V
we mean the following: let x1, . . . , xd be a regular system of parameters for R numbered
so that ord (x1) ≤ ord (xj) for j ≥ 2, let T = R[x2/x1, . . . , xd/x1], and then the first
quadratic transform is TP , where P is the contraction to T of the maximal ideal of V .
Then TP is again regular, and we have a local map TP ⊆ V . We may therefore iterate to
obtain a sequence of quadratic transforms of R, called the quadratic sequence of R along
V . The sequence is finite if it eventually contains a ring of dimension 1, i.e., a DVR. (Note
that if R is a discrete valuation ring with regular parameter x, the quadratic transform
process does not change R.) We are aiming to prove that the sequence is finite whenever
the transcdence degree of the residue class field of V essentially of finite type over R and the
extension frac (V ) is algebraic over frac (R), which, by the dimension formula corresponds
to the case where the transcendence degree of the residue class field extension is d− 1. We
shall also show that the last ring in the quadratic sequence along V is V ∩ frac (R) in this
case.

Lecture of February 6, 2019

Remark. The quadratic transform of (R, m, K) along V is independent of the choice of
regular system of parameters. If x ∈ m has minimum order in V , the quadratic transform
is the localization of R[m/x] at the contraction P of the maximal ideal of V . If y also has
minimum order, then y/x /∈ P , and so x/y ∈ R[m/x]P . Since (u/x)(x/y) = u/y for all
u ∈ m, it follows that

R[m/y] ⊆ R[m/x]P .

If Q is the contraction of the maximal ideal of V to R[m/y], we have that elements of
R[m/y]−Q are not in PR[m/x]P , and therefore have inverses in R[m/x]P . Thus,

R[m/y]Q ⊆ R[m/x]P .
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The other inclusion follows exactly similarly. �

Remark. The first quadratic transform (T1, m1, K1) of the regular local ring (R, m, K)
has dimension at most dim (R), and dim (T ) = dim (R) − tr. deg.(K1/K). In fact, since
R is regular, it is universally catenary and the dimension formula holds. Since the two
fraction fields are equal, the transcendence degree of the the extension of fraction fields is
0. �

Remark. A local inclusion of valuation domains with the same fraction field must be the
identity map. For say that (W, mW ) ⊆ (V, mV ) with mW ⊆ mV . If f ∈ V −W , then
1/f ∈W . Since f /∈W , 1/f ∈ mW . But then 1/f ∈ mV , which contradicts f ∈ V . �

Lemma. Let x1, . . . , xd be a regular sequence in the ring R with d ≥ 2.

(a) Consider T = R[x2/x1] ⊆ Rx1 . Then T ∼= R[X]/(x1X−x2). Moreover, x1, x3, . . . .xd
is a regular sequence in R[x2/x1].

(b) Consider T = R[x2/x1, . . . , xd/x1] ⊆ Rx1 . Then

T ∼= R[X2, . . . , Xd]/(x1Xi − xi : 2 ≤ i ≤ d).

Moreover, JT/R = xd−1
1 T .

Proof. (a) Since x1, x2 is a regular sequence in R, x1, x1X − x2 is a regular sequence in
R[X]: killing x1 produces (R/x1R)[X], and the image of the second element is −x2.

We claim that x1 is not a zerodivisor modulo (x1X − x2), for if x1f = (x1X − x2)g
in R[X], then g = hx1 by the paragraph above. Since x1 is not a zerodivisor in R[X], we
find that f = (x1X − x2)h.

This means that R[X]/(x1X − x2) injects into its localization at x1, which we may
view as Rx1

/(x1X − x2). Since x1 is a unit, we may take X − x2/x1 as a generator of the
ideal in the denominator, and so the quotient is simply Rx1

. The image of R[X]/(x1X−x2)
is then R[x2/x1] ⊆ Rx1

.

The last statement in part (a) follows because if we kill x1 in R[X]/(x1X − x2), we
simply get

(
R/(x1, x2)

)
[X]. The images of x3, . . . , xd form a regular sequence in this

polynomial ring, because that was true in R/(x1, x2).

Part (b) now follows by induction on d: as we successively adjoin x2/x1, x3/x1 and so
forth, the hypothesis we need for the next fraction continues to hold. The final statement
is then immediate, because the Jacobian matrix calculated from the given presentation is
x1 times the size d− 1 identity matrix. �

We also note:
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Proposition. Let (R, m, K) ⊆ V be an inclusion of a regular local ring in a DVR, let
v ∈ m be such that R/vR is regular, and let x ∈ m have minimal order in V . Let T be
the first quadratic transform of R along V . Then either v1 = v/x is a unit of T , or else
T/v1T is regular. If the first quadratic transform is a DVR, it is always the case that v1

is a unit.

Proof. Extend v to a regular system of parameters S for R. If v itself has minimum order
in V , then v/x is a unit of T . If not, then x is a unit of T times some element x1 ∈ S, and
v1T = v′1T if v′1 = v/x1. Hence, we may assume without loss of generality that x = x1

and v = x2 in the regular system of parameters S. Then x1 and x2/x1 are in the maximal
ideal of T , and to show that they form a regular sequence in T , it suffices to show that
they form a regular sequence in the ring

R[x1, x2/x1, . . . , xd/x1].

However, mod (x1), this ring becomes the polynomial ring K[x2, . . . , xd], and the image of
x2/x1 is x2.The quotient of T by this regular sequence is a localization of the polynomial
ring K[x3, . . . , xd], and so is regular. Hence, x1, x2/x1 is part of a regular system of
parameters for T , and so x2/x1 = v/x = v1 is a regular parameter. Note that in this case
dim (T ) ≥ 2, so that if T is a DVR we must have that v1 is a unit. �

We are now ready to prove the result mentioned at the end of the Lecture Notes for
February 4 concerning finiteness of the sequence of quadratic transforms under certain
conditions: we follow the treatment in [S. Abhyankar, Ramification theoretic methods
in algebraic geometry, Annals of Mathematics Studies Number 43, Princeton University
Press, Princeton, New Jersey, 1959], Propositon 4.4, p. 77.

Theorem (finiteness of the quadratic sequence). Let (R, m, K) ⊆ (V, n, L′) be a
local inclusion of a regular local ring R of dimension d with fraction field K in a discrete
valuation ring. Let T0 = R, and let (Ti, mi,Ki) denote the i th quadratic transform of R
along V , so that for each i ≥ 0, Ti+1 is the first quadratic transform of Ti along V . Then
the union of the Ti is a discrete valuation ring W with W ⊆ V .

If V is essentially of finite type over R and frac (V ) is an algebraic extension of
frac (R) (by the dimension formula, it is equivalent to assume that tr. deg.(L′/K) = d−1),
then this sequence is finite, i.e., some Th is a DVR. For this h, Th = W = V ∩K. so that
V ∩K is essentially of finite type over R, and the transcendence degree of the residue field
of V ∩ K over K is d− 1.

Proof. By the dimension formula, for every i,

dim (Ti) = dim (R)− tr. deg.(Ki/K),

so that

tr. deg.(L′/Ki) = tr. deg.(L′/K)− tr. deg.(Ki/K) =
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d− 1− tr. deg.(Ki/K) =
(
dim (R)− tr. deg.(Ki/K)

)
− 1 = dim (Ti)− 1.

Therefore, at every stage, we have that Ti ⊆ V satsifies the same condition that R → V
did. Let (W,N,L) denote the union of the Ti. W is the union of ascending sequence of
local rings and local inclusions, and so is at least quasi local, and W ⊆ V is local.

We claim that W must be a valuation domain of K. If not, choose x ∈ K such that
neither x nor 1/x is in W , i.e., neither is in any Ti. Write x = y0/z0 where y0, z0 ∈ T0 = R.
These are both in the maximal ideal of T0 (if z0 were a unit, we would have x ∈ T0, while
if y0 were a unit, we would have 1/x ∈ T0). If u0 is a minimal generator of m0 of minimum
order in V , then x = y1/z1 where y1 = y0/u0 and z1 = z0/u0 are in T1. We once
again see that y1 and z1 must both belong to m1. These have positive order in V , but
ord V (y0) > ord V (y1) and ord V (z0) > ord V (z1). We recursively construct yi and zi in mi

such that x = yi/zi, and ord V (y0) > · · · > ord V (yi) while ord V (z0) > · · · > ord V (zi).
At the recursive step let ui be a minimal generator of mi such that ord V (ui) is minimum.
Then x = yi+1/zi+1 where yi+1 = yi/ui ∈ Ti+1 and zi+1 = zi/ui ∈ Ti+1. As before, the
fact that x /∈ Ti+1 and 1/x /∈ Ti+1 yields that yi+1 and zi+1 are both in mi+1, as required,
and we also have that ord V (yi) > ord V (yi+1) and ord V (zi) > ord V (zi+1). This yields
that {ord V (yi)}i is a strictly decreasing sequence of nonnegative integers, a contradiction.
It follows that W is a valuation domain, and since W ⊆ V is local, it must be a DVR,
with maximal ideal generated by the element of W of smallest order in V .

Now assume that V is essentially of finite type over R and that frac (V ) is algebraic
over frac (R), so that tr. deg.(L′/K) = d− 1. Assume that the sequence Ti is infinite. We
obtain a contradiction.

Since the dimension is non-increasing it is eventually stable, and, by replacing R by
Tj for j � 0, we might as well assume that the dimension of Ti is stable throughout. We
call the stable value d, and we may assume that d ≥ 2. It follows that every Ki is algebraic
over K. We know that (W,N,L) is the ascending union of the (Ti,mi,Ki): N is the union
of the mi and L is the union of the Ki, and so is algebraic over K.

Since W ⊆ V ∩K is a local inclusion of valuation domains with the same fraction field,
we can conclude from the third Remark on the first page of the Notes for this Lecture that
W = V ∩ K. Then W ⊆ V is essentially of finite type, and frac (V ) is algebraic over
frac (W ) = frac (R). It follows that the extension of residue class fields from L to L′ is also
algebraic, by the dimension formula. However, since we have passed to the tail subsequence
in which the dimension of Ti is constant, we have that each residue class field of any of the
Ti is algebraic over the residue class field of its predecessor. Thus, the residue class field of
W , which is a directed union of these, is algebraic over the the residue class field of each
Ti. Hence, the residue class field of V is algebraic over the residue class field of each Ti.
Since the Ti supposedly have dimension ≥ 2, this contradicts the dimension formula for
Ti ⊆ V .

Therefore, the quadratic sequence along V is finite, and the last term Th is a DVR,
and is W , Since W ⊆ V ∩ K is local, W = V ∩ K. Since W = Th, it is essentially of finite
type over R. The final statement of the theorem follows from the dimension formula. �
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Proof of the Key Lemma, second step. We recall the situation: R is a regular domain
with fraction field K, v is an element such that R/vR is regular, S is a reduced torsion-
free algebra essentially of finite type over R that is generically étale, y ∈ R − vR is such
that y/v ∈ S, and we want to prove that JS′/R ⊆ vS′. In the first step, we replaced S′

by its localization (V,n, L′) at a minimal prime of vS′ and R by its localization at the
contraction of that minimal prime. Thus, we have that (R, m, K) ⊆ V is local, where
dim (R) = d. Since V is essentially of finite type over R, the dimension formula yields that
the tr. deg.(L′/K) = d − 1. It will suffice to show that JV/R ⊆ vV . As noted, we may
assume that d ≥ 2. Consider the sequence of quadratic transforms

R = (T0, m0, K0) ⊆ · · · ⊆ (Ti, mi, Ki) ⊆ · · · ⊆ (Th, mh, Kh) ⊆ · · ·

By the Theorem on the finiteness of the quadratic sequence, we have that for some h,
Th = V ∩ K = W , which is therefore essentially of finite type over R. The condition
y/v ∈ S−R shows that h ≥ 1. By the multiplicative property of Jacobian ideals stated in
the Corollary at the end of the Lecture of February 1, we have that JV/R = JV/WJW/R.
It therefore suffices to prove that JW/R ⊆ vW , and so we may henceforth assume that
V = W has fraction field K and is obtained from R by a finite sequence of quadratic
transforms along V .
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Lecture of February 8, 2019

Proof of the Key Lemma: final step. We are now in the case where (R, m, K) is regular
local of dimension d ≥ 2, (R, m, K) ⊆ (V,n, L) is local, where V ⊆ K, the fraction field of
R, and V is a DVR essentially of finite type over R. In particular, tr. deg.(L/K) = d− 1
and we have a finite sequence of quadratic transforms along V

(R, m, K) = (T0, m0,K0) ⊆ (T1, m1,K1) ⊆ · · · ⊆ (Th, mh, Kh) = (V, n, L)

where h ≥ 1, and dim (Ti) = di ≥ 2 for i < h. We must show that JV/R ⊆ vV , where v ∈ R
is such that R/vR is regular. Let ui ∈ mi have minimum order in V for 0 ≤ i ≤ h−1. Let
v1 = v/u0 ∈ T1. Recursively, so long as vi ∈ Ti is not a unit, we know by induction and
the Proposition on p. 2 of the Lecture Notes of February 6 that vi is a regular parameter
in Ti and we may define vi+1 = vi/ui ∈ Ti+1. The Proposition just cited shows that either
vi+1 is a unit of Ti+1 or a regular parameter.

For some smallest k ≤ h, vk is a unit of Tk, for the same Proposition shows that if
vh−1 is not a unit of Th−1, then vh is a unit of Th: see the final statement of that same
Proposition. Then

v = u0v1 = u0u1v2 = · · · = u0u1 · · ·uk−1vk,

where vk is a unit of Tk and, hence, of V . Thus,

(∗) vV = u0u1 · · ·uk−1V

for some k ≤ h. On the other hand, the Corollary at the end of the Lecture of February 1
shows that JV/R = JT1/T0

JT2/T1
· · · JTh/Th−1

. The last statement in part (b) of the Lemma
on the first page of the Lecture Notes of February 6 shows that JTi+1/Ti is generated by

udi−1
i . Thus,

(∗∗) JV/R = ud0−1
0 · · ·udh−1−1

h−1 V,

and each exponent dj − 1 is at least one. The inclusion JV/R ⊆ vV is now obvious from
inspection of (∗) and (∗∗). �

The module-finite property for normalizations.

We shall now address the problem of proving that S′ is module-finite over S. Several
of the details of the argument are left to the reader in Problem Set #2. The result we aim
to prove is this:

Theorem (finiteness of the normalization). Let S be torsion-free, generically étale,
and essentially of finite type over a normal Noetherian domain R. Suppose that the com-
pletion of every local ring of R is reduced (which holds if R is either regular or excellent).
Then the normalization S′ of S over R is module-finite over S.

We first give some preliminary results.
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Lemma. Let S be a Noetherian domain and b a nonzero element such that Rb is normal.

(a) S is normal if and only if RP is normal for every associated prime of b.

(b) {Q ∈ Spec (S) : RQ is not normal} is the union of the sets V (P ), where P is an
associated prime of P such that SP is not normal, and so is Zariski closed.

(c) If Sm has module-finite integral closure for every maximal ideal m of S, then S
has module-finite integral closure.

Proof. (a) The condition is obviously necessary. To see sufficiency, let f be an element of
the fraction field integral over S. Since Sb is normal, we can write f = s/bn from some
integer n ≥ 1. After replacing s by a multiple, we may assume that the annihilator of
the image of s in S/bnS is a prime, P , which will be an element of Ass (S/bnS). This
is the same as Ass(S/bS), since S/bS ∼= bn−1S/bnS ⊆ S/bnS, and S/bn has a finite
filtration with factos btS/bt+1S all of which are isomorphic with S/bS. Hence, f /∈ SP ,
with P ∈ Ass (S/bS), as required.

(b) Since each SP is not normal and SP is localization of SQ if Q ⊇ P , we have that
Z =

⋃
{V (P ) : P ∈ Ass (S/bS) and SP is not normal} is contained in the non-normal

locus. Now suppose that Q is not in Z. We must show that SQ is normal. But this follows
from (a), since SQ[1/b] is a localization of Sb, and is normal, and the associated primes of b
in SQ are the expansions of the associated primes of b in S. By assumption, the associated
primes P of b such that SP is not normal are not contained in Q.

(c) Consider any module-finite extension T of S within its fraction field K. Since Sb is
normal, it must contain T , and so is equal to Tb. It follows that the non-normal locus YT in
Spec (T ) is closed. The image XT of YT in Spec (S) is closed (YT is a finite union of sets of
the form V (Q). The image of V (Q) is V (P ), where P = Q∩S, by the going-up theorem.)
If we take module finite extensions S ⊆ T1 ⊆ T2, then YT2

maps into YT1
(if Q2 in T2 lies

over Q1 in T1 such that (T1)Q1 is normal, then (T2)Q1 = (T1)Q1 , and so (T2)Q2 must be
normal.) Since closed sets have DCC (ideals have ACC), we can choose T so that XT is
minimal. We prove XT = ∅. This means that T is normal, and so it is the normalization
of S in K. If XT 6= ∅, choose P ∈ XT . The integral closure D of SP is module-finte over
SP , since this is true for Sm for any maximal ideal m ⊇ P . Choose finitely many integral
fractions that span D over SP . After we multiply by a suitable element of S − P , these
will be integral fractions of S, and we may enlarge T by adjoining them: call the new ring
W . Then WP is normal, and so the localization of W at any prime lying over P is normal.
This shows that XW ⊆ XT − {P}, a contradiction. �

Let S = R[a1/b1, . . . , ah/bh] where b1, . . . , bh are nonzerodivisors in R. This is a
subring of Rb, where b = b1 · · · bh, and each fraction can be written in the form a′i/b.
We may include b/b among these fractions, and so assume that some a′i = b. Since every
R-linear combination of the fractions is in S, if I is the ideal of R generated by the a′i we
have that S = R[I/b], where I/b = {i/b : i ∈ I} ⊆ Rb. Here, I is an ideal containing b.
We next observe:
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Theorem (Rees). Let (R, m, K) be a local ring such that R̂ is reduced. Let S be the
ring obtained by adjoining finitely many fractions (elements of the total quotient ring) to
R. Then the normalization S′ of S is module-finite over S.

Proof. We first consider the case where R is itself complete. The normalization R′ of R
will be the product of the normalizations of the quotients of R by its various minimal
primes: we already know that each of these is module finite. Thus, we might as well
replace R by R′, and then we have a product and we can work with the factors separately.
We therefore reduce to the case where R is a complete local domain, and we must show
that the normalization of R[I/b] is module-finite over R[I/b] for some ideal I with b ∈ I.

We next show that when R is a complete normal local domain and I is an ideal of
R, the integral closure of R[It] is module-finite over R. We may assume I 6= 0. R[It] has
the same fraction field as R[t], and the latter is integrally closed. The integral closure T
is graded, and if it is not module-finite over R[It] there is a strictly ascending chain of
module-finite extensions R[It] = T0 ⊂ T1 ⊂ · · · ⊂ Tn ⊂ · · · ⊂ T , where Tn+1 is obtained
from Tn by adjoining one homogeneous element of T , not in Tn. Thus, all of the Tn
are graded, and every Tn+1/Tn is a nonzero graded module. Its associated primes are
homogeneous and so contained in M = m + ItR[It]. Hence the elements of R[It] −M
are nonzerodivisors on all the factors Tn+1/Tn, and the factors remain nonzero when we
localize at M. Since the map from RM to its completion R[[It]], which is a subring of
R[[t]] is faithfully flat, we obtain a strictly ascending chain of module-finite extensions
of R[[It]] by integral fractions. This is a contradiction, since R[[It]] is a complete local
domain. It follows that the integral closure T of R[It] is module-finite over over R[It].

Note that in each degree j, Tj is isomorphic to an ideal of R (in fact, Ij) and is a finitely

generated R-modules. Suppose that T is generated over R[It] by elements r1t
d1 , . . . , rkt

dk

fro d1, . . . , dk ∈ N, where rj ∈ Idj .

These elements generate Tbt = B over its subring A = R[It]bt. Since B = B0 =
[Tbt]0 (with respect to degree in t) is a direct summand as a module over itself of Tbt
(the complement is

⊕
i 6=0[Tbt]j), it is normal, and so contains the normalization of A =

A0 = [R[It]bt]0 = R[I/f ]. It therefore suffices to show that B is module-finite over

A. But B ⊆
∑k
j=1 rjt

dj [R[It]bt]−dj ]. Note that [R[It]bt]−d =
⋂
k∈N(It)k(bt)−d+k =⋃

k∈N(Ik/bk)b−dt−d = Ab−jt−j . Thus B ⊆
∑k
j=1A(rj/b

dj ) is module-finite over A, as
required.

Now consider the case where R itself is not necessarily complete. If the result fails, then
there is an infinite strictly ascending chain S = S0 ⊆ S1 ⊆ S2 ⊆ . . . of algebras generated

by fractions over R, where Sj+1 is module-finite over Sj for j ≥ 0. But the chain R̂[Sj ]

must be eventually stable, since the complete reduced ring R̂ will have finite normalization,

so that R̂[Sj+1] = R̂[Sj ] for large j. But this implies Sj+1 = Sj : otherwise some fraction

over R is an R̂-linear combination of finitely many other such fractions but not an R-linear
combination of them, and we can get a contradiction from this as follows. We may use a
common denominator r ∈ R, not a zerodivisor, and write a/r =

∑s
i=0(ai/r)βi where the

ai ∈ R and the βi ∈ R̂. But then a ∈ (a1, . . . , as)R̂ ∩R, which implies a ∈ (a1, . . . , as)R,
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say a =
∑s
i=0 aibi with bi ∈ R, and that means we can replace the βi by elements bi of

R. �

We also need the fact that finite separable algebraic field extensions do not disturb
the property of being reduced:

Lemma. Let B denoted a reduced ring containing a field K, and let L be a finite seprable
algebraic extension of K. Then L ⊗K B is reduced.

Proof. B is the directed union of finitely generated K-algebas B0: since L is K- flat, L⊗KB
is the directed union of the rings L ⊗K B0. Therefore, we may assume that B is finitely
generated over K, and has finitely many minimal primes. B embeds in its total quotient
ring, which is a finite product of fields. Thus, we may replace B by its total quotient
ring, it suffices to prove the result when B is a product fields. It is easy to see that it
suffices to consider the case where B is a field, and we may even enlarge B further to an
algebraically closed field Ω. But L ∼= K[x]/f(x) where f is monic with distinct roots in Ω,
and so L⊗K Ω ∼= Ω[x]/

(
f(x)

)
. This ring is isomorphic with a finite product of copies of Ω

by the Chinese Remainder Theorem, since the roots of f are distinct. �

We are now ready to prove the main theorem stated earlier on the module-finite
property for S′ over S.

Proof of the finiteness of the normalization. We first replace S by a subring finitely gener-
ated over R, of which it is a localization. Since localization commutes with normalization,
it suffices to consider this subring. Thus, we may assume that S is finitely generated as
an R-algebra. Second, the integral closure of S is the product of the integral closures of
the domains obtained by killing a minimal prime of S. Thus, without loss of generality, it
suffices to consider the case where S is a domain.

Each of the generators in a finite set of generators for S over R satisfies an algebraic
equation over R with leading coefficient bν , say, and it follows that we may choose a nonzero
element r ∈ R, the product of these leading coefficients, such that S[1/b] is integral over
R[1/b]. The integral closure of the normal domain R[1/b] in the fraction field L of S[1/b]
is the same as the normalization of S[1/b], and is module-finite over S[1/b] by the first
Theorem on p. 3 of the Lecture Notes of January 14. It follows that we may enlarge S
by adjoining finitely many elements of its normalization and so obtain a domain with the
property that S[1/b] is normal for some nonzero b. It then follows from the first Lemma
above that in order to prove that S has finite normalization, it suffices to prove this for
SQ for every maximal ideal Q of S. Choose s ∈ S such that it generates L over K. Let
P be the contraction of Q to R1 = R[s]. Then SQ is a localization of (R1)P [S], and S is
generated over (R1)P by elements of its fraction field.

Thus, to finish the argument, it suffices to show that the completion of (R1)P is
reduced. We may replace R by its localization at the contraction of P , and so we may
assume that R is local with reduced completion. The completion of (R1)P is one of the local
rings of the completion of R1 with respect to the maximal ideal of R. Thus, it suffices to
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show that this completion of R1 is reduced. But this is R1⊗RR̂ ⊆ L⊗RR̂ ∼= L⊗K(K⊗RR̂),

and the result follows from the preceding Lemma because K⊗R R̂ is reduced and L is finite
separable algebraic over K. �

Sketch of the proof of the Jacobian theorem.

We are ready to tackle the proof of the Jacobian theorem, but we first sketch the main
ideas of the argument and then fill in the details.

Step 1: The local case suffices. Note that it is enough to prove the result when S is
replaced by its various localizations at maximal ideals. Thus, we may assume that S is
local, although we shall only make this assumption at certain points in the proof. When
S is local we may also replace R its localization at the contraction of the maximal ideal of
S, and so there is likewise no loss of generality in assuming that R is local and that R→ S
is local homomorphism (i.e., the maximal ideal of R maps into that of S).

Step 2: presenting S over R. Let T denote a localization of R[X1, . . . , Xn] that maps onto
S, and let I denote the kernel. Let U denote the complement in T of the set of minimal
primes P1, . . . , Pr of of I in T . Since S is reduced, I =

⋂r
i=1 Pi. Since S is a torsion-free

R-module, the minimal primes of I do not meet R, and correspond to the minimal primes
of I(K⊗ T ). Since killing any of these minimal primes produces an algebraic extension of
K, they must correspond to maximal ideals of K[X1, . . . , Xn], and it follows that the Pi
all have the same height, which must be the same as the number of variables, n. Thus,
U−1T is a semilocal regular ring in which each of the maximal ideals Mi = PiU

−1T is
generated by n elements.

Step 3: special sequences and the modules WS/R. Call a sequence g1, . . . , gn of n elements
of I special if it generates each of theMi and is a regular sequence in T . We shall show that
special sequences exist, and that there are sufficiently many of them that the images of the
elements det (∂gj/∂Xi) in S such that g1, . . . , gn is special generate the Jacobian ideal.
Moreover, when g1, . . . , gn is special the image of det(∂gj/∂Xi) in S is not a zerodivisor
in S, and so has an inverse in L. Given θ : T → S and a special sequence g1, . . . , gn we
define a map

Φ:
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
→ L

by sending the class of u to u/γ, where u is the image of u in S and γ is the image of
det (∂gj/∂Xi) in S. It is clear that I kills (g1, . . . , gn)T :T I/(g1, . . . , gn)T , so that this is
an S-module. We shall show that Φ is injective. A priori, its image depends on the choice
of T → S and on the choice of the special sequence g1, . . . , gn, but the image turns out
to be independent of these choices. Therefore, once we have shown all this we will have
constructed a finitely generated canonically determined S-module WS/R ⊆ L.

Step 4: the behavior of the WS/R and the main idea of the argument. It will turn out that,
quite generally, WS/R ⊆ S :L JS/R. Here, one should think of S as varying. The Jacobian
Theorem then follows from two further observations. The first is that when S is normal,
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this is an equality The second is that when one enlarges S to S1 = S[s1] by adjoining one
integral fraction s1 ∈ L (so that S ⊆ S1 ⊆ S′), then WS1/R ⊆WS/R. Repeated application
of this fact yields that WS′/R ⊆WS/R and then we have

S′ :L JS′/R = WS′/R ⊆WS/R ⊆ S :L JS/R,

and we are done. In the sequel we shall systematically fill in the details of the argument
just outlined.

Lecture of Februarty 11, 2019

Detailed proof of the Jacobian theorem: existence of sufficiently many special sequences.

Note first that if R itself is a field then S = L and S′ = S, so that JS/R = JS′/R and
there is nothing to prove. If R is finite then R must be a field, since R is a domain, and
therefore we may assume without loss of generality that R is infinite in the remainder of
the proof.

We shall need prime avoidance in the following form (cf. [I. Kaplansky, Commutative
Rings, Revised Edition, Univ. of Chicago Press, Chicago, 1974], Theorem 124, p. 90.):

Lemma (prime avoidance for cosets). Let R be any commutative ring, x ∈ R, I ⊆ R
an ideal and P1, . . . , Pk prime ideals of R. Suppose that the coset x + I is contained in⋃k
i=1 Pi. Then there exists j such that Rx+ I ⊆ Pj.

Proof. If k = 1 the result is clear. Choose k ≥ 2 minimum giving a counterexample. Then
no two Pi are comparable, and x+ I is not contained in the union of any k − 1 of the Pi.
Now x = x+ 0 ∈ x+ I, and so x is in at least one of the Pj : say x ∈ Pk. If I ⊆ Pk, then
Rx + I ⊆ Pk and we are done. If not, choose i0 ∈ I − Pk. We can also choose i ∈ I such

that x+ i /∈
⋃k−1
j=1 Pi. Choose uj ∈ Pj − Pk for j < k, and let u be the product of the uj .

Then ui0 ∈ I − Pk, but is in Pj for j < k. It follows that x+ (i+ ui0) ∈ x+ I, but is not
in any Pj , 1 ≤ j ≤ k, a contradiction. �

The following somewhat technical “general position” lemma is needed to prove that
Jacobian determinants arising from special sequences generate the Jacobian ideal.

Lemma (general position for generators). Let R ⊆ T be a commutative rings such
that R is an infinite integral domain and let P1, . . . , Pr be mutually incomparable prime
ideals of T contracting to (0) in R. Let N ≥ n ≥ 1 be integers and let M = (g1 . . . gN )
be a 1×N matrix over T with entries in I =

⋂r
j=1 Pr. Let κj denote the field TPj/PjTPj

for 1 ≤ j ≤ r and let Vj denote the κj-vector space PjTPj/P
2
j TPj . Suppose that for all j,

1 ≤ j ≤ r, the κj-span of the images of the gt under the obvious map I ⊆ Pj → PjTPj � Vj
has κj-vector space dimension at least n.
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Then one may perform elementary column operations on the matrix M over T so as
to produce a matrix with the property that, for all j, 1 ≤ j ≤ r, the images of any n of its
distinct entries are κj-linearly independent elements of Vj.

Of course, the entries of the new matrix generate the ideal (g1, . . . , gN )T .

Proof. First note that the infinite domain R is contained in each of the κj .

We proceed by induction on the number of primes. If there are no primes there is
nothing to prove. Now suppose that 1 ≤ h ≤ r and that column operations have already
been performed so that any n entries have κj-independent images in Vj if j < h. (If h = 1
we may use M as is, since no condition is imposed.) We need to show that we can perform
elementary column operations so that the condition also holds for j = h. Some n of the
entries have κh-independent images in Vh: by renumbering we may assume that these are
g1, . . . , gn. We now show that by induction on a, n + 1 ≤ a ≤ N that we may perform
elementary column operations on the matrix so that

(1) The images of the entries of the matrix in each Vj for j < h do not change and

(2) Any n of the images of g1, . . . , ga in Vh are independent.

Choose t ∈ T so that it is in the primes Pj for j < h but not in Ph. Thus, t has nonzero
image τ in κh. Let vj denote the image of gj in Vh. We may assume that the images of
any n of the elements g1, . . . , ga−1 are independent in Vh. Thus, it will suffice to show
that there exist r1, . . . , rn ∈ R such that the image of ga+ tr1g1 + · · · trngn is independent
of any n − 1 of the vectors v1, . . . , va−1 in Vh, i.e., such that va + τr1v1 + · · · τrnvn is
independent of any n− 1 of the vectors v1, . . . , va−1. (Note that condition (1) is satisfied
automatically because the image of t is 0 in each κj for j < h.)

For each set D of n − 1 vectors in v1, . . . , va−1, there is a nonzero polynomial fD
in n variables over κh, and whose nonvanishing at the point (r1, . . . , rn) guarantees the
independence of va+τr1v1 + · · · τrnvn from the vectors in D. To see this, choose a κh-basis
for the space spanned by all the vj and write the vectors in D and va + τX1v1 + · · · τXnvn
in terms of this basis. Form a matrix C from the coefficients. We can choose values of the
Xi in R that achieve the required independence, and this means that some n×n minor of
C does not vanish identically. (If va is independent of the vectors in D take all the Xi to be
zero. Otherwise, va is in the κh-span of D, while at least one of the n independent vectors
v1, . . . , vn is not, say vν , and we can take all the Xi except Xν to be 0 and Xν = 1.) This
minor gives the polynomial fD ∈ κh[X1, . . . , Xn].

Choose a field extension F of K = frac (R) that contains isomorphic copies of all of the
κj . The product f of the fD in F [x1, . . . , xn] as D varies through the n−1 element subsets
of v1, . . . , va−1 is then a nonzero polynomial in F [X1, . . . , Xn], and so cannot vanish
identically on the infinite domain R. Choose r1, . . . , rn ∈ R so that f(r1, . . . , rn) 6= 0.
Then every fD(r1, . . . , rn) 6= 0 �

Lemma. Let g1, . . . , gn be elements of a Noetherian ring T and let J be an ideal of T
of depth at least n such that (g1, . . . , gn)T + J is a proper ideal of T . If g1, . . . , gi is a
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regular sequence in T (i may be zero, i.e., we may be assuming nothing about g1, . . . , gn)
then there are elements ji+1, . . . , jn ∈ J such that

g1, . . . , gi, gi+1 + ji+1, . . . , gn + jn

is a regular sequence in T .

In particular, there are elements j1, . . . , jn ∈ J such that g1 + j1, . . . , gn + jn is a
regular sequence.

Proof. The last sentence is the case i = 0. We proceed by induction on n− i. If i = n there
is nothing to prove. We may pass to T/(g1, . . . , gi)T , and so reduce to the case where
i = 0. The image J is the same as the image of J ′ = J + (g1, . . . , gi) modulo (g1, . . . , gi).
J ′ is a proper ideal of depth at least n, and so killing a regular sequence of length i in J ′

poduces an ideal of depth at least n− i > 0. Thus, we may assume that i = 0.

It then suffices to choose j = j1 such that g1 + j is not a zerodivisor, for we may
apply the induction hypothesis to construct the rest of the sequence. But if this were not
possible we would have that g1 + j is contained in the union of the associated primes of
(0) in T , and this implies that J is contained in an associated prime of (0) in T by the
Lemma on prime avoidance for cosets proved at the beginning of this Lecture. This is a
contradiction, since the depth of J is positive. �

Theorem (existence of sufficiently many special sequences). Let R be an infinite
Cohen-Macaulay Noetherian domain and let S be a torsion-free generically étale R-algebra
essentially of finite type over R. Let T be a localization of a polynomial ring in n variables
over R that maps onto S, and let I be the kernel. Let P1, . . . , Pr be the minimal primes of
I in T . Then the Jacobian ideal JS/R is generated by the images of elements det (∂gj/∂xi)
such that g1, . . . , gn is a special sequence of elements of I, i.e., a regular sequence in I
such that for every j, 1 ≤ j ≤ r, PjTPj = (g1, . . . , gn)TPj .

Proof. First choose generators g1, . . . , gN for I. Think of these generators as forming the
entries of a 1 × N matrix as in the Lemma on general position for generators. Each TPj is

regular local of dimension n, so that each PjTPj/P
2
j TPj has dimension n. It follows from

the Lemma cited that we may assume without loss of generality that every n element subset
of the generators g1, . . . , gN generates every PjTPj . We know that the size n minors of the
n×N matrix (∂gj/∂xi) generate JS/R. Fix one of these minors: by renumbering, we may
assume that it corresponds to the first n columns. It will suffice to show that the image
of this minor in S is the same as the image of a minor coming from a special sequence.
We may apply the preceding Lemma to choose elements h1, . . . , hn ∈ J = I2 such that
g1 + h1, . . . , gn + hn is a regular sequence. This sequence is special: since J = I2 ⊆ P 2

j

for all j, the elements generate each PjTPj , and it was chosen to be a regular sequence.
Finally, by the Remark near the top of p. 2 of the Lecture Notes of February 1, the image
of the Jacobian determinant of g1 + h1, . . . , gn + hn in S is the same as the image of the
Jacobian determinant of g1, . . . , gn, and the result follows. �
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Lecture of February 13, 2019

Lemma (comparison of special sequences). Let R be an infinite Cohen-Macaulay
Noetherian domain and let S be a torsion-free generically étale R-algebra essentially of
finite type over R. Let T be a localization of a polynomial ring in n variables over R that
maps onto S, and let I be the kernel. Let P1, . . . , Pr be the minimal primes of I in T .
Assume, moreover, that S and T are local. Let g = g1, . . . , gn and h = h1, . . . , hn be
two special sequences in I. Then there is a finite chain of special sequences joining g to h
such that for any two consecutive special sequences occurring in this chain, the sequences
of elements occuring differ in at most one spot.

Proof. We first show that given two special sequences g1, . . . , gn and h1, . . . , hn and an
integer i, 1 ≤ i ≤ n, we can choose u ∈ T such that g1, . . . , gn remains special when gi
is replaced by u and h1, . . . , hn remains special as well when hi is replaced by u. Since
regular sequences (and, hence, special sequences) are permutable in a local ring, we may
assume without loss of generality that i = n. Our first objective is to choose u such that,
for all j, both sequences generate each PjTPj . Since Pj ∩ R = (0) for every j, we have
for each j that K ⊆ TPj . To solve the problem we shall first choose u with the required
property in K ⊗R T . For every j let Cj denote the contraction of(

(g1, . . . , gn−1) + P 2
j

)
TPj

to K ⊗R T , and let Dj denote the contraction of(
(h1, . . . , hn−1) + P 2

j

)
TPj

to K⊗R T . The Cj and Dj together constitute finally many vector spaces over the field K.
We claim that they do not cover K⊗R I ⊆ K⊗R T , for if they did then one of them would
contain K⊗R I (see the first Proposition on p. 3 of the Lecture Notes of January 23), and
this would contradict the existence of gn if it were one of the Cj , or the existence of hn if
it were one of the Dj . Hence, we can choose u ∈ K⊗R I with the required property. After
multiplying by a suitable element of R − {0}, we may assume that u is in I, and it will
still have the required property, since the multiplier is a unit in every RPj . Finally, as in
the proof of the Theorem on existence of sufficiently many special sequences (which is the
last Theorem of the Lecture of February 11), we can choose v ∈ I2 such that u+ v is not a
zerodivisor modulo either (g1, . . . , gn−1)T nor modulo (h1, . . . , hn−1)T : this comes down
to the assertion that u + I2 is not contained in the union of the associated primes of the
two ideals, and by the Lemma on prime avoidance for cosets, it suffices to show that I2

is not contained in any of them. But this is clear because all the associated primes have
height n− 1 while I2 has height n.

Finally, to prove the existence of the chain of special sequences we use induction on the
number of terms in which the two sequences, counting from the beginning, agree. Suppose
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that gi = hi for i < j while sequences gj 6= hj (j may be 0 here). Then by the result of
the paragraph above we may choose u such that the sequences

g1, . . . , gj−1, u, gj+1, . . . , gn

and
g1, . . . , gj−1, u, hj+1, . . . , hn

are both special. The first differs from g1, . . . , gn in only the j th spot, and the second
differs from h1, . . . , hn in only the j th spot as well. By the induction hypothesis there is
a chain of the required form joining these two, and the result follows. �

The map Φ and the modules WS/R.

Our next main goal is to construct the map Φ mentioned briefly in Step 3 of our
Sketch of the proof the Jacobian theorem: see p. 4 of the Lecture Notes of February 8.

We first need a lemma whose proof involves universal modules of differentials or Kähler
differentials.

In the next seven paragraphs, we assume only that K is a commutative ring and that
T is K-algebra. A K-derivation of T into a T -module M is a map D : T →M such that

(1) D is a homomorphism of abelian groups

(2) For all t1, t2 ∈ T , D(t1t2) = t1D(t2) + t2D(t1) and

(3) For all c ∈ K, D(c) = 0.

Condition (2) implies that D is K-linear, for D(ct) = cD(t) + tD(c) = cD(t) + t(0) =
cD(t). Note that D(1 · 1) = 1D(1) + 1D(1), i.e. D(1) = D(1) + D(1), so that condition
(2) implies that D(1) = 0. In the presence of the other conditions, (2) is equivalent to
K-linearity, for if the map is K-linear then for all c ∈ K, D(c · 1) = cD(1) = c(0) = 0.

There is a universal K-derivation from a given K-algebra T into a specially constructed
T -module ΩT/K. This is obtained as follows. Let G denote the T -free module whose basis
consists of elements bt in bijective correspondence with the elements t of T . Consider the
T -submodule H of G spanned by elements of the three forms:

(1) bt1+t2 − bt1 − bt2 for all t1, t2 ∈ T ;

(2) bt1t2 − t1bt2 − t2bt1 for all t1, t2 ∈ T ; and

(3) bc for c ∈ K.

We write ΩT/K for G/H. This is the universal module of differentials or the module
of Kähler differentials for T over K. Note that we have a map d : T → ΩT/K that sends
t 7→ bt+H, the class of bt in G/H. The choice of elements that we killed (we took them as
generators of H) precisely guarantees that d is a K-derivation, the universal K-derivation
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on T . It has the following universal property: given any T -module N and a K-derivation
D : T → N , there is a unique T -linear map L : M → N such that D = L ◦ d. To get the
map L on G/H we define it on G so that the value on bt is D(t): this is forced if we are
going to have D = L ◦ d. One may check easily that H is killed, precisely because D is a
K-derivation, and this gives the required map. (It is also easy to see that the composition
of d with any T -linear map is a K-derivation.) Thus, for every T -module N , there is a
bijection between the K-derivatons of T into N and HomT (ΩT/K, N).

Given generators ti for T over K, the elements dti (the index set may be infinite) span
ΩT/K. The value of d on a product of these generators is expressible in terms of the dti by
iterated use of the product rule.

Given a polynomial ring K[Xi : i ∈ I] over K, ΩT/K is the free T -module on the dXi,
and the universal derivation d is defined by the rule

dF =
∑
i

∂F

∂xi
dXi.

This formula is a consequence of the use of the iterated product rule, and it is straightfor-
ward to check that it really does give a derivation.

Note that if U is a multiplicative system in T , we have that ΩU−1T/K ∼= U−1ΩT/K.
Also observe that a K-derivation D : T → M extends uniquely, via the rule t/u 7→
(uDt− tDu)/u2, to a K-derivation U−1D : U−1T → U−1M so that the diagram

U−1T
U−1D−−−−→ U−1Mx x

T
D−−−−→ M

commutes.

The notations in the following Lemma are slightly different from those in our general
setup.

Lemma. Let N be a maximal ideal of T = K[X1, . . . , Xn], a polynomial ring over a
field K. Assume that L = K[X1, . . . , Xn]/N is separable field extension of K. Then
g1, . . . , gn ∈ NTN generate NTN if and only if the image of det

(
∂gj/∂xi

)
in L is not 0.

Proof. Consider the universal K-derivation d : K[X] → ΩK[X]/K, the module of Kähler
differentials, which, as noted above, is the free T -module generated by the elements
dX1, . . . , dXn. Of course, if F ∈ K[X] then dF =

∑n
j=1(∂F/∂xj) dxj . The restric-

tion of d to N gives a K-linear map N → ΩK[X]/K, and, by the defining property of a
derivation, it sends

N 2 → NΩK[X]/K.

Thus, there is an induced K-linear map of K-vector spaces

δ:N/N 2 → L⊗T ΩT/K.
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Both modules are L-vector spaces and it follows from the defining property of a derivation
that δ is actually L-linear (if t ∈ T represents λ ∈ L and u ∈ N , d(tu) = tdu + udt,
and the second term will map to 0 in L ⊗T ΩT/K). Since TN is regular of dimension n,

N/N 2 is an n-dimensional vector space over L. The key point is that under the hypothesis
that L is separable over K, the map δ is an isomorphism of L-vector spaces. To see this,
observe that the map δ sends the elements represented by generators g1, . . . , gn for NTN
to the elements represented by the dgj , and so it has a matrix which is the image of the
matrix (∂gj/∂xi) after mapping the entries to L. Thus, δ is an isomorphism if and only
if the Jacobian determinant det (∂gj/∂xi) has nonzero image in L. But this determinant
generates JL/K, and so δ is an isomorphism if and only if the Jacobian ideal of L over K is
L. But we may use any presentation of L over K to calculate JL/K, and so we may instead

use L ∼= K[Z]/
(
f(Z)

)
where Z here represents just one variable and where f is a single

separable polynomial. The Jacobian determinant is then the value of f ′(Z) in L, which is
not zero by virtue of the separability.

Thus, δ is an L-isomorphism. Moreover, we have already seen that if g1, . . . , gn are
generators of NTN then the Jacobian determinant is not 0 in L. But the converse is also
clear, because if g1, . . . , gn are any elements of NTN , they generate NTN if and only
if their images in NTN /N 2TN ∼= N/N 2 span this vector space over L, by Nakayama’s
lemma, and this will be the case if and only if their further images in L ⊗T ΩT/K span
that vector space over L, since δ is an isomorphism. But that will be true if and only
if the images of the dgj span L ⊗T ΩT/K, which is equivalent to the assertion that the
images of the columns of the matrix (∂gj/∂xi), after the entries are mapped to L, span
an n-dimensional space. This in turn is equivalent to the nonvanishing of det (∂gj/∂xi) in
L. �

We now return to our standard set of notations and assumptions, as in Step 2 of the
Sketch of the proof of the Jacobian theorem from p. 3 of the Lecture Notes of February
8. Thus, T is a localization of R[X1, . . . , Xn] that maps onto S with kernel I. U is the
complement in T of the set of minimal primes P1, . . . , Pr of of I in T , and I =

⋂r
i=1 Pi.

The Pi do not meet R and correspond to the minimal primes of I(K⊗T ). The expansion of
Pi to U−1T is maximal ideal Mi corresponding to a maximal ideal Ni of K[X1, . . . , Xn],
and has height n. Here, TPi

∼= K[X1, . . . , Xn]Ni .

Corollary. Let g1, . . . , gn ∈ I. If g1, . . . , gn is a special sequence in I, then the image γ
of det

(
∂gj/∂Xi

)
is not a zerodivisor in S, and so represents an invertible element of the

total quotient ring L of S.

Proof. We may view L as the product of the fields Li, where Li is the fraction field of
T/Pi but may also be identified with K[X1, . . . , Xn]/Ni. It suffices to show that γ does
not map to 0 under L� Li for any i. The fact that the image of γ is not 0 in Li follows
from the preceding Lemma, the separability of Li over K, and the fact that for every i,
g1, . . . , gn generates PiTPi , which we may identify with NiK[X1, . . . , Xn]Ni . �

We continue the conventions in the paragraph preceding the statement of the Lemma,
but because we shall let both S and its presentation vary we shall write θ for the map T → S
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and we shall denote by g a special sequence g1, . . . , gn in I. We may then temporarily
define

Φθ,g:
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
→ L

by sending the class of u to u/γ where u is the image of u in L, and γ is the image of
det (∂gj/∂xi) in L: the element γ is invertible in L by the Corollary just above. The map
is well defined because the gi vanish under the map to L. We shall often write Φ when θ
and g are understood. We shall soon show that the image of Φ is contained in S :L JS/R.
Once this is established we shall change the definition of Φ very slightly by restricting its
range to be S :L JS/R ⊆ L.

We note that

(g1, . . . , gn)T :T I

(g1, . . . , gn)T
∼= HomT

(
T/I, T/(g1, . . . , gn)T

)
.

We shall denote the image of Φθ,g in L by WS/R(θ, g). However, we shall see just
below that it is independent of the choices of θ and g, and once we know this we shall
simply write it as WS/R ⊆ L.

Lemma. With notation as above, Φθ,g is injective.

Proof. Under the map T → L the complement U of the union of the primes Pi becomes
invertible. Because g is a regular sequence in T , every associated prime is minimal, and
so no element of U is a zerodivisor on T/(g1, . . . , gn)T . Thus,

(g1, . . . , gn)T :T I

(g1, . . . , gn)T
↪→ T

(g1, . . . , gn)T
↪→ U−1T

U−1(g1, . . . , gn)T
∼= L.

The map Φθ,g is the composition of this composite injection with multiplication by the

invertible element 1/γ in L. �

Lecture of February 15, 2019

We showed in the Lecture of February 13 that the map Φθ,g is injective. We next

want to show that its image WS/R(θ, g) is independent of the choice of the presentation θ
and the choice of special sequence g.

We first prove:

Lemma. Let B be a ring, J ⊆ B an ideal, and x, y elements of J that are nonzerodivisors
in B. Then

xB :B J

xB
∼=
yB :B J

yB
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via the map that sends the class of u ∈ xB :B J to the class of an element v ∈ yB :B J
such that xv = yu.

Proof. Given u ∈ xB :B J , we have, since y ∈ J , that yu ∈ xB, and so yu = xv with
v ∈ B (the choice of v is unique, since x is a nonzerodivisor in B). We first want to see
that v ∈ yB :B J , which means that if a ∈ J , then av ∈ yB. Since a ∈ J , au = bx for
b ∈ B. Then auy = ybx and so axv = ybx. Since x is not a zerodivisor, this yields av = yb,
as required. Next note that if we change the representative of the class of u, say to u+xc,
then

y(u+ xc) = yu+ yxc = xv + yxc = x(v + yc).

Since v changes by a multiple of y, our map is well-defined. This establishes that we have
a map

xB :B J

xB
→ yB :B J

yB

of the form stated. By symmetry, there is a map

yB :B J

yB
→ xB :B J

xB

of the same sort. By the symmetry of the condition yu = xv, if the class of u maps to the
class of v then the class of v maps to the class of u, and vice versa. This shows that the
two maps are mutually inverse. �

Theorem. The image of the map Φθ,g in L is independent of the choice of g, and of the

choice of θ.

Proof. To prove for a fixed presentation that the map is independent of the choice of special
sequence suppose that we have two special sequences that yield maps with different images.
We can preserve the fact that the images W, W ′ are different while localizing at a suitable
prime or even maximal ideal of T : S is replaced by its localization at a corresponding
prime. Simply choose the prime to be in the support of (W +W ′)/(W ∩W ′). Thus, there
is no loss of generality in assuming that T and S are local. The sequences in question
remain special as we localize. But then, by the Lemma on comparison of special sequences
from the beginning of the Lecture of February 13, we know that there exists a finite chain
of special sequences joining the two that we are comparing such that any two consecutive
sequences differ in at most one spot. Thus, we need only make the comparison when the
two sequences differ in just one term, and since the sequences are permutable we may
assume without loss of generality that one of them is g1 = g, g2, . . . , gn and the other is
h, g2, . . . , gn, which we shall also denote h1, . . . , hn.

We set up an isomorphism

σ:
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
∼=

(h1, . . . , hn)T :T I

(h1, . . . , hn)T
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as follows. Let B = R/(g2, . . . , gn), let J ⊆ B be the image of I, i.e., I/(g2, . . . , gn). Let
x be the image of g and y the image of h. We now have the isomorphism by applying the
Lemma proved just above.

To complete the proof of the independence of the image from the choice of special
sequence we note that the following diagram commutes:

(g1, . . . , gn)T :T I

(g1, . . . , gn)T

σ−−−−→ (h1, . . . , hn)T :T I

(h1, . . . , hn)T

Φθ,g

y yΦθ,h

L −−−−→
1L

L

To see this, one simply needs to see that if

(∗) uh− vg =
n∑
j=2

tjgj

in T , then

(∗∗) u

γ
=
v

η

in L, where u, v are the respective images of u and v in L and γ, η are the respective
images of the determinants of the two Jacobian matrices in L, i.e., that

udet (∂hj/∂Xi) ≡ v det (∂gj/∂Xi) modulo I.

By differentiating (∗) with respect to each Xj in turn and using the fact that all the g, h
and the gj are in I, we see that, because the terms not shown coming from the product
rule have a coefficient in I,

u∇h− v∇g ≡
n∑
j=2

tj∇gj modulo I.

Thus, the matrix whose columns are

u∇h, ∇g2, . . . , ∇gn

and the matrix whose columns are

v∇g +
n∑
j=2

tj∇gj , ∇g2, . . . , ∇gn

are equal mod I. By elementary column operations, we may drop the summation term
from the first column of the second matrix when we calculate the determinant. Then we
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may factor u from the first column of the first matrix and v from the first column of the
second matrix when we take determinants. This yields uη = vγ in L, and (∗∗) follows.

It remains only to prove that the image of Φθ,g is independent of the choice of θ:T → S

as well. We first consider the case of a finitely generated R-algebra S. The choice of a
presentation is equivalent to the choice of a finite set of generators for S over R. We
can compare the results from each of two different sets of generators with the result from
their union, and so it suffices to see what happens when we enlarge a set of generators.
By induction, it suffices to show that the image does not change when we enlarge a set of
generators by one element, and so we may assume that we have θ : T = R[X1, . . . , Xn] � S
and an extension of θ, θ′:T [Xn+1] � S by sending Xn+1 to s. Let T ′ = T [Xn+1]. We can
choose an element F ∈ T such that F maps to s in S, and it follows easily that the kernel
I ′ of θ′ is I + (Xn+1 − F ). It also follows easily that if g = g1, . . . , gn is special in I then
g′ = g1, . . . , gn+1 with gn+1 = Xn+1−F is a special sequence in I ′. The larger (size n+1)
Jacobian matrix has the same determinant γ as the size n Jacobian matrix of g1, . . . , gn
with respect to X1, . . . , Xn, and it is easy to check that there is an isomorphism

τ :
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
∼=

(g1, . . . , gn+1)T ′ :T ′ I
′

(g1, . . . , gn+1)T ′

which is induced by the inclusion (g1, . . . , gn)T :T I ⊆ (g1, . . . , gn+1)T ′ :T ′ I
′. Since the

Jacobian determinants are the same we have a commutative diagram

(g1, . . . , gn)T :T I

(g1, . . . , gn)T

τ−−−−→ (g1, . . . , gn+1)T ′ :T ′ I
′

(g1, . . . , gn+1)T ′

Φθ,g

y yΦθ′,g′

L −−−−→
1L

L

and this yields that the images are the same.

We have now justified the notation WS/R when S is finitely generated over R. We
leave it to the reader as an exercise to verify that if s is a nonzerodivisor in S, then
WS[s−1]/R = (WS/R)s. Once we know this, by exactly the same argument we used to
verify that the Jacobian ideal is independent of the choice of presentation for algebras
essentially of finite type over R, it follows that WS/R(θ) is independent of θ when S is
essentially of finite type over R. �

For a given special sequence g it is obvious from the definition of Φθ,g that γ multiplies

the image of Φθ,g into S ⊆ L. Since the image is independent of the choice of special

sequence and since, by the Theorem on the existence of sufficiently many special sequences
at the end of the Lecture Notes of February 11, as the special sequence varies the values
of γ generate JS/R, we have:

Corollary. WS/R ⊆ S :L JS/R. �

The following result gives several properties of WS/R that we will want to exploit.
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Proposition. Let S be generically étale, torsion-free and essentially of finite type over
the Noetherian domain R. Let W = WS/R.

(a) For any multiplicative system U in S, WU−1S/R = U−1W .

(b) W is torsion-free over S.

(c) For every prime ideal P of S, if u, v is part of a system of parameters for SP then it
is a regular sequence on WP . (Thus, W is S2.)

(d) If W ⊆ W ′ ⊆ L and WP = W ′P for all height one primes of S and for all minimal
primes of S that are also maximal ideals, then W = W ′.

(e) If R → S is a local homomorphism of regular local rings then JS/R is principal and
W = S :L JS/R.

(f) If S is normal and RP is regular for every prime ideal P of R lying under a height
one prime ideal Q of S, then W = S :L JS/R.

Proof. Part (a) is essentially the last part of (4.3), while (b) is evident from the fact that
W ⊆ L, by definition.

To prove (c) note that by (a) we may assume that S is local and that u, v is part
of a system of parameters. We may choose a presentation θ:T � S and think of W
as ∼=

(
(g1, . . . , gn)T :T I

)
/(g1, . . . , gn)T , where the sequence g1, . . . , gn is special. Let

u0, v0 ∈ T be representatives of u, v. Then u0 + I cannot be contained in the union of the
minimal primes of (g1, . . . , gn), or else it will be contained in one of them by the Lemma
on prime avoidance for cosets. Since this will contain I, it will be a minimal prime of I, and
contradicts the statement that u is part of a system of parameters in S = T/I. Thus, we
can replace u0 by an element u1 representing u such that g1, . . . , gn, u1 is part of a system
of parameters for T . Similarly, v0 + I cannot be contained in the union of the minimal
primes of (g1, . . . , gn, u1)T , or else it is contained in one of them, say Q. Thinking modulo
I, we see that Q is a minimal prime of u in T/I containing v, a contradiction. Thus, we
may choose u1, v1 in T representing u, v respectively and such that g1, . . . , gn, u1, v1 is a
regular sequence. Clearly, u1, v1 form a regular sequence on T/(g1, . . . , gn)T . We claim
they also form a regular sequence on the set of elements killed by I. It is clear that u1

remains not a zerodivisor on this set. Suppose that v1z = u1y where z, y are killed by
I. Then z = u1x, y = −v1x where, a priori, x ∈ T/(g1, . . . , gn)T . But Iz = 0 and so
Iu1x = 0, and since u1 is not a zerodivisor on T/(g1, . . . , gn)T , it follows that Ix = 0 as
well.

Part (d) is a consequence of the result we proved in (c). If W 6= W ′ we can localize at
a minimal prime of the support of W ′/W and preserve the counterexample. By hypothesis,
this prime cannot have height one (nor height 0, since, if a height 0 prime is not maximal
then we can localize at it in two steps: first localize at a height one prime that contains it).
Thus, we may assume that S is local of height two or more, and that W ′/W is a nonzero
module of finite length. It follows that we can choose an element x ∈W ′−W and part of a
system of parameters u, v for S such that uz and vz are in W . The relations v(uz) = u(vz)
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over W together with part (c) show that uz ∈ uW , and it follows that z ∈ W after all, a
contradiction.

To prove (e) note that when R is regular so is T , and so T → S will be a surjection
of local rings. The kernel of such a surjection must be generated by part of a minimal
set of generators for the maximal ideal of T . It follows that I is a prime and we have
I = (g1, . . . , gn)T is itself generated by a suitable special sequence. Then JS/R is generated
by

γ = det (∂gj/∂Xi),

and
(g1, . . . , gn)T :T I

(g1, . . . , gn)T
=
I :T I

I
=
T

I
= S

and Φ sends 1 to
1

γ
, so that W = S

1

γ
, and one sees that S :L JS/R = S :L γS = W , as

claimed.

To prove (f) it suffices by (d) to consider the problem after localizing at a height
one or zero prime Q of S, and, without affecting the issue, one may also localize R at its
contraction. If the prime of S has height 0, so does its contraction to R, and both rings
become regular after localization. If the prime of S has height one, then, again, both rings
become regular after localization, S because it is normal and R by hypothesis. In either
case the result follows from part (e). �

Lecture of February 18, 2019

A critical Lemma and the final step in the proof.

The following result of Lipman and Sathaye is exactly what is needed to establish that
WS/R decreases as S is increased by adjoining integral fractions.

Lemma. Let T be a commutative ring, Y an indeterminate, and J an ideal of T [Y ] such
that J contains a monic polynomial h in Y of degree d. Suppose also that J contains an
element of the form αY − β where α, β ∈ T are such that J :T [Y ] αT [Y ] = J , i.e., such
that α is not a zerodivisor modulo J . Let G ⊆ T be an ideal of T with G ⊆ J . Then for
every element v ∈ T [Y ] such that vJ ⊆ (h, G)T [Y ] there exists an element u ∈ T such
that u(J ∩ T ) ⊆ G and such that

v ≡ u ∂h
∂Y

modulo J.

Proof. We may replace T by T/G and J by J/GT [Y ] without affecting the problem. Thus,
we may assume without loss of generality that G = (0). By the division algorithm we may
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replace v by its remainder upon division by h, and so assume that v =
∑d
i=1 uiY

d−i, where
the ui ∈ T . We shall show that we may take u = u1, and we drop the subscript from here
on. First note that ui(J ∩T ) = (0) for all i: in fact since vJ ⊆ hT [Y ] (recall that we killed
G) we have that v(J ∩ T ) consists of multiples of h that have degree smaller than d, and
these must be zero. In particular, u(J ∩ T ) = (0). Likewise, v(αY − β) ∈ hT [Y ]. The
left hand side has degree at most d and coefficient αu in degree d, and so we must have
v(αY − β) = αuh. Differentiating with respect to Y yields

∂v

∂Y
(αY − β) + vα = αu

∂h

∂Y

and since αY − β ∈ J , we have that

α(v − u ∂h
∂Y

) ≡ 0 modulo J.

Since α is not a zerodivisor modulo J , the required result follows. �

We now use this to prove:

Theorem. If S1 is obtained from S by adjoining finitely many integral fractions of L,
then WS1/R ⊆WS/R.

Proof. By induction on the number of fractions adjoined, it is obviously sufficient to prove
this when S1 = S[λ], where λ is a single element of L. Choose a presentation θ:T → S and
a special sequence g1, . . . , gn in the kernel I. Let Y be a new indeterminate and extend
θ to a map T [Y ] � S[λ] by sending Y to λ. Since λ is integral over S there is a monic
polynomial h = h(Y ) ∈ T [Y ] of degree say, d, in the kernel J of T [Y ] � S[λ]. If λ ∈ S
there is nothing to prove so that we may assume that d ≥ 2. Since λ is in L we may also
choose α and β in T with α not a zerodivisor on J such that αY − β is in the kernel.
Consider the image of h(Y ) in S[Y ]. There will be a certain subset of the minimal primes
of S such that the image of λ is a multiple root of the image of h modulo those primes.
If that set of primes is empty, we shall not alter h. If it is not empty choose an element
of S that is not in any of those minimal primes but that is in the others, and represent
it by an element t ∈ T . Then h(Y ) + t(αY − β) has the property that its image modulo
any minimal prime of S has the image of λ as a simple root, and so we may assume, using
this polynomial in place of the original choice of h, that h is a monic polynomial of degree
d ≥ 2 such that image of λ modulo every minimal prime of L is a simple root of the image
of h.

Because h is monic in Y , the sequence g1, . . . , gn, h is a regular sequence, and the

Jacobian determinant with respect to X1, . . . , Xn, Y is γ
∂h

∂Y
, where γ is det (∂gj/∂Xi).

Our choice of h implies that
∂h

∂Y
has image that is not in any minimal prime of L, and it

follows that g1, . . . , gn, h is a special sequence in J and can be used to calculate WS[λ]/R.
Let v ∈ (g1, . . . , gn, h)T [Y ] :T [Y ] J . We may now apply the preceding Lemma with this
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T, Y, J, v, α, β and h, while taking G = (g1, . . . , gn)T . Note that J ∩ T = I. Observe
as well that v gives rise to a typical element of the module WS[λ]/R, namely the image of

v/(γ
∂h

∂Y
) in L, We want to show that this element is in WS/R. Pick u as in the preceding

Lemma. Then u ∈ (g1, . . . , gn)T :T I and since v ≡ u
∂h

∂Y
modulo J , this image is the

same as the image of (u
∂h

∂Y
)/(γ

∂h

∂Y
) = u/γ, and so is in WS/R, as required. �

The proof of the Jacobian theorem. We can now complete the proof of the theorem as
already indicated in the Sketch of the proof of the Jacobian theorem in the Lecture of
February 8. We know that S′ is module-finite over S and can therefore be obtained from
S by adjoining finitely many elements of the total quotient ring that are integral over S.
We then have

S′ :L JS′/R = WS′/R ⊆WS/R ⊆ S :L JS/R
where the equality on the left follows from part (f) of the Proposition on p. 4 of the
Lecture Notes of February 15, the middle inclusion follows from the Theorem above, and
the inclusion on the right follows from the Corollary on p. 4 of the Lecture Notes of
February 15. �

Lecture of February 20, 2019

If I ⊆ J and J is integral over I, we call I a reduction of J . With this terminology, we
have shown that if (R, m, K) is local with K infinite, every ideal I ⊆ m has a reduction
with an(I) generators, and one cannot do better than this whether K is infinite or not.

We have previously defined analytic spread for ideals of local rings. We can give a
global definition as follows: if R is Noetherian and I is any ideal of R, let

an(I) = sup{P ∈ Spec (R) : an(IRP )},

which is bounded by the the number of generators of I and also by the dimension of R.

The Briançon-Skoda theorem then gives at once:

Theorem. Let R be regular and I an ideal. Let n = an(I). Then for all k ≥ 1, In+k−1 ⊆
Ik.

Proof. If the two are not equal, this can be preserved while passing to a local ring of R.
Thus, without loss of generality, we may assume that R is local. The result is unaffected by
replacing R by R(t), if necessary. Thus, we may assume that the residue class field of R is
infinite. Then I has a reduction I0 with n generators. From the form of the Briançon-Skoda

theorem that we have already proved, we have that In+k−1 = In+k1
0 ⊆ Ik0 ⊆ I. �

The intersection of all ideals I0 in I such that I is integral over I0 is called the core
of I. It is not immediately clear that the core is nonzero, but we have:
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Theorem. Let R be regular local with infinite residue class field, and let I be a proper
ideal with an(I) = n. Then the core of I contains In.

Proof. If I is integral over I0 then they have the same analytic spread, and I0 has a
reduction I1 with n generators. Then In = In0 = In1 ⊆ I1 ⊆ I0, and so In is contained in
all such I0. �

We next want to give a proof of the Briançon-Skoda theorem in characteristic p that
is, in many ways, much simpler than the proof we have just given. The characteristic p
result can be used to prove the equal characteristic 0 case as well.

Recall that when x1, . . . , xd is a regular sequence on M , we require not only that xi is
a nonzerodivisor on M/(x1, . . . , xi−1)M for 1 ≤ i ≤ d, but also that (x1, . . . , xd)M 6= M .
If (x1, . . . , xd) has radical m in the lcoal ring (R, m, K), this is equivalent to the assertion
mM 6= M , for otherwise we get that mtM = M for all t, and for large t, mt ⊆ (x1, . . . , xd).

Note that when x1, . . . , xd is a regular sequence in a ring R and M is flat, we continue
to have that xi is a nonzerodivisor on M/(x1, . . . , xi−1)M for 1 ≤ i ≤ d (by induction on
d this redues to the case where d = 1 and the fact that x = x1 is a nonzerodivisor on R
give an exact sequence

0 −→ R
·x−→ R

which stays exact when we tensor with M over R). If M is faithfully flat, every regular
sequence in R is a regular sequence on M . If R is regular, this characterizes faithful
flatness:

Lemma. Let (R,m,K) be local. Then M is faithfully flat over R if and only if every
regular sequence in R is a regular sequence on M .

Proof. By the preceding discussion, we need only prove the “if” part. It will suffice to
prove that for every R-module N , TorRi (N,M) = 0 for all i ≥ 1. Since N is a direct limit
of finitely generated modules, it suffices to prove this when N is finitely generated. We
use reverse induction on i. We have the result for i > dim (R) because dim (R) bounds
the projective dimension of N . We assume the result for i ≥ k + 1, where k ≥ 1, and
prove it for i = k. Since N has a filtration by prime cyclic modules, it suffices to prove the
vanishing when N is a prime cyclic module R/P . Let x1, . . . , xd be a maximal regular
sequene of R in P . Then P is a minimal prime of (x1, . . . , xd), and, in particular, an
associated prime. It follows that we have a short exact sequence

0→ R/P → R/(x1, . . . , xdR)→ C → 0

for some module C. By the long exact sequence for Tor, we have

· · · → TorRk+1(C, M)→ TorRk (R/P,M)→ TorRk
(
R/(x1, . . . , xd)R,M

)
→ · · · .

The leftmost term vanishes by the induction hypothesis and the rightmost term vanishes
by problem 4 of Problem Set #3. �
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We write F or FR for the Frobenius endomorphism of a ring R of positive prime
characteristic p. Thus F (r) = rp. We write F e or F eR for the e th iterate of F under

composition. Thus, F e(r) = rp
e

.

Corollary. Let R be a regular Noetherian ring of positive prime characteristic p. Then
F e : R→ R is faithfully flat.

Proof. The issue is local on primes P of the first (left hand) copy of R. But when we
localize at R − P in the first copy, we find that for each element u ∈ R − P , up

e

is
invertible, and this means that u is invertible. Thus, when we local we get F e : RP → RP .
Thus, it suffices to consider the local case. But if x1, . . . , xd is a regular sequence in RP ,

it operates on the right hand copy as xp
e

1 , . . . , x
pe

d , which is regular in RP . �

If I, J ⊆ R, we write I :R J for {r ∈ R : rJ ⊆ I}, which is an ideal of R.

Proposition. Let I and J be ideals of the ring R such that J is finitely generated. Let S
be a flat R-algebra. Then (I :R J)S = IS :S JS.

Proof. Note that if A ⊆ R, A⊗R S injects into S, since S is flat over R. But its image is
AS. Thus, we may identify A⊗R S with AS.

Let J = (f1, . . . , fh)R. Then we have an exact sequece

0→ I :R J → R→ (R/I)⊕h

where the rightmost map sends r to the image of (rf1, . . . , rfh) in (R/I)⊕h. This remains
exact when we tensor with S over R, yielding an exact sequence:

0→ (I :R J)S → S → (S/IS)⊕h

where the rightmost map sends s to the image of (sf1, . . . , sfh) in (S/IS)⊕h. The kernel
of the rightmost map is IS :S JS, and so (I :R J)S = IS :S JS. �

When R has positive prime characteristic p, we frequently abbreviate q = pe, and I [q]

denotes the expansion of I ⊆ R to S = R where, however, the map R→ R that gives the
structural homomorphism of the algebra is F e. Thus, I [q] is generated by the set of elements
{iq : i ∈ I}. Whenever we expand an ideal I, the images of generators for I generate the
expansion. In particular, note that if I = (f1, . . . , fn)R, then I [q] = (fq1 , . . . , f

q
n)R. Note

that it is not true I [q] consists only of q th powers of elements of I: one must take R-linear
combinations of the q th powers. Observe also that I [q] ⊆ Iq, but that Iq typically needs
many more generators, namely all the monomials of degree q in the generators involving
two or more generators.

Corollary. Let R be a regular ring and let I and J be any two ideals. Then (I :R J)[q] =
I [q] :R J

[q].
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Proof. This is the special case of in which S = R and the flat homomorphism is F e. �

The following result is a criterion for membership in an ideal of a regular domain of
characteristic p > 0 that is slightly weaker, a priori, than being an element of the ideal.
This criterion turns out to be extraordinarily useful.

Theorem. Let R be a regular domain and let I ⊆ R be an ideal. Let r ∈ R be any element.
Let c ∈ R− {0}. Then r ∈ I if and only if for all e� 0, crp

e ∈ I [pe].

Proof. The necessity of the second condition is obvious. To prove sufficiency, suppose that
there is a counterexample. Then r satisfies the condition and is not in I, and we may
localize at a prime in the support of (I + rR)/I. This give a counterexample in which
(R, m) is a regular local ring. Then cxp

e ∈ I [pe] for all e ≥ e0 implies that

c ∈ I [pe] :R (xR)[pe] = (I :R xR)[pe] ⊆ m[pe] ⊆ mpe

for all e ≥ e0, and so c ∈
⋂
e≥e0 m

pe . But this is 0, since the intersection of the powers of
m is 0 in any local ring, contradicting that c 6= 0. �

We can now give a characteristic p proof of the Briançon-Skoda Theorem, which we
restate:

Theorem (Briançon-Skoda). Let R be a regular ring of positive prime characteristic p.

Let I be an ideal generated by n elements. Then for every positive integer k, In+k−1 ⊆ Ik.

Proof. If n = 0 then I = (0) and there is nothing to prove. Assume n ≥ 1. Suppose

u ∈ In+k−1 − Ik. Then we can preserve this while localizing at some prime ideal, and
so we may assume that R is a regular domain. By part (f) of theTheorem on the first

page of the Lecture Notes of January 18, the fact that u ∈ In+k−1 implies that there is
an element c ∈ R − {0} such that cuN ∈ (In+k−1)N for all N . In particular, this is true
when N = q = pe, a power of the characteristic. Let I = (f1, . . . , fn). We shall show
that (In+k−1)q ⊆ (Ik)[q]. A typical generator of (In+k−1)q has the form fa11 · · · fann where∑n
i=1 ai = (n+ k− 1)q. For every i, 1 ≤ i ≤ n, we can use the division algorithm to write

ai = biq + ri where bi ∈ N and 0 ≤ ri ≤ q − 1. Then

(n+ k − 1)q =
n∑
i=1

ai = (
n∑
i=1

bi)q +
n∑
i=1

ri ≤ (
n∑
i=1

bi)q + n(q − 1)

which yields

(
n∑
i=1

bi)q ≥ (n+ k − 1)q − nq + n = (k − 1)q + n

and so
∑
i=1 bi ≥ k − 1 + n

q > k − 1, and this shows that
∑n
i=1 bi ≥ k, as required �
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Lecture of February 22, 2019

We next prove illustrate the method of reduction to characteristic p by proving the
Briançon-Skoda theorem for polynomial rings over a field of characteristic 0 by that
method.

We need Noether normalization over a domain, and we first give a lemma:

Lemma. Let A be a domain and let f ∈ A[x1, . . . , xn]. Let N ≥ 1 be an integer that
bounds all the exponents of the variables occurring in the terms of f . Let φ be the A-

automorphism of A[x1, . . . , xn] such that xi 7→ xi + xN
i

n for i < n and such that xn maps
to itself. Then the image of f under φ, when viewed as a polynomial in xn, has leading
term axmn for some integer m ≥ 1, with a ∈ A − {0}. Thus, over Aa, φ(f) is a scalar in
Aa times a polynomial in xn that is monic.

Proof. Consider any nonzero term of f , which will have the form cαx
a1
1 xa22 · · ·xann , where

α = (a1, . . . , an) and cα is a nonzero element in A. The image of this term under φ is

cα(x1 + xNn )a1(x2 + xN
2

n )a2 · · · (xn−1 + xN
n−1

n )an−1xann ,

and this contains a unique highest degree term: it is the product of the highest degree
terms coming from all the factors, and it is

cα(xNn )a1(xN
2

n )a2 · · · (xN
n−1

n )an−1xann = cαx
an+a1N+a2N

2+···+an−1N
n−1

n .

The exponents that one gets on xn in these largest degree terms coming from distinct
terms of f are all distinct, because of uniqueness of representation of integers in base N .
Thus, no two exponents are the same, and no two of these terms can cancel. Therefore,
the degree m of the image of f is the same as the largest of the numbers

an + a1N + a2N
2 + · · ·+ an−1N

n−1

as α = (a1, . . . , an) runs through n-tuples of exponents occurring in nonzero terms of f ,
and for the choice α0 of α that yields m, cα0x

m
n occurs in φ(f), is the only term of degree

m, and and cannot be canceled. It follows that φ(f) has the required form. �

Theorem (Noether normalization over a domain). Let R be a finitely generated
extension algebra of a Noetherian domain A. Then there is an element a ∈ A− {0} such
that Ra is a module-finite extension of a polynomial ring Aa[z1, . . . , zd] over Aa.

Proof. We use induction on the number n of generators of R over A. If n = 0 then R = A.
We may take d = 0. Now suppose that n ≥ 1 and that we know the result for algebras
generated by n − 1 or fewer elements. Suppose that R = A[θ1, . . . , θn] has n generators.
If the θi are algebraically independent over K then we are done: we may take d = n
and zi = θi, 1 ≤ i ≤ n. Therefore we may assume that we have a nonzero polynomial



71

f(x1, . . . , xn) ∈ A[x1, . . . , xn] such that f(θ1, . . . , θn) = 0. Instead of using the original
θj as generators of our K-algebra, note that we may use instead the elements

θ′1 = θ1 − θNn , θ′2 = θ2 − θN
2

n , . . . , θ′n−1 = θn−1 − θN
n−1

n , θ′n = θn

where N is chosen for f as in the preceding Lemma. With φ as in that Lemma, we have

that these new algebra generators satisfy φ(f) = f(x1 +xNn , . . . , xn−1 +xN
n−1

n , xn) which
we shall write as g. We replace A by Aa, where a is the coefficient of xmn in g. After
multiplying by 1/a, we have that g is monic in xn with coefficients in Aa[x1, . . . , xn−1].
This means that θ′n is integral over Aa[θ′1, . . . , θ

′
n−1] = R0, and so Ra is module-finite

over R0. Since R0 has n− 1 generators over Aa, we have by the induction hypothesis that
(R0)b is module-finite over a polynomial ring Aab[z1, . . . , zd−1] ⊆ (R0)b for some nonzero
b ∈ A, and then Rab is module-finite over Aab[z1, . . . , zd] as well. �

We can now prove:

Theorem (generic freeness). Let A be a Noetherian domain. Let M be a finitely gen-
erated module over a finitely generated A-algebra R. Then there exists a ∈ A − {0} such
that Ma is Aa-free. In particular, there exists a ∈ A− 0 such that Ra is Aa-free.

Proof. Note that we may localize at an element repeatedly (but finitely many times), since
one can achieve the same effect by localizing at one element, the product of the elements
used. We use Noetherian induction on M and also induction on dim (K ⊗A M), where
K = frac (A). If a module has a finite filtration in which the factors are free, the module
is free. (By induction, this comes down to the case where there are two factors, N , and
M/N . When M/N is free, the short exact sequence 0 → N → M → M/N → 0 is
split, so that M ∼= M/N ⊕ N .) We may take a finite prime cyclic flitration of M , and
so reduce to the case where M = R/P . We may replace R by R/P and so assume that
R = M is a domain. By the Noether Normalization Theorem for domains, we may replace
A by Aa for a ∈ A − {0} and so assume that R is module-finite over a polynomial ring
R0 = A[x1, . . . , xn] over A. We may then replace R by R0, viewing R as a module over
R0. This module has a prime cyclic filtration in which each factor is either A[x1, . . . , xn],
which is already free, or a quotient Bi of it by a nonzero prime ideal, and dim (K⊗AB) < n.
Thus, for each Bi we can choose ai ∈ A− {0} such that (Bi)ai is Aai-free, and localizing
at the product a produces a module with a finite filtration by free modules, which will be
itself free. �

We have the following consequence:

Corollary. Let κ be a field that is finitely generated as a Z-algebra. Then κ is a finite
field. Hence, the quotient of a finitely generated Z-algebra by a maximal ideal is a finite
field.

Proof. The second statement is immediate from the first statement. To prove the first
statement, first suppose that κ has characteristic p > 0. The result that κ is a finite
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algebraic extension of Z/pZ is then immediate from Hilbert’s Nullstellensatz (or Zariski’s
Lemma). If not, then Z ⊆ κ. We can localize at one element a ∈ Z− 0 such that κa = κ
is Za-free. But if G is a nonzero free Za-module and p is a prime that does not divide a,
then pG 6= G. Thus, pκ 6= κ, contradicting that κ is a field. �

Discussion: reduction of the Briançon-Skoda theorem for polynomial rings over fields of
characteristic 0 to the case of positive prime characteristic p. Let K be a field of charac-
teristic 0, let f1, . . . , fn ∈ K[x1, . . . , xd], a polynomial ring over K, let k be a positive

integer, and let g ∈ In+k−1. We want to prove that g ∈ (f1, . . . , fn)k, and we assume
otherwise.

The condition that g ∈ In+k−1 implies that there is an equation

gm + i1g
m1 + · · ·+ im = 0

where each ij ∈ (In+k−1)j = I(n+k−1)j . Thus, for each j we can write ij as a sum of
multiples of monomials of degree (n+k−1)j in f1, . . . , fn: call the polynomials that occur
as coefficients in all these expressions h1, . . . , hN . Let A be the subring of K generated over
the integers Z by all the coefficients of g, f1, . . . , fn and h1, . . . , hN . Thus, the elements
g, f1, . . . , fn, h1, . . . , hN ∈ A[x1, . . . , xd], and if we let IA = (f1, . . . , fn)A[x1, . . . , xn],

the equation (∗) holds in A[x1, . . . , xd], so that g ∈ In+k−1
A in A[x1, . . . , xn].

The idea of the proof is very simple: we want to choose a maximal ideal µ of A and
take images in the polynomial ring κ[x1, . . . , xd], where κ = A/µ. We will then be able
to contradict the characteristic p Briançon-Skoda theorem, which will complete the proof
for polynomial rings in equal characteristic 0. The only obstruction to carrying this idea
through is to maintain the condition g /∈ IkA after we kill µ. We can achieve this as follows.
Consider the sort exact sequence:

0→ gA[x1, . . . , xd]/I
k
A → A[x1, . . . , xd]/I

k
A → A[x1, . . . , xd]/(I

k
A, g)→ 0.

We can localize at a single element a ∈ A − {0} so that all terms becomes Aa-free. The
first term remains nonzero when we do this, since that is true even if we tensor further
with K over Aa. We may replace A by Aa, and so there is no loss of generality in assuming
that all three modules are A-free. This means that the sequence is split exact over A, and
remains exact when we apply A/µ⊗A . Moreover, the first term remains nonzero. Since
A/µ has characteristic p, we have achieved the contradiction we sought. �

Our next objective is to study multiplicities of modules on ideals primary to the
maximal ideal of a local ring, and connections with integral dependence of ideals.

Let M 6= 0 be a finitely generated module over a local ring (R, m, K) and let I be
an m-primary ideal. Recall that the function HilbM,I(n) = `(M/In+1M), where `(N)
denotes the length of N , agrees with a polynomial in n for n� 0 whose degree is the Krull
dimension d of M (which is the same as the Krull dimension of R/AnnRM). The leading

term of this function has the form
e

d!
nd, where e is a positive integer called the multiplicity
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of M on I, and which we denote eI(M). If I = m, we refer simply to the multiplicity of
M . In particular, we may consider the multiplicity e(R) = em(R) of R. See the Lecture
Notes from March 17 from Math 615, Winter 2004. Clearly, we may alternatively define

eI(M) = d! lim
n→∞

`(M/In+1M)

nd
.

If M = 0, we make the convention that eI(M) = 0.

Proposition. Let (R, m, K) be local, M a finitely generated R-module of Krull dimension
d, N a finitely generated R-module and I, J m-primary ideals of R.

(a) If A ⊆ AnnRM , then eI(M) is the same as the multiplicity of M regarded as an
(R/A)-module with respect to the ideal I(R/A).

(b) If dim (N) < d, then d! lim
n→∞

`(N/mn+1N)

nd
= 0.

(c) If I ⊆ J are m-primary, eJ(M) ≤ eI(M).

(d) If dim (M) = 0, eI(M) = `(M)

(e) If dim (M) > 0, then for any m-primary ideal J of R, eI(JM) = eI(M).

(f) If M ⊆ N where N is a finitely generated R-module, and Mn = InN ∩M , then

eI(M) = d! lim
n→∞

`(M/Mn+1)

dn
.

In case dim (M) < d, the limit is 0.

(g) If M has a finite filtration with factors Ni, then eI(M) is the sum of the eI(Ni) for
those values of i such that Ni has Krull dimension d.

Proof. The statement in (a) is immediate from the definition, since In+1M = (IR/A)n+1M .

To prove part (b), simply note that `(N/mn+1N) is eventually a polynomial in n of
degree dim (N) < d.

For (c), note that if I ⊆ J , then In+1 ⊆ Jn+1 so that there is a surjectionM/In+1M �
M/Jn+1M , and `(M/In+1M) ≥ `(M/Jn+1M) for all n.

In the case of (d), In+1M = 0 for n� 0, while 0! = n0 = 1.

To prove (e), choose a positive integer c such that Ic ⊆ J . Then `(JM/In+1JM) =
`(M/In+1JM) − `(M/JM) ≤ `(M/In+1+cM . The last length is given for n � 0 by a

polynomial with leading term
eI(M)

d!
nd, since substituting n + c for n in a polynomial

does not change its leading term. This shows eI(JM) ≤ eI(M). On the other hand,

`(M/In+1JM) − `(M/JM) ≥ `(M/In+1M) − `(M/JM). When we multiply by
d!

nd
and
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take the limit, the constant term `(M/JM) yields 0 (note that this argument fails when
d = 0). This shows that eI(JM) ≥ eI(M).

For part (f), note that by the Artin-Rees lemma, there is a constant c such that
In+cN ∩M ⊆ InM , so that In+cM ⊆ In+cN ∩M ⊆ InM . Thus, the limit is trapped
between

d! lim
n→∞

`(M/In+1M)

nd

and

d! lim
n→∞

`(M/In+c+1M)

nd
.

Again, the leading term of the Hilbert polynomial does not change when we substitute
n + c for n, and so these two limits are both eI(M) when d = dim (M), and 0 when
dim (M) < d.

Finally, for part g, we may reduce by induction to the case of filtrations with two
factors, so that we have a short exact sequence 0→ N1 →M → N2 → 0. Then for each n
we have a short exact sequence 0→ N)1/(In+1M∩N1)→M/In+1M → N2/I

n+1N2 → 0,
so that

`(M/In+1M) = `
(
N1/(I

n+1M ∩N1)
)

+ `
(
N2/I

n+1N2

)
.

We may multiply by d!/nd and take the limit of both sides as n→∞, using part (b) and
(f) of the Proposition. �

Corollary. Let (R, m, K) be local, M 6= 0 finitely generated of Krull dimension d, and I
an m-primary ideal. Then

eI(M) =
∑

P∈Ass(M) with dim(R/P )=d

`RP (MP )eI(R/P ).

Proof. If we take a finite filtration of M by prime cyclic modules and apply part (g) of
the Proposition above, the only primes P for which the corresponding cyclic modules
R/P make a nonzero contributions are those primes, necessarily in Supp (M), such that
dim (R/P ) = d, and these are the same as the primes in Ass (M) such that dim (R/P ) =
d. It therefore suffices to see, for each such P , how many times R//P occurs in such
a filtration. A priori, it is not even clear that the number cannot vary. However, if
we localize at P , all terms different from R/P become 0, and the remaining copies of
(R/P )P ∼= RP /PRP give a filtratiion of MP by copies of the residue class field of RP .
Hence, the number of times R/P occurs in any prime cyclic flitration of M is `RP (MP ). �

Remark. In the statement of the Corollary, we may write e(MP ) instead of `RP (MP ),
where e(MP ) is the multiplicity of MP over RP with respect to the maximal ideal, by part
(d) of the Proposition.
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Theorem. Let (R, m, K) be local and I ⊆ J m-primary ideals such that J is integral over
I. Then for every finitely generated R-module M of positive Krull dimension, eI(M) =
eJ(M).

Proof. The condition that J is integral over I implies that for some integer k, Jk = IJk−1,
and then for all n ≥ 0, Jn+k = In+1Jk−1. See the Theorem on p. 2 of the Lecture Notes
of January 16. Then eJ(M) = eJ(JkM) by part (e) of the Proposition above, and so

eJ(M) = d! lim
n→∞

`(JkM/InJkM)

nd
= d! lim

n→∞

`(M/JkM) + `(JkM/InJkM)

nd

since we have added a constant in the numerator and the denominator is nd with d ≥ 1.
This becomes

d! lim
n→∞

`(M/InJkM)

nd
= d! lim

n→∞

`(M/Jn+kM)

nd

which gives eJ(M) because the leading term of the Hilbert polynomial does not change
when we substitute n+ k, where k is a constant, for n. �

Lemma. Let (R, m, K) → (S, n, L) be a faithfully flat map of local rings such that mS
is primary to n. Then for every R-module M , dim (S ⊗RM) = dim (M).

Proof. We use induction on dim (M). We may work with the factors in a prime cyclic
filtration of M , and so reduce to the case M = R/P . Then S/PS is flat over R/P , and
we may replace R by R/P . Thus, we may assume that R is a domain. If dim (R) = 0
m = 0 and n is nilpotent, so that dim (S) = 0. If dim (R) > 0 choose x ∈ m. Then x is
not a zerodivisor in m, and, since S is flat, not a zerodivisor in S. We may make a base
change from R to R/xR. By the induction hypothesis, dim (S/xS) = dim (R/xR), and so
dim (S) = dim (S/xS) + 1 = dim (R/xR) + 1 = dim (R). �

Proposition. Let (R, m, K)→ (S, n, L) be a faithfully flat map of local rings such that

n = mS. In particular, this holds when S = R̂ or S = R(t) for an indeterminate t. Let M
be a finitely generated R-module, and I an m-primary ideal. Then eI(M) = eIS(S⊗RM).

Proof. Quite generally, when S is flat over R and N has a finite filtration with factors Ni,
then S⊗M has a finite filtration with factors S⊗RNi. Since M/In+ 1M has a filtration
with `(M/In+1M factors all equal to K = R/m, it follows that (S ⊗R M)/(IS)n+1M ∼=
S ⊗R (M/In+1M) has a filtration with `(M/In+1M) factors equal to S ⊗K ∼= S/mS =
S/n = L, and so `S

(
(S ⊗R M)/(IS)n+1M

)
= `(M/In+1M). S ⊗R M and M have the

same dimension, by the Lemma, the result is immediate. �

This means that questions about multiplicities typically reduce to the case where
the ring has an infinite residue field, and likewise to the case where the ring is complete.
Since ideals primary to the maximal ideal in a local ring (R, m, K) have analytic spread
d = dim (R), when K is infinite each m-primary ideal will be integral over a d-generator
ideal which must, of course, be generated by a system of parameters. Hence, multiplicities
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can, in general, be computed using ideals that are generated by a system of parameters,
and we shall be particularly interested in this case.

Lecture of February 25, 2019

One of our goals is to discuss what is known about the following conjecture of C. Lech,
which has been an open question for over forty years.

Conjecture. If R→ S is a flat local map of local rings, then e(R) ≤ e(S).

This is open even in dimension three when S is module-finite and free over R. Note
that one can immediately reduce to the case where both rings are complete.

Under mild conditions, a local ring R of multiplicity 1 is regular: it suffices if the

completion R̂ has no associated prime P such that dim (R̂/P ) < dim (R̂). Therefore, the
following result is related to Lech’s conjecture:

Theorem. If S is faithfully flat over R and S is regular then R is regular. In particular,
if (R, m, K) → (S, n, L) is a flat local map of local rings and S is regular, then R is
regular.

Proof. The second statement implies the first, for if P is any prime of R then some prime
Q of S lies over P , and we can apply the second statement to RP → SQ to conclude that
RP is regular.

To prove the second statement, let

(∗) · · · → Gn → · · · → G1 → G0 → R→ R/m→ 0

be a minimal resolution of R/m over R. Then the matrix αi of the map Gi → Gi−1 has
entries in m for all i ≥ 1. Since S is R-flat, the complex obtained by applying S ⊗R ,
namely

(∗∗) · · · → S ⊗R Gn → · · · → S ⊗R G1 → S ⊗R G0 → S/mS → 0

gives an S-free resolution of S/mS over R. Moreover, the entries of the matrix of the map
S ⊗Gi → S ⊗R Gi−1 are simply the images of the entries of the matrix αi in S: these are
in n, and so the complex given in (∗∗) is a minimal free resolution of S/mS over S. Thus,
all of its terms are eventually 0, and this implies that all of the terms of (∗) are eventually
0. Hence, K has finite projective dimension over R, which implies that R is regular. �

Before treating Lech’s conjecture itself, we want to give several other characterizations
of eI(M) when I is generated by a system of parameters. There is a particularly simple
characterization in the Cohen-Macaulay case. We first recall some facts about regular
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sequences. The results we state in the Proposition below are true for an arbitrary regular
sequence on an arbitrary module. However, we only indicate proofs for the situation where
R is local, M is a finitely generated R-module, and x1, . . . , xd are elements of the maximal
ideal of R. The proofs are valid whenever we are in a situation where regular sequences are
permutable, which makes the arguments much easier. (There is a treatment of the case
where the regular sequence is not assumed to be permutable in the Extra Credit problems
in Problem Sets #2 and #3 from Math 615, Winter, 2004. It is assumed that M = R
there, but the proofs are completely unchanged in the module case.) Recall that, in all
cases, by virtue of the definition, the fact that x1, . . . , xd is a regular sequence on M
implies that (x1, . . . , xd)M 6= M .

Proposition. Let x1, . . . , xd ∈ R, let I = (x1, . . . , xd)R, and let M be an R-module.

(a) Let t1, . . . , td be nonnegative integers. Then x1, . . . , xd is a regular sequence if and
only if xt11 , . . . , x

td
d is a regular sequence on M .

(b) If x1, . . . , xd is a regular sequence on M , and a1, . . . , ad are nonnegative integers,

then xa11 · · ·x
ad
d w ∈ (xa1+1

1 , . . . , xad+1
d )M implies that w ∈ (x1, . . . , xd)M .

(c) If x1, . . . , xd is a regular sequence on M , µ1, . . . , µN are the monomials of degree n

in x1, . . . , xd, and w1, . . . , wN are elements of M such that
∑N
j=1 µjwj ∈ In+1M ,

then every wj ∈ IM .

(d) If x1, . . . , xd is a regular sequence on M , then grI(M) may be identified with

(M/IM)⊗R/I (R/I)[X1, . . . , Xd],

where the Xj are indeterminates and for nonnegative integers a1, . . . , ad such that∑d
j=1 aj = n, the image of xa11 · · ·x

ad
d M in InM/In+1M corresponds to

(M/IM)Xa1
1 · · ·X

ad
d .

(e) If x1, . . . , xd is a regular sequence on M , then M/In+1M has a filtration in which

the factors are
(
n+d
d

)
copies of M/IM .

Proof. (a) It suffices to prove the statement in the case where just one of ti is different
from 1: we can adjust the exponents on one element at a time. Since R-sequences are
permutable, it suffices to do the case where only td is different from 1, and for this purpose
we may work with M/(x1, . . . , xd−1)M . Thus, we may assume that d = 1, and the
assertion we need is that xt is a nonzerodivisor if and only if x is. Clearly, if xw = 0 then
xtw = 0, while if xtw = 0 for t chosen as small as possible and w 6= 0 then x(xt−1w) = 0.

(b) If all the ai are zero then we are already done. If not, we use induction on the
number of ai > 0. Since we are assuming a situation in which R-sequences on a module
are permutable we may assume that ad > 0. Then

xa11 · · ·x
ad
d w =

d−1∑
j=1

x
aj+1
j wj + xad+1

d wd
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for elements w1, . . . , wd ∈M . Then

xadd (xa11 · · ·x
ad−1

d−1 w − xdwd) ∈ (xa1+1
1 , . . . , x

ad−1+1
d−1 )M,

and since xa1+1
1 , . . . , x

ad−1

d−1 , x
ad
d is also a regular sequence on M , we have that

xa11 · · ·x
ad−1

d−1 w − xdwd ∈ (xa1+1
1 , . . . , x

ad−1+1
d−1 )M.

This yields that

xa11 · · ·x
ad−1

d−1 w ∈ (xa1+1
1 , . . . , x

ad−1+1
d−1 , xd)M,

providing an example in which the number of aj > 0 has decreased. This is a contradiction.

(c) Fix one of the µj = xa11 · · ·x
ad
d . Then in every other µk and in every monomial of de-

gree n+1, at least one xi occurs with exponent ai+1. Thus, µjw ∈ (xa1+1
1 , . . . , xad+1

d )M ,
and wj ∈ IM by part (b).

(d) For each monomial µ̃ in X1, . . . , Xd we write µ for the corresponding monomial
in x1, . . . , xd. We define a map from

InM →
⊕

deg(µ̃)=n

(M/IM)µ̃

by sending
∑
i µjwj 7→

∑
j µ̃jwj , where wj is the image of wj ∈M in M/IM . This map is

well-defined by part (c), and is obviously surjective. The elements of In+1M are precisely
those elements of M which can be represented as

∑
i µjwj with every wj ∈ IM , and it

follows at once that the kernel of the map is In+1M .

(e) This follows at once from part (d), since we can initially use a filtration with factors
IkM/Ik+1M , 0 ≤ k ≤ n, and then refine it because each of these splits into a direct sum of
copies of M/IM such that the number of copies is the same as the number of monomials

of degree k in X1, . . . , Xd. The number of monomials of degree at most d is

(
n+ d

d

)
. �

We next note:

Theorem. If (R, m, K) is local of dimension d, M is Cohen-Macaulay of dimension d
over R, x1, . . . , xd is a regular sequence on M , and I = (x1, . . . , xd), then eI(M) =
`
(
M/(x1, . . . , xd)M

)
.

Proof. By part (e) of the Lemma just above, we have that M/In+1M has a filtration such
that

(1) Every factor is ∼= M/IM .

(2) The number of factors is

(
n+ d

d

)
, i.e., is the same as the number of monomials of

degree at most n in d indeterminates X1, . . . , Xd.
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This gives the result, for we then have

`(M/In+1M) =

(
n+ d

d

)
`(M/IM),

and the leading term of

(
n+ d

d

)
is
nd

d!
. �

Theorem. Let (R, m, K) be module-finite over a regular local ring A such that x1, . . . , xd
is a regular system of parameters of A, and let M be an R-module of dimension d. Let
I = (x1, . . . , xd)R. Then eI(M) is the torsion-free rank of M over A.

Proof. From the definition, it does not matter whether we think of M as an R-module,
or whether we think of it as an A-module with maximal ideal n = (x1, . . . , xd)A. In the
latter case, if ρ is the torsion-free rank of M as an A-module, we have an exact sequence
of A-modules

0→ Aρ →M → C → 0

where C is a torsion A-module, so that dim (C) < d. It follows that

eI(M) = en(M) = ren(A) + 0 = r`(A/(x1, . . . , xd)A
)

= r · 1 = r.

�

Discussion. If R is equicharacteristic, we can always reach the situation of the Theorem

above. The mulltiplicity does not change if we replace R by R̂. But then we can choose a
coefficient field K, and the structure theorems for complete local rings guarantee that R

is module-finite over A = K[[x1, . . . , xd]] ⊆ R̂.

More generally:

Theorem. Let R be module-finite over a Cohen-Macaulay local ring B such that x1, . . . , xd
is a system of parameters for B. Let M be an R-module of dimension d. Let I =
(x1, . . . , xd)R. If B is a domain, eI(M) = `(B/IB)ρ, where ρ is the torsion-free rank
of M over B. When B is not a domain, if there is a short exact sequence

0→ Bρ →M → C → 0

with dim (C) < d, then eI(M) = `(B/IB)ρ.

Proof. `(M/In+1)M is independent of whether one thinks of x1, . . . , xd as in B or in R.
Thus, we can replace R by B. The result is then immediate from our results on additivity
of multiplicity and the fact that when B is Cohen-Macaulay, eI(B) = `(B/I). �

We want to give a different characterization of multiplicities due to C. Lech. If n =
n1, . . . , nd is a d-tuple of nonnegative integers and f is a real-valued function of n, we
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write lim
n→∞

f(n) = r, where r ∈ R, to mean that for all ε > 0 there exists N such that

for all n = n1, . . . , nd satisfying ni ≥ N , 1 ≤ i ≤ d, we have that |f(n) − r| < ε. One
might also write lim

minn→∞
f(n) = r with the same meaning. If x = x1, . . . , xd is a system

of parameters for R, we temporarily define the Lech multiplicity eL
x(M) to be

lim
n→∞

`
(
M/(xn1

1 , . . . , xndd )M
)

n1 · · ·nd
.

We shall show that the limit always exists, is 0 if dim (M) < d, and, with I = (x1, . . . , xd)R,
is eI(M) when dim (M) = d.

We first prove:

Lemma. Let x = x1, . . . , xd, d ≥ 1, be a system of parameters for a local ring (R, m, K)
and let M ′, M , and M ′′ be finitely generated R-modules. Given n = n1, . . . , nd, let
In = (xn1

1 , . . . , xndd )R, and let Ln(M) = `(M/InM)/n1 · · ·nd.

(a) If
0→M ′ →M →M ′′ → 0

is exact, then for any m-primary ideal J ,

`(M ′′/JM ′′) ≤ `(M/JM) ≤ `(M ′/JM ′) + `(M ′′/JM ′′),

i.e.,
0 ≤ `(M/JM)− `(M ′′/JM ′′) ≤ `(M ′/JM ′).

Hence, for all n,
Ln(M ′′) ≤ Ln(M) ≤ Ln(M ′) + Ln(M ′′),

i.e.,
0 ≤ Ln(M)− Ln(M ′′) ≤ Ln(M ′).

Therefore, if the three limits exist,

eL
x(M ′′) ≤ eL

x(M) ≤ eL
x(M ′) + eL

x(M ′′),

If eL
x(M ′) = 0 and eL

x(M ′′) = 0, then eL
x(M) = 0.

(b) If M has a finite filtration with factors Nj we have that for any m-primary ideal J ,
`(M/JM) ≤

∑
j `(Nj/JNj). Hence, for all n, Ln(M) ≤

∑
j Ln(Nj), and eL

x(M) = 0

whenever eL
x(Nj) = 0 for all j.

(c) If dim (M) < d then eL
x(M) = 0.

(d) If 0 → M ′ → M → M ′′ → 0 is exact and dim (M ′) < d, then eL
x(M) and eL

x(M ′′)
exist or not alike, and if they exist they are equal.



81

(e) If each of M and M ′ embeds in the other so that the cokernel has dimension < d, then
eL
x(M) and eL

x(M ′) exist or not alike, and they are equal.

Proof. Part (a) follows because we have an exact sequence of finite length modules

0→M ′/(JM ∩M ′)→M/JM →M ′′/JM → 0→ 0

and JM ∩M ′ ⊇ JM ′, so that

`
(
M ′/(JM ∩M ′)

)
≥ `(M ′/JM ′).

The remaining statements in part (a) follow at once.

Part (b) follows from part (a) by a straightforward induction on the length of the
filtration.

To prove (c) we may use induction on d. If d = 1 then dim (M) = 0, so that
`(M/InM) = `(M) is constant for all sufficiently large n, while the denominator n1 →∞.
If d > 1 we first take a finite prime cyclic filtration of M . Thus, we may assume without
loss of generality that M is a prime cyclic module. If dim (M) = 0, we again have a
constant numerator and a denominator that → ∞, and so we may assume dim (M) > 0.
Since the xi generate a primary ideal, some xi does not kill M = R/Q, and so is a
nonzerodivisor on M . By renumbering, we assume that i = d. Consider n = n1, . . . , nd
and let n− = n1, . . . , nd−1, let x− = x1, . . . , xd−1, and let In− = (xn1

1 , . . . , x
nd−1

d−1 )R.
Then

M

InM
=

M

(In− + xndd )M
∼=

M/xndd M

In−(M/xndd M)
.

Note that M/xndd M has a filtration with nd factor modules Nj , 0 ≤ j ≤ nd − 1, where

Nj = xjdM/xj+1
d M ∼= M/xdM , and so with M = M/xdM , we have that `(M/InM) ≤

nd`(M/In−M). It follows that

(∗)
`(M/InM)

n1 · · ·nd
≤
nd`(M/In−M)

n1 · · ·nd−1nd
=
`(M/In−M)

n1 · · ·nd−1
.

We may view M as a module over R/xndd R, and

dim (M) < dim (M) ≤ dim (R)− 1 = dim (R/xndd ).

By the induction hypothesis, eL
x−(M) = 0 (working over R/xndd R), and it follows from (∗)

that eL
x(M) = 0 as well.

For part (d), note that (a) implies that |Ln(M) − Ln(M ′′)| ≤ Ln(M ′), and we are
assuming that Ln(M ′)→ 0 as n→∞.

Finally, for part (e), note that if we have short exact sequences

0→M ′ →M → C1 → 0 and 0→M →M ′ → C2 → 0
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then from the first we have Ln(M) − Ln(M ′) ≤ Ln(C1) and from the second we have
Ln(M ′) − Ln(M) ≤ Ln(C2). Hence, |Ln(M) − Ln(M ′)| ≤ max{Ln(C1), Ln(C2)} → 0 as
n→∞. �

Lecture of February 27, 2019

Proposition. Let M be an R-module. Let

(a) If M has a finite filtration with factors Nj, 1 ≤ j ≤ s, and x is a nonzerodivisor on
every Nj, then M/xM has a filtration with s factors Nj/xNj, and M/xnM has a
filtration with ns factors: there are n copies of every Nj/xNj, 1 ≤ j ≤ s.

(b) If x1, . . . , xd is a regular sequence on M and n1, . . . , nd are nonnegative integers,
then M/(xn1

1 , . . . , xndd )M has a filtration by n1 · · ·nd copies of M/(x1, . . . , xd)M .

Proof. (a) By induction on the number of factors, this comes down to the case where there
are two factors. That is, one has 0 → N1 → M → N2 → 0. This has an isomorphic
subcomplex 0 → xN1 → xM → xN2 → 0, and the desired statement now follows from
the exactness of the quotient complex. It follows as well that M/xnM has a filtration by
the modules Nj/x

nNj , and each of these has a filtration with n factors, xkNj/x
k+1Nj ∼=

Nj/xNj , 0 ≤ k ≤ n− 1.

For part (b) we use induction on d. The case d = 1 has already been handled in
part (a). For the inductive step, we know that M/(xn1

1 , . . . , x
nd−1

d−1 )M has a filtration by
n1 · · ·nd−1 copies of M/(x1, . . . , xd−1)M , and x = xd is a nonzerodivisor on each of these.
The result now follows from the last statement in part (a), with n = nd. �

We next observe:

Lemma. Let R be a Noetherian ring and let M be a finitely generated R-module of di-
mension d > 0.

(a) M contains a maximum submodule N such that dim (N) < d, and M/N has pure
dimension d, i.e., for every P ∈ Ass (M/N), dim (R/P ) = d.

(b) Let W be a multiplicative system of R consisting of nonzerodivisors and suppose that M
and M ′ are R-modules such that W−1M ∼= W−1M ′. Then there exist exact sequences
0 → M ′ → M → C1 → 0 and 0 → M → M ′ → C2 → 0 such that each of C1 and C2

is killed by a single element of W .

(c) Let (R, m, K) be a complete local ring of dimension d, and let M be a finitely generated
faithful R-module of pure dimension d. Let x1, . . . , xd be a system of parameters for
R. If R contains a field there is a coefficient field K ⊆ R for R, and M is a torsion-
free module over A = K[[x1, . . . , xd]], so that for some integer ρ > 0, M and Aρ

become isomorphic when we localize at W = A− {{0}.
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In mixed characteristic, there exists Cohen-Macaulay ring A ⊆ R containing x1, . . . , xd
as a system of parameters such that A has the form B/(f) where B is regular and
f 6= 0. Moreover, if W is the multiplicative system of nonzerodivisors in A then W
consists of nonzero divisors of on M and W−1M is a finite direct sum of modules of
the form W−1B/gjB where each gj is a divisor of f . In particular, M ′ =

⊕
j B/gjB is

a Cohen-Macaulay module over A of pure dimension d such that W−1M and W−1M ′

are isomorphic as A-modules.

Proof. To prove (a), first note that since M has ACC on submodules, it has a maximal
submodule N of dimension less than d: it may be 0. If N ′ is another submodule of M of
dimension < d, then d > dim (N ⊕N ′) ≥ dim (N +N ′), and so N +N ′ ⊆ M contradicts
the maximality of N . Thus, N contains every submodule of M of dimension < d. If M/N
had any nonzero submodule of dimension less than d, its inverse image in M would be
strictly larger than N and of dimension less than d as well.

(b) Since M ⊆ W−1M ∼= W−1M ′, we have an injection M ↪→ W−1M ′. Let
u1, . . . , uh be generators of M . Suppose that ui maps to vi/wi, 1 ≤ i ≤ h, where
vi ∈ M ′ and wi ∈ W . Let w = w1 · · ·wh. Then M ∼= wM ↪→

∑
iRvi ⊆ M ′. The

map W−1M → W−M ′ that this induces is still an isomorphsim, since w is a unit in
W−1R. It follows that the cokernel C1 of the map M → M ′ that we constructed is such
that W−1C1 = 0. Since C1 is finitely generated, there is a single element of W that kills
C1. An entirely similar argument yields 0→ M ′ → M → C2 such that C2 is killed by an
element of W .

(c) Let u1, . . . , uh generate M . Then the map R→M⊕h sending r 7→ (ru1, . . . , ruh)
is injective. It follows that Ass (R) ⊆ Ass (M⊕h) = Ass (M), so that R is also of pure
dimension d. Choose a field or discrete valuation ring V that maps onto a coefficient ring
for R (so that the residue class field of V maps isomorphically to the residue class field of
R), and let X1, . . . , Xd be formal indeterminates over V . Then the map V → R extends
uniquely to a continuous map B = V [[X1, . . . , Xd]] → R such that Xi 7→ xi, 1 ≤ i ≤ d.
Let MB be the maximal ideal of B. Since the map B → R induces an isomorphism of
residue class fields, and since R/mBR has finite length over B (the xi generate an m-
primary ideal of R), R is module-finite over the image A of B in R. Moreover, we must
have dim (A) = dim (R).

In the equal characteristic case, where V = K is a field, we must have B ∼= A =
K[[x1, . . . , xd]]. Moreover, M must be torision-free over A, since a nonzero torsion sub-
module would have dimension smaller than d. Hence M and Aρ, where ρ is the torsion-free
rank of M over A, become isomorphic when we localize at A− {0}.

We suppose henceforth that we are in the mixed characteristic case. We know that
the ring A has pure dimension d. It follows that A = B/J , where J is an ideal all of
whose associated primes in B have height one. Since B is regular, it is a UFD. Height one
primes are principal, and any ideal primary to a height one prime has the form gk, where
g generates the prime and k is a nonnegative integer. It follows that A = B/fB, where

f = fk11 · · · f
kk
h is the factorization of f into prime elements. Let W be the multiplicative

system consisting of the complement of the union of the fjB. The associated primes of
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A are the Pj = fjA, and these are also the associated primes of M . Then W−1A is an
Artin ring and is the product of the local rings AP j : each of these may be thought of as

obtained by killing f
kj
j in the DVR obtained by localizing B at the prime fjB. M , as a

B-module, is then a product of modules over the various APj , each of which is a direct sum
of cyclic modules of the form B/fsjB for 1 ≤ s ≤ kj . Each of these is Cohen-Macaulay of
dimension d, and the images the xi form a system of parameters, since each of these rings
is a homomorphic image of A. �

We can now prove:

Theorem. Let (R, m, K) be a local ring of dimension d and let x1, . . . , xd be a system of
parameters for R. Let I = (x1, . . . , xd)R. Let M be a finitely generated R-module. Then
eL
x(M) = 0 if dim (M) < d, and eL

x(M) = eI(M) if dim (M) = d.

Proof. We have already proved that eL
x(M) = 0 if dim (M) < d: this is part (c) of the

Lemma on p. 5 of the Lecture Notes from February 25. Now suppose that dim (M) = d.
We may complete R and M without changing either multiplicity. Let N be the maximum
submodule of M of dimension smaller than d. Then we may replace M by M/N (cf. part
(d) of the Lemma on p. 5 of the the Lecture Notes from February 25). Thus, we may
assume that M has pure dimension d. We may replace R by R/AnnRM and so assume
that M is faithful. We view R as module-finite over A as in part (c) of the preceding
Lemma. Since A contains x1, . . . , xd, we may replace R by A and I by (x1, . . . , xd)A.
By parts (b) and (c) of the preceding Lemma, there is a Cohen-Macaulay A-module M ′ of
dimension d such that each of M and M ′ embeds in the other with cokernel of dimension
smaller than d. Thus, by part (e) of the Lemma on p. 5 of the Lecture Notes of February 25,
we need only prove the result for M ′. Hence, we may assume that M is Cohen-Macaulay.
But it follows from the part (b) of the Proposition at the beginning of this lecture that
eL
x(M) = `(M/IM) when M is Cohen-Macaulay, and we also know that eI(M) = `(M/M)

in this case. �

We next review the definition and some basic properties of the Koszul complex

K•(x1, . . . , xn; M),

where x1, . . . , xn ∈ R and M is an R-module.

We first consider the case where M = R. We let K1(x1, . . . , xn; R) be the free module
G with free basis u1, . . . , un. As a module, we let Ki(x1, . . . , xn; R) be the free module∧i

(G), which has a free basis with

(
n

i

)
generators uj1 ∧ · · · ∧ uji , j1 < · · · < ji. The

differential is such that dui = xi. More generally, the formula for the differential d is

(∗) d(uj1 ∧ · · · ∧ uji) =
i∑
t=1

(−1)t−1xjtuj1 ∧ · · · ∧ ujt−1
∧ ujt+1

· · · ∧ uji .
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Consider an N-graded skew-commutative R-algebra Λ. (This is an N-graded asso-
ciative algebra with identity such that for any two forms of degree f , g of degree h and
k respectively, gf = (−1)hkgf . That is, elements of even degree are in the center, and
multiplying two elements of odd degree in reverse order reverses the sign on the product).
An R-linear map d of Λ into itself that lowers degrees of homogeneous elements by one
and satisfies

(#) d(uv) = (du)v + (−1)deg(u)u dv

when u is a form is called an R-derivation of Λ.

Then
∧•

(G) is an N -graded skew-commutative R-algebra, and it is easy to verify that
the differential is an R-derivation. By the R-bilinearity of both sides in u and v, it suffices
to verify (#) when u = uj1 ∧ · · · ∧ ujh and v = uk1 ∧ · · · ∧ uki with j1 < · · · < jh and
k1 < · · · < ki. It is easy to see that this reduces to the assertion (∗∗) that the formula (∗)
above is correct even when the sequence j1, . . . , ji of integers in {1, 2, . . . , n} is allowed
to contain repetitions and is not necessarily in ascending order: one then applies (∗∗) to
j1, . . . , jh, k1, . . . , ki. To prove (∗∗), note that if we switch two consecutive terms in the
sequence j1, . . . , ji every term on both sides of (∗) changes sign. If the j1, . . . , ji are
mutually distinct this reduces the proof to the case where the elements are in the correct
order, which we know from the definition of the differential. If the elements are not all
distinct, we may reduce to the case where jt = jt+1 for some t. But then uj1 ∧· · ·∧uji = 0,
while all but two terms in the sum on the right contain ujt ∧ ujt+1

= 0, and the remaining
two terms have opposite sign.

Once we know that d is a derivation, we obtain by a straightforward induction on k
that if v1, . . . , vk are forms of degrees a1, . . . , ak, then

(∗ ∗ ∗) d(v1 ∧ · · · ∧ vi) =
∑
t=i

(−1)a1+···+at−1vj1 ∧ · · · ∧ vjt−1 ∧ dvjt ∧ vjt+1 ∧ · · · ∧ vji .

Note that the formula (∗) is a special case in which all the given forms have degree 1.

It follows that the differential on the Koszul complex is uniquely determined by what
it does in degree 1, that is, by the map G → R, where G is the free R-module K1(x; R),
together with the fact that it is a derivation on

∧
(G). Any map G→ R extends uniquely

to a derivation: we can choose a free basis u1, . . . , un for G, take the xi to be the values of
the map on the ui, and then the differential on K•(x1, . . . , xn; R) gives the extension we
want. Uniqueness follows because the derivation property forces (∗ ∗ ∗) to hold, and hence
forces (∗) to hold, thereby determining the values of the derivation on an R-free basis.

Thus, instead of thinking of the Koszul complex K(x1, . . . , xn; R) as arising from a
sequence of elements x1, . . . , xn of R, we may think of it as arising from an R-linear map
of a free module θ : G→ R (we might have written d1 for θ), and we write K•(θ; R) for the
corresponding Koszul complex. The sequence of elements is hidden, but can be recovered
by choosing a free basis for G, say u1, . . . , un, and taking xi = θ(ui), 1 ≤ i ≤ n. The
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exterior algebra point of view makes it clear that the Koszul complex does not depend
on the choice of the sequence of elements: only on the map of the free module G → R.
Different choices of basis produce Koszul complexes that look different from the “sequence
of elements” point of view, but are obviously isomorphic. In particular, up to isomprphism,
permuting the elements does not change the complex.

We write K•(x1, . . . , xd; M), where M is an R-module, for K•(x1, . . . , xn; R)⊗M .
The homology of this complex is denoted H•(x1, . . . , xn; M). Let x = x1, . . . , xn and Let
I = (x)R.

We have the following comments:

(1) The complex is finite: if M is not zero, it has length n. The i the term is the direct

sum of

(
n

i

)
copies of M . Both the complex and its homology are killed by AnnRM .

(2) The map from degree 1 to degree 0 is the map Mn →M sending

(u1, . . . , un) 7→ x1u1 + · · ·xnun.

The image of the map is IM , and so H0(x1, . . . , xd; M) ∼= M/IM .

(3) The map from degree n to degree n− 1 is the map M →Mn that sends

u 7→ (x1u1, −x2u2, · · · ,±xnun),

and so Hn(x1, . . . , xn; M) ∼= AnnMI.

(4) Given a short exact sequence of modules 0 → M ′ → M → M ′′ → 0 we may tensor
with the free complex K•(x1, . . . , xn; R) to obtain a short exact sequence of complexes

K•(x1, . . . , xn; M ′)→ K•(x1, . . . , xn; M)→ K•(x1, . . . , xn; M ′′)→ 0.

The snake lemma then yields a long exact sequence of Koszul homology:

· · · → Hi(x; M ′)→ Hi(x; M)→ Hi(x; M ′′)→ Hi−1(x; M ′)→ · · ·

→ H1(x; M ′)→ H1(x; M)→ H1(x; M ′′)→M ′/IM ′ →M/IM →M ′′/IM ′′ → 0

(5) I kills Hi(x; M) for every i and every R-module M . It suffices to see that xd kills the
homology: the argument for xi is similar. Let z ∈ Ki(x; M), and consider z ∧ un ∈
Ki+1(x; M). Then

(∗) d(z ∧ un) = dz ∧ un + (−1)ixnz.

Hence, if z is a cycle, d(z ∧ un) = (−1)ixnz, which shows that xnz is a boundary.

(6) Let x− denote x1, . . . , xn−1. Let G− ⊆ G be the free module on the free basis
u1, . . . , un−1. Then K•(x−; M) may be identified with
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(G−)⊗RM ⊆

∧•
(G)⊗M = K•(x; M).

This subcomplex is spanned by all terms that involve only u1, . . . , un−1. The quotient
complex my be identified with K•(x−;M) as well: one lets uj1 ∧ · · · ∧ uji−1

∧ un ⊗ w
in degree i, where the jν < n and w ∈W , correspond to uj1 ∧ · · ·∧uji−1

⊗w in degree
i− 1. This gives a short exact sequence of complexes

0→ K•(x−; M)→ K•(x; M)→ K•−1(x−; M).

This in turn leads to a long exact sequence for homology:

· · · → Hi(x
−; M)→ Hi(x

−; M)→ Hi(x; M)→ Hi−1(x−; M)→ Hi−1(x−; M)→ · · · .

The maps δi : Hi(x
−; M) → Hi(x

−;M) and δi−1 : Hi−1(x−; M) → Hi−1(x−;M)
are connecting homomorphisms. They may be computed as follows: a cycle z in the
homology of the quotient complex K•(x−; M) in degree i can be lifted to Ki+1(x; M)
as z ∧ un, and the differential takes this to (−1)ixnz by the argument given in (5).
Hence, δi is the endomorphism given by multiplication by (−1)ixi. It follows that we
have short exact sequences:

0→ Hi(x
−; M)

xnHi(x−; M)
→ Hi(x; M)→ AnnHi−1(x−;M)xn → 0

for every i.

We next want to show that multiplicities with respect to a system of parameters can
be computed using Koszul homology. Note that the matrices of the maps in the Koszul
complex K•(x;M) have entries in I = (x)R, so that for all every Ki(x; M) maps into
IKi−1(x; M) and for all s, IsKi(x; M) maps into Is+1Ki−1(x; M).

Theorem. Let M be a finitely generated module over a Noetherian ring R, let x =
x1, . . . , xn ∈ R and let I = (x)R. Then for all sufficiently large h � n, the subcom-
plex

0→ Ih−nKn(x; M)→ · · · → Ih−iKi(x; M)→ · · · → Ih−1K1(x; M)→ IhK0(x; M)→ 0

of the Koszul complex K•(x; M) is exact (not just acyclic).

Proof. We abbreviate Ki = Ki(x; M). Since there are only finitely many spots where the
complex is nonzero, the assertion is equivalent to the statement that for fixed i, every cycle
in Ik+1Ki is the boundary of an element in IkKi+1 for all k � 0.

Let Zi denote the module of cycles in Ki. By the Artin-Rees lemma, there is a constant
ci such that for all k ≥ ci, I

kKi ∩ Zi = Ik−ci(IciKi ∩ Zi). In particular, for all k ≥ ci,
Ik+1Ki ∩ Zi = I(IkKi ∩ Zi). For any k, the complex IkK•(x; M)., i.e.,

0→ IkKn(x; M)→ · · · → IkKi(x; M)→ · · · → IkK1(x; M)→ IkK0(x; M)→ 0,
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is the same as K•(x; IkM), and so its homology is killed by I. Thus, a cycle in IkKi,
which is the same as an element of IkKi ∩ Zi, when multiplied by any element of I, is a
boundary. But for k � 0, Ik+1Ki ∩ Z = I(IkK ∩ Z), which is in the image of IkKi+1, as
required. �

Lecture of March 1, 2019

Discussion: the difference operator. Consider the ring Q[n] of polynomials in one variable
n over the rational numbers. We define a Q-linear function τ from this ring to itself by
τ
(
P (n)

)
= P (n − 1). Note that τ preserves degree and leading term. We write 1 for the

identity map on Q[n], and ∆ for the operator 1− τ that sends P (n) 7→ P (n)− P (n− 1).
Note that ∆ lowers degree by one (if the degree is positive) and kills scalars. Moreover,
if the leading term of P (n) is and, where a ∈ Q, the leading term of ∆

(
P (n)

)
is adnd−1,

which is similar to the behavior of the differentiation operator. In particular, if P (n) has
degree d, ∆dP (n) is the scalar d!a, where a is the leading coefficient of P (n). For each
constant integer c ≥ 0, τ c

(
P (n)

)
= P (n − c). By the binomial theorem, for each k the

operator

∆k = (1− τ)k = 1−
(
k

1

)
τ +

(
k

2

)
τ2 − · · ·+ (−1)k

(
k

k

)
τk

so that

(#) ∆k
(
P (n)

)
= P (n)− kP (n− 1) + · · ·+ (−1)i

(
k

i

)
P (n− i) + · · ·+ (−1)kP (n− k).

We also note:

Lemma. If 0 → Nb → · · · → Na → 0 is a bounded complex of modules of finite length,

the alternating sum of the lengths
∑b
i=a(−1)i`(Ni) is the same as

∑b
i=a(−1)i`

(
Hi(N•)

)
.

Proof. Let Bi be the image of Ni+1 in Ni and Zi the kernel of Ni → Ni−1, so that
Hi = Hi(N•) = Zi/Bi. Then we have short exact sequences

0→ Zi → Ni → Bi−1 → 0 and 0→ Bi → Zi → Hi → 0

for all i. It will be convenient to think of our summations as taken over all integers i ∈ Z:
this still makes sense since all but finitely many terms are zero, and will permit a convenient
shift in the summation index. We then have:∑
i

(−1)i`(Hi) =
∑
i

(−1)i
(
`(Zi)− `(Bi)

)
=
∑
i

(−1)i`(Zi) +
∑
i

(−1)i+1`(Bi) =∑
i

(−1)i`(Zi) +
∑
i

(−1)i`(Bi−1) =
∑
i

(−1)i
(
`(Zi) + `(Bi−1)

)
=
∑
i

(−1)i`(Ni).

�

If (R, m, K) is local and x1, . . . , xd is a system of parameters, then for any finitely
generated R-module M , all the modules Hi(x1, . . . , xd; M) have finite length: each is a
finitely generated module killed by (x1, . . . , xd)R.
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Theorem (Serre). Let (R, m, K) be a local ring of Krull dimension d, and let M be a
finitely generated R-module. Let I = (x1, . . . , xd)R. Then

d∑
i=0

(−1)i`
(
Hi(x1, . . . , xd; M)

)
is eI(M) if dim (M) = d and is 0 if dim (M) < d.

Proof. By the Theorem at the end of the Lecture Notes of February 27, the subcomplex

A(n)
• whose i th term is In−iKi, where Ki = Ki(x1, . . . , xd; M), is exact for all n � 0.

Call the quotient complex Q(n)
• . The long exact sequence of homology coming from the

short exact sequence

0→ A(n)
• → K• → Q(n)

• → 0

shows that Hi(x1, . . . , xd; M) ∼= Hi(Q(n)
• ) for all i if n� 0. Let H(n) denote the Hilbert

polynomial of M with respect to I, which agrees with `(M/In+1M) for all n� 0. Then∑
i

(−1)i`
(
Hi(x1, . . . , xd;M)

)
is the same as ∑

i

(−1)i`
(
Hi(Q(n+1)

• )
)

for all n� 0, and this in turn equals∑
i

(−1)i`(Q(n+1)
i )

by the Lemma just above. Since Q(n+1)
i is the direct sum of

(
d
i

)
copies of M/In+1−iM ,

for n� 0 this is ∑
i

(−1)i
(
d

i

)
H(n− i),

which is ∆d
(
H(n)

)
by the formula (#) in the Discussion at the beginning of this Lecture.

By that same Discussion, this is also d! times the leading coefficient of H(n). �

Discussion: mapping cones. Let φ• : A• → B• be a map of complexes of R-modules, so
that we have a commutative diagram:

· · · di+1−−−−→ Bi
di−−−−→ Bi−1

di−1−−−−→ · · ·

φi

x φi−1

x
· · · δi+1−−−−→ Ai

δi−−−−→ Ai−1
δi−1−−−−→ · · ·
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We define the mapping cone Mφ
• to be the complex such that Mφ

i = Bi
⊕
Ai−1,

where the differential takes bi⊕ai−1 7→
(
dibi + (−1)i−1φi−1(ai−1)

)
⊕ δi−1(ai−1). It is easy

to check that Mφ
• is a complex. Note that B• is a subcomplex, and the quotient is A•−1

(the complex A•, but with the indices shifted so that the degree i term is Ai−1). It is
straightforward to check that the mapping cone is a complex.

It is also straightforward to check that K•(x1, . . . , xd; M) is the mapping cone of the
map

φ• : K•(x1, . . . , xd−1; M)→ K•(x1, . . . , xd−1; M)

given by multiplication by xd on each module.

We next observe that if

0→ A•
φ−→ B• → C• → 0

is a short exact sequence of complexes, then the homology of the mapping cone Mφ
• of

A• ↪→ B• is the same as H•(C•). The isomorphism is induced by

Mφ
i = Bi ⊕Ai−1 � Bi � Ci.

For a suitable choice of ±, u⊕v is a cycle inMφ
n iff du = ±φ(v). Note that we automatically

have δ(v) = 0, since φ(δ(v)) = d(φ(v)) = ±ddu = 0, and φ is injective. The cycle is
completely determined by u, and u occurs in a cycle iff its image represents a cycle in Ci.
The module of boundaries is d(Bi+1) + φ(Ai) ⊆ Bi, and obviously maps onto the module
of boundaries in Ci. �

Corollary. If xd is not a zerodivisor on M , then

Hi(x1, . . . , xd; M) ∼= Hi(x1, . . . , xd−1; M/xdM)

for all i.

Proof. We apply the discussion of mapping cones when the map φ is injective with A• =
B• = K•(x1, . . . , xd−1, M), and φ = ·xn. The fact that xn is not a zerodivisor on M
implies that the map φ is injective. Note that C• ∼= K•(x1, . . . , xd−1;M/xnM). The
stated result is immediate.

Theorem. Let (R, m, K) be local of dimension d and let x ∈ m be part of a system of
parameters generating a reduction of m. Suppose that x is not a zerodivisor on M . Then
e(M) = e(M/xM), where M/xM is viewed as a module over R/xR.

Proof. Let x1, . . . , xd be a system of parameters generating a reduction I of m, where
x = xn. Then the images of x1, . . . , xd−1 generate a reduction J for m/xR in R/xR.
Thus, e(M) = eI(M), and e(M/xM) = eJ(M/xM), and we may compute each of these
as an alternating sum of lengths of Koszul homology. But the correspondingly indexed
Koszul homology modules are isomorphic by the preceding Corollary. �

Our next goal is to prove that, under mild conditions, rings of multiplicity 1 are
regular. We first need:
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Lemma (Hironaka). Let (R, m, K) be a local domain and let x ∈ R − {0} be such
that xR has a unique minimal prime P . Suppose that R/P is normal and that RP is a
discrete valuation ring in which x generates the maximal ideal PRP . Suppose also that
the normalization S of R is module-finite over R (which is true when R is complete) and
that every minimal prime Q of xS lies over P (which is true if R is universally catenary).
Then R is normal, and P = xR.

Proof. Note that if R is universally catenary, and Q is any minimal prime of xS in S, if P ′

is the contraction of Q to R, the height of P ′ must be one by the dimension formula: R and
S have the same fraction field, and R/P ′ ↪→ S/Q is module-finite, so that the extension
or residue class fields RP ′ → SQ is algebraic. Since P ′ contains x, we must have P ′ = P .

Since RP is a discrete valuation ring, it is normal and so S ⊆ RP . Hence, SP = RP
is already local of dimension one, and SQ is a further localization of dimension one. It
follows that SQ = RP , and that QSQ = PRP . Moreover, since QSQ ∩ S = Q, we have
that PRP ∩ S = Q, and so only one prime Q of S lies over P .

We have that S/Q is contained in the fraction field of R/P , and it is an integral
extension. Since R/P is normal, we must have that S/Q = R/P , and so every residue
class in S/Q can be represented by an element of R. This implies that S = Q + R. We
can also see that xS = Q: we have that xS ⊆ Q, and to check Q ⊆ xS it suffices to show
that this is true after localization at each minimal prime of xS, since S is normal. Q is the
only such prime, and QSQ = PRP = xRP = xSQ. Since S = Q + R, we now have that
S = xS +R. By Nakayama’s lemma, this implies that S = R, so that R is normal. Then
P = Q, and Q = xS = xR. �

We shall say that a module M over a Noetherian ring R has pure dimension d (M
may be equal to R) if for every associated prime P of M , dim (R/P ) = d. An equivalent
condition is that every nonzero submodule of M has dimension d.

Theorem. Let (R, m, K) by a local ring. The R is regular if and only if R has multiplicity

1 and suppose R̂ has pure dimension.

Proof. If R is regular, it is Cohen-Macaulay and its multiplicity is the length when w we

kill a regular system of parameters, which is 1. Moreover, (̂R) is again regular, and so is a
domain. We therefore only need to show the “If” part: we assume that R has multiplicity

1 and R̂ is of pure dimension, and we need to prove that R is regular.

We use induction on dim (R). If dim (R) = 0, then e(R) = `(R) = 1, so that R must
be a field and is regular.

We may replace R by R̂ without affecting any relevant issue. Then

(∗) e(R) =
∑
P

`(RP )e(R/P )

where P runs through all the associated primes of R, each of which is minimal and such
that dim (R/P ) = dim (R), by hypothesis. It follows that there is only one associated



92

prime, necessarily minimal, and that RP has length one, and so is a field. This implies
that R is a domain.

If the residue field of R is infinite, we can complete the argument as follows. Choose
x ∈ R so that it is part of system of parameters that generates a reduction of m. If
dim (R) = 1, the e(R) = `(R/xR) = 1, so that R/xR is a field and m = xR, which shows
that R is regular.

If dim (R) ≥ 2, then we still have e(R/xR) = e(R) = 1. Thus, applying (∗) of the
second paragraph to R/xR, we find that xR has a unique minimal prime P in R (a priori,
xR may have embedded primes), that (R/xR)P is a field, so that PRP = xRP , and that
e(R/P ) = 1. By the induction hypothesis, R/P is regular, and, therefore, normal. R
is universally catenary (complete local rings are homomorphic images of regular rings)
and and has a module-finite normalization. Hence, we are in the situation of Hironaka’s
Lemma, and P = xR. Since R/xR is regular, so is R.

If the residue field of R is finite, we may replace R by R(t). The theory of excellent
rings then implies that if we complete again, the hypothesis we need on associated primes is
preserved: the completion of a ring of ring or module of pure dimension has pure dimension
in the excellent case. (One can reduce this to studying the situation when R is an excellent
local domain. The theory of excellent rings then yields that the completion is reduced,
and is such that all minimal primes have quotients of the same dimension.)

An alternative is to take an irreducible polynomial f of large degree over the residue
field K of R, lift it to a monic polynomial g over R, and replace R by R1 = R[x]/(g). This
ring is still complete, and it is module-finite and free over R, so that it has pure dimension.
Killing m gives L = K[x]/(f), which is a field. Therefore the new ring still has multiplicity
one. Once the cardinality of L is sufficiently large, there will exist a system of parameters
of R1 that gives a reduction of the maximal ideal of R1, and we can proceed as above. �

Lecture of March 11, 2019

Examples. Let R = K[[x, y]]/(x2, xy). This ring has a unique minimal prime, xR, and
m = (x, y)R is embedded. The image x of x in the ring generates a submodule isomorphic
to R/m, which has lower dimension. Then e(R) = e(R/xR) = e(K[[y]]) = 1.

Likewise, if R = K[[x, y, z]]/
(
x, y)∩(z)

)
, then R has two minimal primes, (x, y)R and

zR. Thus, dim (R) = dim (R/zR) = dim (K[[x, y]], while the module zR ∼= R/(x, y) ∼=
K[[z]] is one-dimensional. Thus, e(R) = e(R/zR) = e(K[[x, y]]) = 1.

These examples illustrate that a local ring of multiplicity 1 need not be regular. In
the first example, Rred is a domain. In the second, R is reduced, but not equidimensional.

Finally, consider R = K[[u, v, x, y, z]]/
(
(u, v) ∩ (x, y) ∩ z

)
. This ring is reduced but

not equidimensional. It has dimension 4 (when we kill zR we get K[[u, v, x, y]]), but has
two minimal primes with quotients of dimension 3. Consider the ring obtained when we
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localize at P = (u, v, x, y). The localization S of T = K[[u, v, x y, z]] at (u, v, x, y)T
is regular of dimension 4, and u, v, x, y is a regular system of parameters. Thus, RP =
S/
(
(u, v)∩ (x, y)

)
has two minimal primes with quotients that are regular of dimension 2.

It follows that e(R) = 1 while e(RP ) = 2. The problem here is that we “localized away”
the relevant minimal prime of R that governed its multiplicitiy.

Discussion: localization. One expects that under mild conditions, e(RP ) ≤ e(R). But we
only expect this for primes P such that dim (RP ) + dim (RP ) = dim (R). (We always have
dim (R/P ) + dim (RP ) ≤ dim (R). The condition of equality means that P is part of a
chain of primes of maximum length, dim (R), in R.) It is conjectured that in all local rings,
whenever dim (RP ) + dim (RP ) = dim (R), one has that e(RP ) ≤ e(R).

In studying this problem, one is naturally led to Lech’s Conjecture. The result on
localization is true if R is excellent (and under various weaker hypotheses), but, so far as
I know, remains open in the general case. It would follow, however, from a proof of Lech’s
Conjecture, which permits a reduction to the case where the ring is complete.

First note:

Lemma. Let P be a prime ideal of a local ring R. Then:

(a) For every minimal prime Q of PR̂, height (Q) = height (P ).

(b) If dim (R/P ) + dim (RP ) = dim (R), then there exists a minimal prime Q of PR such

that dim (R̂/Q) + dim (R̂Q) = dim (R̂).

(c) If R̂/P is reduced, then with Q as in part (b) we have that e(RP ) = e(R̂Q).

Proof. (a) RP → R̂Q is faithfully flat, so that dim (R̂Q) ≥ dim (RP ). The minimality of Q

implies that PRP expands to a QR̂Q-primary ideal in R̂Q, so that a system of parameters

for RP will be a system of parameters for R̂Q as well.

For (b), note that the completion of R/P , which is R̂/P R̂, has the same dimension

as R/P , and so has a minimal prime, say Q/PR̂, where Q is prime in R̂, such that

dim (R̂/Q) = dim (R̂/P R̂ = dim (R/P ). By part (a), dim (R̂Q = dim (RP ) as well.

To prove (c), observe that if R̂/P is reduced, then so is R̂Q/PR̂Q, which means that

PRP expands to the maximal ideal in R̂Q. The equality of multiplicities then follows from
the Proposition on p. 6 of the Lecture Notes of February 22. �

Our next objective, which will take a while, is to prove the following:

Theorem (localization theorem for multiplicities). If P is a prime ideal of a com-
plete local ring R such that dim (R/P ) + dim (RP ) = dim (R), then e(RP ) ≤ e(R).

Assuming this for the moment, we have several corollaries.
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Corollary. If P is a prime of a local ring R such that dim (R/P ) + dim (RP ) = dim (R)
and the completion of R/P is reduced,4 then e(RP ) ≤ e(R).

Proof. Choose a minimal prime Q of PR̂ such that dim (R̂/Q) + dim (R̂Q) = dim (R̂), as
in part (b) of the Lemma. Then by part (c),

e(RP ) = e(R̂Q) ≤ e(R̂) = e(R).

Corollary. If Lech’s conjecture holds, then for every prime P of a local ring R such that
dim (R/P ) + dim (RP ) = dim (R), e(RP ) ≤ e(R).

Proof. Choose Q as in part (b) of the Lemma. Then RP → R̂Q is flat local, and so by
Lech’s conjecture

e(RP ) ≤ e(R̂Q) ≤ e(R̂) = e(R). �

We also get corresponding results for modules.

Corollary. If R is a local ring, M a finitely generated R-module, and P is a prime of the
support of M such that dim (R/P ) + dim (MP ) = dim (M), then:

(a) If the completion of R/P is reduced, then e(MP ) ≤ e(M).

(b) If Lech’s conjecture holds, then e(MP ) ≤ e(M).

Proof. Note that we can replace R by R/AnnRM , so that we may assume that M is
faithful and dim (R) = dim (M) = d, say. Note that M is faithful if and only if for some
(equivalently, every) finite set of generators u1, . . . , uh for M , the map R → M⊕h such
that r 7→ (ru1, . . . , ruh) is injective. This condition is obviously preserved by localization.
Now,

(∗) e(M) =
∑

1≤i≤h, dim(R/Pi)=d

`RPi (MPi)e(R/Pi).

Note that once we have that M is faithful, dim (R/P )+dim (MP ) = dim (M) is equivalent
to dim (R/P ) + dim (RP ) = dim (R), since MP is faithful over RP . The minimal primes
of M and R are the same, and so are the minimal primes of MP and RP : the latter
correspond to the minimal primes of R that are contained in P . There is a formula like
(∗) for e(MP ), where the summation is extended over minimal primes p of the support of
MP , i.e., of RP , such that dim (RP )/p = dim (MP ), which is dim (RP ). Let p be such a
minimal prime. Then there is a chain of primes from p to P of length height (P ), and this
can be concatenated with a chain of primes of length dim (R/P ) from P to m, producing a
chain of length dim (R). It follows that dim (R/p) ≥ d, and the other inequality is obvious.
Therefore, p is one of the Pi. Moreover, in R/Pi, we still have

dim
(
(R/Pi)/(P/Pi)

)
+ height

(
(R/Pi)P/Pi

)
= dim (R/Pi) = d.

4This is always true if R is excellent: the completion of an excellent reduced local ring is reduced.
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Thus, the terms in the formula corresponding to (∗) for MP correspond to a subset of the
the terms occurring in (∗), but have the form

`RPi (MPi)e(RP /PiRP ).

Note that each Pi occurring is contained in P , and localizing first at P and then at PiRP
produces the same result as localizing at Pi. Using either (a) or (b), whichever holds, we
have that every e

(
(R/Pi)P

)
≤ e(R/Pi). �

We next want to understand multiplicities in the hypersurface case.

Theorem. Let (R,m,K) be a regular local ring of dimension d and let f ∈ m. Let
S = R/fR. The e(S) is the m-adic order of f , i.e., the unique integer k such that
f ∈ mk −mk+1.

Proof. We use induction on dim (R). If dim (R) = 1 the result is obvious. Suppose
dim (R) > 1. We replace R by R(t) if necessary so that we may assume the residue class
field is infinite. Choose a regular system of parameters x1, . . . , xd for R. By replacing
these by linearly independent linear combinatons we may assume that x1 is such that

(1) x1 does not divide f , so that the image of x1 is not a zerodivisor in S.

(2) The image of x1 in m/m2 does not divide the leading form of f in grm(R).

(3) The image of x1 in S is part of a minimal set of generators for a minimal reduction
of m/fR, the maximal ideal of S.

Let x be the image of x1 in S. Then e(S) = e(S/xS), and this is the quotient of the
regular ring R/x1R by the image of f . Moreover, the (m/x1R)-adic order of the image of
f in R/x1R is the same as the m-adic order of f in R. The result now follows from the
induction hypothesis applied to the image of f in R/x1R. �

We next want to reduce the problem of proving the localization result for complete
local domains to proving the following statement:

Theorem (symbolic powers in regular rings). Let P ⊆ Q be prime ideals of a regular
ring R. Then P (n) ⊆ Q(n) for every positive integer n.

We postpone the proof for the moment. Note, however, that one can reduce at once
to the local case, where Q is the maximal ideal, by working with (RQ, QRQ) instead of R.

Discussion: the symbolic power theorem for regular rings implies that multiplciities do not
increase under localization. Let R be complete local, and let P be a prime ideal of R such
that dim (R/P )+height (RP ) = dim (R). We want to show that e(RP ) ≤ e(R). Exactly as
in the discussion of the module case in the proof of the Corollary, one can reduce to the case
where R is a domain. As usual, one may assume without loss of generality that the residue
field is sufficiently large for R to have a system of parameters x1, . . . , xd that generates
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a minimal reduction of m. Then in the equicharacteristic case (respectively, the mixed
characteristic case), we can map K[[X1, . . . , Xd]] → R (respectively, V [[X1, . . . , Xd]] →
R), where K ⊆ R (respectively V ⊆ R) is a coefficient field (respectively, a complete
DVR that is a coefficient ring) and so that Xi 7→ xi, 1 ≤ i ≤ d. In both cases, R is
module-finite over the image A: in the equicharacteristic case, A = K[[x1, . . . , xd]] is
regular, while in mixed characteristic the kernel of V [[X1, . . . , Xd]]→ R must be a height
one prime, and therefore principle, so that A ∼= V [[x1, . . . , xd]]/(f). Since the maximal
ideal of R is integral over (x1, . . . , xd)R and R is module-finite over A, the maximal ideal
of A is also integral over (x1, . . . , xd)A. Let ρ denote the torsion-free rank of R as an
A-module, which is the same as the degree of the extension of fraction fields. Suppose
that P is a prime of R and let p be its contraction to A. Let I be the ideal (x1, . . . , xd)A.
Then e(R) = eIR(R), which is the same as eI(R) with R thought of as an A-module.
This is ρ eI(A) = ρ e(A). The result on symbolic powers gives the result on localization
of multiplicities for A = T/(f), when T is regular: one multiplicity is the order of f in
T with respect to the maximal ideal, while the other is the order of f in a localization
of T . (In the equicharacteristic case, both A and its localization are regular, and both
multiplicities are 1.) Thus, ρ e(Ap) ≤ ρ e(A) = e(R). But we shall see in the sequel that
e(RP ) ≤ ep(Rp), with Rp is viewed as an Ap module. Since R is module-finite over A, Rp

is module-finite over Ap, and Rp/p
nRp is an Artin ring, and is a product of local rings one

of which is RP /(p
nRP ). Then

`Ap
(Rp/p

nRp) ≥ `Ap
(RP /p

nRP ) ≥ `Ap
(RP /P

nRP ) ≥ `RP (RP /P
nRP )

for all n, so that the multiplicity of Rp as an Ap-module is greater than or equal to e(RP ).
But then

e(RP ) ≤ ep(Rp) = ρ e(Ap) ≤ ρ e(A) = e(R),

as required. �

Thus, all that remains is to prove the theorem on symbolic powers in regular rings.

Lecture of March 13, 2019

Before attacking the problem of comparing symbolic powers of primes, we want to
discuss some techniques that will be needed. One is connected with enlarging the residue
class field of a local ring.

Proposition. Let (R, m, K) be a local ring, and let θ be an element of the algebraic
closure of K with minimal monic irreducible polynomial f(x) ∈ K[x]. Let F (x) be a
monic polynomial of the same degree d as f that lifts F to R[x]. Let S = R[x]/(F ). Then
S is module-finite, free of rank d, and local over R. Hence, S is R-flat. The residue field
of S is isomorphic with L = K[θ], and S has maximal ideal mS.

Proof. S is module-finite and free of rank d over R by the division algorithm. Hence, every
maximal ideal of S must lie over m, and the maximal ideals of S correspond bijectively to
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those of S/mS = R[x]/(mR[x] + FR[x]) ∼= K[x]/fK[x] ∼= K[θ], which shows that mS is
maximal and that it is the only maximal ideal of S. This also shows that S/mS ∼= K[θ]. �

Discussion: getting reductions such that the number of generators is the analytic spread. Let
(R, m, K) be local and I an ideal with analytic spread h. One way of enlarging the residue
field so as to guarantee the existence of a reduction of I with h generators is to replace R by
R(t), so that the residue class field becomes infinite. For this purpose, it is not necessary
to enlarge R so that K becomes infinite. One only needs that K have sufficiently large
cardinality. When K is finite, one can choose a primitive element θ for a larger finite field
extension L: the cardinality of the finite field L may be taken a large as one likes, and
a primitive element exists because the extension is separable. Recall that the issue is to
give one-forms of B = K ⊗R grI(R) that are a homogeneous system of parameters. After
making the type of extension in the Proposition, one has, because mS is the maximal ideal
of S, that

L⊗S grIS(S) ∼= L⊗S
(
S ⊗R grI(R)

) ∼= L⊗R grI(R) ∼= L⊗K
(
K ⊗R grI(R)

)
.

If one makes a base change to K ⊗K B, where K is the algebraic closure of K, one
certainly has a linear homogeneous system of parameters. The coefficients will lie in L for
any sufficiently large choice of finite field L.

Proposition. Let (R, m, K) be any complete local ring. Then R has a faithfully flat
extension (S, n, L) such that n = mS and L is the algebraic closure of K. If R is regular,
then S is regular.

Proof. We may take R to be a homomorphic image of T = K[[x1, . . . , xd]], where K is a
field, or of T = V [[x1, . . . , xd]], where (V, πV,K) is a complete DVR such that the induced
map of residue class fields is an isomorphism. In the first case, let L be the algebraic
closure of K. Then T1 = L[[x1, . . . , xn]] is faithfully flat over T , and the expansion of
(x1, . . . , xd)T to T1 is the maximal ideal of T1. Here , faithful flatness follows using the
Lemma on p. 2 of the Lecture Notes of February 20, becasuse every system of parameters
for T is a system of parameters for T1, and so a regular sequence on T1, since T1 is Cohen-
Macaulay. Then S = T1 ⊗T R is faithfully flat over R, has residue class field L, and m
expands to the maximal ideal.

We can solve the problem in the same way in mixed characteristic provided that we
can solve the problem for V : if (W,πW,L) is a complete DVR that is a local extension of
V with residue class field L, then T1 = W [[x1, . . . , xd]] will solve the problem for T , and
T1 ⊗T R will solve the problem for R, just as above.

We have therefore reduced to studying the case where the ring is a complete DVR V .
Furthermore, if (W, πW, L) solves the problem but is not necessarily complete, we may

use Ŵ to give a solution that is a complete DVR.

Next note that if (Vλ, πVλ, Kλ) is a direct limit system of DVRs, all with the same
generator π for their maximal ideals, such that the maps are local and injective, then
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lim
−→ λ Vλ is DVR with maximal ideal generated by π. It is then clear that the residue class

field is lim
−→ λKλ. The reason is that every nonzero element of the direct limit may be

viewed as arising from some Vλ, and in that ring it may be written as a unit times a power
of π. Thus, every nonzero element of the direct limit is a unit times a power of π.

We now construct the required DVR as a direct limit of DVRs, where the index set is
given by a well-ordering of the field L, the algebraic closure of K, in which 0 is the least
element. We shall construct the family {(Vλ, π, ,Kλ)}λ∈L in such a way that for every
λ ∈ L,

{µ ∈ L : µ ≤ λ} ⊆ Kλ ⊆ L.

This will complete the proof, since the direct limit of the family will be the required DVR
with residue class field L.

Take V0 = V . If λ ∈ L and Vµ has been constructed for µ < λ such that for all µ < λ,

{ν ∈ L : ν ≤ µ} ⊆ Kµ ⊆ L,

then we proceed as follows to construct Vλ. There are two cases.

(1) If λ has an immediate predecessor µ and λ ∈ Kµ we simply let Vλ = Vµ, while if
λ /∈ Kµ, we take θ = λ in the first Proposition to construct Vλ.

(2) If λ is a limit ordinal, we first let (V ′, πV ′, K ′) = lim
−→ µ<λ Vµ. If λ is in the residue

class field of V ′, we let Vλ = V ′. If not, we use the first Proposition to extend V ′ so that
its residue class field is K ′[λ]. �

To prove the theorem on comparison of symbolic powers in regular rings, we shall also
need some results on valuation domains that are not necessarily Noetherian. In particular,
we need the following method of constructing such valuation domains.

Proposition. Let (V, n, L) be a valuation domain with fraction field K and let (W,m, K)
be a valuation domain with fraction field L. Let g : V � L be the quotient map. Then
T = {v ∈ V : g(v) ∈ W} ⊆ V is a valuation domain with fraction field K. Its maximal
ideal is {v ∈ V : g(v) ∈ m}. Its residue class field is K, and it contains a prime ideal q
which may be described as n ∩ T . Moreover T/q = W , while Tq = V .

Proof. Let f ∈ K be nonzero. If f /∈ V then 1/f is not only in V : it must be in n, and
so has image 0 in L. Thus, 1/f ∈ T . If f ∈ V − n then 1/f ∈ V − n as well. The images
of these two elements are reciprocals in W/n = K, and so at least one of the two is in W .
Thus, either f or 1/f is in V . Finally, if f ∈ n then g(f) = 0 ∈ W , and so f ∈ T . This
shows that V is a valuation domain with fraction field K.

The restriction of g to T clearly maps T onto K. This means that the kernel of this
map must be the unique maximal ideal of T , and that the residue class field is K. The
prime q is clearly the kernel of the surjection T � W obtained by restricting g to T ,
whence T/q = W . Since n lies over q, we have an induced local map Tq → V of valuation
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domains of K. This map must be the identity by the third Remark on p. 1 of the Lecture
Notes of Ferbruary 5. �

The valuation domain T is called the composite of V and W .

Corollary. Let R be a domain with fraction field K, and

P0 ⊆ P1 ⊆ · · · ⊆ Pk

a chain of prime ideals of R. Then there exists a valuation domain V with R ⊆ V ⊆ K
and a chain of prime ideals

q0 ⊆ q1 ⊆ · · · ⊆ qk

of V such that qi ∩R = Pi, 1 ≤ i ≤ k. Morevover, we may assume that qk is the maximal
ideal of V .

Proof. If n = 0, we simply want to find V a valuation domain with maximal ideal q lying
over P = P0. We may replace R by RP and apply the Corollary on p. 2 of the Lecture
Notes of January 14 with I = PRP and L = K.

Now suppose that Vk−1 together with

q0 ⊆ · · · ⊆ qk−1

solve the problem for
P0 ⊆ · · · ⊆ Pk−1.

If Pk = Pk−1 take V = Vk−1 and qk = qk−1. If Pk−1 ⊂ Pk is strict, we can choose a
valuation domain W of the fraction field of R/Pk−1 containing R/Pk−1 and whose maximal
ideal lies over Pk/Pk−1. Take V to be the composite of Vk−1 and W . �

Lecture of March 15, 2019

To finish our comparison of symbolic powers in a regular ring, we shall make use of
quadratic transforms (also called quadratic transformations or quadratic dilatations) in a
more general context than in the proof of the Lipman-Sathaye Jacobian Theorem.

Let (R, m, K) be a local domain with R ⊆ (V, n) a local map, where V is a not
necessarily Noetherian valuation domain. The first quadratic transform of R along V is
the localization (R1, m1) of R[m/x] at the contraction of n, where x is any element of m
such that xV = mV . This ring is again a local ring with a local map R1 → V .

The quadratic transform is independent of the choice of the element x. To see this,
suppose that xV = yV , where y, x ∈ m. Then y/x ∈ R[m/x] is a unit in V , so its inverse
x/y ∈ R1. Since m/y = (m/x)(x/y), it follows that R[m, y] ⊆ R1. Moreover, each element
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of R[m/y] that is invertible in V has an inverse in R1, so that if Q is the contraction of
n to R[m/y] we have an induced inclusion map R[m/y]Q → R1. An exactly symmetric
argument gives the opposite inclusion.

As in our earlier situation, we may take iterated quadratic transforms

R ⊆ R1 ⊆ · · · ⊆ Rk ⊆ · · · ⊆ V.

Note that if m = x1, . . . , xh, then mV = (x1, . . . , xh)V , so that x may be chosen
from among the xi. Putting this together with the Lemma on p. 2 of the Lecture Notes of
February 4, we have:

Proposition. Let (R, m, K) be regular local with x1, . . . , xd a regular system of param-
eters and suppose that R ⊆ (V, n) is local where V is a valuation domain. If the xi are
numbered so that xjV ⊆ x1V for all j > 1, then the quadratic transform R1 is a localiza-
tion of the ring S = R[x2/x1, . . . , xd/x1], which is regular of dimension d. In particular,
R1 has dimension at most d. Moreover, S/x1S ∼= K[X2, . . . , Xd], where Xi is the image
of xi/x1, 2 ≤ i ≤ d. �

Here is another important example:

Theorem. Let R be a one dimensional local domain whose integral closure (V,n) is local
and module-finite over R. (This is always the case if R is a complete one-dimensional local
domain.) Let

R ⊆ R1 ⊆ · · · ⊆ Rk ⊆ · · · ⊆ V

be the sequence of iterated quadratic transforms. Then for all sufficiently large k, Rk = V .

Proof. Since V is module-finite over R, it cannot have an infinite ascending chain of R-
submodules. It follows that the chain Ri is eventually stable. But if the maximal ideal of
Ri is not principal and has minimal generators y1, . . . , yh with y1 of least order in V , then
for some j > 1, yj/y1 ∈ V − Ri, and yj/y1 ∈ Ri+1. Therefore, for sufficiently large i, the
maximal ideal of Ri is prinicpal. But then Ri is a DVR, and is a normal ring inside the
fraction field of R and containing R. It follows that Ri = V . �

We also note:

Theorem. Let (R, m, K) be a local domain with R ⊆ (V,n) a local inclusion, where V
is a valuation domain of the fraction field of R. Let q be a prime ideal of V lying over
P 6= m in R. Let

R ⊆ R1 ⊆ R2 ⊆ · · · ⊆ Rk ⊆ · · · ⊆ V

be the sequence of quadratic trransforms of R along V . Let Pi be the contraction of P to
Ri. Then

R/P ⊆ R1/P1 ⊆ R2/P2 ⊆ · · · ⊆ Rk/Pk ⊆ · · · ⊆ V/q

is the sequence of quadratic transforms of R/P ⊆ V/q along V/q.
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Proof. By induction on k, it suffices to see this when k = 1. Let x1, . . . , xh generate
the maximal ideal m of R with x1V = mV . Some x ∈ m is not in n, and since xV ⊆
mV = x1V , x1 /∈ q and so x1 /∈ P . Moreover, x1(V/q) = (m/P )(V/q). It follows that
the quadratic transform of R/P along V/q is the localization at the contraction of n of
(R/P )[m̃/x1], where m̃ is m/P and x1 is the image of x1 in R/P . The stated result follows
at once. Note that we again have P1 6= m1, the maximal ideal of R1, since x1 ∈ m1−P1. �

We next observe:

Lemma. Let (R, m, K) be a regular local ring with algebraically closed residue class field,
and suppose R ⊆ (V,n) is local, where V is a valuation domain and R/m → V n is an
isomorphism. Then there is a regular system of parameters x1, . . . , xd for R such that
the first quadratic transform is the localization of R[x2/x1, . . . , xd/x1] at the height d
maximal ideal generated by x1, x2/x1, . . . , xd/x1, so that these elements are a regular
system of parameters in the first quadratic transform.

Proof. Let x1, y2, . . . , yd be one regular system of parameters for R such that x1V = mV .
n contains x1, and so n lies over a prime ideal of R containing x1. Hence, the quotient of
R[m/x1] by the contraction of n is also a quotient of K[Y2, . . . , Yd], where Yi is the image
of yi/x1, 2 ≤ i ≤ d. The resulting quotient domain imbeds embeds K-isomorphically
in K = V/n, and so is equal to K. It follows that the contraction of n corresponds to
a maximal ideal of K[Y2, . . . , Yd], which must have the form (Y2 − c2, . . . , Yd − cd) for
elements c2, . . . , cd ∈ K. Therefore we may let xi = yi − cix1 for each i, 2 ≤ i ≤ d. �

Proof of the theorem on comparison of symbolic powers. We want to show that if R is
regular and P ⊆ Q are prime, then P (n) ⊆ Q(n) for all n. By considering a saturated chain
of primes joining P to Q we immediately reduce to the case where the height if Q/P in
R/P is one. We may replace R by RQ, and so we may assume that Q is m in the regular
local ring (R,m) and that dim (R/P ) = 1.

Suppose that (R, m, K) → S is a flat local map, where S is regular with maximal
ideal mS. Then it suffices to prove the theorem for S, for if P1 in S lies over P and we
know the theorem for S, we have

P (n) ⊆ P (n)
1 ⊆ (mS)n = mnS,

and then
P (n) ⊆ mnS ∩R = mn,

because S is faithfully flat over R. We may therefore replace R first by its completion, and
then by a complete regular local ring with an algebraically closed residue field. Hence, from
now on, we shall assume that R is complete with residue class field K that is algebraically
closed, as well as that dim (R/P ) = 1.

We now introduce valuations. Let V1 be a valuation domain of the fraction field of
R whose maximal ideal contracts to P : we may use, for example, order with respect to
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powers of PRP to construct V1. Let W be the integral closure of R/P , which will be a
discrete valuation ring because R/P is a complete local domain of dimension one. Since
K is algebraically closed, the residue class field of W is K. Let (V,n) be the composite
valuation. Then n lies over m, and V/n = K. Moreover, V has a prime [q] lying over P .
Now consider the sequence of quadratic transforms

(R, m, K) ⊆ (R, m1, K) ⊆ (R, m2, K) ⊆ · · · ⊆ (Rk, mk, K) ⊆ · · · ⊆ (V, n, K).

Each Ri has a prime Pi that is the contraction of q. Now R/Pk is the k th quadratic
transform of R/P , by the Theorem above, and so for large k is the DVR W , by the earlier
Theorem. Then Rk/Pk is regular, and so Pk is generated by part of a regular system of

parameters. We shall see in the sequel that P
(n
k = Pnk ⊆ mn in this case. Assuming this, to

complete the proof it suffices to show that if a given Ri provides a counterexample (where
R0 = R), then so does its quadratic transform.

We might as well work with R and

R1 = R[x2/x1, . . . , xd]M,

where M is the maximal ideal (x1, x2/x1, . . . , xd/x1)R[m/x1]. Suppose f ∈ R has m-
adic order n, but order at least n + 1 in RP . Since mn/xn1 ⊆ R[m/x1], we have that
f/xn1 ∈ R[m/x1]. Since x1 /∈ P1, fn/x

n
1 has the same order as f in (R1)P1

, and since
P1 lies over P this will be at least n + 1. It therefore will suffice to show that f/xn1 has
m1-adic order at most n in R1. Since R1/Mn+1 already local, it suffices to show that
f/xn1 /∈ Mn+1. Suppose otherwise. The ideal Mn+1 is generated by elements µ/xn+1

1

where µ is a monomial of degree n+ 1 in x2
1, x2, . . . , xn, and

R[m/x1] =
⋃
t

mt/xt1.

Therefore, for some t, we have

f/xn1 ∈ (1/xn+1
1 )(x2

1, x2, . . . , xd)
n+1mt/xt1

and so
xt+1

1 f ∈ (x2
1, x2, . . . , xd)

n+1mt.

Each of the obvious generators obtained by expanding the product on the right that in-
volves x2

1 has degree at least n + t + 2. Hence, in the degree n + t + 1 part of grm(R) =
K[X1, . . . , Xd], we have that

Xt+1
1 F ∈ (X2, . . . , Xd)

n+1(X1, . . . , Xd)
t,

where F is the image of f in mn/mn+1, and is supposedly not 0. By taking homogeneous
components in degree n+ t+ 1 we see that xt+1

1 F must be in the K-vector space span of
the obvious monomial generators of

(X2, . . . , Xd)
n+1(X1, . . . , Xd)

t.
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But this is clearly impossible with F 6= 0, since none of these monomials is divisible by
Xt+1

1 .

This completes the proof, once we have shown that for primes generated by a regular
sequence, symbolic powers are the same as ordinary powers.

Lecture of March 18, 2019

We have completed the proof of the theorem on comparison of symbolic powers of
prime ideals in regular rings as soon as we have established:

Lemma. Let P be a prime ideal of the ring R that is generated by a regular sequence,
x1, . . . , xk. Then P (n) = Pn for every integer n.

Proof. Let u ∈ R − P . We need only show that u is not a zerodivsor on Pn. Suppose
ur ∈ Pn with r /∈ Pn. Choose h, which may be 0, such that r ∈ Ph − Ph+1: evidently,
h < n. Then ur ∈ Pn ⊆ Ph+1. This implies that the image of u in R/P is a zerodivisor
on Ph/Ph+1. But by part (d) of the Proposition on p. 2 of the Lecture Notes of February
25, Ph/Ph+1 is a free R/P -module with a free basis in bijective correspondence with
monomials of degree h in variables X1, . . . , Xk. �

Before proceeding further, we want to record an import result on flatness. We first
note:

Lemma. Let M be an R-module with a finite filtration such that x ∈ R is not a zerodivisor
on any factor. Then x is not a zerodivisor on M .

Proof. By induction on the number of factors, it suffices to consider that case of two
factors, i.e., where one has a short exact sequence 0 → N1 → M → N2 → 0. If u ∈ M is
such that xu = 0, then the image of u in N2 must be 0, or else x will be a zerodivisor on
N2. But then u ∈ N1, and so xu = 0 implies that u = 0. �

Next note that when (R, m, K)→ (S, n, L) is local and M is an S-module, M/mM
is called the closed fiber of M (because it is the fiber over the unique closed point m of
Spec (R)). In this case, if we make a base change to R/I, where I ⊆ m is an ideal of R,
R, S, and M become R/I, S/IS, and M/IM , respectively, but the closed fiber does not
change: (M/IM)/m(M/IM) ∼= M/mM .

In the result that follows, the most important case is when M = S.

Theorem. Let (R, m, K)→ (S, n, L) be a local homomorphism of local rings and let M
be an S-module that is R-flat. Then:

(a) dim (M) = dim (R) + dim (M/mM).
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(b) If y ∈ n is a nonzerodivisor on M/mM , then it is a nonzerodivisor on M and on
M/IM for every ideal I ⊆ m of R. Moreover, if y ∈ n is a nonzerodivisor on
M/mM , then M/yM is again flat over R.

If depthmR = 0, then y ∈ n is a nonzerodivisor on M if and only if it is a nonzero-
divisor on M/mM .

(c) depthnM = depthmnR+ depthnM/mM .

Proof. For part (a), we proceed by induction on dim (R). If dim (R) = 0 then m is
nilpotent, and (a) holds even without the assumption that M is R-flat. If dim (R) ≥ 1,
let A be the ideal of nilpotent elements in R, and make a base change to R/A. The
dimensions of R and M do not change, and the closed fiber does not change. Thus,
we may assume that R is reduced. But then m contains a nonzerodivisor x, which is
consequently also a nonzerodivisor on M because M is R-flat. Make a base change to
R/xR. By the induction hypothesis, dim (M/xM) = dim (R/xR) + dim (M/mM). Since
dim (M/xM) = dim (M)− 1 and dim (R/xR) = dim (R)− 1, the result follows.

For part (b), suppose that y is not a zerodivisor on M/mM . We want to show that
y is not a zerodivisor on M/IM . Suppose y kills a nonzero element u of M/IM . We can
choose N � 0 so large that u /∈ mN (M/IM). It follows that y kills the nonzero image
of u in (M/IM)/mN (M/IM) ∼= M/(I + mN )M , and so there is no loss of generality in
assuming that I is m-primary. In this case, R/I has a finite filtration in which every factor
is copy of K = R/m. When we apply M ⊗R , the fact that M is R-flat implies that
M/IM has a finite filtration in which every factor is a copy of M ⊗ R/m ∼= M/mM . By
the Lemma above, since y is not a zerodivisor on any of these factors, it is not a zerodivisor
on M/IM , as required.

To prove that M ′ is R-flat, it suffices to show that TorR1 (N, M ′) = 0 for every finitely
generated R-module N , since every R-module is a direct limit of finitely generated R-
modules. Since a finitely generated R-module N has a finite filtration with cyclic factors,
it follows that it suffices to prove that TorR(R/I, M ′) = 0 for every ideal I of R. Let
M ′ = M/yM . Starting with the short exact sequence

0 −→M
y−→M −→M/yM −→ 0

we may apply R/I ⊗R to get a long exact sequence part of which is

−→ TorR1 (R/I, M) −→ TorR1 (R/I, M/yM) −→M/IM
y·−→M/IM −→ · · · .

Since M is R-flat, the leftmost term is 0, and since we have already shown that y is not a
zerodivisor on M/IM , it follows that TorR1 (R/I, M/yM) = 0 for all I, as required.

We next consider the case where depthm(R) = 0. Then we can choose a nonzero
element z ∈ R such that zm = 0, i.e.,

0 −→ m −→ R
z·−→ R
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is exact. Applying ⊗RM , we have that

0 −→ m⊗RM −→M
z·−→M

is exact. This shows both that m ⊗R M may be identified with its image, which is mM ,
and that AnnMz = mM . We have already shown that if y is a nonzerodivisor on M/mM
then it is a nonzerodivisor on M . For the converse, suppose u ∈M is such that yu ∈ mM .
We must show that u ∈ mM . But zyu ∈ zmM = 0, and so zu = 0, i.e., u ∈ AnnMz,
which we have already shown is mM , as required.

To prove part (c), let x1, . . . , xh ∈ m be a maximal regular sequence in R. Since M
is flat, we may make a base change to R/(x1, . . . , xh)R, M/(x1, . . . , xh)M . Both sides
of the equality we are trying to prove decrease by h, since the closed fiber is unchanged.
Thus, we may assume without loss of generality that depthm(R) = 0. We complete the
argument by induction on dim (M/mM). Since y ∈ n is a nonzerodivisor on M/mM if
and only if it is a nonzerodivisor on M , if one of these two modules has depth 0 on n then
so does the other. Therefore, we may assume that depthnM/mM > 0. Choose y ∈ n that
is a nonzerodivisor on M/mM . Then y is also a nonzerodivisor on M , and M/yM is again
R-flat. Let M/mM = M . We may apply the induction hypothesis to M/yM to conclude
that

depthn(M/yM) = depthn(M/yM) + depthm(R),

since M/yM may be identified with the closed fiber of M/yM . Since

depthn(M/yM) = depthn(M)− 1

and
depthn(M/yM) = depthn(M/mM)− 1,

the result follows. �

Lemma. Let (R, m, K) to (S,n, L) be a flat local map of local rings.

(a) R(t)→ S(t) is flat, where t is an indeterminate.

(b) R̂→ Ŝ is flat.

Proof. For (a), R⊗ZZ[t]→ S⊗ZZ[t] is flat by base change, so that R[t]→ S[t] is flat, and
S[t]→ S(t) is a localization, and so flat. Hence, S(t) is flat over R[t], and the map factors
R[t]→ R(t)→ S(t). Whenver B is flat over A and the map factors A→W−1A→ T , T is
also flat over W−1A. This follows form the fact that for (W−1A)-modules 0 → N ↪→ M ,
the map T ⊗W−1A N → T ⊗W−1A N may be identified with T ⊗A N → T ⊗A M . To
see this, note that we have a map T ⊗AM → T ⊗W−1AM , and the kernel is spanned by
elements of the form w−1u ⊗ v − u ⊗ w−1v. But since w in invertible in T , we can prove
that this is 0 by multiplying by w2, which yields wu⊗ v − u⊗ wv = 0. This proves (a).

To prove (b), note that it suffices to prove that 0 → N ↪→ M , a map of R̂-modules,

remains injective after applying Ŝ⊗
R̂

in the case where N and M are finitely generated.
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Given a counterexample, we can choose u ∈ Ŝ⊗
R̂
N that is not 0 and is killed when mapped

into Ŝ ⊗
R̂
M . We can choose k so large that u /∈ mk(Ŝ ⊗

R̂
N), and, by the Artin-Rees

lemma, we can choose n so large that mnM ∩ N ⊆ mkN . Then there is a commutative
diagram

N ↪→ M
↓↓ ↓↓

N/(mnM ∩N) ↪→ M/mnM

and we may apply Ŝ⊗
R̂

to see that the image of u in Ŝ⊗
R̂

(
N/(mnM ∩N)

)
is nonzero

(even if we map further to Ŝ ⊗
R̂

(N/mkM)), but maps to 0 in Ŝ ⊗
R̂

(M/mnM). When

applied to maps of finite length R̂-modules, the functor Ŝ ⊗
R̂

preserves injectivity

because R → S → Ŝ is flat, and Ŝ ⊗
R̂

and Ŝ ⊗R are the same functor on finite

length R̂-modules V : we have that R̂ ⊗R V ∼= V since V is killed by ms for some s and

R̂/msR̂ ∼= R/ms, and so, by the associativity of tensor,

Ŝ ⊗
R̂
V ∼= Ŝ ⊗

R̂
(R̂⊗R V ) ∼= Ŝ ⊗R V. �

We can now make several reductions in studying Lech’s conjecture.

Theorem. In order to prove Lech’s conjecture that e(R) ≤ e(S) when (R, m, K) →
(S,n, L) is flat local and R has dimension d, it suffices to prove the case where dim (S) =
dim (R) = d, R and S are both complete with infinite residue class field, S has algebraically
closed residue class field, R is a domain, and S has pure dimension.

Proof. By the Lemma above and the final Proposition in the Lecture Notes of February
22, we can replace R and S by R(t) and S(t) and so assume that the residue class fields
are infinite. Likewise, we can replace R and S by their completions. We can choose a
minimal prime Q of mS such that dim (S/Q) = dim (S/mS). By the Lemma on p. 1 of
the Lecture Notes of March 11, we have that height (Q) = height (m) = dim (R). Since
dim (S) = dim (S/mS) + dim (R), we have that dim (S) = dim (S/Q) + height (Q). By the
Theorem on behavior of multiplicities under localization in complete local rings, we then
have e(SQ) ≤ e(S). Thus, if e(R) ≤ e(SQ) we have e(R) ≤ e(S) as well. It follows that we
may replace S by SQ and so we may assume that dim (S) = dim (R) = d. We may have
lost completeness, but we may complete again. By the second Proposition on p. 1 of the
Lecture Notes of March 13, we can give a local flat map (S,n, L)→ (S′, n′, L′) such that
S′ is complete, n′ = nS′ and L′ is algebraically closed. Thus, we may assume that S has
an algebraically closed residue class field.

We can give a filtration ofR by prime cyclic modulesR/Pi, 1 ≤ i ≤ h. Then e(R) is the
sum of the e(R/Pi) for those i such that dim (R/Pi) = dim (R). Tensoring with S over R
gives a corresponding filtration of S by modules S/PiS, and e(S) is the sum of the e(S/PiS)
for those i such that dim (S/PiS) = dim (S). Since dim (S) = dim (R) + dim (S/mS) and,
for each i, dim (S/PiS) = dim (R/Pi)+dim (S/mS), the values of i such that dim (R/Pi) =
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dim (R) are precisely those such that dim (S/PiS) = dim (S). Thus, it suffices to consider
the case where R is a complete local domain.

If dim (R) = dim (S) and R is a complete local domain, then it follows that S has
pure dimension. We use induction on the dimension. If dim (R) = 0 then dim (S) = 0 and
the result is clear. Let R′ be the normalization of R. R′⊗R S is faithfully flat over R′ and
still local (the maximal ideal of R′ is nilpotent modulo the maximal ideal of R). Moreover,
S ⊆ R′ ⊗R S, so that we may assume that R is normal. Suppose that S contains an S-
submodule of dimension smaller than S, say J , and choose J maximum, so that S/J has
pure dimension d. Then R does not meet J , and so injects into S/J . Choose x ∈ m−{0}.
Then x is a nonzerodivisor in R, and, hence a nonzerodivisor on S and on J . It is also a
nonzerodivisor on S/J , for any submodule killed by x would be a module over S/xS, and
hence of smaller dimension. It follows that

0→ xJ → xS → x(S/J)→ 0

is exact, and we get that

0→ J/xJ → S/xS → (S/J)/x(S/J)→ 0

is exact. Then

dim (J/xJ) ≤ dim (J)− 1 < dim (S)− 1 = dim (S/xS).

Therefore, S/xS does not have pure dimension. Because all associated primes of xR have
height one, R/xR has a filtration whose factors are torsion-free modules over rings R/Pi of
dimension dim (R)−1, where the Pi are the minimal primes of x. By the induction hypoth-
esis, every S/PiS has pure dimension. Since a finitely generated torsion-free module over
R/Pi embeds in a finitely generated free module over R/Pi, the tensor product of a finitely
generated torsion-free module over R/Pi with S also has pure dimension. Thus, S/xS has
a filtration whose factors are modules of pure dimension, and so has pure dimension itself.
This contradiction establishes the result. �

One approach to obtaining a class of local rings R for which Lech’s conjecture holds for
every flat local map R→ S is via the notion of a linear maximal Cohen-Macaulay module.
Recall that over a local ring (R, m, K), a module M is a Cohen-Macaulay module if it
is finitely generated, nonzero, and depthmM = dim (M). In particular, M is Cohen-
Macaulay module over R if and only if it is Cohen-Macaulay module over R/I, where
I = AnnRM . E.g., the residue class field K = R/m is always Cohen-Macaulay module
over R. By a maximal Cohen-Macaulay module we mean a Cohen-Macaulay module
module whose dimension is equal to dim (R). It is not known whether every excellent local
ring has a maximal Cohen-Macaulay module: this is an open question in dimension 3 in
all characteristics.

We write ν(M) for the least number of generators of the R-module M . If M is finitely
generated over a local (or quasi-local) ring (R, m, K), Nakayama’s lemma implies that
ν(M) = dimK(M/mM).

Note the following fact, which has proved useful in studying Lech’s conjecture:
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Proposition. Let (R, m, K) be local and let M be a maximal Cohen-Macaulay module.
Then e(M) ≥ ν(M).

Proof. We may replace R by R(t) and M by R(t)⊗RM if necessary and so assume that
the residue class field of R is infinite. Let I = (x1, . . . , xd) be a minimal reduction of m,
where d = dim (R). Then e(M) = `(M/IM) ≥ `(M/mM) = ν(M). �

We shall callM a linear maximal Cohen-Macaulay module over the local ring (R, m, K)
if it is a maximal Cohen-Macaulay module and e(M) = ν(M). Because of the inequality in
the Proposition just above, the term maximally generated maximal Cohen-Macaulay mod-
ule is also used in the literature, as well as top-heavy maximal Cohen-Macaulay module
and Ulrich maximal Cohen-Macaulay module. The idea of the proof of the Proposition
above also yields:

Proposition. Suppose that M is a maximal Cohen-Macaulay module over a local ring
(R, m, K) and that K is infinite or, at least, the m has a minimal reduction I generated
by a system of parameters x1, . . . , xd. Then:

(a) M is a linear maximal Cohen-Macaulay module if and only if mM = IM .

(b) If M is a linear maximal Cohen-Macaulay module then mnM = InM for all n ∈ N.

(c) If M is a linear maximal Cohen-Macaulay module then grm(M) is a Cohen-Macaulay
module over grm(R).

Proof. (a) Since IM ⊆ mM ⊆M we have that

e(M) = `(M/IM) = `(M/mM) + `(mM/IM) = ν(M) + `(mM/IM).

Hence, e(M) = ν(M) if and only if `(mM/IM) = 0, i.e., if and only if mM = IM .

Part (b) follows by induction on n: if mnM = InM then

mn+1M = mnmM = mn(IM) = I(mnM) = I(InM) = In+1M.

For part (c), observe that grmM = grIM , by part (b), and the result is then immediate
from part (d) of the Proposition on p. 2 of the Lecture Notes of February 25, which identifies
grI(M) with

(M/IM)⊗R/I (R/I)[X1, . . . , Xd],

where Xi is the image of xi in I/I2, 1 ≤ i ≤ d, and X1, . . . , Xd are algebraically indepen-
dent over R/I. �

�
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Lecture of March 20, 2019

Before proceeding further with our study of Lech’s conjecture, we want to discuss
a result known as the associativity of multiplicities whose proof uses Lech’s theorem on
computing multiplicities using ideals generated by powers of parameters.

Before we prove this result, we want to make some remarks on the behavior of limits
of real-valued functions of two integer variables: these might as well be positive, since we
will be taking limits as the variables approach +∞ either jointly or independently. Let
G(m, n) be such a function, and suppose that

lim
(m,n)→∞

G(m, n)

exists, and also that the iterated limit

lim
m→∞

(
lim
n→∞

G(m, n)
)

exists as well. Then they are equal. If the joint limit is L, then, given ε > 0 there exists
N such that for all m, n ≥ N , |L − G(m, n)| < ε. It follows that each for m ≥ n,
Lm = lim

n→∞
G(m, n), which we are assuming exists, is such that |L− Lm| ≤ ε, since all of

the values of G(m, n) are at distance at most ε from L for all m ≥ N . It also follows that
the iterated limit must have a value that is at distance at most ε from L. Since this is true
for all ε > 0, the iterated limit must be L.

Note however, that when the joint limit exists, it is possible that neither iterated limit
exists. E.g., for m, n ≥ 1 we can let

G(m,n) = 1/min{m, n}

if m+ n is even and 0 if m+ n is odd. For any fixed m, the function takes on the values
1/m and 0 alternately for large n, and the iterated limit does not exist.

On the other hand, observe that we can define G(m,n) = 1 if m ≥ n and G(m,n) = 0
if m < n. The iterated limits both exist, but are different, and the joint limit does not
exist. If, alternatively, we define G(m, n) = 0 when m = n and G(m, n) = 1 when m 6= n,
both iterated limits exist and are equal, but the joint limit does not.

Note that the Corollary on p. 5 of the Lecture Notes of February 22 is a special case
of the following Theorem, namely the case where r = 0. It is also used in the proof.

Theorem (associativity of multiplicities). Let M be a module of dimenson d over a
local ring R of dimension d. Let x1, . . . , xd be a system of parameters for R, and let I =
(x1, . . . , xd)R. Let r, s be nonnegative integers such that r+s = d. Let A = (x1, . . . , xr)R
and B = (xr+1, . . . , xd)R. Let P be the set of minimal primes of x1, . . . , xr such that
dimMP + dim (R/P ) = d. Then

eI(M) =
∑
P∈P

eB(R/P )eA(MP ).
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Proof. Let Am = (xm1 , . . . , x
m
r )R and Bn = (xnr+1, . . . , x

n
d )R. Consequently, by Lech’s

result on calculation of multiplicities, which is the Theorem on p. 3 of the Lecture Notes
of February 27,

eI(M) = lim
m,n→∞

`
(
M/(Am + Bn)M

)
mrns

.

In this instance we know that the joint limit exists. The iterated limit exists as well, since
we have

lim
m→∞

( 1

mr
lim
n→∞

`
(
M/(Am + Bn)M

)
ns

)
= lim
m→∞

eB(M/AmM)

mr
.

Since M and R have dimension d and x1, . . . , xd is a system of parameters, so is
xm1 , . . . , x

m
r , x

n
r+1, . . . , x

n
d , and M/AmM will have dimension s. P will be a (necessarily

minimal) prime of the support of M/AmM such that dim (R/P ) = dim (M/AM) if and
only if P contains A, P contains Supp (M), and dim (R/P ) = s. Since dim (R/A) = s, P
must be a minimal prime of A. Let Q denote the set of minimal primes of A such that
dim (R/P ) = s. By the Corollary on p. 5 of the Lecture Notes of February 21,

eB(M/AmM) =
∑
P∈Q

eB(R/P )`RP (MP /AmMP ).

Note that since P is a minimal prime of A, A expands to an ideal primary to the maximal
ideal in RP . Consequently,

lim
m→∞

eB(M/AmM)

mr
=
∑
P∈Q

eB(R/P ) lim
m→∞

`RP (MP /AmMP )

mr
.

We now see that the iterated limit exists. Note that

lim
m→∞

`RP (MP /AmMP )

mr

is 0 if dim (MP ) < r, and eA(MP ) otherwise. Therefore we need only sum over those
minimal primes P of A in Supp (M) such that dim (MP ) = r and dim (R/P ) = s. The
latter two conditions are equivalent to the condition dim (MP ) + dim (R/P ) = d given
that P ∈ Supp (M) contains A, since dim (MP ) ≤ dim (RP ) ≤ r and dim (R/P ) ≤
dim (M/AM) = s.

However, if P is a minimal prime of A, we do not need to require that P ∈ Supp (M),
for if not MP = 0 and the term corresponding to P does not affect the sum. Therefore,
the value does not change if we sum over primes P ∈ P, and this yields

eI(M) =
∑
P∈P

eB(R/P )eA(MP ),

as required. �
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Our next objective is to obtain some classes of local rings R such that Lech’s conjecture
always holds for flat local maps R→ S. Lech proved the result for the case where dim (R) ≤
2. However, we shall first focus on cases that are given by the existence of linear maximal
Cohen-Macaulay modules and related ideas.

We shall say that an R-module M has rank ρ if there is a short exact sequence

0→ Rρ →M → C → 0

such that dim (C) < dim (R). If M has rank ρ for some ρ, we shall say that M is an
R-module with rank. When R is a domain, M always has rank equal to the maximum
number of elements of M linearly independent over R. When R has a module M of rank
ρ, e(M) = ρe(R), by the additivity of multiplicities.

The following result is very easy, but very important from our point of view.

Theorem. Let (R, m, K) be a local ring that has a linear maximal Cohen-Macaulay mod-
ule of rank ρ. Then for every flat local map (R, m, K)→ (S, n, L), e(R) ≤ e(S).

Proof. As observed earlier, we may assume that mR is n-primary. It follows that S ⊗M
is Cohen-Macaulay over S, and also has rank ρ. Then

e(R) = e(M) =
1

ρ
ν(M) =

1

ρ
ν(S ⊗RM) ≤ 1

ρ
e(S ⊗M) = e(S). �

Therefore, Lech’s conjecture holds for any ring R that admits a maximal Cohen-
Macaulay module M such that e(M) = ν(M). Consequently, we shall focus for a while on
the problem of constructing linear maximal Cohen-Macaulay modules.

However, we first want to point out the following idea, which has also been used to
settle Lech’s conjecture in important cases. Suppose that R and S are as in the statement
of the Theorem just above, and that M is any Cohen-Macaulay module with rank, say ρ.
Then

e(S) =
1

ρ
e(S ⊗RM) ≥ 1

ρ
ν(S ⊗RM) =

1

ρ
ν(M) =

1

ρ
e(M)

ν(M)

e(M)
=
ν(M)

e(M)
e(R).

Hence:

Theorem. Let (R, m, K) be a local ring that has a sequence of Cohen-Macaulay modules
{Mn} with rank such that

lim
n→∞

ν(M)

e(M)
= 1.

Then for every flat local map (R, m, K)→ (S, n, L), e(R) ≤ e(S). �

Remark. In fact, it suffices if there is any Cohen-Macaulay module M with rank such that
ν(M)

e(M)
>
e(R)− 1

e(R)
.
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Lech’s conjecture is easy in dimension 0: it reduces to the case where R is a local
domain, and therefore a field. Thus, e(R) = 1 ≤ e(S).

In dimension one, we need only consider the case of a local domain.

Theorem. Let (R, m, K) be a local domain with an infinite residue class field. Then mk

is a linear maximal Cohen-Macaulay module for all sufficiently large k � 0

Therefore Lech’s conjecture holds for all local rings R of dimension at most one.

Proof. Since the Hilbert polynomial `(R/mn+1 is e(R)n+ c for some constant c, it follows
that `(mk/mk+1) = e(R) for all k � 0. But this is also ν(mk). Since R is a one-dimensional
domain, any nonzero torsion-free module is Cohen-Macaulay. �

Remark. When the residue field is infinite, we can argue alternatively that m has a reduc-
tion xR, and then for sufficiently large k, mk+1 = xmk.

We shall eventually prove that if (R, m, K) is local such that R has a linear maximal
Cohen-Macaulay module, and f ∈ m is such that the leading form of f in grm(R) is a
nonzerodivisor, then R/fR has a linear maximal Cohen-Macaulay module. It will follow
that if R is a strict complete intersection, i.e., has the form T/(f1, . . . , fh) where (T,M)
is regular and the leading forms of the fj form a regular sequence in grMT , then R has a
linear maximal Cohen-Macaulay module. This will take a considerable effort.

Lecture of March 22, 2019

We are going to use certain matrix factorizations to construct linear maximal Cohen-
Macaulay modules over hypersurfaces.

Discussion: Cohen-Macaulay modules over hypersurfaces R/fR of finite projective dimen-
sion over R. In order to illustrate the connection, we first consider the following relatively
simple situation. Let (R, m, K) be a Cohen-Macaulay local ring of dimension n, let f ∈ m
be a nonzerodivisor, and suppose that we want to study maximal Cohen-Macaulay mod-
ules over R/fR that have finite projective dimension over R. Such a module M has depth
n− 1, and so pdRM = 1. Thus, there is a minimal free resolution

0→ Rh → Rs →M → 0

of M over R. If we localize at f , since Mf = 0, we see that h = s, and so M is given as the
cokernel of an s × s matrix α. Let ei be the i th standard basis vector for Rs, written as
a column. Then for every i, 1 ≤ i ≤ s, we have, since fM = 0, that fei is in the column
space of α, which means that there is a column vector Bi such that αBi = fei. If we form
the s × s matrix β whose columns are B1, . . . , Bn, we have that αβ = fIs, where Is is
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the s × s identity matrix. Over the ring Rf ⊇ R, β = fα−1, which implies that α and β
commute, i.e., αβ = βα = fIs.

Let indicate images in R/fR. We claim that the complex

· · · β−→ R
s α−→ R

s β−→ R
s α−→ R

s −→ 0,

whose augmentation is M , is acyclic. Suppose v ∈ Rs represents a vector in the kernel
of α (the argument for β is identical). Then α(v) vanishes mod fRs, and so α(v) = fu.
Then βα(v) = β(fu) = fβ(u), but βα = fIs, and so we have fv = fβ(u). Since f is not
a zerodivisor, v = β(u), and exactness follows.

Given M , we obtain a matrix factorization. Conversely, given a matrix factorization
of fIs, the argument we just gave shows that the complex

· · · β−→ R
s α−→ R

s β−→ R
s α−→ R

s −→ 0,

is exact over R = R/fR. Call the augmentation M . Then M = Coker (α) is its own
k th module of syzygies for arbitarily large k. This implies that depthm(M) = n − 1:
over a Cohen-Macaulay ring, if a module has depth b smaller than that of the ring, its
first module of syzygies has depth b + 1. Once the module has depth equal to that of
the ring, the modules of syzygies, if nonzero, continue to have depth equal to that of the
ring (in the case of R/fR, the eventual depth is n − 1). We have therefore established a
correspondence between matrix factorizations of f into two factors and Cohen-Macaulay
modules over R/fR that have finite projective dimension over R.

In our eventual construction of linear maximal Cohen-Macaulay modules over hyper-
surfaces, we shall make use of matrix factorizations with large numbers of factors.

By a matrix factorization of f ∈ R over R of size s with d factors we mean a d-tuple
of matrices α = (α1, . . . , αd) over R such that

fIs = α1 · · ·αd

and satisfying the additional condition that for all i,

fIs = αiαi+1 · · ·αdα1α2 · · ·αi−1

as well. Here, it will be convenient to interpret the subscripts mod d. Note that the weak
commutativity condition is automatic if f is a nonzerodivisor in R, for then

(α1 · · ·αi−1)−1 = fαiαi+1 · · ·αd

for all i, which implies that α1 · · ·αi−1 and αiαi+1 · · ·αd commute for all i. If α is either
a matrix or a d-tuple of matrices, I(α) = I1(α) denotes the ideal generated by the entries
of α or by the entries of all of the matrices occurring in α.
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We define two matrix factorizations of size s with d factors, say α = (α1, . . . , αd) and
β = (β1, . . . , βd), to be equivalent if there are invertible s× s matrices γ0, γ1, . . . , γd over
R such that γ0 = γd and for all i, 1 ≤ i ≤ d, we have βi = γi−1αiγ

−1
i .

Our goal is to prove that if I ⊆ R and f ∈ Id for d ≥ 2 then f has a matrix
factorization α = (α1, . . . , αd) of some size s with d factors such that I(α) = I. Moreover,
we shall see that by increasing s this can even be done in such a way that all of the matrices
αi are the same, and I(αi) = I for all i.

The argument will involve solving the problem for a “generic form” of degree s in
indeterminates over Z, and then specializing.

We shall use the theory of Clifford algebras and Clifford modules over a field K to
prove the existence of matrix factorizations.

Discussion: the definition of Clifford algebras. Let K be a field, let L be the vector space
spanned by n variables X1, . . . , Xn, and let V = L∗ = HomK(V, K) be the space of linear
functionals on L with dual basis e1, . . . , en. Let f be a form of degree d in X1, . . . , Xd

such that f does not vanish identically on Kd. This is automatic when K is infinite. Our
main interest is in the case where K = Q.

The Clifford algebra over K corresponding to f , which we denote C(f), is defined as
follows. Let T (V ) denote the tensor algebra of V over K, which is an N-graded associative
algebra over K such that [T (V )]h is the h-fold tensor product V ⊗K V ⊗K · · · ⊗K V ,
where there are h copies of V . We may alternatively write [T (V )]h = V ⊗h. Note that
T (V )]0 = K, and [T (V )]1 = V , which generates T (V ) over K. The multiplication is such
that

(v1 ⊗ · · · ⊗ va)(w1 ⊗ · · · ⊗ wb) = (v1 ⊗ · · · ⊗ va ⊗ w1 ⊗ · · · ⊗ wb).

C(f) is defined as the quotient of T (V ) by the two-sided ideal generated by all elements
of the form

(c1e1 + · · ·+ cnen)d − f(c1, . . . , cn)

for all (c1, . . . , cn) ∈ Kn. Thus, T (f) is universal with respect to the property the d th
power of every linear form is a scalar whose value is determined by applying f to the
coefficients of the form.

The most common use of these algebras is in the case where d = 2, but it will be very
important to consider larger values of d here.

We note that the the Clifford algebra C(f) is Zd-graded: this follows from the fact
that every homogeneous component of every generator has degree 0 or d. When C is a
Zd-graded algebra or module, and i is an integer, we may write either [C]i or [C][i] for the
component of C in degree [i], where [i] is the class of i modulo d.

By a Clifford module over a Clifford algebra C(f) we mean a Zd-graded C(f)-module
M such that M is a nonzero finite-dimensional K-vector space. It is not at all clear whether
a Clifford algebra has a Clifford module. The following result makes a strong connection
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with matrix factorization. We may write either [M ]i or Mi for the graded component in
degree i.

Proposition. Let K be an field, let L be the vector space spanned over K by n indetermi-
nates X1, . . . , Xn, let f be a form of degree d ≥ 2 that does not vanish identically on Kn,
which is always the case when f is nonzero and K is infinite, let V = L∗, and let C(f) be
the Clifford algebra of f over K.

(a) If M is a Clifford module, then all the Mi have the sameK-vector space dimension,
say s.

(b) If K is infinite, then there is a bijective correspondence between isomorphism classes
of Clifford modules M over C(f) such that every Mi has dimension s ≥ 1 over K and
equivalence classes of of matrix factorizations of f over K.

Proof. For part (a), suppose F (c1, . . . , cn) 6= 0 and let v = c1e1 + · · · + cnen ∈ V .
Multiplication by v gives a K-linear map Mi →Mi+1 for every i. The composition of all of
these maps is multiplication by vn, which is the same as multiplication by f(c1, . . . , cn) =
a ∈ K − {0}. Since vn is an automorphism of M , each map Mi → Mi+1 given by
multiplication by v is a K-linear bijection.

We now prove (b). Fix a K-basis for every Mi. Let ηij be the matrix of multiplication
by ej ∈ V as a map Mi → Mi+1 with respect to the fixed bases. Let c = c1, . . . , cn be
any elements of K. Then the matrix of multiplication by v = c1e1 + · · · cnen mapping
Mi →Mi+1 is θi(c) = c1ηi1 + · · ·+ cnηin. For all choices of c, the composition of maps(

Mi+d−1
θi+d−1(c)−−−−−−→Mi+d

)
◦ · · · ◦

(
Mi+1

θi+1(c)−−−−→Mi+2

)
◦
(
Mi

θi(c)−−−→Mi+1

)
is multiplication by f(c1, . . . , cn), i.e.,

(∗) f
(
(c)
)
Is = θi(c)θi+1(c) · · · θi+d−1(c).

Keep in mind here that Mi+d = Mi. Since K is infinite, it follows that (∗) holds when we
replace the elements ci by indeterminates. Thus, if for every i we let

α′i = X1ηi1 + · · ·+Xnηin,

which is a matrix of linear forms in the Xj over K, then we must have

(∗∗) f
(
X1, . . . , Xn

)
Is = α′i−1(X1, . . . , Xn)α′i−2(X1, . . . , Xn) · · ·α′i(X1, . . . , Xn)

for all i. Thus gives a matrx factorization except that the matrices are numbered in reverse.
If we let αi = α′d+1−i we have a matrix factorization

Conversely, given a matrix factorization of size s, we may construct a Clifford module
M with all components Mi isomorphic to Ks by letting the multiplication by the linear
form

v = c1e1 + · · ·+ cnen
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from the i th component to the i + 1 st component be the map whose matrix is obtained
by the substitution X1 = c1, . . . , Xn = cn in the matrix αd+1−i.

The statement about isomorphism now follows from the fact that if γ1, . . . , γd are
change of basis matrices for the variousMd+1−i = Ks, the matrices αi change to γi−1αiγ

−1
i . �

Let C and C ′ be two Zd-graded associative K-algebras (this statement includes the
hypothesis that K is in the center of each). Let Ψd(t) ∈ Z[t] denote the d th cyclotomic
polynomial (we discuss these further later) over Q, which is the minimal polynomial over
Q of a primitive d th root of unity in C. Assume that K contains a root ξ of Ψd(t), which
will, of course, be a d th root of unity, since Ψ(t) divides td − 1 even in Z[t]. K can
always be enlarged by a finite algebraic extension to contain such an element ξ. If K has
characteristic 0, ξ is simply a primitive d th root of unity.

We then define the twisted tensor product C ⊗K C ′ to be the Zd-graded K-algebra
which, as a K-vector space, is simply C ⊗K C ′, graded so that

[C ⊗K C ′]i =
⊕
j+k=i

[C]i ⊗K [C ′]j

where i, j, and k are in Zd, and with multiplication such that, if u, v ∈ C are forms and
u′, v′ ∈ C ′ are forms, then

(#) (u⊗ u′)(v ⊗ v′) = ξdeg(u′)deg(v)(uv)⊗ (u′v′).

It is easy to check that multiplication is associative for triples of elements each of which
is a tensor product of two forms, and the general case follows readily. Notice in particular
that if u and u′ are 1-forms, then

(1⊗ u′)(u⊗ 1) = ξ(u⊗ 1)(1⊗ u′).

Quite similarly, we can give essentially the same definition for the twisted tensor
product M ⊗KM ′ of a Zd-graded C-module M and a Zd-graded C ′-module M ′, which will
be a Zd-graded module over C⊗K C ′. One has to give the action of C⊗K C ′ on M⊗KM ′.
The formula is the same as given in (#), but now u ∈ C, u ∈ C ′, v ∈ M and v′ ∈ M ′ are
forms.

Lecture of March 25, 2019

We want to establish that in the twisted tensor product of two Zd-graded K-algebras,
C ⊗K C ′, one has that if u ∈ C and v ∈ C ′ are forms of degree 1, then

(u⊗ 1 + 1⊗ v)d = ud ⊗ 1 + 1⊗ vd,
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a property reminiscent of the behavior of the Frobenius endomorphism in the commuative
case. In order to prove this, we need to develop a “twisted” binomial theorem.

To this end, let q̃, Ũ , and Ṽ be non-commuting indeterminates over Z and form the
free algebra they generate modulo the relations

(1) q̃ Ũ = Ũ q̃

(2) q̃ Ṽ = Ṽ q̃

(3) Ṽ Ũ = q̃ Ũ Ṽ

We denote the images of q̃, Ũ , and Ṽ by q, U , and V , respectively. Thus, q is in the
center of quotient ring A. While U and V do not commute, it is clear that every monomial
in U and V may be rewritten in the form qiU jV k, with i, j, k ∈ N, in this ring. In fact,
A is the free Z-module spanned by these monomials, with the multiplication

(qiU jV k)(qi
′
U j
′
V k
′
) = qi+i

′+kj′U j+j
′
V k+k′ .

This is forced by iterated use of the relations (1), (2), and (3), and one can check easily that
this gives an associative multiplication on the free Z-module on the monomials qiU jV k.

In this algebra, one may calculate (U + V )d and write it as a linear combination of
monomials U iV j each of whose coefficients is a polynomial in Z[q]. When q is specialized
to 1, the coefficients simply become ordinary binomial coefficients. We want to investi-
gate these coefficients, which are called Gaussian polynomials, Gaussian coefficients, or

q-binomial coefficients. We shall denote the coefficient of UkV d−k, 0 ≤ i ≤ d, as

[
d
k

]
q

.

For example,

(U + V )2 = V 2 + UV + V U + U2 = V 2 + (q + 1)UV + V 2,

and so

[
2
0

]
q

=

[
2
2

]
q

= 1 while

[
2
1

]
q

= q + 1.

Theorem (twisted binomial theorem). Let notation be as above.

(a) The coefficient polynomials

[
d
k

]
q

are determined recursively by the rules

(1)

[
d
0

]
q

=

[
d
d

]
q

= 1 and

(2)

[
d+ 1
k + 1

]
q

=

[
d
k

]
q

+ qk+1

[
d

k + 1

]
q

.

(b) For all d and k,

[
d
k

]
q

=
k−1∏
i=0

1− qd−i

1− qi+1
.
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(c) Let λ, u, and v be elements of any associative ring R with identity such that λ com-

mutes with u and v and vu = λuv. Let

[
d
k

]
q

(λ) denote the element of R that is the

image of

[
k
d

]
q

under the map Z[q]→ R that sends q 7→ λ. Then

(u+ v)d =
d∑
k=0

[
d
k

]
q

(λ)ukvd−k.

Proof. For part (a), first note that is it is evident that the coefficients of V d and Ud in
the expansion of (U + V )d are both 1. Now (U + V )d+1 = (U + V )(U + V )d, and it
is clear that there are two terms in the expansion that contribute to the coefficient of
Uk+1V d−k: one is the product of U with the UkV d−k term in (U + V )d−k, which gives[
d
k

]
q

Uk+1V d−k, and the other is the product of V with the Uk+1V d−k−1 term, which

gives

[
d

k + 1

]
q

V Uk+1V d−k−1. Since V Uk+1 = qk+1Uk+1V , the result follows.

For part (b), it will suffice to show that the proposed expressions for the

[
d
k

]
q

satisfy

the recursion in part (a), that is:

k∏
i=0

1− qd+1−i

1− qi+1
=
k−1∏
i=0

1− qd−i

1− qi+1
+ qk+1

k∏
i=0

1− qd−i

1− qi+1
.

We can clear denominators by multiplying by the denominator of the left hand term to
get the equivalent statement:

(∗)
k∏
i=0

(1− qd+1−i) = (1− qk+1)
k−1∏
i=0

(1− qd−i) + qk+1
k∏
i=0

(1− qd−i).

The left hand term may be rewritten as

k−1∏
j=−1

(1− qd−j) = (1− qd+1)
k−1∏
i=0

(1− qd−i).

We may divide both sides of (∗) by

k−1∏
i=0

(1− qd−i)
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to see that (∗) is equivalent to

1− qd+1 = 1− qk+1 + qk+1(1− qd−k),

which is true.

Part (c) follows at once, for there is a homomorphism of A = Z[q, U, V ] → R such
that q 7→ λ, U 7→ u and V 7→ v. �

Recall that the d th cylcotomic polynomial Ψd(t), d ≥ 1, is the minimal polynomial of
a primitive d th root of unity over Q. It is a monic polynomial with coefficients in Z and
irreducible over Z and Q. The degree of Ψd(t) is the Euler function Φ(d), whose value is

the number of units in Zd. If d = pk11 · · · p
kh
h is the prime factorization of d, where the pi

are mutually distinct, then

Φ(d) =

h∏
j=1

(pkj − pkj−1).

The polynomials Ψd(t) may be found recursively, using the fact that

td − 1 =
∏
a|d

Ψa(t),

where a runs through the positive integer divisors of d. We next observe:

Corollary. For every d and 1 ≤ k ≤ d− 1, Ψd(q) divides

[
d
k

]
q

in Z[q].

Proof. Let ξ be a primitive d th root of unity in C. It suffices to show that

[
d
k

]
q

(ξ) = 0.

This is immediate from the formula in part (b) of the Theorem, since one of the factors
in the numerator, corresponding to i = 0, is qd − 1, which vanishes when q = ξ, while the
exponents on q in the factors in the denominator vary between 1 and k < d, and so the
denominator does not vanish when we substitute q = ξ. �

Corollary. In the twisted tensor product C ⊗ C ′ of two Zd-graded K-algebras, if u is
any form of degree 1 in C and v is any form of degree 1 in C ′, then (u ⊗ 1 + 1 ⊗ v)d =
ud ⊗ 1 + 1⊗d vd.

Proof. By the preceding Corollary, all the q-binomial coefficients of the terms involving
both u⊗ 1 and 1⊗ v vanish. �

Theorem. Let f and g be forms of degree d over a field K in disjoint sets of variables,
say X1, . . . , Xn and Y1, . . . , Ym. Then there is a surjective Zd-graded K-algebra homo-
morphism C(f + g) � C(f) ⊗K C(g). Hence, if M is a Clifford module over C(f) and



120

N is a Clifford module over C(g), then the twisted tensor product M ⊗K N is a Clifford
module over C(f + g).

Proof. Let V be the dual of the K-span of X1, . . . , Xn, with dual K-basis e1, . . . , en, and
let V ′ the dual of the K-span of Y1, . . . , Ym, with dual basis e′1, . . . , e

′
m. Then C(f + g)

is the quotient of T (V ⊕ V ′) by the two-sided ideal generated by all relations of the the
form

(∗) (c1e1 + · · ·+ cnen + c′1e
′
1 + · · ·+ c′me

′
m)d − f(c1, . . . , cn)− g(c′1, . . . , c

′
m),

where c = c1, . . . , cn ∈ K and c′ = c′1, . . . , c
′
m ∈ K. The maps T (V ) � C(f) and

T (V ′) � C(g) will induce a map C(f + g) � C(f) ⊗K C(g) provided that each of the
relations (∗) maps to 0 in C(f)⊗K C(g). With

u = c1e1 + · · ·+ cnen

and

v = c′1e
′
1 + · · ·+ c′me

′
m,

we have that

(v ⊗ 1)(u⊗ 1) = ξ (u⊗ 1)(1⊗ v)

in the twisted tensor product, and so (u+ v)d maps to ud ⊗ 1 + 1⊗ vd. Thus, the element
displayed in (∗) maps to

ud⊗ 1 + 1⊗ vd− f(c)(1⊗ 1)− g(c′)(1⊗ 1) =
(
ud− f(c)

)
⊗ 1 + 1⊗

(
vd− g(c′)

)
= 0 + 0 = 0,

as required. �

We now use these ideas to get a matrix factorization for a generic form. In a sense,
we carry this out over the field Q[ξ], but we observe that the entries of the matrices are
actually in Z[ξ]. We then embed Z[ξ] in a ring of matrices over Z to get a solution over
Z. This result gives the a version of the theorem over any ring, by applying a suitable
homomorphism.

We first introduce two notations. If α1, . . . , αd are square matrices, then diag(a1, . . . , ad)
denotes the square matrix whose size is the sum of the sizes of the α1, . . . , αd, and whose
block form is 

α1 0 0 · · · 0
0 α2 0 · · · 0
0 0 α3 · · · 0

· · ·
· · ·

0 0 0 · · · αd


This matrix corresponds to the direct sum of the maps represented by the α1, . . . , αd.
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When α1, . . . , αd are square matrices of the same size, say s, we write cyc(α1, . . . , αd)
for the matrix whose block form is

0 0 0 · · · 0 α1

αd 0 0 · · · 0 0
0 αd−1 0 · · · 0 0

· · ·
· · ·

0 0 0 · · · α2 0


Here “cyc” stands for “cyclic.” One may think about this matrix as follows. Suppose
that the αi are thought of as linear transformations on a vector space V of dimension s
over K. Let Vi = V , 1 ≤ i ≤ d, and let W = V ⊕d thought of as V1 ⊕ · · · ⊕ Vd. Then
cyc(α1, . . . , αd) corresponds to the linear transformation of V whose restriction to Vi is
given by αd+1−i : Vi → Vi+1. The subscript i should be read modulo d, so that the

restriction to Vd is α1 : Vd → V1. Thus,
(
cyc(α1, . . . , αd)

)d
, when restricted to Vi, is the

composite

(Vi−1

αd+1−(i−1)−−−−−−−→ Vi) ◦ · · · ◦ (Vi+1
αd−i−−−→ Vi+2) ◦ (Vi

αd+1−i−−−−→ Vi+1),

i.e.,
αd+2−iαd+3−i · · ·αdα1 · · ·αd−iαd+1−i.

Hence, if α1, . . . , αd is a matrix factorization of f of size s, one also has a matrix factor-
ization of f of size ds with d factors all of which are equal to cyc(α1, . . . , αd).

Theorem. Let d ≥ 2 and s ≥ 1 be integers, and let f denote the degree d linear form over
Z in sd variables given as

f = X1,1X1,2 · · ·X1,d + · · ·+Xs,1Xs,2 · · ·Xs,d.

Note that f is the sum of s products of d variables, where all of the variables that occur
are distinct. Let ξ be a primitive d th root of unity. Then f has a matrix factorization
fIds−1 = α1 · · ·αd over

R = Z[ξ][Xij : 1 ≤ i ≤ s, 1 ≤ j ≤ d]

of size sd−1 such that I(α) = (Xij : 1 ≤ i ≤ s, 1 ≤ j ≤ d)R. Moreover, every entry of
every matrix is either 0 or of the form ξkXij.

Proof. We use induction on s. We construct the factorization over Q[ξ], but show as we
do so that the entries of the matrices constructed are in Z[ξ].

If s = 1 we have that

(x1,1x1,2 · · ·x1,d) = (x1,1)(x1,2) · · · (x1,d).
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By part (b) of the Proposition on p. 3 of the Lecture Notes of March 22, we have a
corresponding Clifford module.

Now suppose that we have constructed a matrix factorization β1, . . . , βd of size ds−1

for
f1 = X11X12 · · ·X1d + · · ·+Xs−1,1Xs2 · · ·Xs−1,d

that satisfies the conditions of the theorem. Let M be the corresponding Clifford module.
We also have a factorization for g = xs,1 · · ·xsd , namely

(xs,1xs,2 · · ·xs,d) = (xs,1)(xs,2) · · · (xs,d).

Since the two sets of variables occurring in f1 and g respectively are disjoint, the twisted
tensor product M ⊗K N , where K = Q[ξ], of the corresponding Clifford modules is a
Clifford module Q over C(f1 + g) = C(f), by the Theorem at the top of p. 4 of today’s
Lecture Notes. Note that each Nj has dimension 1, and that

(∗) Qi = Mi−1 ⊗K N1 ⊕Mi−2 ⊗K N2 ⊕ · · · ⊕Mi ⊗K Nd

has dimension sd−1. Then Q gives a matrix factorization of f = f1 + g of size ds−1 over
Q[ξ].

However, we shall give explicit bases for the Qi and show that the matrices that occur
have entries of the form specified in the statement of the theorem, which shows that one has
a matrix factorization over Z[ξ]. We use all the tensors of pairs of basis elements, one from
one of theMi and one from one of theNj but order the basis forQi as indicated in the direct
sum displayed in (∗) above. The result is that the map from Qi → Qi+1 that comes from
multiplication by c1,1e1,1 + · · ·+ cs−1,des−1,d (the indexing on the scalars ci,j corresponds
to the indexing on the variables Xi,j) has as its matrix the result obtained by substituting
the ci,j for the Xi,j in diag(βd+1−i−1, βd+1−i−2, · · · , βd+1−i), for the map is the direct
sum of the maps Mi−j ⊗K Nj →Mi−j+1 ⊗K Nj induced by the maps Mi−j →Mi−j+1.

On the other hand, the map from Qi → Qi+1 given by multiplication by c′1e
′
1 + · · · c′de′d

maps the j th term Mi−j ⊗K Nj to the j + 1 st term Mi−j ⊗K Nj+1, and corresponds to
multiplication by ξi−jXs,d+1−j evaluated at (c′) on the summand Mi−j⊗KNj , which has
K-vector space dimension ds−2. The result γd+1−i is the matrix

cyc(ξi−dXs,1Ids−2 , ξi−(d−1)Xs,2Ids−2 , . . . , ξi−1Xs,1Ids−2),

Therefore, we get a matrix factorization of f with d factors of size ds−1 in which

αi = diag(βi−1, βi−2, · · · , βi) + γi.

Since all of the coefficients needed are 0 or powers of ξ, this is a factorization over Z[ξ].
All of the variables occur, possibly with coefficient ξk, but ξ is a unit in Z[ξ], and so all of
the conditions of the theorem are satisfied. �
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Lecture of March 27, 2019

Our next objective is to give a matrix factorization of a generic form over Z instead
of Z[ξ]. The idea is to replace the ring Z[ξ] by a ring of matrices over Z.

Discussion: block form. Let R be any associative ring with identity, and letMn(R) denote
the ring of n×n matrices with entries of R, which we may identify, as usual, with the ring
of R-linear edomorphisms of Rn, thought of as n× 1 column vectors over R. The matrix
η acts on the column γ by mapping it to ηγ. The observation we want to make is that
we may identify Mkh(R) ∼=Mk(Mh(R)). The naive way to make the identification is to
partition each kh × kh matrix into a k × k array of h × h blocks. More conceptually, we
may think of the domain of an R-linear map Rkh → Rkh as the direct sum of k copies of
Rh, i.e., as (Rh)⊕k, and we may think of the target of the map as (Rh)k, the product of
k copies of Rh. Then the map is determined by its restrictions to the k direct summands
Rh of the domain, and the map from a particular summand Rh → (Rh)k corresponds to
giving k R-linear maps Rh → Rh, one for each factor of the target module.

Discussion: polynomials in commuting variables over a matrix ring. . Let X1, . . . , Xk

denote indeterminates both over R and over each matrix ring over R such that the Xi

commute with one another, with elements of R, and with matrices over R. Then we may
identify the rings

Mn(R[X1, . . . , Xk]) ∼=Mn(R)[X1, . . . , Xk].

Given a finite linear combination
∑
h η

(h)µh where each η(h) =
(
r

(h)
ij

)
∈ Mn(R) and each

µh is a monomial in the Xi, we let it correspond to the matrix
(∑

h r
(h)
ij µh

)
.

Let ξ be a primitive d th root of unity. Recall that its minimal polynomial is denoted
Ψd(t): suppose that δ = Φ(d), which is the degree of Ψd, and that

Ψd(z) = zδ + cδ−1z
δ−1 + · · ·+ c0,

where the cj ∈ Z. If we take 1, ξ, ξ2, . . . , ξδ−1 as a basis for Z[ξ], then the matrix of
multiplication by ξ on Z[ξ] is

θ =


0 0 0 · · · 0 −c0
1 0 0 · · · 0 −c1
0 1 0 · · · 0 −c2

· · ·
· · ·

0 0 0 · · · 1 −cδ−1

 ,

the companion matrix of Ψd(t), and Z[ξ] ∼= Z[θ] ⊆Mδ(Z). Notice that each of the powers
Iδ, θ, θ

2, . . . , θd−1 has an entry equal to 1, because θi maps the basis element 1 to the
basis element θi, 0 ≤ i ≤ d− 1.

We then have:
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Theorem. Let d ≥ 2 and s ≥ 1 be integers, and let f denote the degree d linear form over
Z in sd variables given as

f = X1,1X1,2 · · ·X1,d + · · ·+Xs,1Xs,2 · · ·Xs,d.

Let δ = Φ(d). Then f has a matrix factorization fIδds−1 = α1 · · ·αd over

R = Z[Xi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ d]

of size δsd−1 such that I(α) = (Xi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ d)R.

Proof. We begin with the matrix factorization over R[ξ] which has size ds−1 given in the
Theorem on p. 5 of the Lecture Notes of March 25. We write X for the collection of
variables Xi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ d. By the Discussions above, we have an embedding of

Z[ξ][X] ↪→Mδ(Z)[X] ∼=Mδ(Z[X])

which will give a matrix factorization of (fIδ)Ids−1 with d factors in Mds−1

(
Mδ(R)

)
.

Under the identification Mds−1

(
Mδ(R)

) ∼= Mδds−1(R) this yields a matrix factorization
for fIδds−1 whose entries are Z-linear forms in the variables X. In the factorization given
in the previous Theorem, every Xi,j occurred, possibly with a coefficient ξk, 0 ≤ k ≤ δ−1.
In the new factorization ξkXi,j is replaced by a block corresponding to θkXi,j . Since θk

has an entry equal to 1, the variable Xi,j occurs as an entry. �

Now that we have dealt with the generic case, we can immediately get a corresponding
result for any finitely generated ideal in any ring.

Theorem. Let I be a finitely generated ideal of a ring R, and let f ∈ Id, where d ≥ 2.
Then for some integer N there exists a matrix factorization fIN = α1 · · ·αd such that
I(α) = I. In fact, there exists such a factorization in which α1 = α2 = · · · = αd, and
I(αi) = I, 1 ≤ i ≤ d.

Proof. Since f ∈ Id, for some choice of elements uij ∈ I we can write

f = u1,i · · ·u1,d + · · ·+ us,1 · · ·us,d
with all of the ui,j ∈ I. We may assume all of the finitely many generators of I occur
among the ui,j by including some extra terms in which one of the factors is 0. We may then
map Z[Xi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ d]→ R so that Xi,j 7→ ui,j . Applying the homomorphism
to the factorization for the generic form given in the preceding Theorem, we obtain a
factorization of f satisfying all but one of the conditions needed: it need not satisfy the
condition that

α1 = α2 = · · · = αd.

But we may satisfy the additional condition by increasing the size by a factor of d and
taking all of the matrices to be cyc(α1, . . . , αd): see the discussion on p. 5 of the Lecture
Notes of March 25. �

The following result will play an important role in our construction of linear maximal
Cohen-Macaulay modules over hypersurfaces.
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Theorem. Let (R, m, K) be a local ring, and let f ∈ md be a nonzerodivisor, where d ≥ 2.
Then for some s there is a matrix factorization fIs = α1 · · ·αd such that I(αi) = m for
1 ≤ i ≤ d. Let G = G0 = Rs, and let Gi be the image of ψi = α1α2 · · ·αi, so that
Gi ⊆ Rs as well, and Gd = fRs. Let Mi = Gi/Gi+1, 1 ≤ i ≤ d. Then all of the
modules Gi/Gd, G/Gi+1 and Mi, 0 ≤ i ≤ d − 1, are maximal Cohen-Macaulay modules
over R = R/fR, and all of them have finite projective dimension, necessarily 1, over R.
Moreover, ν(Mi) = s, 0 ≤ i ≤ d− 1.

Proof. Since fIs = ψiψ
′
i, where ψ′i = αi+1 · · ·αd, we have from the Discussion on the

first page of the Lecture Notes of March 21 concerning Cohen-Macaulay modules over
hypersurfaces that if indicates images after applying R⊗R , then

· · · ψ
′
i−→ R

s ψi−→ R
s ψ

′
i−→ R

s ψi−→ R
s → 0

is acyclic, and that
Kerψ′i = Imψi ∼= Cokerψ′i

∼= Cokerψ′i,

and the same holds with the roles of ψi and ψ′i interchanged. The image of ψi contains
fRs, which is the image of ψiψ

′
i, i.e., fRs ⊆ Gi ⊆ Rs, and Gi/fR

s = Gi/Gd may be

identified with Imψi. Thus, every Gi/Gd is a maximal Cohen-Macaulay module over R
of finite projective dimension over R. Note as well that Rd/Gi = Cokerψi is a maximal
Cohen-Macaulay module over R of finite projective dimension over R.

We have that Gi+1 = Imψi+1 = Imψiαi+1 ⊆ ψi(mR
s), since I(αi+1) = m, and this

is contained in mψi(Rs) = mGi. Hence, Mi = Gi/Gi+1 is minimally generated over R by
s elements, and the short exact sequences

0→Mi → Rs/Gi+1 → Rs/Gi → 0

show that every Mi is a maximal Cohen-Macaulay over R of finite projective dimension
over R as well.

A maximal Cohen-Macaulay module over R that has finite projective dimension over
R must have projective dimension 1 over R, since its depth is d− 1. �

Proposition. Let (R, m, K) be local and f ∈ md −md+1. Let L(f) denote the leading
form of f , i.e., the image of f in md/md+1 = [grm(R)]d. Suppose that N is a finitely
generated R-module (N = R is the most important case) and that L(f) is a nonzerodivisor
on grm(N). Let R = R/fR, which has maximal ideal m = m/fR, and let N = N/fN .
Then

(a) f is a nonzerodivisor on N .

(b) For every integer n ≥ 0, fN ∩mnN = fmn−dN .

(c) For every u ∈ N − {0}, L(fg) = L(f)L(u), and the m-adic order of fu is the sum of
the m-adic orders of f and u.
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(d) grm(N) ∼= grm(N)/L(f)grm(N).

Proof. We first prove (c). If u 6= 0, say u ∈ mhN − mh+1N , then it follows that fu /∈
md+h+1N , i.e., that fu ∈ md+hN−md+h+1N , or else L(f)L(u) = 0, a contradiction. This
proves both that ord (fu) = d + h and that L(fu) = L(f)L(u). Part (a) follows as well,
for if fu = 0, then L(f)L(u) = 0.

To prove (b), note that if fu ∈ mnN , then d + ord (u) ≥ n, and so ord (u) ≥ n − d,
which shows that u ∈ mn−dN .

Finally, to prove (d), note that

mnN/mn+1N ∼= (mnN + fN)/(mn+1N + fN) ∼= mnN/
(
mnN ∩ (mn+1N + fN)

)
.

Now if un = un+1 +fv with un ∈ mnN and un+1 ∈ mn+1N , then fv = un−un+1 ∈ mnN ,
and so v ∈ mn−dN by part (b). Then

mnN/mn+1N ∼= mnN/(mn+1N + fmn−dN)

∼= [grm(N)]/L(f)[grm(N)]n−d ∼= [grm(N)/L(f)grm(N)]n,

as required. �

Discussion. To calculate the multiplicity of a local ring (R, m, K) or of an R-module M
one may work alternatively with the Hilbert function of grm(R) or the Hilbert function
of grm(M): the lattter, for example, is defined as dimK [grm(M)]n, and is eventually a
polynomial of degree dim (M) − 1. This function is the first difference of the Hilbert

function. If the Hilbert function of M has leading term
e

r!
nr, where r = dim (M), then

the leading term of the Hilbert function of grm(M) will be

e

r!
rnr−1 =

e

(r − 1)!
nr−1.

Corollary. Let (R, m, K) be local and let f ∈ m be such that its leading form L(f) has
degree d.

(a) If L(f) is a nonzerodivisor in grm(R), then e(R/fR) = de(R).

(b) If N is a finitely generated R-module and L(f) is a nonzerodivisor on grm(N), then
e(N) = de(N/fN).

Proof. It suffices to prove (b), which is more general. In the notation of the preced-
ing proposition. e(N) may be calculated from the Hilbert function of grm(N), which
is gr(N)/L(f)gr(N). If the Hilbert function of grm(N) is H(n), the Hilbert function
for gr(N)/L(f)gr(N) will be H(n) − H(n − d). If the leading term of the polynomial

corresponding to H(n) is
e

(r − 1)!
nr−1, the new leading term is

de

(r − 2)!
nr−2, since the

polynomial cnr−1 − c(n− d)r−1 has leading term cd(r − 1)nr−2 for any constant c. �
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In order to prove the result we want on existence of linear maximal Cohen-Macaulay
modules, we need to generalize the Theorem on p. 3 to a situation in which we have
tensored with a linear maximal Cohen-Macaulay module N over R.

Lecture of March 29, 2019

The following result can be deduced easily from the Buchsbaum-Eisenbud acyclicity
criterion, but we give a short, self-contained argument.

Proposition. Let (R, m, K) be a local ring and N a maximal Cohen-Macaulay module
over R. If M is a finitely generated R-module of finite projective dimension over R, then
TorRi (M,N) = 0 for all i ≥ 1.

Proof. For any prime ideal P in Supp (N), NP is again a maximal Cohen-Macaulay module
over RP . (This is clear if height (P ) = 0. If height (P ) > 0, choose x ∈ P not in
any minimal prime of R. Then x is not a zerodivisor on N , and the result follows by
Noetherian induction, since N/xN will be a maximal Cohen-Macaulay module for R/xR.)

Let pdR(M) = h. Then TorRi (M, N) = 0 for i > h. If we have a a counterexample, we

can localize at a minimal prime P of
⊕h

i=1 TorRi (M, N). Thus, we may assume without

loss of generality that all of the non-vanishing TorRi (M, N) for i ≥ 1 have finite length,
and we can choose i as large as possible for which one of these Tor modules is not 0. If

0→ Gh → · · · → G0 → 0

is a minimal free resolution of M over R, the modules TorRi (M, N) are the homology
modules of the complex

0→ Gh ⊗R N → · · · → G0 ⊗R N → 0.

Let dj denote the map
Gj ⊗R N → Gj−1 ⊗R N.

Let Zj = Ker (dj) and let Bj = Im (dj+1). Thus, Zj = Bj for j > i. Note that we cannot
have dim (R) = 0, for then pdRM ≤ depthm(R) = 0, and M is free. Thus, we may assume

dim (R) ≥ 1. Also note that we cannot have i = h, because TorhR(M, N) ⊆ Gh ⊗R N , a
finite direct sum of copies of N , and has no submodule of finite length, since depthmN =
dim (R) > 0. Then we have a short exact sequence

0→ Bi → Zi → TorRi (M, N)→ 0

and an exact sequence

0→ Gh ⊗R N → · · · → Gi+1 ⊗R N → Bi → 0.
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Since TorRi (M, N) is a nonzero module of depth 0, Zi 6= 0, and Zi ⊆ Gi ⊗N has depth at
least one. It follows that depthm(Bi) = 1. The exact sequences

0→ Bj → Gj ⊗R N → Bj−i → 0

for j > i enable us to see successively that depthmBi+1 = 2, depthmBi+2 = 3 and,
eventually, depthmBh−1 = (h − 1) − (i − 1) = h − i. But Bh−1 = Gh ⊗R N has depth
dim (R) ≥ depthmR ≥ h > h− i, since i ≥ 1, a contradiction. �

We next observe the following result related to the final Corollary of the Lecture of
March 27.

Lemma. Let (R, m, K) be local, and f ∈ md −md+1 be such that L(f) is part of a ho-
mogeneous system of parameters for grm(R). Let N be a linear maximal Cohen-Macaulay
module. Then e(N/fN) = de(N).

Proof. Without loss of generality we may replace R by R(t) and N by R(t)⊗R N , and so
assume that we have an infinite residue class field. Let dim (R) = r, and let x1, . . . , xr be
a minimal reduction of m. Then grN

∼= (N/mN) ⊗K K[X1, . . . , Xr] is Cohen-Macaulay
of depth r over grm(R): the images of the xj in m/m2 form a regular sequence. It follows
that L(f), which has degree d, is a nonzerodivisor on grm(N), and we may apply part (b)
of the final Corollary of the Lecture of March 27. �

We are now ready to prove the result we are aiming for (cf. [J. Herzog, B. Ulrich, and
J. Backelin, Linear maximal Cohen-Macaulay modules over strict complete intersections,
Journal of Pure and Applied Algebra 71 (1991) 187–202.]

Theorem (Herzog, Ulrich, and Backelin). Let (R, m, K) be a Cohen-Macaulay local
ring that has a linear maximal Cohen-Macaulay module N . Let f ∈ md − md+1 be a
nonzerodivisor such that its leading form L(f) ∈ grm(R) is part of a homogeneous system
of parameters for grm(R). Then R/fR has a linear maximal Cohen-Macaulay module.

Proof. We adopt the notation of the Theorem on p. 3 of the Lecture of March 27, so that
we have a chain

Rs = G0 ⊇ G1 ⊇ · · · ⊇ Gd = fRs

as in the statement of that Theorem. Thus, the modules

0 ⊆ Gd−1/Gd ⊆ · · · ⊆ Gi/Gd ⊆ · · · ⊆ G0/Gd

give an ascending filtration of G0/Gd ∼= Rs/fRs in which every factor module Mi is
a maximal Cohen-Macaulay module over R = R/fR that is minimally generated by s
elements and such that all of the modules Gi/Gd, G0/Gi, and Mi = Gi/Gi+1 have finite
projective dimension over R.
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We shall show that the modules Gi/Gd ⊗N give an ascending filtration of Ns/fNs

such that each factor Mi ⊗R N is a maximal Cohen-Macaulay module over R. We then
prove that at least one of Mi ⊗R N is a linear maximal Cohen-Macaulay module over R.

First, we have short exact sequences

0→ Gi/Gd → G0/Gd → G0/Gi → 0,

0 ≤ i ≤ d − 1 (this is the range for i throughout). These remain exact when we apply
⊗R N , since G0/Gi has finite projective dimension over R and N is a maximal Cohen-

Macaulay module: Tor1(G0/Gi, N) = 0. This shows that each (Gi/Gd) ⊗R N embeds
in

G0/Gd ⊗R N ∼= R
s ⊗R N ∼= (N/fN)⊕s.

The short exact sequences

0→ Gi+1/Gd → Gi/Gd →Mi → 0

likewise remain exact when we apply ⊗R N , and so it follows that the factors are the
modules Mi ⊗R N .

We want to prove that each Mi ⊗R N is a maximal Cohen-Macaulay module over R.
We use the notation of the proof of the Theorem on p. 3 of the Lecture Notes of March
27. Recall that the complex

· · · ψ
′
i−→ R

s ψi−→ R
s ψ

′
i−→ R

s ψi−→ R
s → 0

is acyclic, and that Cokerψi = Rs/Gi, which is also Cokerψi. Moreover, we have that
Imψi ∼= Gi/Gd. Therefore we have short exact sequences:

0→ Rs/Gi → R
s → Gi/Gd → 0 and 0→ Gi/Gd → R

s → Rs/Gi → 0

for all i, 0 ≤ i ≤ d− 1. Since these modules have finite projective dimension over R, both
sequences remain exact when we apply ⊗R N , yielding

(∗) 0→ (Rs/Gi)⊗R N → N
s → (Gi/Gd)⊗R N → 0

and
(∗∗) 0→ (Gi/Gd)⊗R N → N

s → (Rs/Gi)⊗R N → 0.

If
k = depthm

(
(Gi/Gd)⊗R N

)
< dim (R) = depthmN,

then (*) shows that
depthm

(
(Rs/Gi)⊗R N

)
= k + 1,

and then (∗∗) shows that

depthm
(
Gi/Gd)⊗R N

)
≥ k + 1 > k,
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a contradiction. If
depthm

(
(Rs/Gi)⊗R N

)
< dim (R)− 1,

we get an entirely similar contradiction by first using (∗∗) and then (∗).

The exact sequences

0→Mi → Rs/Gi+1 → Rs/Gi → 0

likewise remain exact when we apply ⊗R N , yielding exact sequences

0→Mi ⊗R N → (Rs/Gi+1)⊗R N → (Rs/Gi)⊗R N → 0.

Since the modules in the middle and on the right are maximal Cohen-Macaulay modules
over R, so is Mi ⊗R N , 0 ≤ i ≤ d− 1.

Since these d modules are the factors in a filtration of (N/fN)s, we have that

e
(
(N/fN)s

)
=
d−1∑
i=0

e(Mi ⊗R N).

The left hand side is se(N/fN), which is sde(N) by the preceding Lemma. Since there
are d terms in the sum, there is at least one choice of i such that e(Mi ⊗R N) ≤ se(N).
But

ν(Mi ⊗N) = dimK

(
K ⊗R (Mi ⊗N N)

)
= dimK

(
(K ⊗R K)⊗R (Mi ⊗R N)

)
= dimK

(
(K ⊗RMi)⊗K (K ⊗R N) = ν(Mi)ν(N) = sν(N) = se(N),

since N is a linear maximal Cohen-Macaulay module over R. Thus, there is at least one i
such that e(Mi ⊗R N) ≤ ν(Mi ⊗R N). Since the opposite inequality is automatic, for this
choice of i we have that Mi⊗RN is a linear maximal Cohen-Macaulay module over R. �

Corollary. Let (R, m, K) be a local ring that is a strict complete intersection, i.e., the
quotient of a regular ring (T,n) by a sequence of elements f1, . . . , fk whose leading forms
constitute a regular sequence in grnT . Then R has a linear maximal Cohen-Macaulay
module. �

Remark. In [J. Herzog, B. Ulrich, and J. Backelin, Linear maximal Cohen-Macaulay mod-
ules over strict complete intersections, Journal of Pure and Applied Algebra 71 (1991)
187–202], a converse to the Theorem on p. 3 of the Lecture Notes of March 27 is obtained,
showing that flitrations of Rs/fRs like the one given by the Gi/G)d all come from matrix
factorizatons. Also, the authors use the fact that I(α) = I to prove, in certain cases, that
there are infinitely many mutually non-isomorphic maximal Cohen-Macaulay modules M

satisfying certain restrictions on e(M) and ν(M) and, in particular, on the ratio
ν(M)

e(M)
.
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We next want to show that linear maximal Cohen-Macaulay modules exist for certain
determinantal rings and for certain Segre products when both factors have linear maximal
Cohen-Macaulay modules. We recall that if R and S are two finitely generated N-graded
K-algebras, the Segre product of R and S, which we shall denote R©s K S, is defined as⊕

n

Rn ⊗K Sn,

which is N-graded so that [R©s K S]n = Rn ⊗K Sn. This is a K-subalgebra of the tensor
product R⊗K S, which has an N2-grading in which

[R⊗K S]h,k = Rh ⊗K Sk.

Note that R©s K S is a direct summand of R⊗K S: an R©s K S-module complement is⊕
h 6=k

Rh ⊗K Sk.

For example, if R = K[x1, . . . , xr] and S = K[y1, . . . , ys] are polynomial rings,

T = R⊗K S = K[x1, . . . , xr, y1, . . . , ys],

a polynomial ring, and R©s K S = K[xiyj : 1 ≤ i ≤ r, 1 ≤ j ≤ s] ⊆ T . If Z =
(
zij
)

is an
r × s matrix of new indeterminates, the K-algebra map

K[zij : 1 ≤ i ≤ r, 1 ≤ j ≤ s] � R©s K S

sending zij 7→ xiyj can be shown to have kernel I2(Z), so that

K[zij : 1 ≤ i ≤ r, 1 ≤ j ≤ s]/I2(Z) ∼= R©s K S.

See Problem 5 of Problem set #5.

We shall see eventually that the Segre product of two Cohen-Macaulay rings need not
be Cohen-Macaulay in general.

Lecture of April 1, 2019

Our next objective is to exhibit linear maximal Cohen-Macaulay modules for rings
defined by the vanishing of the minors of a matrix of indeterminates in two special cases:
one is the case of maximal minors, and the other the case of 2 × 2 minors. We shall
solve the second problem in two different ways, one of which generalizes to the case of
Segre products of standard graded K-algebras each of which has a linear maximal Cohen-
Macaulay module.
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Discussion: rings defined by the vanishing of the minors of a generic matrix. Let K be a
field and let X =

(
Xij

)
denote an r× s matrix of indeterminates over K, where 1 ≤ r ≤ s.

Let K[X] denote the polynomial ring in the rs variables Xij . The ideal generated by
the size t minors, It(X), is known to be prime: in fact, K[X]/It(X) is known to be a
Cohen-Macaulay normal domain. This was first proved in [M. Hochster and J. A. Eagon,
Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci,
Amer. J. Math. 93 (1971), 1020–1058], and was treated by two methods in the Lecture
Notes from Math 711, Winter 2006: one is the method of principal radical systems, adapted
from the paper just cited, and the other is via the method of Hodge algebras. We shall
assume the fact that these ideals are prime here. An argument for the case t = 2 is
given in Problem 5 of Problem Set #5, in which the isomorphism of K[X]/I2(X) with the
Segre product of two polynomial rings over K, one in r variables and one in s variables, is
established.

We note that it is easy to see that when K is algebraically closed, the algebriac set
V
(
It(X)

)
⊆ ArsK is irreducible: this is the algebraic set of r × s matrices of rank at most

t− 1. For any such matrix α, the map Ks → Kr that it represents factors through Kt−1,
e.g., through a (t − 1)-dimensional subspace of Kr containing the image of α, and the
factorization

Ks → Kt−1 → Kr

enables us to write α = βγ where β is r × (t − 1) and γ is (t − 1) × s. Any matrix that
factors this way has column space contained in the column space of β, which shows that
we have a surjection

Ar(t−1)
K × A(t−1)s � V

(
It(X)

)
.

This proves the irreducibility, since the image of an irreducible algebraic set is irreducible,
and shows, at least, that Rad

(
It(X)

)
is prime.

It is also easy to calculate the dimension of V
(
It(X)

)
and, hence, of K[X]/It(X). Let

ρ = t − 1. Consider the open set in W ⊆ X such that the first ρ rows of X are linearly
independent. The open set U of choices γ for these rows (we may think of points γ ∈ U as
ρ× s matrices of maximal rank) has dimension ρs. Each remaining row is a unique linear
combination of the rows of γ using ρ coefficients, so that the last r− ρ rows of the matrix
can be written uniquely in the form ηγ, where η is an arbitrary (r − ρ) × ρ matrix. This
gives a bijective map of A(r−ρ)ρ×U onto the dense open W ⊆ X, and so the dimension of
V
(
It(X)

)
, which is the same as dim (W ), is (r− ρ)ρ+ ρs = ρ(r+ s− ρ), where ρ = t− 1.

It also follows that the height of It(X) is rs− ρ(r + s− ρ) = (r − ρ)(s− ρ).

If t = r, the case of maximal minors, the height is

rs− (r − 1)(s+ 1) = rs− (rs− s+ r − 1) = s− r + 1.

If t = 2, the dimension is r + s− 1.

Discussion: linear maximal Cohen-Macaulay modules over a standard graded ring. Let
K be a field. Recall that a standard graded K-algebra is a finitely generated N-graded
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K-algebra R such that R0 = K and R = K[R1], i.e., R is generated over K by its forms
of degree 1. In dealing with the existence of linear maximal Cohen-Macaulay modules
over the local ring Rm of a standard graded K-algebra at its homogeneous maximal ideal
m =

⊕∞
n=1Rn, it is convenient to work entirely in the graded case.

Note that grmRmRm
∼= grm(R) ∼= R, so that each of the local ring and the graded

ring determines the other. If N is a linear maximal Cohen-Macaulay module over a local
ring (S, n, K), then M = grnN is a maximal Cohen-Macaulay module over R = grnS,
and R is a standard graded K-algebra. To check this it suffices to to do so after replacing
S by S(t), so that the residue class field is infinite. R is replaced by K(t)⊗K R, and M by
K(t) ⊗K M , which does not affect the Cohen-Macaulay property. But when the residue
class field is infinite, we can choose a minimal reduction I = (x1, . . . , xr)S for m, where
r = dim (R) = dim (S) and x1, . . . , xr is a system of paramters, and then

grn(N) = grI(N) ∼= (N/IN)⊗K K[X1, . . . , Xr],

where K[X1, . . . , Xr] is a polynomial ring. Note that M = grn(N) is generated in degree
0: M0 = N/IN = N/mN .

Conversely, if M is an N-graded maximal Cohen-Macaulay module over the standard
graded K-algebra R, and M is generated by elements of equal (necessarily smallest) degree,
we shall refer to M as a linear maximal Cohen-Macaulay module in the graded sense over

R if e(M) = ν(M), where e(M) is defined as the integer e such that
e

(r − 1)!
nr−1 agrees

with the leading term of the Hilbert polynomial of M (by which we mean the polynomial
that agrees with dimK(Mn) for all n � 0). Note that we can shift the grading on such
an M so that it is generated in degree 0. This does not affect ν(M) nor e(M). This is
precisely the condition for Mm to be a linear maximal Cohen-Macaulay module over R.

In fact, if we have a finitely generated graded module M over standard graded K-
algebra R, then

ν(Mm) = dimK(Mm/mMm) = dimK(M/mM) = ν(M),

and a minimal set of generators of M as a module may be taken to consist of homoge-
neous elements. Under the condition that M is generated in degree 0, grmRmMm

∼= M ,
and eRm(Mm) may be calculated from the Hilbert function of the associated graded mod-
ule, which yields that eRm(Mm) = e(M). If R has a system of parameters x1, . . . , xr
consisting of linear forms, which is automatic when K is infinite, then we again have
mM = (x1, . . . , xr)M in the graded case, since e(M) = `

(
M/(x1, . . . , xr)M

)
and ν(M) =

`(M/mM).

Discussion: a linear homogeneous system of parameters for the maximal minors. Consider
an r×s matrix X of indeterminates Xi,j , over K, where r ≤ s. We can give a linear homo-
geneous system of parameters for K[X]/Ir(X). as follows. Let Dj be the diagonal whose
entries are X1,j , X2,j+1, . . . , Xr,j+r−1, where 1 ≤ i ≤ s− r + 1. The linear homogeneous
system of parameters consists of the elements below these diagonals (there are r(r − 1)/2
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such elements), the differences Xk+1,j+k−Xj,1 (these are all on the diagonal Dj) as j varies,
1 ≤ j ≤ s−r+1, and the elements above all the diagonals (again, there are r(r−1)/2 such
elements). The total number of elements is r(r − 1) + (s− r − 1)(r − 1) = (r − 1)(s− 1),
which is the dimension of the ring K[X]/Ir(X). To check that the elements specified form
a system of parameters, it suffices to check that the the maximal ideal is nilpotent in the
quotient. Note that, because all elements below D1 are 0 and the image of D1 in the
quotient has all entries equal to, say, x1 (the image of X11), we find from the vanishing
of the leftmost r × r minor that xr1 = 0, so that x1 is nilpotent. We can then prove by
induction on j that all the elements on the diagonal that is the image of Dj (these are
all equal) are nilpotent. If we know this for all variables below the diagonal Dj by the
induction hypothesis, and xj , the image of X1,j , is the common image of the elements on
Dj , then the xrj is nilpotent, from the vanishing of the minor consisting of r consecutive
columns beginning with the j th.

In fact, the quotient of K[X]/Ir(X) by this linear homogeneous system of parameters
turns out to be isomorphic with K[x1, . . . , xs−r+1]/Mr, where the numerator is a poly-
nomial ring and M = (x1, . . . , xs−r+1). This is left as an exercise: see Problem 2. in
Problem Set #5 . It follows that the multiplicity of the ring K[X]/Ir(X) is the number

of monomials of degree at most r − 1 in s− r + 1 variables, which is

(
s

r − 1

)
.

We can now show:

Theorem. With notation as above, the ideal P generated by the r − 1 size minors of the
first r− 1 rows of X is a linear maximal Cohen-Macaulay module for R = K[X]/Ir(X) in
the graded sense.

Proof. The generators of P have equal degree, and since P has rank one, e(P ) = e(R).

Clearly, ν(P ) =

(
s

r − 1

)
= e(P ). Thus, we need only see that P is maximal Cohen-

Macaulay when considered as an R-module. The key point is that P is a height one prime
in R: its inverse image in the polynomial ring has height s − (r − 1) + 1 = s − r + 2,
one more than the height of Ir(X). Moreover, the quotient R/P is Cohen-Macaulay: it
is a polynomial ring over a ring obtained by killing minors of an (r − 1) × s matrix of
indeterminates, and so its depth on the homogeneous maximal ideal of R is dim (R) − 1.
The short exact sequence

0→ P → R→ R/P → 0

now implies that P has depth equal to dim (R) as an R-module. �

We next want to give a calculation of the multiplicity of the ring R = K[X]/I2(X)
when X =

(
Xij

)
is a matrix of indeterminates. We already know from Problem 5 of

Problem Set #5 and Problem 6 of Problem Set #4 that the answer is

(
r + s− 2

r − 1

)
. We

give an alternative proof of this by a completely different method. The idea of this method
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is the same as the idea of the proof that these rings are Cohen-Macaulay via the technique
of principal radical systems.

If r = 1 the ring is a polynomial ring in s variables and the multiplicity is 1, which is

correctly given by the formula. We prove that the multiplicity is

(
r + s− 2

r − 1

)
by induction

on the number of variables. The idea is to kill one of the entries of the matrix, say
x = x11. Since the ring is a domain x11 is not a zerodivisor, and the resulting ring has
the same multiplicity as R. In this ring, x1jxi1 = x11xij = 0 in R for i, j ≥ 1, and so
every prime ideal contains either all of the elements x1j or all of the elements xi1. Since
P = (x1j : 1 ≤ j ≤ s) is a prime, and Q = (xi1 : 1 ≤ i ≤ r) is a prime, P and Q are
precisely the minimal primes of x11R in R. If we localize at P the elements xi1, i ≥ 2
become invertible, and the resulting ring is easily checked to be a field (localizing at xi2
produces a localization of a polynomial ring over K). The situation is the same if we
localize at Q. Thus, e(R) = e(R/P ) + e(R/Q). The former is the ring obtained by killing
the 2 × 2 minors of an (r − 1) × s matrix of indeterminates, and the latter by killing the
2× 2 minors of an r × (s− 1) matrix of indeterminates. The result now follows form the
identity (

r + s− 2

r − 1

)
=

(
r − 1 + s− 2

r − 1− 1

)
+

(
r + s− 1− 2

r − 1

)
.

Discussion: linear maximal Cohen-Macaulay modules for K[X]/I2(X). Our first proof
uses the fact that the ring K[X]/I2(X) has, for t ≥ 1, and endomorphism reminiscent of
the Frobenius endomorphism. To wit, the K-algebra endomorphism K[X] → K[X] that
sends Xij 7→ Xt

ij for all i and j maps I2(X) into itself:

xijxhk − xikxhj 7→ xtijx
t
hk − xtikxthj .

and the latter element is a multiplie of the former element.

If we think of

R = K[X]/I2(X) ∼= K[Y1, . . . , Yr]©s K K[Z1, . . . , Zs]

this endomorphism is induced by the K-endomorphism of the polynomial ring

K[Y1, . . . , Yr, Z1, . . . , Zs]

such that Yi 7→ Y ti and Zj 7→ Ztj . This is clearly an injective endomorphism. We can

restrict this endomorphism to the Segre product. We then have XiYj 7→ (XiYj)
t. From

this point of view, it is clear that this endomorphism θt of R is injective. We write tR
for R viewed as an R-module via θt. The map R → tR is module-finite, since every xti is
in the image θt(R). A homogeneous system of parameters in R maps to a homogeneous
system of parameters in tR, which is Cohen-Macaulay, since R is. That is, tR is a maximal
Cohen-Macaulay module over R.
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We can now decompose tR into a large number of R-modules. It will follow that
each of these, if nonzero, is a maximal Cohen-Macaulay R-module. This decomposition
proceeds as follows.

We can think of tR as R and the image of R as the subring S spanned by all monomials

Y a11 · · ·Y arr Zb11 · · ·Zbss

such that
a1 + · · ·+ ar = b1 + · · ·+ bs

and t divides every ai and every bj . Fix elements α = α1, . . . , αr and β = β1, . . . , βs in
Z/tZ such that

α1 + · · ·+ αr = β1 + · · ·+ βs

in Z/tZ. Let Mα,β be the K-span of all monomials Y a11 · · ·Y arr Zb11 · · ·Zbss such that ai ∼= αi
mod tZ, 1 ≤ i ≤ r and bj ∼= βj mod tZ, 1 ≤ j ≤ s. It is easy to see that Mα,β is an

S-module.

We claim that for all t ≥ r, the choice t−1, t−1, . . . , t−1 for α and 0, 0, . . . , 0, t− r
for β produces a linear maximal Cohen-Macaulay module , namely Mα,β , in the graded

sense. This module has rank one, because multiplication by Y1 · · ·YrZrs produces an ideal

in S. Hence, the multiplicity is the same as for S, i.e.,

(
r + s− 2

r − 1

)
. It is easy to see that

this module is generated minimally by all monomials of the form

Y t−1
1 · · ·Y t−1

r Za1t1 · · ·Zas−1t
s−1 Zt−rs ,

where the ai are nonnegative and

a1 + · · ·+ as−1 = r − 1.

These generators all have the same degree, and the number of generators is the same as

the number of monomials of degree r − 1 is s − 1 variables, which is

(
r + s− 2

r − 1

)
, as

required. �

Lecture of April 3, 2019

Before giving a second proof of the existence of linear maximal Cohen-Macaulay mod-
ules for K[X]/I2(X) and the extension of this result to the case of more general Segre
products, we want to note that the Segre product of two Cohen-Macaulay rings need not
be Cohen-Macaulay, even when one of them is a normal hypersurface and the other is a
polynomial ring.
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In fact, let K be any field whose characteristic is different from 3, and let

R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z]

and S = K[s, t] where X, Y, Z, s, and t are indeterminates over K. We shall show that
T = R©s K S is a three-dimensional domain that is not Cohen-Macaulay.

We have that

T = K[xs, ys, zs, xt, yt, zt] ⊆ K[x, y, z, s, t].

The equations

(zs)3 +
(
(xs)3 + (ys)3

)
= 0 and (zt)3 +

(
(xt)3 + (yt)3

)
= 0

show that zs and zt are both integral over D = K[xs, ys, xt, zt] ⊆ T . The elements
x, y, s, and t are algebraically independent, and the fraction field of D is K[xs, ys, t/s],
so that dim (D) = 3, and

D ∼= K[X11, X12, X21, X22]/(X11X22 −X12X21)

with X11, X12, X21, X22 mapping to xs, ys, xt, yt respectively.

It is then easy to see that ys, xt, xs− yt is a homogeneous system of parameters for
D, and, consequently, for T as well. The relation

(zs)(zt)(xs− yt) = (zs)2(xt)− (zt)2(ys)

now shows that T is not Cohen-Macaulay, for (zs)(zt) /∈ (xt, ys)T . To see this, suppose
otherwise. The map

K[x, y, z, s, t]→ K[x, y, z]

that fixes K[x, y, z] while sending s 7→ 1 and t 7→ 1 restricts to give a K-algebra map

K[xs, ys, zs, xt, yt, zt]→ K[x, y, z].

If (zs)(zt) ∈ (xt, ys)T , applying this map gives z2 ∈ (x, y)K[x, y, z], which is false — in
fact, K[x, y, z]/(x, y) ∼= K[z]/(z3). �

Segre products do have good properties that are important. It was already noted
that R©s K S is a direct summand of R⊗K S. This implies that every ideal of R©s K S is
contracted from R ⊗K S. In particular, R©s K S is Noetherian and, since it is N-graded,
finitely generated over K. This is quite obvious when R and S are standard, since it is then
generated by the products of elements in a basis for R1 with elements in a basis for S1.
When R⊗K S is normal, so is R©s K S. In particular, this is true of the ring in the example
above. R = K[X, Y, Z]/(X3 + Y 3 + Z3) is normal, since it is Cohen-Macaulay and the
singular locus is the origin (the partial derivatives of X3 + Y 3 +Z3 vanish simultaneously
only at the origin), and R⊗K S = R[s, t].
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Discussion: the dimension of the Segre product. For any finitely generated N -graded K-
algebras R and S with R0 = K = S0, we have that

dim (R©s K S) = dim (R) + dim (S)− 1.

Each of R and S has a homogeneous system of parameters. After raising the elments
to powers, we find that R is module-finite over A = K[F1, . . . , Fr], where F1, . . . , Fr
form a homogeneous system of parameters of degree k, and S is module-finite over B =
K[G1, . . . , Gs] where G1, . . . , Gs is a homogeneous system of parameters of degree k as
well. If K is infinite and R and S are standard, we may even assume that k = 1 here.
Then A©s K B ∼= K[X]/I2(X) where X is an r × s matrix of indeterminates over K, and
so has dimension r + s− 1. The result now follows because R©s K S is module-finite over
A©s K B. To see this, choose h � 0 so that homogenous generators for R over A and for
S over B have degree ≤ h. Let Vk be a K-basis for Rk for k ≤ h and let Wk be a K-basis
for Sk for k ≤ h. Then the finite set S of elements of the form v ⊗ w, where v ∈ Vk and
W ∈ wk for some k ≤ h, generate R©s K S as a module over A©s K B. To see this, let
F ∈ Rt and G ∈ St be given. Then F is an A-linear combination of elements in a fixed Vk
with coefficients in At−k, and G is a B-linear combination of elements in a fixed Wk with
coefficients in Bt−k. Here, if t ≤ h one may take k = t, and if t ≥ h, one may take k = h.
It follows that every element of the form F ⊗ G is in the A©s K B-span of S, as claimed,
and elements of this form span R©s K S over K. �

Our next objective is to give a different proof that R = K[X]/I2(X) has a linear
maximal Cohen-Macaulay module. Again, we consider the isomorphism

K[X]/I2(X) ∼= S = K[Y1, . . . , Yr]©s K K[Z1, . . . , Zs] ⊆ KY1, . . . , Yr, Z1, . . . , Zs] = T.

For every δ ∈ Z, let Tδ denote the K-span of the monomials µ ∈ T such that

degY (µ)− degZ(µ) = δ,

where degY (µ) denotes the total degree of µ in the variables Y1, . . . , Yr and degZ µ denotes
the total degree of µ in the variables Z1, . . . , Zs. Then Tδ is obviously an S-module, and
T =

⊕
δ∈Z Tδ.

The following result is proved in [S. Goto and K.-i. Watanabe, On graded rings, I,
Journal of the Mathematical Society of Japan 30 (1978) 179–213].

Theorem. With the above notation, Tδ is a maximal Cohen-Macaulay module of torsion-
free rank one over the Segre product

K[Y1, . . . , Yr]©s K K[Z1, . . . , Zs] = S ∼= R = K[X]/I2(X)

for s > δ > −r.

Proof. The case where δ = 0 is the statement that T0 = S is Cohen-Macaulay, which we
are assuming here. We assume that δ ≥ 0 and proceed by induction on s. The case where
0 ≥ δ > −r then follows by interchanging the roles of Y1, . . . , Yr and Z1, . . . , Zs.
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The case where s = 1 is obvious. Note that Tδ ∼= Zδ1Tδ, and that Zδ1Tδ is the
ideal generated by the monomials of degree δ in Y1Z1, . . . , YrZ1, which is P δ, where
P = (Y1Z1, . . . , YrZ1). P corresponds to the prime ideal of R generated by the variables
in the first column. The quotient is K[X−]/I2(X−), where X− is the r × (s − 1) matrix
obtained by omitting the first column of X: this ring has dimension r+(s−1)−1 = r+s−2,
from which it follows that P is a height one prime of S. To complete the proof, it will
suffice to show that for 1 ≤ δ < s, S/P δ is Cohen-Macaulay: the short exact sequence

0→ P δ → S → S/pδ → 0

then shows that
depthmP

δ = depthm(S/P δ) + 1 = dim (S).

We filter S/P δ by the modules P k/P k+1, 0 ≤ k < δ. Each of these is a module over S/P ,
and it suffices to show that each is a maximal Cohen-Macaulay module over S/P . We
already know this when k = 0, and so we may assume that 1 ≤ k < δ.

We make use of the fact for every k ∈ N, P k = Zk1T ∩ S. This gives an injection of

P k/P k+1 ↪→ Zk1T/Z
k+1
1 T ∼= T/Z1T ∼= K[Y1, . . . , Yr, Z2, . . . , Zs] = T−.

If we identify P k/P k+1 as a submodule of T− in this way, the action of S/P is obtained
by identifying S/P ∼= K[Y1, . . . , Yr]©s K K[Z2, . . . , Zs] ⊆ T−. The generators of P k map
to the monomials of degree k in Y1, . . . , Yr. Thus, we may identify P k/P k+1 with T−k .
Since s has been decreased by 1 and k < δ ≤ s − 1, the result follows from the induction
hypothesis. �

Corollary. With notation as in the Theorem above, Ts−1 is a linear maximal Cohen-
Macaulay module over S ∼= R.

Proof. The generators of Ts−1 have the same degree, and since Ts−1 is rank one,

e(Ts−1) = e(T0) =

(
r + s− 2

r − 1

)
,

which is the same as the number of monomials of degree s− 1 in Y1, . . . , Yr. �

We can now prove:

Theorem (D. Hanes). Let K be an infinite field. Let R and S be standard graded K-
algebras that possess linear maximal Cohen-Macaulay modules in the graded sense. Then
so does R©s K S.

Proof. We may assume that M and N are the linear maximal Cohen-Macaulay modules
over R and S respectively and that they are generated in degree 0. Let Y1, . . . , Yr be a
homogeneous linear system of parameters for R, where r = dim (R), and let Z1, . . . , Zs
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be a homogenous linear system of parameters for S, where s = dim (S). Let m and n be
the respective homogeneous maximal ideals in R and S.

Then R is module-finite over A = K[Y1, . . . , Yr], and S is module-finite over B =
K[Z1, . . . , Zs]. Moreover, R⊗K S is module-finite over A⊗K B, and R©s K S is module-
finite over A©s K B, by the Discussion on the dimension of Segre products. Since M
is Cohen-Macaulay it is A-free, and its rank c = e(M). Similarly, N is B-free of rank
d = e(N). Note that mM = (Y1, . . . , Yr)M and that nN = (Z1, . . . , Zs)N .

The action of any degree one form F of R on M ∼= Ac is an A-linear map and can be
thought of as being given by a c × c matrix over A. Since multiplication by F increases
degrees by one, the entries of each such matrix must be degree one forms of A. Similarly,
the action of any degree one form G ∈ S on N is given by a d × d matrix of linear forms
over B.

Consider the R⊗K S module M ⊗K N . We can consider it as

Ac ⊗K Bd ∼= T cd,

where

T = K[Y1, . . . , Yr]⊗K K[Z1, . . . , Zs].

For δ ∈ Z, we can define (M⊗KN)δ as (Tδ)
cd. Because the action of forms of R and forms

of S preserves the bigrading on T cd coming from the Y -grading and the Z-grading on T ,
every (M ⊗K N)δ is a module over R©s K S. Since (M ⊗K N)δ is finitely generated even
as a module over

T0 = A©s K B ⊆ R©s K S,

it is finitely generated over R©s S . For s > δ > −r it is maximal Cohen-Macaulay over
R©s K S, since R©s K S is module-finite over A©s K B, and we know that it is maximal
Cohen-Macaulay over A©s K B.

To complete the proof, we shall show that W = (M ⊗K N)s−1 is a linear maximal
Cohen-Macaulay module over R©s K S. It is maximal Cohen-Macaulay and generated by
elements of equal degree. To complete the argument, we shall prove that

ν(W ) = cd

(
r + s− 2

r − 1

)
= e(W ).

Include Y1, . . . , Yr in a set of one-forms F1, . . . , Fh that generate m, and include
Z1, . . . , Zs in a set of one-forms G1, . . . , Gk that generate n. Let M be the maximal
ideal of R©s K S, which is generated by the products FiGj . Let Q be the maximal ideal of
A©s K B, which is generated by the products YiZj . Then for every integer n ≥ 0,

Mn(M ⊗K N) = (FiGj : 1 ≤ i ≤ h, 1 ≤ j ≤ k)n(M ⊗K N) =

(Fi : 1 ≤ i ≤ r)n(Gj : 1 ≤ j ≤ s)n(M ⊗K N) =
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(Fi : 1 ≤ i ≤ h)nM

)
⊗K

(
(Gj : 1 ≤ j ≤ k)nN

)
=

mnM ⊗K nnN =
(
(Yi : 1 ≤ i ≤ r)nM

)
⊗K

(
(Zj : 1 ≤ j ≤ s)nN

)
=(

(Yi : 1 ≤ i ≤ r)(Zj : 1 ≤ j ≤ s)
)n

(M ⊗K N
)

= Qn(M ⊗K N).

Since M ⊗K N splits into ⊕
δ∈Z

(M ⊗K N)δ

as R©s K S-modules, we also have that

Mn(M ⊗K N)δ = Qn(M ⊗K N)δ

for every δ. In particular, MnW = QnW for all n. Consequently, we have that ν(W ) =
`(W/MW ) = `(W/QW ), which is the number of generators of W as a module over

A©s K B. Since W is the direct sum of cd copies of (A©s K B)s−1, this is cd

(
s+ r − 2

r − 1

)
,

as required. Similarly,

dimK(MnW/Mn+1W ) = dimK(QnW/Qn+1W ),

and this is cd times the Hilbert function of (A©s K B)s−1 with respect to Q. The multi-
plicity is therefore

cd eQ
(
(A©s K B)s−1

)
= cd

(
r + s− 2

r − 1

)
. �

Lecture of April 5, 2019

We aim to prove the following result of Paul Monsky, following his paper [P. Monsky,
The Hilbert-Kunz function, Mathematische Annalen 263 (1983) 43–49].

Theorem (Monsky). Let (R, m, K) be local where R has prime characteristic p > 0, let
A be an m-primary ideal, and let M be a finitely generated R-module of Krull dimension
d. Then

lim
n→∞

`(M/A[pn]M)

pnd

exists, and is a positive real number.

The function whose value on n is `(M/A[pn]M) is called the Hilbert-Kunz function of
M with respect to A and we denote its value on n by FHK(A, M)(n). If A = m, we may
simply write FHK(M)(n).
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The limit, which we have not yet proved exists, is called the Hilbert-Kunz multiplicity
of M with respect to A. We denote it by eHK(A, M). If A = m, we write simply eHK(M).

Example. Let
R = K[[X, Y, Z]]/(XY − Zd) = K[[x, y, z]],

where K is a field and X, Y, Z are formal indeterminates. Here, m = (x, y, z)R. Note
that R is a normal hypersurface, and

R ∼= S = K[[Ud, V d, UV ]] ⊆ K[[U, V ]],

the formal power series ring in two variables. We shall show that eHK(R) = 2− 1

d
.

Every element of R can be written uniquely in the form xiyjzk where 0 ≤ k ≤ d− 1.
The quotient ring R/(xq, yq)R, where q = pn, has a K-basis consisting of the elements
xiyjzk, 0 ≤ i ≤ q − 1, 0 ≤ j ≤ q − 1, and 0 ≤ k ≤ d− 1. We can write q = pn = and+ rn
where an ∈ N and 0 ≤ rn ≤ d − 1. Then zq = zandzrn = (xy)anzrn . As we multiply by
z, z2, . . . we obtain as multiples all the elements xanyanzs for 1 ≤ s ≤ d− 1. Multiplying
by z one more time yields xan+1yan+1. Of course, once we see that xiyjzk is 0 mod
(xq, yq, zq), this also follows for xi

′
yj
′
zk
′

whenever i′ ≥ i, j′ ≥ j, and k′ ≥ k. From this
we see that a K-basis for the quotient R/m[q] = R/(xq, yq, zq)R consists of all monomials
xiyjzk such that either

(1) 0 ≤ i ≤ an − 1, 0 ≤ j ≤ q − 1, and 0 ≤ k ≤ d− 1 or

(2) 0 ≤ i ≤ q − 1, 0 ≤ j ≤ an − 1, and 0 ≤ k ≤ d− 1 or

(3) i = j = an and 0 ≤ k < rn.

The number monomials satisfying (1) or (2) is anqd+qand while the number satisfying
both conditions is a2

nd. The number satisfying condition (3) is rn. Hence, `(R/m[q]) =
2adn− a2

nd+ rn. Note that since an is the integer part of q/d, it lies between (q/d)− 1 and
q/d, and so an/q → 1/d as n→∞. Moreover, 0 ≤ rn < d shows that rn/q

2 → 0 (for that
matter, rn/q → 0) as n→∞. Hence,

lim
n→infty

`(R/m[q])

q2
=

2d

d
− d

d2
+ 0 = 2− 1

d
.

We next make some elementary observations:

Lemma. Let (R, m, K) be local where R has prime characteristic p > 0, let A be an
m-primary ideal, and let M be a finitely generated R-module of dimension d.

(a) The values of the Hilbert Kunz function of M with respect to A are independent of
whether we regard the base ring as R, or as R/AnnRM . Hence, the question of whether
the Hilbert-Kunz multiplicity exists is independent of which ring is regarded as the base
ring.



143

(b) Let (R, m, K)→ (S, n, L) be flat local such that n = mS. Then for all n,

FHK(A, M)(n) = FHK(A, S ⊗RM)(n),

and so the question of whether the Hilbert-Kunz multiplicity exists is not affected by

base change from R to S. In particular, we may make a base change from R to R̂.

(c) There exist positive real constants C and C ′ such that for all n,

Cpnd < FHK(A, M)(n) ≤ C ′pnd.

(d) If A is generated by part of a system of parameters for R/AnnRM , then eHK(A, M) =
eA(M).

(e) If A ⊆ B, then FHK(A, M)(n) ≥ FHK(B, M)(n) for all n, Hence, eHK(A, M) ≥
eHK(B, M) whenever they exist.

(f) Whenever it exists, eHK(A, M) ≤ eA(M).

Proof. Part (a) is obvvious. Part (b) follows from the fact that for any fnite length module
N over R, `S(S ⊗K N) = `R(N) (if N has a finite filtration whose factors are h copies of
K = R/m, then S ⊗K N has a filtration whose factors are h copies of S ⊗RK = S/mS =
S/n = L). One may apply this to each N = M/A[q]M , noting that

S ⊗N ∼= (S ⊗RM)/(AS)[q](S ⊗RM).

For part (c), note that if A has k generators then Akq ⊆ A[q] ⊆ Aq, since a monomial
in k elements of degree kq must have at least one individual exponent that is at least q.
Hence,

(∗) `(M/(Ak)qM) ≥ `(M/A[q]M) ≥ `(M/AqM).

The Hilbert polynomial of M with respect to A has leading coefficient cnd for a suitable
positive real constant c. It follows that the upper bound in (∗) is asymptotic to c(kq)d =
ckq(qd), while the lower bound is asymptotic cqd, and the result follows.

Part (d) is immediate from the definition and Lech’s formula for multiplicities with
respect to parameter ideals.

Part (e) is obvious from the definition.

For part (f), first note that we can replace R by R(t) as in part (b), and so assume
that the residue class field is infinite. Second, we replace R by R/AnnRM as in part (a).
Let x1, . . . , xd by a system of parameters generating an ideal I that is a reduction of A.
Then

eA(M) = eI(M) = eHK(I, M) ≥ eHK(A, M)

by part (e). �
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From part (b) of this Lemma, the problem of proving the existence of Hilbert-Kunz
multiplicities reduces to the case where the local ring is complete. By the Proposition near
the bottom of p. 1 of the Lecture Notes of March 13, we know that there is a flat local
map from the complete ring (R, m, K) to a local ring (S,n, L) such that n = mS and L
is algebraically closed. Therefore, we may also assume without loss of generality that K
is algebraically closed. We shall see that this implies that F : R→ R is module-finite.

Given e ∈ N and an R-module M we write eM for M viewed as an R-module via
restriction of scalars via the map F e : R → R. Thus, with u ∈ eM , r · u = rp

e

u. When
F : R → R is module-finite, so are its iterations F e, and it follows that if M is finitely
generated as an R-module, so is eM . Moreover, M 7→ eM is an exact functor from R-
modules to R-modules: neither the underlying abelian groups nor the maps change when
we apply this functor.

When K is perfect and N is a finite length R-module, eN is also a finite length R-
module and, in fact, `(eN) = `(N). To see this, suppose that N has a filtration by h
copies of K. Then eN has a filtration by h copies of eK, by the exactness of restriction
of scalars. The action of m on eK is 0, and, although the action of K on eK is via the
iterated Frobenius endomorphism F e, F e : K → K is an isomorphism, and so eK is a
one-dimensional vector space over K, i.e., it is isomorphic with K. Note also that if B
is any ideal of R, then B(eM), under the abelian group identification of eM with M ,
becomes B[pe]M . Thus,

eM/(BeM) = e(M/B[pe]M).

From these remarks we obtain:

Proposition. Let (R, m, K) be local of prime characteristic p > 0 such that F : R → R
is module-finite. Suppose also that K is pefect. Let A ⊆ m be any m-primary ideal. Let
M be a finitely generated R-module of dimension d. Then for every nonnegative integer n,
FHK(A, eM)(n) = FHK(A, M)(n+e), and so if eHK(A, eM) exists, so does eHK(A, M),
and eHK(A, eM) = pedeHK(A, M).

Proof. We have that

FHK(A, eM)(n) = `
(
eM/(A[pn])eM

)
= `(M/(A[pn])[pe]M)

= `(M/A[pn+e]M) = FHK(A, M)(n+ e)

for all n, and so

eHK(A, M) = lim
n→∞

FHK(A, M)(n+ e)

p(n+e)d
=

1

ped
lim
n→∞

FHK(A, eM)(n)

pnd
=

1

ped
eHK(A, eM),

as required. �

We also have:
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Lemma. Let (R, m, K) be local of prime characteristic p > 0, let M be a finitely generated
R-module of dimension d, and let A ⊆M be m-primary.

(a) If N ⊆M is such that dim (N) < dim (M), then for all n ≥ 0

FHK(A, M/N)(n) ≤ FHK(A, M)(n) ≤ FHK(A, M/N)(n) + Cp(d−1)n.

Hence,
|FHK(A, M)(n)−FHK(A, M/N)(n)| ≤ Cp(d−1)n,

and so eHK(A, M/N) and eHK(A, M) exist or not alike, and, if they exist, are equal.

(b) Let M ′ be another finitely generated R-module of dimension d, and let W be a mul-
tiplicative system in R consisting of nonzerodivisors on M and on M ′. If W−1M =
W−1M ′, then there exists a positivive constant C such that for all n ≥ 0,

|FHK(A, M)(n)−FHK(A, M ′)(n)| ≤ Cp(d−1)n.

Hence, eHK(A, M ′) and eHK(A, M) exist or not alike, and, if they exist, are equal.

Proof. For part (a), note that for every q = pn we have, with M = M/N , the exact
sequence

N/A[q]N →M/A[q]M →M/A[q]M → 0,

and while the first map need not be injective, we still have that the length of the module
in the middle is at most the sum of the lengths of the other two modules. The inequality
on the right is exactly this statement, while the inequality on the left is immediate from
the surjectivity of the map on the right. The bound on the absolute value of the difference
follows at once, and so does the final statement once we divide by qd.

To prove part (b), note that we have a map M ↪→ W−1M ′ that becomes an isomor-
phism when we localize at W . Choose w ∈ W to be the product of the denominators of
the images of a finite set of generators for M . Then the injection maps wM ↪→ M ′, and
since M ∼= wM we have an injection M ↪→ M ′ whose cokernel Q is killed by an element
of W , which implies that dim (Q) ≤ dim (M). The short exact sequences

M/A[q]M →M/A[q]M ′ → Q/A[q]Q→ 0

yield inequalities
FHK(A, M ′)(n) ≤ FHK(A, M)(n) + C1p

nd

for some real constant C1 and for all n, using part (a). In an exactly similar way, there is
a short exact sequence

0→M ′ →M → Q′ → 0

with dim (Q′) < d, and we obtain

FHK(A, M)(n) ≤ FHK(A, M ′)(n) + C2p
nd
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for all n. The inequality we need now follows with C = max{C1, C2}, and the final
statement is obvious. �

Discussion: the existence of Hilbert-Kunz multiplicities reduces to the case of complete
local domains with perfect residue class field. We have already seen that the existence
of Hilbert-Kunz multiplicities reduces to the case where the ring is complete local with
algebraically closed residue class field. In particular, the residue class field may be assumed
to be perfect. By part (a) of the Lemma above, we may reduce to the case where M has
pure dimension. We may replace R by R/AnnRM and therefore suppose that M is faithful,
and so that M and R have the same minimal primes, which are also the associated primes
of M .

Let W be the multiplicative system of elements not in any minimal prime of R,
which consists of nonzerodivisors on M . Then W−1M is a module over W−1R, which is
a semilocal Artin ring, and so is the product of its localizations at the various minimal
primes Pi, 1 ≤ i ≤ h, of R. Hence,

W−1M ∼=
h∏
i=1

MPi =
h⊕
i=1

MPi .

Choose a power of Pi that kills MPi , say PNii , and let Mi = AnnMP
Ni
i . Every element of

MPi can be multiplied into the image of M by an element of R − Pi, and, if we multiply
further by an element of R−Pi, we obtain a multiple in Mi. Thus, (Mi)Pi = MPi . The Mi

are mutually disjoint, however: a nonzero element of M cannot be killed by both a power
of Pi and a power of Pj for i 6= j, or else M will have an associated prime containing both
Pi and Pj . Thus,

M1 ⊕M2 ⊕ · · · ⊕Mh ⊆M

and the two become equal when we localize at W . Therefore, to show that the Hilbert-
Kunz multiplicity of M exists, it suffices to show this for every Mi.

We can therefore reduce to the case where Ass (M) contains a unique associated prime
P . Replacing R by R/AnnRM , we may also assume that R has a unique minimal prime P .
Choose e so large that P [pe] = 0. To show that the Hilbert-Kunz multiplicity of M exists,
it suffices to prove this for eM instead. But P kills eM , which is consequently a module
over R/P . We have therefore reduced to the case where R is a complete local domain
with perfect residue class field and dim (M) = dim (R). Moreover, M has no nonzero
submodule of smaller dimension, which implies that M is torsion-free over R. Now choose
Rρ ⊆ M such that ρ is the torsion-free rank of M over R. Then M/Rρ is torsion, and so
we have reduced to considering the case where M = Rρ. But then we have reduced to the
case where M = R, as required. �

It remains to prove the case where M = R is a complete local domain with perfect
residue class field. This is the most interesting part of the argument.
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Lecture of April 8, 2019

Recall the if R is a Noetherian ring of prime characteristic p > 0, R is called F-finite
if F : R→ R makes R into a module-finite algebra over

F (R) = {rp : r ∈ R},

a subring of R that is also denoted Rp. When R is F -finite, the composition F e : R→ R
also makes R into a finite module over

F e(R) = {rp
e

: r ∈ R},

a subring of R that is alternatively denoted Rp
e

.

If R is F-finite, it is trivial that every homomorphic image of R is F-finite. The same
holds for each localization W−1R, because inverting the elements in W p has the effect of
inverting the elements of W . If R is F-finite, so is R[x]: if r1, . . . , rh span R over F (R),
then the elements rixj , 1 ≤ i ≤ h, 0 ≤ j < p span R[x] over F (R[x]) = F (R)[xp]. By
induction, any finitely generated algebra over an F -finite ring is F-finite, and it is likewise
true that any algebra essentially of finite type over an F-finite ring is F-finite.

A perfect field is obviously F-finite, and so a field that is finitely generated as a field
over a perfect field is F-finite: it is a localization of a finitely generated algebra over a
perfect field. Thus, if K is perfect, each of the fields K(t1, . . . , tn) is F-finite, where
t1, t2, . . . , tn, . . . are indeterminates over K, but the field K(t1, . . . , tn, . . . ) where we
adjoin infinitely many indeterminates, is not. We note:

Proposition. A complete local ring (R, m, K) of prime characteristic p > 0 is F-finite if
and only if its residue class field K is F-finite.

Proof. Since K = R/m, if R is F-finite then K is. Suppose that K is F-finite, and let
c1, . . . , ch be a basis for K over F (K). Then R is a homomorphic image of a formal power
series ring S = K[[x1, . . . , xd]], and it suffices to show that S is F-finite. But the set of
elements

{cjxa11 · · ·x
ad
d : 0 ≤ j ≤ h, 0 ≤ ai < p for 0 ≤ i ≤ d}

spans S over F (S) = F (K)[[xp1, . . . , x
p
d]]. �

This justifies the assertion in the Lecture Notes of April 5 that a complete local ring
with perfect residue class field is F-finite.

We next want to understand the behavior of the rank of eR when R is a complete
local domain with a perfect residue class field.

Note that when R is reduced of prime characteristic p > 0, the three maps F e : R→ R,
Rp

e ⊆ R, and R ⊆ R1/pe are isomorphic. The isomorphism of F e : R → R with Rp
e ⊆ R

follows from the fact that, for a reduced ring R, F e is injective and F e(R) = Rp
e

. To
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understand the third map, we need to define the ring R1/pe . When R is a domain, there
we may take this to be the subring of an algebraic closure of the fraction field of R that
consists of all the elements of the for r1/pe for r ∈ R. In the general case, one can show
that there is an extension S of R, unique up to canonical isomorphism, such that the map
R = {spe : s ∈ S}. In fact, since R ∼= Rp

e

via the map r 7→ rp
e

, we “think of” Rp
e

as R,
and take S to be R.

This means that when R is reduced, we may think of eR as R1/pe .

Theorem. Let (R, m, K) be a complete local ring of Krull dimension d such that K is
perfect. Then for every e ∈ N, the torsion-free rank of eR over R is pde.

Proof. By the structure theory of complete local rings, R is module finite over A =
K[[x1, . . . , xd]]. Let frac (R) = L and frac (A) = K. The torsion free rank of R1/pe

over R is the same as [L1/pe : L]. We have that

[L1/pe : K] = [L1/pe : K1/pe ] [K1/pe : K]

and also

[L1/pe : K] = [L1/pe : L] [L : K],

so that

(∗) [L1/pe : K1/pe ] [K1/pe : K] = [L1/pe : L] [L : K].

The map u → u1/pe gives an isomorphism of the inclusion K ⊆ L with the inclusion
K1/pe ⊆ L1/pe , so that

[L1/pe : K1/pe ] = [L : K].

But then (∗) implies that

[L1/pe : L] = [K1/pe : K],

and the latter is the same as the torsion-free rank over A of

B = A1/pe ∼= K[[x
1/pe

1 , . . . , x
1/pe

d ]].

Let yi = x
1/pe

i , 1 ≤ i ≤ d. Then B is free over A on the basis consisting of all monomials
ya11 · · · y

ad
d with 0 ≤ ai < pe for 1 ≤ i ≤ d. This free basis has cardinality (pe)d = pde, as

required. �

We are now ready to prove the existence of Hilbert-Kunz multiplicities: the result is
stated on the first page of the Lecture Notes of April 5, but we repeat the statement.

Theorem (Monsky). Let M be a finitely generated module of dimension d over (R, m, K),
where R has prime characteristic p > 0, and let A ⊆ m be m-primary. Then the Hilbert-
Kunz multiplicity eHK(A, M) of M with respect to A exists, and is a positive real number.
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Proof. By the results of the Lecture of April 5, it suffices to prove this when M =
(R, m, K) is a complete local domain with a perfect residue class field. Let

γn =
`(R/A[pn])

pnd
.

We shall prove that the sequence {γn}n is a Cauchy sequence. This will prove that the
sequence has a limit. The fact that the limit is positive then follows from the lower bound
in part (c) of the Lemma on p. 2 of the Lecture Notes of April 5.

The first key point is that 1R ∼= R1/p has torsion-free rank pd as an R-module. Thus,
1R and R⊕p

d

become isomorphic after localization at a nonzero element of the domain R.
By part (b) of the Lemma on p. 4 of the Lecture Notes of April 5, there is a positive real
constant C such that

(∗) |FHK(A, R⊕p
d

)(n)−FHK(A, 1R)(n)| ≤ C/p(d−1)n

for all n ∈ N. The leftmost term is pdFHK(A, R)(n). By the Proposition at the top of p.
4 of the Lecture Notes of April 5,

FHK(A, 1R)(n) = FHK(A, R)(n+ 1).

Thus, (∗) becomes

(∗∗) |pdFHK(A, R)(n)−FHK(A, R)(n+ 1)| ≤ Cp(d−1)n.

We may divide both sides by p(n+1)d to obtain

(∗ ∗ ∗) |γn − γn+1| ≤ C/pdn−n−dn−d =
Cp−d

pn
.

Hence, for all N ≥ n,

|γn − γN | ≤ |γn − γn+1|+ |γn+1 − γn+2|+ · · ·+ |γN−1 − γN |

≤ Cp−d

pn
(1 +

1

p
+

1

p2
+ · · · ) ≤ Cp−d(1− 1/p)−1

pn
,

which shows that {γn}n is a Cauchy sequence, as claimed. �

The proof of the Theorem of Monsky can be easily adapted to show more.

Theorem. Let (R, m, K) by a local ring of prime characteristic p > 0, let M be a finitely
generated R-module, and let A ⊆ m be an m-primary ideal. Then the Hilbert-Kunz multi-
plicity with respect to A is additive in the sense that if one has a finite filtration of M with
factors Ni, eHK(A, M) is the sum of the values of eHK(A, Ni) for those Ni of the same
dimension as M .
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Equivalently, if P is the set of (necessarily minimal) primes in the support of M such
that dim (R/P ) = dim (M), then

(∗) eHK(A, M) =
∑
P∈P

`RP (MP )eHK(A, R/P ).

Proof. Additivity implies the formula (∗) because if one takes a prime cyclic filtration of
M , the only terms that contribute to the value of eHK(A, M) are those R/P with P ∈ P,
and the number of factors equal to R/P is the same as `RP (MP ). On the other hand, it is
easy to see that if one has (∗), then additivity follows because for every P ∈ P, `RP (NP )
is additive in N for modules N whose support is contained in Supp (M).

It will suffice to prove additivity after applying S ⊗R , where (S, n, L) is complete
local with L algebraically closed, R→ S is flat local, and n = mS. Hence, we may assume
without loss of generality that R is complete local with algebraically closed residue class
field, and it suffices to prove that (∗) holds in this case.

We may replace M by M/N where N is a maximal submodule of smaller dimension
without affecting the issue. Thus, we may assume without loss of generality that M is of
pure dimension. We may replace R by R/AnnRM without affecting any relevant issue, so
that the minimal primes of the support of M are those of R.

Let W be the multiplicative system that is the complement of the union of the minimal
primes of R. Exactly as in the argument on pages 5 and 6 of the Lecture Notes of April
5, we have M1 ⊕ · · · ⊕Mh ⊆M such that each Mi has a unique minimal prime Pi ∈ P in
its support and localization at W induces an isomorphism. We then have that

`RPi (MPi) = `RPi
(
(Mi)Pi

)
for every i while (Mi)Pj = 0 if j 6= i. We then have that

eHK(A, M) = eHK(A, M1 ⊕ · · · ⊕Mh) =

h∑
i=1

eHK(A, Mi),

and the formula (∗) will follow if we can show that it holds for all of the Mi. We have thus
reduced to the case where M has a unique minimal prime P in its support.

If we repalce M by eM , the Hilbert-Kunz multiplicity with respect to A is multiplied
by pde, by the Proposition on p. 4 of the Lecture Notes of April 5. The same is true for
`RP (M): if MP has a filtration by k copies of κ = RP /PRP , (eM)P has a filtration by k
copies of eκ, and the dimension of eκ over κ is the same as the torsion-free rank of e(R/P )
over R/P , which is pde, as required, by the first Theorem on p. 2 of today’s Lecture Notes.

Thus, we may replace M by eM for e� 0, and so reduce to the case where R/AnnRM
is a domain. Hence, we can reduce to the case where R is a domain and M is torsion-free
over R. If M has torsion-free rank ρ over R, we have already seen that eHK(A, M) =
ρ eHK(A, R), which is just what we need. �
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Example. To illustrate how complicated the behavior of Hilbert-Kunz multiplicities can
be in relatively simple examples, we consider

R = Z5[[X1, X2, X3, X4]](X4
1 +X4

2 +X4
3 +X4

4 ]].

It is proved in [C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, that

FHK(R)(n) =
168

61
(5n)3 − 107

61
3n.

In particular, eHK(R) =
168

61
.

Discussion. Hilbert-Kunz multiplicities can be used to characterize tight closure in com-
plete local domains. This characterizes tight closure many instances. If R is essentially of
finite type over an excellent local ring, r ∈ R is in the tight closure of the ideal I if and
only if for every complete local domain D to which R maps, the image of r is in the tight
closure of ID. See Theorem (2.1) of [M. Hochster, Tight closure in equal characteristic,
big Cohen-Macaulay algebras, and solid closure, in Commutative Algebra: Syzygies, Mul-
tiplicities and Birational Algebra, Contemp. Math. 159, Amer. Math. Soc., Providence, R.
I., 1994, 173–196], which gives a summary of many properties of tight closure. Moreover,
in an excellent local ring (R, m, K), r ∈ R is in the tight closure of I if and only if it is in
the tight closure of every m-primary ideal containing I.5

Therefore, much of the theory can be developed from a criterion for when an element
r ∈ R is in the tight closure of an m-primary ideal I in a complete local domain R. In this
situation, one such criterion is the following: for a proof see Theorem (8.17) of [M. Hochster
and C. Huneke, Tight closure, invariant theory, and the generic perfection of determinantal
loci, Journal of the Amer. Math. Soc. 3 (1990) 31–116].

Theorem. Let (R, m, K) be a complete local domain of prime characteristic p > 0, let I
be an m-primary ideal of R, let r ∈ m, and let J = I + rR. Then r is in the tight closure
of I in R if and only eHK(I, R) = eHK(J, R).

Time permitting, we still aim to prove two results of Lech: one is that his conjecture
holds when the base ring has dimension 2, and the other is that it holds in equal char-
acteristic when the closed fiber S/mS of the map (R, m, K) → (S, n, L) is a complete
intersection. Cf. [C. Lech, Note on multiplicities of ideals, Arkiv for Mathemtik 4 (1960)
63–86].

However, we shall first focus on some results of D. Hanes in positive characteristic,
including the fact that Lech’s conjecture holds for graded rings of dimension 3 with a perfect

5Necessity is obvious. For sufficiency, one may pass to the reduced case and then R has a test element

c (see Theorem (6.1) of [M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change,

Trans. Amer. Math. Soc. 346 (1994) 1–62]). If cuq /∈ I[q], we can choose N so large that cuq /∈ I[q] +mN .

Then cuq /∈ (I + mN )[q], and so u is not in the tight closure of I + mN . �
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residue class field, which is proved by means of the construction of “approximately” linear
maximal Cohen-Macaulay modules.

Lecture of April 10, 2019

The next two results suggest that characteristic p techniques may be helpful in proving
the existence of linear maximal Cohen-Macaulay modules.

Let R be a ring of prime characteristic p > 0. The Frobenius closure IF of an ideal
I ⊆ R is

{r ∈ R : for some e ∈ N, rp
e

∈ I [pe]}.

Note that once this holds for one value of e, it also holds for all larger values. Alternatively,
IF is the union of contractions of I to R under the maps F e : R → R as e varies: the
union is increasing. Note that I ⊆ IF. When R is Noetherian, the contractions of I under
the various F e are the same for all e � 0. Thus, if J = IF, we can choose e � 0 such
that J [pe] ⊆ I [pe]. But since I ⊆ J , the opposite inclusion is obvious. Hence, for all e� 0,
(IF)[pe] = I [pe]. Notice that when r ∈ IF, we have that 1 · rpe ∈ I [pe] for all e� 0, so that
IF ⊆ I∗, the tight closure of I in R.

Theorem (D. Hanes). Let (R, m, K) be an F-finite Cohen-Macaulay local ring of prime
characterisitc p > 0. Suppose that there exists an ideal I ⊆ m generated by a system of
parameters such that IF = m. Then for all sufficiently large e, eR is a linear maximal
Cohen-Macaulay module over R.

Proof. Choose any e such that m[pe] = I [pe]. Since R is F -finite, eR is a finitely generated
module over R, and, obviously a maximal Cohen-Macaulay module: if x1, . . . , xd is a

system of parameters in R, they form an R-sequence on eR because xp
e

1 , . . . , x
pe

d is a

regular sequence on R. Note that under the identification of eR with R, I eR becomes I [pe]

and m eR becomes m[pe]. Since I [pe] = m[pe], we have that I eR = m eR, as required. �

Theorem. Let (R, m, K) be any F-finite Cohen-Macaulay ring of prime characteristic
p > 0. Then R has a free extension S such that R→ S is local, the induced map of residue
class fields is an isomorphism, and S has a linear maximal Cohen-Macaulay module.

Proof. Let x1, . . . , xd be any system of parameters for R. Then for any sufficiently large
integer e ∈ N, we have that m[pe] ⊆ I. Let Z1, . . . , Zd be indeterminates over R, let

T = R[Z1, . . . , Zd], and let S = T/J , where J is generated by the elements Zp
e

i − xi,
1 ≤ i ≤ d. Evidently, S is module-finite over R, and so its maximal ideals all lie over m.
But

S/mS ∼= T/(Zp
e

i : 1 ≤ i ≤ d)T,

a zero-dimensional local ring with residue class field isomorphic with K. Thus, S is local
with residue class field K. Evidently, S is free over R on the basis consisting of the images
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of all monomials Za11 · · ·Z
ad
d with 0 ≤ ai ≤ pe for 1 ≤ i ≤ d. Thus, S satisfies all of the

requirements of the Theorem, provided that we can show that it has a linear maximal
Cohen-Macaulay module.

Let z1, . . . , zd be the images of Z1, . . . , Zd, respectively, in S. Clearly, z1, . . . , zd is a
system of parameters for S, since killing them produces R/(x1, . . . , xd)R. Since S is free
over the Cohen-Macaulay ring R, it is Cohen-Macaulay. It will therefore suffice to show
that it satisfies the hypothesis of the preceding Theorem. In fact, the maximal ideal n of
S is the Frobenious closure of (z1, . . . , zd)S. The ideal n is generated by m and the zi.
But

m[pe] ⊆ (x1, . . . , xd) ⊆ (z1, . . . , zd)
[pe]

since xi = zp
e

i in S, while it is obvious that every zp
e

i ∈ (z1, . . . , zd)
[pe]. �

We next want to discuss some results concerning the existence of linear maximal
Cohen-Macaulay modules over Veronese subrings of polynomial rings.

This problem may seem rather special, but the ideas used to solve the problem in
dimension three, for example, can be used to prove the existence of “approximately linear”
maximal Cohen-Macaulay modules for standard graded domains over a perfect field of
positive characteristic in dimension 3, and this circle of ideas has provided a substantial
body of results on Lech’s conjecture for standard graded algebras.

Let K be field and let S be a standard graded K-algebra. By the t th Veronese subring
S(t) of S we mean

∞⊕
i=0

Sit,

which may also be described as the K-algebra K[St] generated by St. Clearly, S is module-
finite over S(t), since for every homogeneous element F of S, F t ∈ S(t).

Both Segre products and Veronese subrings arise naturally in projective geometry.
Let Proj(R) denote the projective scheme associated with a standard graded K-algebra
R. (This scheme is covered by open affines of the form Spec

(
[RF ]0

)
, where F is a form

of positive degree in R. To get an open cover it suffices to use finitely many F : any set
of homgeneous generators Fj of an ideal primary to the homogeneous maximal ideal wil
provide such a cover, and we may take the Fj to be one-forms.) An important reason for
studying Segre products is that

Proj(R©s K S) ∼= Proj(R)× Proj(S).

The Veronese subrings of S have the property that

Proj(S(t)) = Proj(S)

for all t. A specific homogeneous coordinate ring S for a projective scheme X over K (which
means that X = Proj(S)) gives an embedding of X in PnK by taking a degree-preserving
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mapping of a polynomial ring K[X0, . . . , Xn] onto R so as to give an isomorphism of
vector spaces in degree 1. The Veronese subrings of R turn out to give a family of different
embeddings of X into projective spaces. Although this is an important motivation for
studying Veronese subrings, we shall not need to take this point of view in the sequel.

If M is any finitely generated Z-graded S-module (there will be only finitely many
nonzero negatively graded components), for every i ∈ Zt we define

Mi,t =
⊕

j≡i mod tZ
Mj .

We then have that every Mi,t is an S(t)-module, and that

M =
⊕
i∈Zt

Mi,t.

We may apply this notational convention to M = S itself, to obtain a splitting of S into t
modules over S(t). Then S0,t = S(t).

We now want to consider the case where S = K[X1, . . . , Xd] is a polynomial ring.
In this case S(t) is generated over K by all monomials of degree t in x1, . . . , xd. The
elements xt1, . . . , x

t
d form a system of parameters in S and, hence, in R = S(t). The other

generators of the the maximal ideal of R are integral over the ideal (xt1, . . . , x
t
d)S

(t), and

so this parameter ideal is a minimal reduction of the maximal ideal of S(t). Note that any
nonzero monomial of degree t− i, 0 ≤ i ≤ t− 1, multiplies Si,t into S0,t = S(t). Therefore,

every Si,t has rank one as an S(t)-module.

It follows that the rank of S over S(t) is t, since S is the direct sum of t modules over
S(t), each of which has torsion-free rank one.

Since xt1, . . . , x
t
d generates a minimal reduction of the maximal ideal of S(t) which

is a parameter ideal, we have that e(S(t)) is the torsion-free rank of S(t) over B =
K[xt1, . . . , x

t
d]. Clearly, the torsion-free rank of S over B is td, and we have just seen

that the torsion free-rank of S over R = S(t) is t. It follows that

e(R) = td/t = td−1.

(In the case of composite extensions of domains, torsion-free rank multiplies: one may
pass to the fraction fields, and then the torsion-free rank is the same as the degree of the
corresponding field extension.)

We next want to classify all the graded Cohen-Macaulay modules over S(t) when S is
the polynomial ring in two variables. We shall use this classification to show that there is
a unique graded linear maximal Cohen-Macaulay module that is indecomposable, i.e., not
a direct sum.

In the case of the polynomial ring in three variables, we shall, at least, exhibit a graded
module that is a linear maximal Cohen-Macaulay module.



155

Lecture of April 12, 2019

We can now analyze all graded maximal Cohen-Macaulay modules for a Veronese
subring of the polynomial ring in two variables, and show, as a corollary, that there is a
unique indecomposable linear maximal Cohen-Macaulay module up to shifts in grading.
Recall that if M is a Z-graded module and h ∈ Z, M(h) denotes the same module, graded
so that [M(h)]n = [M ]h+n for all n. We also need:

Discussion: reflexive modules over normal domains of dimension 2. Let M and W be any
R-modules. Then there is a natural canonical map

M → HomR

(
HomR(M, W ), W

)
whose value on u ∈M is the map θu defined by

θu(f) = f(u).

Recall that an R-module M is reflexive if the natural map

M → HomR

(
HomR(M, R), R

)
is an isomorphism.

Notice that if x, y ∈ R form a regular sequence on W , they form a regular sequence
on V = HomR(M, W ) whenever V 6= 0. First note that if f ∈ V , then xf = 0 if and
only if x kills all values of f , and this implies that f = 0, since x is not a zerodivisor W .
Second, if xf = yg then for all u in M , xf(u) = yg(u), and this implies that g(u) is, in a
unique way, a multiple of x, i.e., there exists a unique element of W , which we may denote
h(u), such that g(u) = xh(u). It is easy to check that h is an R-linear map from M →W ,
and so g = xh. We have shown that x, y is a regular sequence on HomR(M, W ).

This helps explain the following fact, which is a particular case of the Theorem on p.
2 of the Lecture Note from Math 615, March 29, 2004.

Theorem. A finitely generated module over a Noetherian normal domain of dimension
two is maximal Cohen-Macaulay if and only if it is reflexive.

We also note:

Lemma. Let M be a finitely generated Z-graded module over the polynomial ring S =
K[X1, . . . , Xd]. Then M has depth d on the maximal ideal of S if and only if M is S-free.

Proof. This is a graded version of a special case of the Auslander-Buchsbaum theorem,
but we give an elementary proof. The “if” part is obvious. Suppose that the depth is
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d. Let u1, . . . , uh be forms of M whose images in M/(x1, . . . , xd)M form a K-basis for
M/(x1, . . . , xd)M . It will suffice to show that u1, . . . , uh is a free basis for M over S. The
case where d = 0 is obvious, and we use induction on d. The depth condition implies that
x1, . . . , xd is a regular sequence on M , and the induction hypothesis implies that M/x1M
is free on the images of the uj over K[x2, . . . , xd]. The homogeneous Nakayama Lemma
implies that u1, . . . , uh span M . We must show that there is no nonzero relation on the
uj . If there is a relation

h∑
j=1

Fjuj = 0

with some Fj 6= 0, by taking homogeneous components we may assume that degFj+deg uj
is constant, say δ, and we may choose δ as small as possible for a nonzero homogeneous
relation. Consider the relation modulo x1S. By the induction hypothesis, it must vanish,
so that every Fj can be written x1Gj , and then we have

x1(
h∑
j=1

Gjuj = 0).

Since x1 is not a zerodivisor on M , we have that

h∑
j=1

Gjuj = 0,

which gives a relation of lower degree, a contradiction. �

Theorem. Let M be a graded maximal Cohen-Macaulay module over R = S(t), where
S = K[X, Y ] is a polynomial ring in two variables over a field K. Then M is a finite
direct sum of modules S(h)j,t, each of which is a maximal Cohen-Macaulay module.

Proof. Let M be any maximal Z-graded Cohen-Macaulay module over R. Since S is
Cohen-Macaulay, it is a maximal Cohen-Macaulay R-module, and, hence, each of the
modules Sj,t is a maximal Cohen-Macaulay R-module.

Because R→ S splits, we obtain an R-split embedding M ↪→ S ⊗RM as R-modules.
The Zt-indexed splitting of S as an R-module induces such a splitting on S ⊗RM , where
the degree 0 component is M . Then we have

HomR

(
HomR(M, R)R

)
↪→ HomR

(
HomR(S ⊗RM, R), R

)
where the module on the right continues to have both a graded S-modoule structure and a
Zt-indexed splitting into R-modules. It has depth two as an R-module, since R does, and
so it has depth two as a graded S-module. Thus, by the Lemma, the module is a finite
direct sum of modules S(hν) with hν varying.
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The module on the left is a split direct summand and is, in fact, the index 0 summand
of the module on the right in the splitting indexed by Zt. However, since M is maximal
Cohen-Macaulay and R is normal of dimension two, we have that

M → HomR

(
HomR(M, R)R

)
is an isomorphism. The stated conclusion follows at once. �

Corollary. Let R = S(t), where S = K[X, Y ] is a polynomial ring in two variables over a
field K. Then a graded R-module M is a linear maximal Cohen-Macaulay module over R if
and only if M is a direct sum of copies of modules S(h)t−1,t. Thus, M is an indecomposable
linear maximal Cohen-Macaulay module if and only if it is, up to a shift in grading, St−1,t.

Proof. A direct sum of modules is maximal Cohen-Macaulay if and only if each summand
is, and both ν( ) and e( ) are additive over direct sums. It follows that a direct sum of
nonzero modules is a linear maximal Cohen-Macaulay module if and only if every summand
is a linear maximal Cohen-Macaulay module. Since all of the Sj,t are maximal Cohen-
Macaulay modules of torsion-free rank one, each of them has multiplicity t. The result
now follows because Sj,t is minimally generated by the monomials of degree j, namely

Xj , Xj−1Y, , . . . , XY j−1, Y j ,

in X and Y , and so ν(Sj,t) = j + 1, 0 ≤ j ≤ t − 1. Obviously, Sj,t is a linear maximal
Cohen-Macaulay module if and only if j = t− 1. �

We next want to show that when S = K[X, Y, Z], the polynomial ring in three
variables over the field K, one can construct linear maximal Cohen-Macaulay modules
over R = S(t) for all t ≥ 1. We first note:

Lemma. Let A be an r × s matrix over an arbitrary ring R and let Q be the cokernel of
the map A : Rs → Rr; Q is also the quotient of Rr by the column space of A. Then Ir(A)
kills Q, i.e., Ir(A)Rr ⊆ Im (A).

Proof. Let D denote the determinant of an r × r minor of A. By permuting the columns,
we might as well assume that D corresponds to the first r columns of A. It suffices to
show that the product of D with every standard basis vector for Rr, written as a column,
is in the column space of A, and so it certainly suffices to prove that it is in the R-span of
the first r columns. Therefore, we might as well replace A by the submatrix formed from
its first r columns. We change notation, so that A is now an r × r matrix. Let B denote
the classical adjoint of A, which is the r × r matrix that is the transpose of the matrix
of cofactors of A. Then AB = DIr. Since each column of AB is the product of A with
a column of B, and since the columns of DIr are precisely the products of D with the
standard basis for Rr, the result follows. �
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We are now ready to construct a linear maximal Cohen-Macaulay module over R =
S(t). To this end, let A denote the t− 1× t+ 1 matrix

X Y Z 0 0 · · · 0 0 0
0 X Y Z 0 · · · 0 0 0
0 0 X Y Z · · · 0 0 0

· · ·
· · ·
· · ·

0 0 0 0 0 · · · X Y Z


where the i th row has entriesX, Y , and Z in the i th, i+1 st, and i+2 nd spots, respectively,
and 0 everywhere else, 1 ≤ i ≤ t− 1. We have an exact sequence:

(∗) 0→ N → S(−1)⊕t+1 A−→ S⊕t−1.

Theorem. Let notation be as above, so that S = K[X, Y, Z] is the polynomial ring in
three variables over a field K, R = S(t) for a positive integer t, and N ⊆ S(−1)⊕t+1 is
the kernel of the matrix A defined above. Then the module M = Nt−1,t ⊆ N is a linear
maximal Cohen-Macaulay module over R of torsion-free rank 2, with minimal generators
all of the same degree.

Proof. Using the splitting indexed by Zt, the sequence (∗) displayed above yields

(∗∗) 0→M → S⊕t+1
t−2,t

A−→ S⊕t−1
t−1,t

where the map on the right is the restriction of the linear map with matrix A. By the
Lemma above, the image of A : S(−1)⊕t+1 → S⊕t−1 contains Ir−1(A)S⊕t−1. By Problem
2. of Problem Set #5,

Ir−1(A) = (X, Y, Z)t−1S.

But [(X, Y, Z)t−1S]t−1,t = St−1,t, and it follows that the restricted map induced by A in
(∗∗) is surjective, i.e., that

0→M → S⊕t+1
t−2,t

A−→ S⊕t−1
t−1,t → 0

is exact. Since the modules in the middle and on the right are maximal Cohen-Macaulay
modules, so is M . Since the rank of every Sj,t is one, the module in the middle has rank
t + 1, and the module on the right has rank t − 1. It follows that M has rank 2, and so
e(M) = 2 e(R) = 2t2.

To complete the proof, it will suffice to show that ν(M) = 2t2 as well. If we think
of M ⊆ S⊕t+1

t−2,t , the least degree (using degree in S for every component) in which there
might be nonzero elements of M is t− 2. Now,

dim ([S]n =

(
n+ 2

2

)
,
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and so the dimension of the piece of M that lies in S⊕t+1
t−2,t is

(t+ 1)

(
t

2

)
− (t− 1)

(
t+ 1

2

)
=

(t+ 1)t(t− 1)

2
− (t− 1)(t+ 1)t

2
= 0

The next possible degree in which M might be nonzero is t+ t− 2 = 2t− 2, and here we
get

(t+ 1)

(
2t

2

)
− (t− 1)

(
2t+ 1

2

)
=

(t+ 1)(2t)(2t− 1)

2
− (t− 1)(2t+ 1)2t

2
= 2t2.

Clearly, one needs 2t2 minimal generators in this degree, and these elements must
generate, since ν(M) ≤ e(M) always.

We give an alternative argument. First note that if y1, . . . , yh is a regular sequence
on all of the modules in the short exact sequence

(#) 0→M →M ′ →M ′′ → 0

then it is easy to see by induction on h that

(##) 0→M/(y1, . . . , yh)M →M ′/(y1, . . . , yh)M ′ →M ′′/(y1, . . . , yh)M ′′ → 0

is exact, and since the short exact sequence (#) maps onto the short exact sequence (##)
the nine lemma implies that the sequence of kernels

0→ (y1, . . . , yh)M → (y1, . . . , yh)M ′ → (y1, . . . , yh)M ′′ → 0

is exact as well.

We know, as in the first argument, know that there are no elements of M ⊆ S⊕t+1
t−2,t

in degree t− 2. Every element of M , thought of a submodule of S⊕t+1, has degree 2t− 2
or more. If m is the maximal ideal of R, which is generated by the monomials of degree
t in X, Y, Z, we have that all elements of mM have degree 3t − 2 or greater, and every
monomial of degree 3t − 2 or more in X, Y, Z must involve Xt or Y t or Zt. Hence,
mM ⊆ (Xt, Y t, Zt)S⊕t+1, and it follows that mM ⊆ (Xt, Y t, Zt)S⊕t+1

t−2,t . Since all three

of the modules M , S⊕t+1
t−2,t , and S⊕t−1

t−1,t are maximal Cohen-Macaulay modules over the ring

R, we have that Xt, Y t, Zt ∈ R is a regular sequence on all of them, and so we see that

0→ (Xt, Y t, Zt)M → (Xt, Y t, Zt)S⊕t+1
t−2,t → (Xt, Y t, Zt)S⊕t−1

t−1,t → 0

is exact. It follows that mM ⊆ (Xt, Y t, Zt)M , and so they are equal, which is what we
need for M to be linear. �


