
Math 615, Fall 2019 Problem Set #1: Solutions

1. For the first part, note that if s/w is integral over W−1S, one may clear denominators
in an equation of integral dependence and multiply by a further element of W to get an
equation over R of the form w0s

n + r1s
n−1 + · · ·+ r0 = 0 (the extra multiplication may be

needed to make sure that we get 0, not just an element that is equivalent to 0). Multiply
by wn−1

0 to get (w0s)
n + w0r1(w0s)

n−1 + · · · + wn0 r0 = 0, which shows w0s ∈ T and so
s/w = w0s/(w0w) ∈W−1T . �
For the second part, we may use the first part to see that the integral closure of W−1R[It]
in W−1R[t] is W−1S, where S is the integral closure of R[It] in R[t]. Comparing the
degree one parts (with respect to degree in t), shows that the integral closure of IW−1R
is IW−1R. �

2. We use induction on n. The case where n = 1 was done in class. If n > 1 and we
know the result for n− 1, first note that there is a compatible Zn−1 (or Nn−1) -grading on
both rings in which then (h1, . . . , hn−1) component is the sum of all the (h1, . . . , hn−1, s)-
components as s varies. By the induction hypothesis, each element of the integral closure
is a sum of elements u in which the first n− 1 indices are constant. Now put on Z (or N)
-grading where the degree h component is the sum of all the (s1, . . . , sn−1, h) components
as the first n − 1 indices vary. The result now follows at once by applying the result for
this grading and n = 1 to the elements u.

3. R is graded by Nn such that deg(xα) = α, and then Rα = Kxα. The integral closure of
an ideal is also therefore N-graded by Problem 2., and it suffices to determine when xβ is
integral over I. Consider an equation F (z) of integral dependence of xβ on I of degree n.
We get another such equation by taking only terms of degree nβ. By dividing by a power
of z, we may assume F has constant 6= 0. Let degzF = n. Since the nonzero constant term
in In has the same degree as xnβ , xnβ is in In, and so xβ ∈ I iff xnβ ∈ In for some n iff
for some n, h monomials xδ1 , . . . , xδh ∈ I, and a1, . . . , ah ∈ N such that a1 + · · · ah = n,
we have xnβ = (xδ1)a1 · · · (xδh)ah . The corresponding condition on exponent vectors is

nβ =
∑h
i=1 ahδi for δi ∈ L(I), and dividing by n, we see that this is precisely equivalent

to the statement that β is in the convex hull of L(I) over Q. �

4. The integral closure of IR[x] is homogeneous, and so it generated by elements of the

form rxn, r ∈ R. It suffices to show that for such an element in IR[x], one has r ∈ I.
This follows by applying the R-algebra homomorphism R[x]→ R that sends x 7→ 1, which
takes IR[x] onto I and so maps the integral closure of IR[x] into the integral closure of I,
which is I. Similarly, for the elements of the integral closure of IR[x] + xR[x], it suffices
to see that an element f ∈ R integral over this ideal is in I. In this case, one map apply
R-homomorphism R[x]→ R such that x 7→ 0. �

5. Note that mI contains mJ , which contains x5, x4y, and y5z3, and have that (x3y2z)3 =
(x5)(x4y)(y5z3) ∈ (mI)3, so that f = x3y2z is integral over mI. It suffices to show that
x3y2z is not in mI, and for this it suffices to show that the elements f/x = λ = x2y2z,
f/y = µ = x3yz and f/z = ν = x3y2 are not integral of (x4, y5z2). λ and µ are not in the
integral closure even if we specialize z 7→ 1, x 7→ t5, y 7→ t4 in K[t] and ν is not in even if
we specialize y 7→ 1 and z 7→ 0. �



6. Suppose that f , g are quasi-integral over R and M = Ru1 + · · · + Rus is a finitely
generated submodule of F containing all powers f and N = Rv1 + · · · + Rvt is a finitely
generated R-submodule of F containing all powers of g. Then the R-submodule W of F
generated by the st elements uivj is finitely generated and contains all products of elements
of M with elements of N . Hence, it is closed under addition and contains all f igj . Thus,
it contains all powers of fg and also all powers of f ± g. It follows that fg and f ± g are
also quasi-integral over R. �

EC1. To get the required power series root it suffices to show (1+z)1/n has a power series
expansion with coefficients in R if p does not divide n. We may then substitute b−2t for z.
Newton’s binomial theorem provides such a root where the coefficient of zk is ak/k! where
ak = ( 1

n )( 1
n − 1) · · · ( 1

n − k + 1). There is no problem if R contains the rationals. If R
contains Z/pZ and p does not divide n, it suffices to see that when ak is written in lowest
terms the denominator is not divisible by p, i.e., that the p-adic order of the numerator is
at least that for the denominator. Choose an integer N greater than all the p-adic orders
of the factors in the numerator. Then the since n is invertible mod p, it is invertible mod
pN , and we may choose a positive integer m ≥ k such that mn ≡ 1 mod pN . The p-adic
orders of the factors in the numerator don’t change when we replace 1

n by m, and the

result now follows from the fact that the ordinary binomial coefficient
(
m
n

)
is an integer.

Hence, there is a power series n th root of 1+b−2t in R[1/b][[t]], where p does not divide n if
the characteristic is p > 0, so that we can consider f as described, also in R[1/b][[t]]. Then,
since a is divisible by every power of b in R, af ∈ R[[t]], and so f is in the fraction field
of R[[t]]. Since fn = bn + bn−2t ∈ R[[t]], f is integral over R[[t]]. But, as the coefficients
of f include arbitrarily high negative powers with of b multiplied by scalars from the base
field, we have that f /∈ R[[t]].

EC2. We construct a one-dimensional ring R whose local rings are all fields and DVRs
such that Spec (R) is connected but R is not a domain.

Let H be an infinite totally ordered set with the property that between any two distinct
elements of H there is another element. Let {xh : h ∈ H} be a family of indeterminates
indexed by H: order them so that xh < xk precisely when h < k. We form a commutative
multiplicative semigroup S whose elements consist of 1 and the positive powers of the
individual xh. The multiplication is given by the rule that xmh x

n
k is

(1) xmh if h < k (2) xm+n
h if h = k (3) xnk if k < h (forced from (1) by commutativity).

The operation is easily checked to be commutative and associative: no matter how one
inserts parentheses, xmg x

n
hx

r
k will be the least of the three variables occurring, with the

exponent that is the sum of the exponents with which it occurs in the product. It is easy
to verify this by considering the three cases determined by the number of occurrences of
the smallest variable among the three terms.

Now let K be a field, and let R be the semigroup ring of S over K. We shall show that R
has connected spectrum and is locally a domain but not a domain. We first show that R
contains no idempotents except 0, 1 (thus, Spec (R) is connected) and no nilpotent except
0. Suppose one had such an element r. It cannot be a constant. Consider the highest
degree terms that occur, and from among them pick the one with the largest variable:
suppose that this term is cxdh, where c ∈ K − {0}. Then the expansion of r2 involves a



term c2x2dh and only one such term occurs: it cannot be canceled. This term shows that
r2 6= 0, and also that r2 6= r, since deg(r2) > d.
R is not a domain, since if h < k, xh = xhxk and xh(1−xk) = 0. (These relations generate
the ideal of relations on the xh, although we do not need this.) To show that R is locally a
domain, we study the prime ideals of R. Call J ⊆ H an upper (respectively, lower) interval
if whenever h ∈ J and k > h (respectively, k < h) then k ∈ J as well.
Given a prime ideal P , let JP denote the subset of H consisting of those h such that
xh /∈ P . Note that if xh /∈ P then for all k > h, xh(1 − xk) = 0 implies that 1 − xk ∈ P ,
and so k ∈ JP as well. Hence, JP is an upper interval in H. Evidently, the set IP of h
such that xh ∈ P is a lower interval. Note that IP , JP give a partition of H such that
every element of IP is less than every element of JP . We now consider what happens when
we localize at P . If k is an element of JP but not a least element, then we can choose
xh /∈ P with h < k, and the equation xh(1 − xk) = 0 forces xk to be identified with 1
in the localization for all k except possibly the least element in JP . If g is any element
of IP other than the greatest, we can choose h ∈ IP with g < h, and then the equation
xg(1 − xh) = 0 forces xg to become 0 in the localization. Our assumption on the totally
ordered set implies that either IP has no greatest element, or JP has no least element.
If there is no greatest element in IP and no least element in JP the localization is K. If
xh is greatest in IP or least in JP , all other xk are identified with 0 or 1 after localizing at
P . The local ring one gets is a localization of the polynomial ring K[xh]. This shows that
R is locally a domain and has Krull dimension 1. �


