
Math 615, Fall 2019 Problem Set #2: Solutions

1. In Ŝ = K[[x, y]], we have that In = (y − f, xn+1) ⊆ (y − f) + m̂n, where m̂ =
(x, y)K[[x, y]]. Since ideals of a complete local ring are m̂-adically closed,

⋂
n(InK[[x, y]]) is

(y−f)K[[x, y]], which must contain the intersection of the In in S. But (y−f)K[[x, y]]∩S =
(0). To see this, note that we can clear denominators and so, if the intersection is nonzero,
we can find a nonzero polynomial G(x, y) ∈ K[x, y], that is a multiple of (y − f). There
is a homomorphism K[[x, y]] → K[[x]] that is the identity on K[[x]] and sends y 7→ f . If
G = H(y − f), then G 7→ 0 under this homomorphism, i.e., G(x, f) = 0. This contradicts
the transcendence of f over K(x). It is clear that y − f ∈ In −m2.

2. Since R is universally catenary and S is module-finite over R, which implies finitely
generated as an R-algebra, we may apply the dimension formula. Since S is module-
finite over R, we also have that S/Q is module-finite over R/P . It follows that both
transcendence degrees are 0, and so height (Q)− height (P ) = 0, as required.

3. We shall prove by Noetherian induction that the homogeneous maximal ideal always
has the largest height: that is we kill a maximal element of the set of homogeneous ideals
I such that R/I is a counterexample. Thus, we may assume the result is true for any
quotient by a homogeneous ideal. Suppose that the homogeneous maximal ideal is M
and Q is another maximal ideal of greater height. Since any maximal chain of primes
descending from Q ends in a minimal prime, which must be homogeneous, we still have
a counter-example after killing one of the homogeneous minimal primes. Thus, we may
assume without loss of generality that the ring is a domain. If Q contains a nonzero
element a ∈ A (which must be a non-unit and so in m) then a ∈ Q and a ∈M. When we
kill aR, both heights drop by one, and we still have a counterexample. Therefore, we may
assume that Q does not meet A. Thus, Q corresponds to a prime ideal of S = (A−0)−1R,
which is an N-graded algebra with S0 = L = frac (A). Hence, Q has the same height as
the unique homogeneous maximal ideal of S, which is JS. But since the prime J of R is
contained in M = m + J , we then have height (Q) ≤ height (M). �

4. Since `(Jn/In) = `(R/In) − `(R/Jn), it has polynomial behavior for n � 0. There
exists a nonzero element c of R such that cJn ∈ In for all n, i.e., c kills Jn/In. If c is a
unit, Jn/In = 0, and we assume otherwise. From the exact sequence 0 −→ AnnR/Inc −→
R/In

c·−→ R/In −→ (R/In + cR) −→ 0, we have that the alternating sum of the lengths of
these modules is 0. The middle terms cancel, and it follows that `(Jn/In) ≤ `(AnnR/Inc) =

`(R/(In + cR). We can rewrite the rightmost term as `(R/An), where R = R/cR and
A = IR. This length is the Hilbert function of IR, and dim (R) < d. �

5. Since I ↪→ R and S is K-flat, I ⊗K S ↪→ R ⊗K S = T and may be identified with
IT . IT is integrally closed by a previous exercise, since T is a polynomial ring over R.
Similarly, R⊗K J ↪→ T may be identified with JT and is integrally closed. But the image
I ⊗K J in T is the intersection of the images of I ⊗K S and R⊗K J (this is simply a fact
about K-vector spaces), and since the intersection of two (or any number) of integrally
closed ideals is integrally closed, it follows that the image of I ⊗ J in T is an integrally
closed ideal.



6. We need to show that u /∈ In implies that u /∈ InVij for some choice of i, j. (The other

direction is obvious.) But if u /∈ In we can choose a map R ↪→ V for some DVR V such
that u /∈ InV . Now IV is principal, and one of the fi generates. Hence, for some choice
of i, R[f1/fi, . . . , fn/fi] ⊆ V . Since V is integrally closed, it follows that for this choice
of i, Bi ⊆ V . Since y /∈ InV , we have u /∈ InBi = fn

i Bi. Since Bi is a normal Noetherian
ring, the associated primes of fn

i Bi are the same as the minimal primes of fn
i Bi, and these

are the same as the minimal primes of fiBi. We can choose one of these, say Pij , such
that u is not in the Pij-primary component of fn

i , i.e., u /∈ fn
i (Bi)Pij ∩ Bi. In particular,

u /∈ fn
i Vij = InVij . �

EC3. The analytic spread will be the same as the dimension of the ring B generated by
the minors (which always means 2× 2 minors here), by a class theorem. If r = 2 or s = 2
and the other is at least two, the dimension of the ring generated by the minors is rs− 3.
To see this, we may assume without loss of generality that r = 2 ≤ s: we must show
that the dimension is 2s− 3, and this is the same as the transcendence degree of the field
generated by the minors. Consider the 2s− 3 minors involving the first or second column
or both. We shall show that these are algebraically independent and generate the fraction
field of B. To see independence, specialize x11 to 1 and x21 and x12 to 0. The minors then
yield, up to sign, x2j for j ≥ 2 and x22x1j for j ≥ 3, which generate the same field as the
2s− 3 (unspecialized) variables in the matrix. Since the specified minors are algebraically
independent even after specialization, they are algebraically independent. Let Mij denote
the minor determined by the i, j columns for i < j. For 2 < i < j, a straightforward
calculation shows that one has the relation M12Mij −M1iM2j +M1jM2i = 0, and one can
solve for Mij in terms of minors involving the first or second column. Hence, every Mij is
in the field K(M1i,M2j : i, j). �

If r, s ≥ 3 the dimension of B is rs. To see this it suffices to show that the field F generated
by all the variables is algebraic over the field generated by the minors. Since each variable
occurs in some 3 × 3 submatrix, it suffices to prove this when r = s = 3. Let X∗ denote
classical adjoint of X, the transpose of the cofactor matrix. Note that the entries of X∗

are the 2 × 2 minors of X, up to sign. Let D = det(X). Then XX∗ = DI. Taking
determinants, we have D det(X∗) = D3, and det(X∗) = D2 ∈ F . Thus, D is algebraic
over F . But X−1 = (1/D)X∗ has entries in F [D], and then X = (X−1)−1 has entries in
F [D] as well. Thus, all the variables are algebraic over F . �

EC4. Assuming that the algebra is finitely generated we can assume that R + P (n)tn +
P (2n)t2n+ · · · is generated by P (n)tn for some integer n. This implies that (P (n))k = P (nk)

for all k ≥ 1. Let q = P (n). Then S = grqR = R/q+q/q2+ · · ·+, and every element of R/q

is a nonzerodivisor on S (since the qk are symbolic powers of P ) over the one-dimensional
ring R/q. Thus, if we kill a nonzero element in the maximal ideal of R/q, the dimension of
the ring must drop, and is at most one. It follows that the Krull dimension of R/m⊗RS is
at most one. But this means that the analytic spread of q is 1. If the field is infinite, q is the
integral closure of a principal ideal. If the field is finite, there will still be a homogeneous
parameter in R/m ⊗R S in some sufficiently high degree, and from this we can conclude
in this case as well that some power of q is the integral closure of a principal ideal and,
therefore, principal, since R is normal. �


