Math 615, Fall 2019 Problem Set #2: Solutions

1. In S = K[[z,y]], we have that I, = (y — f,2"™) C (y — f) + m"™, where m =
(x,y)K|[[z,y]]. Since ideals of a complete local ring are m-adically closed, (,, (I, K[z, y]]) is
(y—f)K|[[z,y]], which must contain the intersection of the I, in S. But (y— f)K|[x, y]|NS =
(0). To see this, note that we can clear denominators and so, if the intersection is nonzero,
we can find a nonzero polynomial G(z,y) € K|z,y|, that is a multiple of (y — f). There
is a homomorphism K{[z,y]] — K[[z]] that is the identity on K[[z]] and sends y — f. If
G =H(y— f), then G — 0 under this homomorphism, i.e., G(x, f) = 0. This contradicts
the transcendence of f over K(x). It is clear that y — f € I,, — m?.

2. Since R is universally catenary and S is module-finite over R, which implies finitely
generated as an R-algebra, we may apply the dimension formula. Since S is module-
finite over R, we also have that S/Q is module-finite over R/P. It follows that both
transcendence degrees are 0, and so height (@) — height (P) = 0, as required.

3. We shall prove by Noetherian induction that the homogeneous maximal ideal always
has the largest height: that is we kill a maximal element of the set of homogeneous ideals
I such that R/I is a counterexample. Thus, we may assume the result is true for any
quotient by a homogeneous ideal. Suppose that the homogeneous maximal ideal is M
and Q is another maximal ideal of greater height. Since any maximal chain of primes
descending from Q ends in a minimal prime, which must be homogeneous, we still have
a counter-example after killing one of the homogeneous minimal primes. Thus, we may
assume without loss of generality that the ring is a domain. If Q contains a nonzero
element a € A (which must be a non-unit and so in m) then a € Q and a € M. When we
kill aR, both heights drop by one, and we still have a counterexample. Therefore, we may
assume that Q does not meet A. Thus, @ corresponds to a prime ideal of S = (4 —0)"!R,
which is an N-graded algebra with Sy = L = frac (A). Hence, Q has the same height as
the unique homogeneous maximal ideal of S, which is JS. But since the prime J of R is
contained in M = m + J, we then have height (Q) < height (M). O

4. Since £(J"/I™) = ¢(R/I™) — ¢(R/J"), it has polynomial behavior for n > 0. There
exists a nonzero element ¢ of R such that ¢J™ € I™ for all n, i.e., ¢ kills J?/I™. If ¢ is a
unit, J"/I" = 0, and we assume otherwise. From the exact sequence 0 — Anng/mc —

R/I™ = R/I™ — (R/I™ 4 cR) — 0, we have that the alternating sum of the lengths of
these modules is 0. The middle terms cancel, and it follows that £(J" /I") < £(Anng,nc) =
((R/(I"™ + cR). We can rewrite the rightmost term as £(R/A"), where R = R/cR and
2l = IR. This length is the Hilbert function of IR, and dim (R) < d. O

5. Since I — R and S is K-flat, ] ®x S — R®xk S = T and may be identified with
I'T. IT is integrally closed by a previous exercise, since 7' is a polynomial ring over R.
Similarly, R ® g J — T may be identified with JT and is integrally closed. But the image
I ®k J in T is the intersection of the images of I ® x S and R ® J (this is simply a fact
about K-vector spaces), and since the intersection of two (or any number) of integrally
closed ideals is integrally closed, it follows that the image of I ® J in T is an integrally
closed ideal.



6. We need to show that u ¢ I" implies that u ¢ I"V;; for some choice of i, j. (The other
direction is obvious.) But if u ¢ I™ we can choose a map R < V for some DVR V such
that u ¢ I™V. Now IV is principal, and one of the f; generates. Hence, for some choice
of i, R[f1/fi,--., fn/fi] € V. Since V is integrally closed, it follows that for this choice
of i, B; CV. Since y ¢ I"V, we have u ¢ I"B; = fI'B;. Since B; is a normal Noetherian
ring, the associated primes of f/'B; are the same as the minimal primes of f;*B;, and these
are the same as the minimal primes of f;B;. We can choose one of these, say F;;, such
that u is not in the P;;-primary component of f, i.e., u & f*(B;)p,, N B;. In particular,
wg [V =1V, O

EC3. The analytic spread will be the same as the dimension of the ring B generated by
the minors (which always means 2 x 2 minors here), by a class theorem. If r =2 or s = 2
and the other is at least two, the dimension of the ring generated by the minors is rs — 3.
To see this, we may assume without loss of generality that » = 2 < s: we must show
that the dimension is 2s — 3, and this is the same as the transcendence degree of the field
generated by the minors. Consider the 2s — 3 minors involving the first or second column
or both. We shall show that these are algebraically independent and generate the fraction
field of B. To see independence, specialize x1; to 1 and x9; and 12 to 0. The minors then
yield, up to sign, xg; for j > 2 and xgsxq; for j > 3, which generate the same field as the
2s — 3 (unspecialized) variables in the matrix. Since the specified minors are algebraically
independent even after specialization, they are algebraically independent. Let M;; denote
the minor determined by the 7,5 columns for ¢ < j. For 2 < i < j, a straightforward
calculation shows that one has the relation Mo M;; — My;Ms; + My ;Ms; = 0, and one can
solve for M;; in terms of minors involving the first or second column. Hence, every M;; is
in the field K(MM, ng : Z,j) O

If r, s > 3 the dimension of B is rs. To see this it suffices to show that the field F' generated
by all the variables is algebraic over the field generated by the minors. Since each variable
occurs in some 3 X 3 submatrix, it suffices to prove this when r = s = 3. Let X* denote
classical adjoint of X, the transpose of the cofactor matrix. Note that the entries of X*
are the 2 x 2 minors of X, up to sign. Let D = det(X). Then XX* = DI. Taking
determinants, we have Ddet(X*) = D3, and det(X*) = D? € F. Thus, D is algebraic
over F. But X~1! = (1/D)X* has entries in F[D], and then X = (X~1)~! has entries in
F[D] as well. Thus, all the variables are algebraic over F. [J

EC4. Assuming that the algebra is finitely generated we can assume that R + P(™M¢" +
P27 ... s generated by Pt for some integer n. This implies that (P(™)* = p(nk)
forall k > 1. Let ¢ = P"™). Then S = gr R = R/q+q/q*+- -+, and every element of R/q
is a nonzerodivisor on S (since the ¢* are symbolic powers of P) over the one-dimensional
ring R/q. Thus, if we kill a nonzero element in the maximal ideal of R/q, the dimension of
the ring must drop, and is at most one. It follows that the Krull dimension of R/m®pg S is
at most one. But this means that the analytic spread of ¢ is 1. If the field is infinite, q is the
integral closure of a principal ideal. If the field is finite, there will still be a homogeneous
parameter in R/m ®p S in some sufficiently high degree, and from this we can conclude
in this case as well that some power of ¢ is the integral closure of a principal ideal and,
therefore, principal, since R is normal. [J



