
Math 615, Fall 2019 Problem Set #3: Solutions

1. R is the K-span of all monomials of even degree and those of odd degree that are
multiplies of x3i for some i. It follows that the x3i and x21 · · ·x2n are in the conductor, and
generate it: if say xn does not occur in µ = xa11 · · ·x

an−1

n−1 x
an
n with all aj ≤ 2 and some

ai < 2, then µ has even degree and xiµ /∈ R.

2. We map R[X1, . . . , Xn] � S by Xi 7→ xi all i. If µ = µ(X) is any monomial of degree
d in the Xj , then µ(X) 7→ µ(x) ∈ R, and the differences µ(X)− µ(x) generate the kernel,
since killing them is sufficient to identify the image of R with the K-isomorphic subring
of R[X1, . . . , Xn] generated by monomials of degree d in the Xj . The elements µ(x)
are all killed by the ∂/∂Xj , and so we obtain the matrix (∂µ/∂Xj) as µ runs through all
monomials of degree d in the Xj . When we take size n minors and evaluate, we get elements

of degree n(d − 1) in the xj . Hence, JS/R is contained in (x1, . . . , xn)n(d−1)S. We show
that they are equal: we obtain every monomial as a Jacobian minor. After renumbering
the variables we may assume the monomial has the form µ(x) = xa11 · · ·xann where we have
that a1 ≥ a2 ≥ · · · ≥ an. From these inequalities, a1 ≥ d − 1, a1 + a2 ≥ 2(d − 1), and,
in general, a1 + · · · + ai ≥ i(d − 1), 1 ≤ i ≤ n. It follows we can factor µ(X) in the
form µ1 · · ·µn, all of degree d − 1, where µ1 involves only X1, µ2 involves only X1 and
X2, and so forth: µi involves only X1, . . . , Xi, 1 ≤ i ≤ n. (In choosing µj once µi for
i < j has been picked, use the highest power of the lowest numbered variable available
before using any higher numbered variables.) Then the Jacobian submatrix corresponding
to the partial derivatives of µ1X1, µ2X2, . . . , µiXi, . . . , µnXn is upper triangular, and the
diagonal entries have the form b1µ1, b2µ2, · · · , bnµn, where for every i, 1 ≤ bi ≤ d, so that
the bi are invertible in K. Hence, the image of the corresponding Jacobian determinant in
S is a unit times µ(x). �

3. Since x 7→ u has order 1, T1 is the localization of R[y/x] at the prime ideal lying under
uV . The map of R[x, y/x] → V sends x 7→ u and y/x 7→ zt, which is a unit of V . The
image of R[x, y/x] in the residue class field C(t) of V is R(it), where i is the image of z.
Since this is transcendental over R, the dimension formula implies that T1 has dimension
1, and must be the localization of R[x, y/x] at xR[x, y/x]. The residue class field of T1
may be identified with R(it) ⊆ C(t). Since T1 has dimension one, the quadratic sequence
ends with T1.

4. Let D = R[x2/x1, . . . , xn/x1] =
⋃∞
n=0m

n/xn1 . T1 is D localized at the prime ideal
of elements of positive m-adic order. This ideal may also be described as

⋃∞
n=0m

n/xn1 ,
and is generated by x1. Killing x1 in D gives K[y2, . . . , yn], a polynomial ring, by a class
theorem, where yj is the image of xj/x1 for j ≥ 2, and so the residue class field of the first
transform is K(y2, . . . , yd). By the dimension formula, dim (T1) = 1 and the sequence ends
with T1, which must be the same as the valuation ring of the fraction field corresponding
to the m-adic order valuation, and is essentially of finite type over R.

5. After each transform, we still have local maps R ⊆ Ti ⊆ V , and if Ki is the residue
class field of Ti, we have K ⊆ Ki ⊆ K, so that the extension of residue class fields from R
to Ti is an isomorphism. It follows that the Krull dimension of every Ti is 2, and so the
sequence of quadratic transforms does not terminate.



6. Let t1, . . . , tn be indeterminates over R and let S = R[I1t1, . . . , Intn] ⊆ R[t1, . . . , tn].
This domain is finitely generated over K (choose finitely many generators fij for each Ij
and use the the fijtj as generators of S). The normalization S′ of this ring is contained
in R[t1, . . . , tn] and, by a class theorem, graded by the monomials in the tj : hence, it has
the form

∑
i Jit

i where i runs through elements (i1, . . . , in) of Nn. S′ is module-finite

over S by a class theorem. (What we need about R is that the normalization of a domain
D finitely generated over R is module-finite over D: this also holds when R is complete
local or, more generally, excellent.) If one chooses a homogeneous equation of integral
dependence for rti one sees that the condition for integral dependence is precisely that

r ∈ Ii. This means that Ji = Ii. The stated condition now follows easily if c is the
maximum of the degrees of finitely many homogeneous S-module generators for S′.

EC5. K → S splits as a map of vector spaces: let θ : S → K be a splitting. It follows that
R → R ⊗K S splits as a map of R-modules, using idR ⊗ θ as the splitting. This implies
that R is normal. The proof for S is similar.

C⊗K D is an ideal of both A⊗K B and of R⊗K S. We shall show that it is the conductor
J . Since C ⊗K D is the intersection of C ⊗K S and R ⊗K D, it suffices to show that J is
contained in the intersection of these. By symmetry, it suffices to show that J is contained
in C ⊗K S. Choose a K-basis hν for S. Then R ⊗K S is a free R-module on the basis
1 ⊗ hν , A ⊗K S is a free A-module on the basis 1 ⊗ hν . Suppose that

∑t
j=1 rj ⊗ hj is in

J . Then for every r ∈ R,
∑t
j=1 rrj ⊗ hj is in A ⊗K B ⊆ A ⊗R S, and this is only true if

all the rrj ∈ A. But if every rrj ∈ A, then all the rj ∈ C, as required. �

EC6. It suffices to show that if a, b ∈ m − {0} then a|b or b|a. We follow the suggested
plan. Since principal ideals are integrally closed, R is normal. It follows that R[t] and its

localization R(t) are normal. By a calculation in class, every aibn−i is in (an, bn)R and,
hence, in (an, bn)R. Thus, with I = (a, b)R we have In = (an, bn)R, and this continues
to hold when we expand to R(t). It follows that the length of InR(t)/mInR(t) is at most
two, and so the Hilbert polynomial of K(t)⊗R(t) grIR(t)R(t) is a constant. t follows that

the Krull dimension of this ring is 1, and so the analytic spread of IR(t) is one, and IR(t)
is integral over a principal ideal. Since R(t) is normal, principal ideals are integrally closed,
and, therefore, (a, b)R(t) is principal. By Nakayama’s lemma, either a or b is a generator:
suppose a is. Then b ∈ aR(t). Since R(t) is faithfully flat over R, this impilies b ∈ aR. �


