Math 615, Fall 2019 Problem Set #4: Solutions

1. By a theorem in the notes, S = R[Ya,...,Y,]/I where I = (¢1,...,9n—1) if we take
gi = }Y;41 — mipq for i > 1. Since each of the quotients R[Y2,...,Y,]/(g1, ... ,g:) is
an integral domain, namely R[xs/z1,... ,xiv1/21]|[Yit2, --- Yul, 91, -+ , gn 1S a regular
sequence and it is clearly special: there is only one prime, which it generates even without
localization. Jg/r is generated by the determinant of a size n — 1 upper triangular matrix

in which all the diagonal entries are x7. Thus, Jg/p = xi(n_l)R, and W C frac (R) is the

. t(n—1
cyclic S-module generated by 1/ wl( ),

2. We can write S = R[Z1, Z5]|/I where Z;, Z map to X3Y, XY 3 respectively. X* = x and
Y*4 = y are already in R. Note that I contains the elements g, = Z; —12Zs, go = Z3—y*Z5
and f = 217y — xy, g = yZ? —xZ2. S has a K-basis consisting of all monomials in X,Y
of total degree a multiple of 4 except X2Y?2. Setting g1 = go = f = g = 0 provides
sufficient relations to write any monomial in S as z'y/Z¢ where 0 < a < 2 or x'y’ Z}
where i = 0 and b < 2 or ¢ > 0 and b < 1 (the image of these is a K-basis for 5).
Hence, g1, g2, f, g generate I. Moreover, g, = Z3 — 2275 and gy = Z3 — y?Z, are special:
they are clearly a regular sequence, since they are monic in distinct variables, and the
Jacobian determinant is the image of (32%2)(322) — (—x2)(—y?) = 922y? — 2%y? = 82%y?,
which is not 0. Thus, Wy, is the image in L = frac (S) of (g1,92) : I = (91, 92) : (f,9)
under the map sending u — /8(xy)?, where @ is the image of u in L. First note that
Klx,y,Z1,Z2]/(g1,92) is free over K|z, y| and z, y are not zerodivisors modulo (g1, g2). We
shall show that (g1,92) : I = (F,G, H)+(g1,2 ) where F = Z2Zs+axyZ1,G = 2123 +xyZs,
and H = ny + :1:222. (Note that Ff = Z2291 + 122Gy, Fg = Z1Zsyg1 — Zf:cgz, that
Gf,Gg € (91,92) by symmetry, Hf = yZog1 + X Z1Ga, and Hg = y*Z1g91 — 2°Zags.) To
see that no other element () is in the colon, note that by subtracting off multiples of these
elements and g7, go we can assume that such an element aZ12 + l1222 +cl1Zo+dZy+eZs+ f
where the lower coefficients are in K[x,y] is at worst quadratic in Z7, Z5. Moreover by
subtracting off a multiple of G we can assume that the coefficient of Z3 in K|x,y] contains
no term involving . We may also assume that the element is homogeneous in the N2
grading on K{z,y, Z1, Zs] such that the degrees of xz,y, Z1, Zs are (4,0),(0,4),(3,1), and
(1,3), respectively. The leading term of this element must multiply the leading terms of f
into (Z3,73), and it must be in Z%, Z1Z,, Z3. Hence, at least one of a, b, ¢ is not 0.

If b # 0 has degree (0, 4t), then all terms of () have degree (2,4t + 6). This forces a = ¢ =
d = e = f =0, and the element has the form y**Z2. Since y is not a zerodivisor on (g1, g2),
this implies Z3 € (g1, 92) : [. But Z3f = 2173 —ayZ3 = Ziga+y*Z1 2o — 2y Z3 ¢ (91, 92),
since y2 2129 — xyZ3 ¢ (g1, 92) (its term of highest degree in Z1, Z, is not in (Z3, Z3).)
Hence, b = 0. If a # 0 has degree (4s, 4t) the first term in @ has degree (4s+6,4s+2). This
forces b = ¢ = e = f = 0. This would mean that z°y*Z? is in the colon, and that would
force Z2 in (g1, g2) : I, which is false by symmetry. Finally if a = b = 0, then working mod
4 the bidegree of ¢Z;Z5 is (0,0). This forces d = e = 0. So the only remaining possibility
is 25y  Z1 Z + ax®ly**! where a € K. Since x,y are nonzero divisors mod (g1, g2), this
would imply Z1Zs + axy € (g1,92) : I. But (Z17Z5 — axy) f has leading term (with respect
to degree in Zy,Zy) Z2Z3 ¢ (Z3},7Z3), which eliminates this possibility. Thus, (g1, ¢2) : I
is as described. Taking images in L and dividing by the Jacobian 8z2y%, we obtain three



generators: ((X3Y)?(XY?) 4+ X*Y*(X3Y))/8X8Y® = X'V ~3/8 from F, X 3Y !, by
symmetry, from G, and (Y*(X3Y)? + X*(XY3)?))/8X8Y® = X 2Y~2/4 from H. Since
two is invertible in the field, Wg/p = X ?Y 715 + X2y 25 4 X 1Y 38 C frac(S).

For S’ we introduce a third generator, Z3 — x?y? over K[x,y]. We get six new generators
for the ideal of relations: these are 2 x 2 minors of the matrix ( T Ly 2y 2 ) Once

Zy Zs Zy oy
we map to S’ the image of the second row is Y/X times the first row. S’ is normal: it is
a direct summand of K[X,Y] as an S’-module (the complement is spanned over K by all
monomials of degree not divisible by 4). Since S’ is normal, Ws/, g = S’ :p Js/r. These
six elements, (#) le — acZg,acZg — leg, 21Z2 -2y, Z32 — 21Z2, ZQZg — yZl, 222 — yZ?,
generated Ker (R[Z1, Z2, Z3) — S’: a basis for S’ over K consists of all monomials x’y’ Z%
where 0 < a < 1and mis 1, 2, or 3, and the relations one gets by setting the elements (#)
equal to 0, which imply Z2 —xy = 0 as well, can be used to show that every monomial in S’
is congruent to a basis element. We replace Z3 — Z1 Z, by its sum with Z; Z —xy, i.e, with
221 —Z3 Z2 0 -y 0
Z§ —xy. We then get a 3 x6 Jacobian matrix, 0 x 1 0 Z3 275 |. Since
—X —Z1 0 2Z3 Z2 —Y

2 is invertible in K, it is straightforward to see that the ideal generated by the images of
size 3 minors is generated by the elements X3Y?, X4Y8 ... Xiy12=i X8y+4 X9Y3.
It follows that W/, is spanned over S’ by the elements X3y, X2y—2 X-1y—3 By
a class theorem, Wg,/p C Wg/g, and so in this example they are the same.

3. Quite generally if M; is torsion-free over the domain R; for 1 = 1,2 and Rz = Ry ®k Ro
is a domain, then M; ® M is torsion-free over R3. (This is true even when K need
not be a field if, say, My, Ry are flat over K.) Since each M; is a directed union of
finitely generated submodules it suffices to do the case where the M; are finitely generated
modules. Since M, is torsion-free, it embeds in G;, a finitely generated free R;-module.
Then M, Qg My — M; @ Go — G1 @k Go, and the latter is free over Rz. If S; is
generated over R; by s;1,...,8;,, the elements s;; ® 1 and 1 ® s generate S; ® Sy
over R3. Finally, let K; be the fraction field of R; for i = 1,2,3. Note that L = K1 ®k
Ko C K3: L is not a field, but its fraction field is 3. Then, by hypothesis, cK; ® S;
is a finite product of separable field extensions F;; of K;. We have in consequence that
K3®R5(S1 @k S2) 2 Ks®r (L®p, ®(S1 @K S2)) = K3®p (K1 ®g, S1)®k (Ko ®g, S2)) =
Ks ®r, ((H?zl Fij) @k (HZ:1 Flk)) o ijk(ng ®r (Fij @k Faj). Therefore, it suffices
to show that each B, = K3 ®r (F1; ®k For) is a finite product of finite separable field
extensions of 3. Now each of Fi ;, Fa ;, has the form K;[Z;]/(F;), ¢ = 1,2, where F; is a
separable monic polynomial in Z; over K;. We have Bj, = K3[Z1, Z2]/(F1, F»). Since Fy
is a separable polynomial, 3[Z1]/(F1) is a product of separable field extensions G; of s,
and for every j. G;[Z2]/(F2) is a finite product of separable field extensions of G;. Thus,
the extension is generically étale.

4. This identification can be made. If we have a presentation S; = T3/l with special
sequence g1, ..., g, and Sy = Ty /5 with special sequence hq, ..., h,, then it is straight-
forward to see that Sg = Sl XK SQ = Tg/([l X TQ + T1 X Il>, with T3 == T1 KRXK TQ.
Also g1, ... ,gn,h1, ..., hy is a special sequence. Then Wg, /p, may be computed us-



ing the map that takes each element of ((g,h) :1, (I1 + I2))/(g,h) represented by w
in the numerator ideal to w/v, and the Jacobian determinant gz;mma is easily verified
to be y172, where 71, 72 are the Jacobians associated with g and h, respectively. Now
(9,h) 7y (L + I2) = ((9,h) i1y 11) N (g,h) i1, I). The first term may be identified
with (g) oy, 1 @ To + Th ®k (h) (this is an instance of the class result that colons of
finitely generated ideals commute with flat base change, since we may work mod (h)7T5
and Ty @ (T2/(h)Tz) is flat over T1), and the second with T ®@x (h) 1, I2 + (g) @k Tb.
Hence, the intersection may be identified with ((g) iy [1) ®k ((h) i1, I2). Thus, ((g,h) :
(I + 12))/(g:h) = ((9) 'y 11/(9)) ©x (1) 21, I2/(R)), and W r = W, /r, @k W, /R,
follows from the identification of v with v172: note that (v ® v)/v = (u/v1) ® (v/v2). O

5. Note that mod the sum of the cubes, every element can be represented uniquely in the
form f+ gz + hz? where f,g,h € K[x,y]. If we take ¢ = z, to show that 2% € I* it suffices
to show that z(22)9 € (229,429) for all q. Let a be the remainder when 2¢ + 1 is divided
by 3, and write 2¢ + 1 = 3h + a. Then cz? = 229! = (23)"29 and it suffices to show
that (22)" € (29,y9), i.e. that (23 +y3)" € (29,99). When the left hand side is expanded,
every term has the form z°y’ where s +t = 3h = 2¢ + 1 — a where 0 < a < 2. Hence,
s+1t>2g—1, and one of s, t is at least q.

I will leave the problem of showing that z ¢ I* as a continuing problem.

6. Yes, J = J*. Let r € J*. Then there exists an element ¢ € R not in any minimal prime
such that cu? € Jl for all ¢ > 0. If cu? € Jl4 = (I :g fR)9, it is a sum Z?Zl ru, where
each u; € I :p fR. Then fu; € I, and so flul € I9 for all 4. Tt follows that fi(cu?) € Ilal,
ie., c(fu)? € 19 for all ¢ > 0. Hence, fue I* =1, anduel:g fR=J. O

EC7. Since R4 is faithfully flat over R, B = R/? ®p S is faithfully flat over S. Hence,
elements of S—{{0} and of R—{0} are nonzerodivisors on B, and if tensor with K = frac (R)
we obtain that R/ ®r S C K ®@p (RY1®r S) 2 (K ®r K) ®r (RY?®p S) = (by the
associativity of tensor) (K @p RV @r (K ®r S) = K9 ®pr L, where £ = (L). (With an
integral extension domain D of a domain R, inverting every element of R—{0} inverts every
element of D — {0}, since each nonzero element of D has a nonzero multiple in R.) The
tensor product of two modules over W ! R is the same whether the base is taken to be R or
W~IR, so the last term becomes K/9®x L. Because L is separable over K, £ = K[X]/(F)
where F' is a separable monic polynomial in X, and the tensor product is K/ [X]/(F),
which is reduced. Thus, £/9® L is reduced. Every element u has the form Z;Zl a}/ 1@,
with the a; € K and the A; € £. Then u? ), ta®\1 =1® Z;:1 a; @A € L, and so is
a unit if it is not zero. Since K'/? @k L is reduced, every nonzero element u has a nonzero
power in £ that is a unit, and so every nonzero element is a unit. Thus, £/? @k £ is a
field, and the map K/ @, £ — £ induced by K/? C £1/9 and £ C £/ is injective,
with image F = K4[L]. Thus, R/9 ®p S — S/ is injective, with image B = R'4[S].
We claim that F = £Y%. To see this note that [F : K9] = [L : K] = [L'/9 : K'/q].
Hence, the fraction field of R[1/¢][S] is the same as the fraction field of S'/9, namely,
L£1/4. Hence, S'/4 is contained in the integral closure of R/ 7]S]. By the Lipman-Sathaye
theorem, jB/Rl/qSlq € B. Butif S=T/(Fy, ..., F,) is a presentation over R, where T’



is a polynomial ring over R, then B = RY/1®@T/(Fy, ... ,F,,) is a presentation over R/
It follows that Jp/p1/a = Js/rB, and so Js/pSY1 C B. [

ECS8. Ass(Hompg(M, N)) is the set of associated primes of N that contain a minimal asso-
ciated prime of M, i.e., that are in the support of M. To see this, let mq, ... , my generate
M. Then we have a map Hompg (M, N) — N®" such that f ~ (f(my),..., f(mn)), and it
is injective because f is 0 iff all the f(m;) = 0. Hence Ass (Hompg (M, N)) C Ass (N®h =
Ass (N). Also, if Q € Ass (Hompg(M, N)), the QR remains amidng the associated primes
when we localize at @, and since Homg (M, N)q = Hompg, (Mg, Ng), this can only happen
when Mg # 0, ie., when @ € Supp (M). Conversely, suppose that @ € Supp(M) and
Q € Ass(N). We want to show that Q € Ass (Hompg (M, N). Both the hypotheses and the
conclusion are unaffected if we replace R,Q, M, N by Rq,QRqg, Mg, Ng, and so we may
assume without loss of generality that (R, Q) is local, that M # 0, and that Q € Ass(N),
so that the residue class field K injects into N as an R-module. It suffices to give a sur-
jection M — K: the composite map M — K < N will have annihilator Q. But M/QM
is a nonzero K-vector space by Nakayama’s lemma, and so there exists a surjection of

M/QM — K and hence M - M/QM — K. O



