
Math 615, Fall 2019 Problem Set #5: Solutions

1. Let q = pn = 4h + ιn, where ιn is 1 or 3. Then (z3)q = (z3)4h+ιn = (z4)hz3ιn =
±(w4+x4+y4)3hz3ιn . When we expand, at least one of the exponents on w or x or y is 4h.
Hence, taking c = (wxy)3 (not the most efficient choice), we have that c(z3)q ∈ (w, x, y)[q],
since 4h + 3 ≥ q, and so z3 ∈ (w, x, y)∗. If q = p and ι1 = 1, z3p = (w4 + x4 + y4)3hz3,
and 1, z, z2, z3 is a free basis for R over the polynomial ring K[w, x, y]. Every term in the

expansion is in (wp, xp, yp) except (3h)!
(h!)3w

4hx4hy4hz3, and so zp /∈ I [p]. If q = p and ι1 = 3,

z3p = z12h+9 = (z4)3h+2z = ±(w4 + x4 + y4)3h+2z. When we expand, at least one of the
exponents on w4, x4, or y4 is at least h+ 1, and 4(h+ 1) > p, so that every term is in I [p].
Hence, zp ∈ I [p] if and only if p ≡ 3 mod 4.

2. If f ∈ IS ∩R then for all q = pn, fq ∈ I [q]S ∩R, and when we apply θ we obtain that
fqθ(1) ∈ I [q]. Since c = θ(1) 6= 0, f ∈ I∗. �

3. If f ∈ I∗ we have c nonzero such that cuq ∈ I [q] for all q � 0, where q = pm. Hence,
c(up

n

)q = cup
nq ∈ I [pnq] = (I [p

n])[q] for all q � 0, which shows that up
n ∈ (I [p

n])∗. Hence,
(I∗)[p

n] ⊆ (I [p
n])∗. �

4. Let S be the completed Veronese subring K[[x4, x3y, x2y2, xy3, y4]]. S is a direct
summand, as an S-module, of K[[x, y]]: the S-module complement consists of all power
series involving only monomials of total degree not divisible by 4. Hence, x4, y4, which
is a regular sequence on K[[x, y]], is a regular sequence on S, and Hi(x

4, y4;S) = 0 for
i ≥ 1. We have an exact sequence 0 → R → S → K → 0 where K is the R-module
R/mR and is generated by the image of x2y2 (note that mR multiplies x2y2 into R).
H2(x4, y4;R) = 0 since R is a domain, and so its length is 0. Since multiplication by x4

or y4 is 0 on K, H2(x4, y4;K) ∼= K, H1(x4, y4;K) ∼= K2, and H0(x4, y4;K) ∼= K. The
long exact sequence for Koszul homology yields 0 → K → H1(x4, y4;R) → 0 → K2 →
R/(x4, y4) → S/(x4, y4) → K → 0. Hence, H1(x4, y4;K) ∼= K has length 1. S/(x4, y4) is
spanned over K by the monomials 1, x3y, x2y2, xy3 and its length is 4. It follows that the
length of H0(x4, y4;R) is 2 + 4− 1 = 5, and χ(x4, y4;R) = 5− 1 + 0 = 4.

5. One gets minimal generators for a direct sum by taking minimal generators for each
summand, and it follows that a minimal first module of syzygies can be obtained as the
direct sum of minimal modules of syzygies of the summands. m is minimally generated by
(the images of) x and y, and rx+sy = 0 if and only if r ∈ m and s ∈ xR ∼= K. Thus K⊕m
is a minimal first module of syzygies of m. Suppose a minimal n th module of syzygies of
K has the form Kan ⊕mbn . By our earlier remark, man ⊕ (K⊕m)bn ∼= Kbn ⊕man+bn is a
minimal (n+1) th modules of syzygies of K, i.e., an+1 = bn and bn+1 = an+bn = bn−1+bn
for n ≥ 1. Since b0 = 0 and b1 = 1, bn = Fn, the n th Fibonacci number, and a minimal
n th module of syzygies ∼= KFn−1⊕mFn . The least number of generators of the n th module
of syzygies is Fn−1 + 2Fn = (Fn−1 + Fn) + Fn = Fn+1 + Fn = Fn+2, and this is the same

as the rank of n th free module in a minimal free resolution. Thus TorRn (K,K) ∼= KFn+2 .

6. Let C = B/A. The hypothesis implies that the finitely generatedR-module TorR1 (M,C)P
∼= TorRP

1 (MP , CP ) = 0, and so TorR1 (M,C) is supported only at m and has finite length.
In the long exact sequence for Tor coming from 0 → A → B → C → 0, consider



TorR1 (M,C)→M ⊗RA→M ⊗RB. The image of TorR1 (M,C) wiill have finite length and
so be killed by a power of r. Since r is not a zerodivisor on M ⊗R A, the image must be
zero, which proves the required injectivity. (It is not needed that R is a domain.) �

EC9. IfM is flat, TorRi (N,M) = 0 for allN and i ≥ 1 (a projective resolution ofN remains
acyclic when one tensors with M). From the long exact sequence for Tor it follows that

M is flat if TorR1 (N,M) = 0 for all N , so this condition is necessary and sufficient. Since
N is a directed union of finitely generated modules and Tor commutes with direct limit, it
suffices if TorR1 (N,M) = 0 when N is finitely generated. In this case, N has a filtration by

cyclic (in the Noetherian case, prime cyclic) modules. We now prove that if TorR(N,M)
vanishes when N is cyclic (resp., prime cyclic) then it vanishes for all finitely generated
modules N . This follows by induction on the length n of the filtration: the case n = 1 is
given, and, for the inductive step, there is a short exact sequence 0→ R/I → N → N ′ → 0
(where I is prime in the Noetherian case), and N ′ has a filtration whose length is shorter
than the filtration of N . We may apply the long exact sequence for Tor (we only need the

three TorR1 terms) to conclude the proof. �

EC10. Note that there is a nonzero element of A killed by m: if n is maximum such that
mn 6= 0, any element of mn has this property. (If A is a field, m = (0), n = 0, and 1 is
such an element.) Hence AnnA(x, y) = H2(x, y;A) 6= 0. Since the sequence x, y has length
2 > 0 = dim (A), χ(x, y;A) = 0, and so `

(
H1(x, y;A)

)
= `(A/(x, y)A) + `

(
AnnA(x, y)

)
>

`
(
A/(x, y)A

)
. If H1(x, y;A) has one or 0 generators, then, since it is killed by (x, y), it

would have length at most `
(
A/(x, y)A

)
, a contradiction. Hence, H1(x, y;A) must have

two or more generators. �


