
Formal power series rings, inverse limits, and I-adic completions of rings

Formal semigroup rings and formal power series rings

We next want to explore the notion of a (formal) power series ring in finitely many
variables over a ring R, and show that it is Noetherian when R is. But we begin with a
definition in much greater generality.

Let S be a commutative semigroup (which will have identity 1S = 1) written multi-
plicatively. The semigroup ring of S with coefficients in R may be thought of as the free
R-module with basis S, with multiplication defined by the rule

(
h∑
i=1

risi)(
k∑
j=1

r′js
′
j) =

∑
s∈S

(
∑
sis′j=s

rir
′
j)s.

We next want to construct a much larger ring in which infinite sums of multiples of
elements of S are allowed. In order to insure that multiplication is well-defined, from now
on we assume that S has the following additional property:

(#) For all s ∈ S, {(s1, s2) ∈ S × S : s1s2 = s} is finite.
Thus, each element of S has only finitely many factorizations as a product of two

elements. For example, we may take S to be the set of all monomials {xk11 · · · xkn
n :

(k1, . . . , kn) ∈ Nn} in n variables. For this chocie of S, the usual semigroup ring R[S] may
be identified with the polynomial ring R[x1, . . . , xn] in n indeterminates over R.

We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring
formally as consisting of all functions from S to R, but we shall indicate elements of the
ring notationally as (possibly infinite) formal sums

∑
s∈S rss, where the function corre-

sponding to this formal sum maps s to rs for all s ∈ S. Addition is performed by adding
corresponding coefficients, while (

∑
s∈S rss)(

∑
s′∈S rs′s

′) is defined to be∑
t∈S

( ∑
s,s′∈S,ss′=t

rsrs′
)
t.

Heuristically, this is what one would get by distributing the product in all possible ways,
and then “collecting terms”: this is possible because, by (#), only finitely many terms
rsrs′ss

′ occur for any particular t = ss′. The ring has identity corresponding to the sum
in which 1S has coefficient 1 = 1R and all other coefficients are 0. It is straightforward
to verify all the ring laws and the commutativity of multiplication. R[S], the semigroup
ring defined earlier, is a subring: it may be identified with the formal sums in which all
but finitely many coefficients are 0. One frequently omits terms with coefficient 0 from the
notation. If S = {xk11 · · · xkn

n : (k1, . . . , kn) ∈ NN}, the notation R[[x1, . . . , xn]] is used
instead of R[[S]]: one writes generators for S inside the double brackets instead of S itself.
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If S and S′ both satisfy (#), so does the product semigroup S × S′, and one has
the isomorphism (R[[S]])[[S′]] ∼= R[[S × S′]]. If the coefficient of s′ in an element of
the former is

∑
s∈S rs,s′s for every s′ ∈ S′, one identifies

∑
s′∈S′(

∑
s∈S rs,s′s)s

′ with∑
(s,s′)∈S×S′ rs,s′(ss′). It is straightforward to check that this is an isomorphism.

The ring R[[x1, . . . , xn]] is referred to as a (formal) power series ring over R, and the
xi are called formal or analytic indeterminates to indicate that two power series agree if
and only if their corresponding coefficients are all identical.

In the case of two finitely generated semigroups of monomials, the fact that R[[S×S′]] ∼=
(R[[S]])[[S′]] implies that

(R[[x1, . . . , xn]])[[y1, . . . , ym]] ∼= R[[x1, . . . , xn, y1, . . . , ym]].

In particular, for n ≥ 2,

R[[x1, . . . , xn]] ∼= (R[[x1, . . . , xn−1]])[[xn]].

Of course, there is a completely analogous statement for polynomial rings, with single
brackets replacing double brackets. However, note that while

(R[[x1, . . . , xn]])[y1, . . . , ym] ↪→ (R[y1, . . . , ym])[[x1, . . . , xn]],

the opposite inclusion always fails when R is not 0 and m, n ≥ 1. First, to see the inclusion,
note that if one has a homomorphism h : R → T there is an induced homomorphism
R[[x1, . . . , xn]] → T [[x1, . . . , xn]]: apply h to every coefficient. Let T = R[y1, . . . , ym]
and h be the inclusion R ⊆ T to get an injection

R[[x1, . . . , xn]]→ (R[y1, . . . , ym])[[x1, . . . , xn]].

Now extend this homomorphism of R[[x1, . . . , xn]]-algebras to the polynomial ring

(R[[x1, . . . , xn]])[y1, . . . , ym]

by letting yi map to yi ∈ (R[y1, . . . , ym])[[x1, . . . , xn]]. To see that the inclusion is typi-
cally strict, note that

∑∞
t=0 y

t
1x
t
1 is an element of (R[y1, . . . , ym])[[x1, . . . , xn]] but is not

in (R[[x1, . . . , xn]])[y1, . . . , ym], where every element has bounded degree in the yj . Both
rings inject into R[[x1, . . . , xn, y1, . . . , ym]].

Theorem. If R is Noetherian ring then the formal power series ring R[[x1, . . . , xn]] is
Noetherian.

Proof. By induction on the number of variables one reduces at once to proving that S =
R[[x]] is Noetherian. Let J ⊆ R[[x]] be an ideal. Let It denote the set of elements r of
R such that rxn is the term of least degree in an element of J , together with 0. This
is easily verified to be an ideal of R. If f ∈ J is not zero, and rxn is the least degree
term in f , then rxn+1 is the least degree term in xf ∈ J . This shows that {It}t≥0 is
a non-decreasing sequence of ideals of R. Since R is Noetherian, we may choose k ∈ N
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such that Ik = Ik+1 = · · · = Ik+m = · · · , and then for 0 ≤ t ≤ k we may choose
f1,t, . . . , fht, t ∈ J such that each fi,t has smallest degree term of the form ri,tx

t and the
elements ri,t, . . . , rht,t are a finite set of generators of It. We claim that the finite set of
power series fi,t, 0 ≤ t ≤ k, 1 ≤ i ≤ ht, generates J . Let J0 be the ideal they generate, and
let u ∈ J be given. We may subtract an R-linear combination of the fi,0 from u to get an
element of J whose lowest degree term is in degree at least one (or such that the difference
is 0). We continue in this way so long as we have a lowest degree term of degree less than
k: if the degree is t < k, we may increase it by subtracting an R-linear combination of
the fi, t. Thus, after subtracting an element of J0 from u, we may assume without loss of
generality that the lowest degree term in u occurs in degree ≥ k (or else u is 0, but then
there is nothing to prove). It will suffice to prove that this new choice of u is in J0. We
claim more: we shall show that in this case, u is in the ideal generated by the fi,k = fi.
Let h = hk. We recursively construct the partial sums (which are polynomials) of power
series gi such that u =

∑h
i=1 gifi.

Put slightly differently and more precisely, we shall construct, for every i, 1 ≤ i ≤ h,
by induction on m ∈ N, a sequence of polynomials gi,m(x) ∈ R[x] with the following
properties:

(1) Every gi,m has degree at most m.
(2) If m1 < m2 then gi,m1 is the sum of the terms of degree at most m1 that occur in

gi,m2 . Given (1), this is equivalent to the condition that for all m ≥ 0, gi,m+1 − gi,m
has the form rxm+1 for some r ∈ R, which may be 0.

(3) For every m, the lowest degree term in u−
∑h
i=1 gi,mfi has degree at least k+m+ 1

(or else the difference is 0).

Notice that conditions (1) and (2) together imply that for every i, the gi,m are the partial
sums of a formal power series, where the m th partial sum of a power series

∑∞
j=0 rjx

j is
defined to be

∑m
j=0 rjx

j .

To begin the induction, note that the least degree term of u occurs in degree k or higher.
Therefore the coefficient of xk in u is in the ideal generated by the lowest degree coefficients
of f1, . . . , fh, and it follows that there are elements r1,0, . . . , rh,0 of R such that the lowest
degree term of u−

∑h
i=1 ri,0fi occurs in degree at least k + 1 (or the difference is 0). We

take gi,0 = ri,0, 1 ≤ i ≤ h.

Now suppose that the gi,s have been constructed for 1 ≤ i ≤ h, 0 ≤ s ≤ m such that
conditions (1), (2), and (3) are satisfied. We shall show that we can construct gi,m+1 so that
(1), (2), and (3) are satisfied. Since u′ = u−

∑h
i=1 gi,mfi has lowest degree term of degree

at least m+k+ 1, the coefficient of xm+k+1 is in the R-span of the coefficients of xk in the
polynomials fi, and so we can choose elements ri,m+1 ∈ R so that u′−

∑h
i=1 ri,m+1x

m+1fi
has lowest degree term in degree at least m + k + 2 (or is 0). It follows that if we take
gi,m+1 = gi,m + ri,m+1x

m+1 for 1 ≤ i ≤ h, then (1) and (2) are satisfied, and (3) is as well
because u−

∑h
i=1 gi,m+1fi = u′ −

∑h
i=1 ri,m+1x

m+1fi has lowest degree term in degree at
least m + k + 2 (or the difference is 0). For each i, 1 ≤ i ≤ h, let gi be the formal power
series whose partial sums are the gi,m.
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We claim that u =
∑h
i=1 gifi. It suffices to show that the coefficients on corresponding

powers of x are the same on both sides. Neither side has a nonzero term involving xt for
t < k. On the other hand, for all m ≥ 0, the coefficient of xk+m on the right will not
change if we replace every gi on the right by gi,m, since gi − gi,m involves only terms of
degree strictly bigger than m + k + 1. Thus, it suffices to show that for all m ≥ 0, the
difference u−

∑h
i=1 gi,mfi has coefficient 0 on xm+k, and this is true by part (3). But the

fi = fi,k are in J0, so that u ∈ J0, as required. �

It is also true that the subring of C[[x1, . . . , xn]] (respectively, R[[x1, . . . , xn]]) consist-
ing of power series that converge on a neighborhood of the origin in Cn (respectively, Rn)
is a Noetherian ring with a unique maximal ideal, generated by x1, . . . , xn. These rings
are denoted C〈〈x1, . . . , xn〉〉 and R〈〈x1, . . . , xn〉〉, respectively.

The Noetherian property of the ring C〈〈x1, . . . , xn〉〉 is of considerable usefulness in
studying functions of several complex variables: this is the ring of germs of holomorphic
functions at a point in Cn. We shall not give the proof of the Noetherian property for
convergent power series rings here: proofs may be found in [O. Zariski and P. Samuel,
Commutative Algebra, Vol. II, Van Nostrand, Princeton, 1960], pp. 142–148 or [M. Nagata,
Local Rings, Interscience, New York, 1962], pp. 190–194.

Inverse limits

Let (Λ, ≤) be a directed set. By an inverse limit system in a category C indexed by Λ we
mean a family of objects Xλ indexed by Λ and for all λ ≤ µ a morphism fλ,µ : Xµ → Xλ.
A candidate for the inverse limit consists of an object X together with maps gλ : X → Xλ

such that for all λ ≤ µ, gλ = fλ,µ ◦ gµ. A candidate Y together with morphisms hλ : Y →
Xλ is an inverse limit precisely if for every candidate (X, gλ) there is a unique morphism
k : X → Y such that for all λ, gλ = hλ ◦ k. The inverse limit is denoted lim

←− λ
Xλ and, if it

exists, it is unique up to canonical isomorphism compatible with the morphisms giving X
and Y the structure of candidates.

We next want to see that inverse limits exist in the categories of sets, abelian groups,
rings, R-modules, and R-algebras. The construction for sets also works in the other cate-
gories mentioned. Let (Λ, ≤) be a directed partially ordered set and let (Xλ, fλ,µ) be an
inverse limit system of sets. Consider the subset X ⊆

∏
λXλ consisting of all elements

x of the product such that for λ ≤ µ, fλ,µ(xµ) = xλ, where xλ and xµ are the λ and µ
coordinates, respectively, of x. It is straightforward to verify that X is an inverse limit
for the system: the maps X → Xλ are obtained by composing the inclusion of X in the
product with the product projections πλ mapping the product to Xλ.

If each Xλ is in one of the categories specified above, notice that the Cartesian product
is as well, and the set X is easily verified to be a subobject in the appropriate category.
In every instance, it is straightforward to check that X is an inverse limit.

Suppose, for example, that Xλ is a family of subsets of A ordered by ⊇, and that the
map Xµ → Xλ for Xλ ⊇ Xµ is the inclusion of Xµ ⊆ Xλ. The condition for the partially
ordered set to be directed is that for all λ and µ, there is a set in the family contained in
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Xλ ∩Xµ. The construction for the inverse limit given above yields all functions on these
sets with a constant value in the intersection of all of them. This set evidently may be
identified with

⋂
λXλ.

We are particularly interested in inverse limit systems indexed by N. To give such a
system one needs to give an infinite sequence of objects X0, X1, X2, . . . in the category
and for every i ≥ 0 a map Xi+1 → Xi. The other maps needed can be obtained from these
by composition. In the cases of the categories mentioned above, to give an element of the
inverse limit is the same a giving a sequence of elements x0, x1, x2, . . . such that for all i,
xi ∈ Xi, and xi+1 maps to xi for all i ≥ 0. One can attempt to construct an element of
the inverse limit by choosing an element x0 ∈ X0, then choosing an element x1 ∈ X1 that
maps to x0, etc. If the maps are all surjective, then given xi ∈ Xi one can always find an
element of the inverse limit that has xi as its i th coordinate: for h < i, use the image of
xi in Xh, while for i+ 1, i+ 2, . . . one can choose values recursively, using the surjectivity
of the maps.

The I-adic competion of a ring

We want to use these ideas to describe the I-adic completion of a ring R, where R is a
ring and I ⊆ R is an ideal. We give two alternative descriptions. Consider the set of all
sequences of elements of R indexed by N under termwise addition under multiplication:
this ring is the same as the product of a family of copies of R index by N. Let CI(R)
denote the subring of Cauchy sequences for the I-adic topology: by definition these are the
sequences such that for all t ∈ N there exists N ∈ N such that for all i, j ≥ N , ri− rj ∈ It.
This is a subring of the ring of sequences. It is an R-algebra via the map R → CI(R)
that sends r ∈ R to the constant sequence r, r, r, . . . . Let C0

i (R) be the set of Cauchy
sequences that converge to 0: by definition, these are the sequences such that for all t ∈ N
there exists N ∈ N such that for all i ≥ N , ri ∈ It. These sequences are automatically
Cauchy. Then C0

I(R) is an ideal of CI(R). It is easy to verify that every subsequence of
a Cauchy sequence is again Cauchy, and that it differs from the original sequence by an
element of C0

I(R).

Given an element of CI(R), say r0, r1, r2, . . . we may consider the residue mod It for a
given t. These are eventually all the same, by the definition of a Cauchy sequence. The
stable value of these residues is an element of R/It, and we thus have a map CI(R) � R/It

that is easily seen to be a ring homomorphism that kills C0
I(R). Therefore, for all t we

have a surjection CI(R)/C0
I(R) � R/It. These maps make CI(R)/C0

I(R) a candidate for
lim
←− t

(R/It), and so induce a ring homomorphism CI(R)/C0
i (R)→ lim

←− t
R/It.

This map is an isomorphism. Given a sequence of elements in the rings R/It that
determine an element of the inverse limit, for each residue ρt choose an element rt of R
that represents it. It is straightforward to verify that the rt form a Cauchy sequence in
R and that it maps to the element of lim

←− t
R/It with which we started. Consider any

other Cauchy sequence with the same image. It is again straightforward to verify that the
difference of the two Cauchy sequences is in C0

i (R). This proves the isomorphism:
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Theorem. Let R be any ring and I any ideal. Then CI(R)/C0
I(R) → lim

←− t
(R/It) is an

isomorphism, and the kernel of the map from R to either of these isomorphic R-algebras
is ∩tIt. �

These isomorphic rings are denoted R̂I or simply R̂, if I is understood, and either is
referred to as the I-adic completion of R. If I ⊆ R, then R is called I-adically separated
if
⋂
t I
t = (0), and I-adically complete if R→ R̂I is an isomorphism: this holds iff R is I-

adically separated, and every Cauchy sequence is the sum of a constant sequence r, r, r, . . .
and a sequence that converges to 0. The Cauchy sequence is said to converge to r.

Given a Cauchy sequence in R with respect to I, we may choose a subsequence such
that the residues of all terms from the t th on are constant mod It+1. Call such a Cauchy
sequence standard. Given a standard Cauchy sequence, let s0 = r0 and st+1 = rt+1−rt ∈ It
for t ≥ 0. Then the s0 + · · · + st = rt. Thus, the partial sums of the “formal series”
s0 + s1 + s2 + · · · form a Cauchy sequence, and if the ring is complete it converges. Given
any formal series

∑∞
t=0 st such that st ∈ It for all t, the partial sums form a Cauchy

sequence, and every Cauchy sequence is obtained, up to equivalence (i.e., up to adding a
sequence that converges to 0) in this way.

Proposition. Let J denote the kernel of the map from R̂I � R/I (J consists of elements
represented by Cauchy sequences all of whose terms are in I). Then every element of R̂I

that is the sum of a unit and an element of J is invertible in R̂I . Every maximal ideal
of R̂I contains J , and so there is a bijection between the maximal ideals of R̂I and the
maximal ideals of R/I. In particular, if R/I is quasi-local, then R̂I is quasi-local.

Proof. If u is a unit and j ∈ J we may write u = u(1 +u−1j), and so it suffices to to show
that 1 + j is invertible for j ∈ J . Let r0, r1, . . . be a Cauchy sequence that represents j.
Consider the sequence 1− r0, 1− r1 + r21, . . . 1− rn + r2n − · · ·+ (−1)n−1rn+1

n , · · · : call the
n th term of this sequence vn. If rn and rn+1 differ by an element of It, then vn and vn+1

differ by an element of It + In+2. ¿From this it follows that vn is a Cauchy sequence, and
1− (1 + rn)vn = rn+2

n converges to 0. Thus, the sequence vn represents an inverse for 1 + j

in R̂I .

Suppose that m is a maximal ideal of R̂I and does not contain j ∈ J . Then j has an
inverse v mod m, so that we have jv = 1 + u where u ∈ m, and then −u = 1 − jv is not
invertible, a contradiction, since jv ∈ J . �

Suppose that
⋂
t I
t = 0. We define the distance d(r, s) between two elements r, s ∈ R

to be 0 if r = s, and otherwise to be 1/2n (this choice is somewhat arbitrary), where n
is the largest integer such that r − s ∈ In. This is a metric on R: given three elements
r, s, t ∈ R, the triangle inequality is clearly satisfied if any two of them are equal. If not,
let n, p, q be the largest powers of I containing r − s, s− t, and t− r, respectively. Since
t − r = −(s − t) − (r − s), q ≥ min{n, p}, with equality unless n = p. It follows that
in every “triangle,” the two largest sides (or all three sides) are equal, which implies the
triangle inequality. The notion of Cauchy sequence that we have given is the same as the
notion of Cauchy sequence for this metric. Thus, R̂I is literally the completion of R as a
metric space with respect to this metric.
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Given a ring homomorphism R→ R′ mapping I into an ideal I ′ of R′, Cauchy sequences
in R with respect to I map to Cauchy sequences in R′ with respect to I ′, and Cauchy
sequences that converge to 0 map to Cauchy sequences that converge to 0. Thus, we get

an induced ring homomorphism R̂I → R̂′
I′

. This construction is functorial in the sense
that if we have a map to a third ring R′′, a ring homomorphism R′ → R′′, and an ideal

I ′′ of R′′ such that I ′ maps into I ′′, then the induced map R̂I → R̂′′
I′′

is the composition

(R̂′
I′

→ R̂′′
I′′

) ◦ (R̂I → R̂′
I′

). If R → R′ is surjective and I maps onto I ′, then the map

of completions is surjective: each element of R̂′
I′

can be represented as the partial sums
of a series s0 + s1 + s2 + · · · , where sn ∈ (I ′)n. But In will map onto (I ′)n, and so we can
find rn ∈ In that maps to sn, and then r0 + r1 + r2 · · · represents an element of R̂I that
maps to s0 + s1 + s2 + · · · .

Example. Let S = R[x1, . . . , xn] be the polynomial ring in n variables over R, and let
I = (x1, . . . , xn)S. An element of S/In is represented by a polynomial of degree ≤ n− 1
in the xi. A sequence of such polynomials will represent an element of the inverse limit
if and only if, for every n, then n th term is precisely the sum of the terms of degree at
most n in the n+ 1 st term. It follows that the inverse limit ring ŜI is R[[x1, . . . , xn]], the
formal power series ring. In consequence, we can prove:

Theorem. If R is a Noetherian ring and I is an ideal of R, then R̂I is Noetherian.

Proof. Suppose that I = (f1, . . . , fn)R. Map the polynomial ring S = R[x1, . . . , xn] to
R as an R-algebra by letting xj 7→ fj . This is surjective, and (x1, . . . , xn)S maps onto
I. Therefore we get a surjection R[[x1, . . . , xn]] � R̂I . Since we already know that the
formal power series ring is Noetherian, it follows that R̂I is Noetherian. �

We next want to form the I-adic completion of an R-module M . This will be not
only an R-module: it will also be a module over R̂I . Let R be a ring, I ⊆ R an ideal
and M an R-module. Let CI(M) denote the Cauchy sequences in M with respect to I:
the sequence u0, u1, u2, · · · is a Cauchy sequence if for all t ∈ N there exists N ∈ N such
that ui − uj ∈ ItM for all i, j ≥ N . These form a module over CI(R) under termwise
multiplication, and set of Cauchy sequences, C0

I(M), that converge to 0, where this means
that for all t, the terms of the sequence are eventually all in ItM , is a submodule that
contains C0

I(R)CI(M). The quotient CI(M)/C0
I(M) is consequently a module over R̂I .

Moreover, any homomorphism h : M → N induces a homomorphism from CI(M)→ CI(N)
that preserves convergence to 0, and hence a homomorphism ĥI : M̂ I → N̂ I . This is a
covariant functor from R-modules to R̂I -modules. There is an R-linear map M → M̂ I

that sends the element u to the element represented by the constant Cauchy sequence
whose terms are all u. The kernel of this map is

⋂
t I
tM , and so it is injective if and only if⋂

t I
tM = 0, in which case M is called I-adically separated. If M → M̂ I is an isomorphism,

M is called I-adically complete. The maps M → M̂ I give a natural transformation from
the identity functor on R-modules to the I-adic completion functor. Moreover, by exactly
the same reasoning as in the case where M = R, M̂ I ∼= lim

←− t
M/ItM .
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I-adic completion commutes in an obvious way with finite direct sums and products
(which may be identified in the category of R-modules). The point is that un ⊕ vn gives
a Cauchy sequence (respectively, a sequence converging to 0) in M ⊕N if and only if un
and vn give such sequences in M and N . Moreover if f1 : M1 → N and f2 : M2 → N ,
we have that the I-adic completion of the map f1 ⊕ f2 : M1 ⊕M2 → N is the direct sum
of the completions, f̂1 ⊕ f̂2. A similar remark applies when we have g1 : M → N1 and
g2 : M → N2, and we consider the map (g1, g2) : M → N1 × N2. The situation is the
same for finite direct sums and finite direct products. Note also that if we consider the
map given by multiplication by r on M , the induced endomorphism of M̂ I is given by
multiplication by r (or by the image of r in R̂I).

If M → Q is surjective, the map M̂ I → Q̂I is surjective: as in the case of rings, any
element z of Q̂I can be represented using the Cauchy sequence of partial sums of a formal
series q0 +q1 +q2 + · · · where qt ∈ ItQ. To see this, take a Cauchy sequence that represents
the element. Pass to a subsequence w0, w1, w2, . . . such that the residue of wk in M/ItM
is the same for all k ≥ t. The element can be thought of as

w0 + (w1 − w0) + (w2 − w1) + · · · .

Thus, take q0 = w0 and qt = wt−wt−1 for t ≥ 1. For all t, ItM maps onto ItQ. Therefore
we can find ut ∈ ItM such that ut maps to qt, and the partial sums of u0 + u1 + u2 + · · ·
represent an element of M̂ I that maps to z.

Note that because M̂ I is an R-module and we have a canonical map M → M̂ I that is
R-linear, the universal property of base change determines a map R̂I ⊗RM → M̂ I . These
maps give a natural transformation from the functor R̂I ⊗R to the I-adic completion
functor: these are both functors from R-modules to R̂I -modules. If M is finitely generated
over a Noetherian ring R, this map is an isomorphism: not only that: restricted to finitely
generated modules, I-adic completion is an exact functor, and R̂I is flat over R.

In order to prove this, we need to prove the famous Artin-Rees Lemma. Let R be a
ring and I an ideal of R. Let t be an indeterminate, and let It = {it : i ∈ I} ⊆ R[t]. Then
R[It] = R+It+I2t2+· · · is called the Rees ring of I. If I = (f1, . . . , fn) is finitely generated
as an ideal, then R[It] = R[f1t, . . . , fnt] is a finitely generated R-algebra. Therefore, the
Rees ring is Noetherian if R is.

Before proving the Artin-Rees theorem, we note that if M is an R-module and t and
indeterminate, then every element of R[t]⊗M can be written uniquely in the form

1⊗ u0 + t⊗ u1 + · · ·+ tk ⊗ uk,

where the uj ∈ M , for any sufficiently large k: if a larger integer s is used, then one has
mk+1 = · · · = ms = 0. This is a consequence of the fact that R[t] is R-free with the
powers of t as a free basis. Frequently one writes u0 + u1t + · · · + ukt

k instead, which
looks like a polynomial in t with coefficients in M . When this notation is used, M [t] is
used as a notation for the module. Note that the R[t]-module structure is suggested by
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the notation: (rtj)(utk) = (ru)tj+k, and all other more general instances of multiplication
are then determined by the distributive law.

We are now ready to prove the Artin-Rees Theorem, which is due independently to
Emil Artin and David Rees.

Theorem (E. Artin, D. Rees). Let N ⊆M be Noetherian modules over the Noetherian
ring R and let I be an ideal of R. Then there is a constant positive integer c such that
for all n ≥ c, InM ∩ N = In−c(IcM ∩ N). That is, eventually, each of the modules
Nn+1 = In+1M ∩N is I times its predecessor, Nn = InM ∩N .

In particular, there is a constant c such that InM ∩N ⊆ In−cN for all n ≥ c. In con-
sequence, if a sequence of elements in N is an I-adic Cauchy sequence in M (respectively,
converges to 0 in M) then it is an I-adic Cauchy sequence in N (respectively, converges
to 0 in N).

Proof. We consider the module R[t]⊗M , which we think of as M [t]. Within this module,

M = M + IMt+ I2Mt2 + · · ·+ IkMtk + · · ·
is a finitely generated R[It]-module, generated by generators for M as an R-module: this
is straightforward. Therefore, M is Noetherian over R[It]. But

N = N + (IM ∩N)t+ (I2M ∩N)t2 + · · · ,
which may also be described as N [t]∩M, is an R[It] submodule ofM, and so finitely gen-
erated over R[It]. Therefore for some c ∈ N we can choose a finite set of generators whose
degrees in t are all at most c. By breaking the generators into summands homogeneous
with respect to t, we see that we may use elements from

N, (IM ∩N)t, (I2M ∩N)t2, . . . , (IcM ∩N)tc

as generators. Now suppose that n ≥ c and that u ∈ InM ∩N . Then utn can be written
as an R[It]-linear combination of of elements from

N, (IM ∩N)t, (I2M ∩N)t2, . . . , (IcM ∩N)tc,

and hence as an sum of terms of the form

iht
hvjt

j = (ihvj)th+j

where j ≤ c, ih ∈ Ih, and
vj ∈ IjM ∩N.

Of course, one only needs to use those terms such that h + j = n. This shows that
(InM) ∩N is the sum of the modules

In−j(IjM ∩N)

for j ≤ c. But
In−j(IjM ∩N) = In−cIc−j(IjM ∩N),

and
Ic−j(IjM ∩N) ⊆ IcM ∩N,

so that we only need the single term In−c(IcM ∩N). �
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Theorem. Let R be a Noetherian ring, I ⊆ R an ideal.
(a) If 0 → N → M → Q → 0 is a short exact sequence of finitely generated R-modules,

then the sequence 0 → N̂ I → M̂ I → Q̂I → 0 is exact. That is, I-adic completion is
an exact functor on finitely generated R-modules.

(b) The natural transformation θ from R̂I ⊗R to the I-adic completion functor is an
isomorphism of functors on finitely generated R-modules. That is, for every finitely
generated R-module M , the natural map θM : R̂I ⊗RM → M̂ I is an isomorphism.

(c) R̂I is a flat R-algebra. If (R, m) is local, R̂ = R̂m is a faithfully flat local R-algebra.

Proof. (a) We have already seen that the map M̂ I → Q̂I is surjective. Let y be an element
of M̂ I that maps to 0 in Q̂. Choose a Cauchy sequence that represents z, say u0, u1, u2, . . . .
After passing to a subsequence we may assume that ut − ut+1 ∈ ItM for every t. The
images of the ut in Q ∼= M/N converge to 0. Passing to a further subsequence we may
assume that the image of ut ∈ It(M/N) for all t, so that ut ∈ ItM +N , say ut = vt + wt
where vt ∈ ItM and wt ∈ N . Then wt is a Cauchy sequence in M that represents z: in
fact, wt −wt+1 ∈ ItM ∩N for all t. Each wt ∈ N , and so the elements wt form a Cauchy
sequence in N , by the Artin-Rees Theorem. Thus, every element in Ker (M̂ I → Q̂I) is in
the image of N̂ I .

Finally, suppose that z0, z1, z2, . . . is a Cauchy sequence in N that converges to 0 in
M . Then zt already converges to 0 in N , and this shows that N̂ I injects into M̂ I . This
completes the proof of part (a).

(b) Take a presentation of M , say Rn A−→ Rm → M → 0, where A = (rij) is an m × n
matrix over R. This yields a diagram:

R̂I ⊗R Rn
A−−−−→ R̂I ⊗R Rm −−−−→ R̂I ⊗RM −−−−→ 0

θRn

x θRm

x θM

x
R̂n

I A−−−−→ R̂m
I

−−−−→ M̂ I −−−−→ 0

where the top row is obtained by applying R̂I ⊗ , and is exact by the right exactness
of tensor, the bottom row is obtained by applying the I-adic completion functor, and is
exact by part (a). The vertical arrows are given by the natural transformation θ, and the
squares commute because θ is natural. The map θRh is an isomorphism for h = m or h = n
because both functors commute with direct sum, and the case where the free module is
just R is obvious. But then θM is an isomorphism, because cokernels of isomorphic maps
are isomorphic.

(c) We must show that R̂I ⊗R N → R̂I ⊗R M is injective for every pair of R-modules
N ⊆ M . We know this from parts (a) and (b) when the modules are finitely generated.
The result now follows from the Lemma just below. Faithful flatness is clear, since the
maximal ideal of R clearly expands to a proper ideal in R̂I . �
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Lemma. Let F be an R-module, and suppose that whenever N ⊆M are finitely generated
R-modules then F ⊗R N → F ⊗RM is injective. Then F is flat.

Proof. Let N ⊆ M be arbitrary R-modules. Then F ⊗R N is the directed union of the
images of the modules F ⊗R N0 as F runs through the finitely generated submodules of
M . Thus, if z ∈ F ⊗N maps to 0 in F ⊗M , it will be the image of z′ ∈ N0 ⊗M − {0},
which implies that z′ ∈ F ⊗RN0 maps to 0 in F ⊗RM . But since M is the directed union
of its finitely generated modules M0 containing N0, and since F ⊗RM is the direct limit of
these, it follows that for some sufficiently large but finitely generated M0 ⊇ N0, the image
of z′ under the map F ⊗N0 → F ⊗M0 is 0. But then z′ = 0 and so z = 0, as required. �


