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by Melvin Hochster

0. Introduction

Unless otherwise specified, the rings that we consider here will be Noetherian rings R
containing a field. Frequently, we restrict, for simplicity, to the case of domains finitely
generated over a field K. The theory of tight closure exists in much greater generality,
and we refer the reader to [HH1–14] and [Ho1–3], as well as to the expository accounts
[Bru], [Hu1,2] and [Leu] (in this volume) for the development of the larger theory and
its applications as well as discussion of related topics such as the existence of big Cohen-
Macaulay algebras.

We shall give an introductory overview of the theory of tight closure, which has recently
played a primary role among characteristic p methods. We shall see that such methods
can be used even when the ring contains a field of characteristic 0.

Here, in reverse order, are several of the most important reasons for studying tight
closure theory, which gives a closure operation on ideals and on submodules. We focus
mostly on the case of ideals here, although there is some discussion of modules. We shall
elaborate on the themes brought forth in the list below in the sequel.

11. Tight closure can be used to shorten difficult proofs of seemingly unrelated results.
The results turn out to be related after all. Often, the new results are stronger than
the original results.

10. Tight closure provides algebraic proofs of several results that can otherwise be proved
only in equal characteristic 0, and whose original proofs depended on analytic tech-
niques.
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9. In particular, tight closure can be used to prove the Briançon-Skoda theorem on
integral closures of ideals in regular rings.

8. Likewise, tight closure can be used to prove that rings of invariants of linearly reductive
algebraic groups acting on regular rings are Cohen-Macaulay.

7. Tight closure can be used to prove several of the local homological conjectures.
6. Tight closure can be used to “control” certain cohomology modules: in particular, one

finds that the Jacobian ideal kills them.
5. Tight closure implies several vanishing theorems that are very difficult from any other

point of view.
4. Tight closure controls the behavior of ideals when they are expanded to a module-finite

extension ring and then contracted back to the original ring.
3. Tight closure controls the behavior of certain colon ideals involving systems of param-

eters.
2. Tight closure provides a method of compensating for the failure of ambient rings to

be regular.
1. If a ring is already regular, the tight closure is very small: it coincides with the ideal

(or submodule). This gives an extraordinarily useful test for when an element is in an
ideal in regular rings.

One way of thinking about many closure operations is to view them as arising from
necessary conditions for an element to be in an ideal. If the condition fails, the element is
not in the ideal. If the condition is not both necessary and sufficient, then when it holds,
the element might be in the ideal, but it may only be in some larger ideal, which we think
of as a kind of closure.

Tight closure in positive characteristic can be thought of as arising from such a necessary
but not sufficient condition for ideal membership. One of the reasons that it is so useful
for proving theorems is that in some rings, the condition is both necessary and sufficient.
In particular, that is true in regular rings. In consequence, many theorems can be proved
about regular rings that are rather surprising. They have the following nature: one can
see that in a regular ring a certain element is “almost” in an ideal. Tight closure permits
one to show that the element actually is in the ideal. This technique works like magic on
several major results that seemed very difficult before tight closure came along.

One has to go to some considerable trouble to get a similar theory working in rings
that contain the rationals, but this has been done, and the theory works extremely well
for “nice” Noetherian rings like the ones that come up in algebraic and analytic geometry.

It is still a mystery how to construct a similar theory for rings that do not contain a
field. This is not a matter of thinking about anything pathological. Many conjectures
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could be resolved if one had a good theory for domains finitely generated as algebras over
the integers.

Before proceeding to talk about tight closure, we give some examples of necessary and/or
sufficient conditions for membership in an ideal. The necessary conditions lead to a kind
of closure.

(1) A necessary condition for r ∈ R to be in the ideal I is that the image of r be in IK

for every homomorphism of R to a field K. This is not sufficient: the elements that satisfy
the condition are precisely the elements with a power in I, the radical of I.

(2) A necessary condition for r ∈ R to be in the ideal I is that the image of r be in IV

for every homomorphism of R to a valuation ring V . This is not sufficient: the elements
that satisfy the condition are precisely the elements in I, the integral closure of I. If R
is Noetherian, one gets the same integral closure if one only considers Noetherian discrete
valuation rings V . There are many alternative definitions of integral closure.

(3) If R has positive prime characteristic p let Se denote R viewed as an R-algebra via
the e th iteration F e of the Frobenius endomorphism F (thus, Se = R, but the structural
homomorphism R → Se = R sends r to rp

e

). A necessary condition that r ∈ I is that
for some integer e, rp

e ∈ ISe. Note that when Se is identified with R, ISe becomes the
ideal generated by all elements ip

e

for i ∈ I. This ideal is denoted I [pe]. This condition is
not sufficient for membership in I. The corresponding closure operation is the Frobenius
closure IF of I: it consists of all elements r ∈ R such that rp

e ∈ I [pe] for some nonnegative
integer e. (Note: once this holds for once choice of e, it holds for all larger choices.) E.g.,
in K[x, y, z] = K[X, Y, Z]/(X3 + Y 3 + Z3), if K has characteristic 2 (quite explicitly, if
K = Z2 = Z/2Z) then with I = (x, y), we have that z2 ∈ IF − I. In fact, (z2)2 ∈ I [2] =
(x2, y2) here, since z4 = z3z = −(x3 + y3)z ∈ (x2, y2).

Finally, here is a test for ideal membership that is sufficient but not necessary. It was
used in the first proof of the Briançon-Skoda theorem, and we want to mention it, although
easier proofs by analytic methods are available now.

(4) Skoda’s analytic criterion. Let Ω be a pseudoconvex open set in Cn and φ a
plurisubharmonic function1 on Ω. Let f and g1, . . . , gk be holomorphic functions on
Ω. Let γ = (|g1|2 + · · · + |gk|2)1/2. Let X be the set of common zeros of the gj . Let

1We won’t explain these terms from complex analysis here: the definitions are not so critical for us,

because in the application to the Briançon-Skoda theorem, which we discuss later, we work in the ring

of germs of holomorphic functions at, say, the origin in complex n-space, Cn (∼= convergent power series
C{z1, . . . , zn}) — we can pass to a smaller, pseudoconvex neighborhood; likewise, φ becomes unimportant.
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d = max{n, k − 1}. Let λ denote Lebesgue measure on Cn. Skoda’s criterion asserts that
if one has either that for some real α > 1,∫

Ω−X

|f |2

γ2αd+2
e−φ dλ < +∞,

or if one has that ∫
Ω−X

|f |2

γ2d

(
1 + ∆ log(γ)

)
e−φ dλ < +∞,

then there exist h1, . . . , hk holomorphic on Ω such that f =
∑k
j=1 hjgj . Hilbert’s Null-

stellensatz states that if f vanishes at the common zeros of the gj then f ∈ Rad I where
I = (g1, . . . , gk). The finiteness of any of the integrals above conveys the stronger infor-
mation that, in some sense, f is “small” whenever all the gj are “small” (or the integrand
will be too “large” for the integral to converge), and we get the stronger conclusion that
g ∈ I.

1. Reasons for thinking about tight closure

We give here five results valid in any characteristic (i.e., over any field) that can be
proved using tight closure theory. The tight closure proofs are remarkably simple, at
least in the main cases. The terminology used in the following closely related theorems is
discussed briefly after their statements.

Theorem 1.1 (Hochster-Roberts). Let S be a regular ring that is an algebra over the
field K, and let G be a linearly reductive algebraic group over K acting on S. Then the
ring of invariants R = SG is a Cohen-Macaulay ring.

Theorem 1.1o (Hochster-Huneke). If R is a direct summand (as an R-module) of a
regular ring S containing a field, then R is Cohen-Macaulay.

Theorem (1.1o) implies Theorem (1.1). Both apply to many examples from classi-
cal invariant theory. Recall that an algebraic group (i.e., a Zariski closed subgroup of
GL(n,K)) is called linearly reductive if every representation is completely reducible. In
characteristic 0, these are the same as the reductive groups and include finite groups,
products of GL(1,K) (algebraic tori), and semi-simple groups. Over C such a group is
the complexification of compact real Lie group. A key point is that when a linearly re-
ductive algebraic group acts on a K-algebra S, if SG is the ring of invariants or fixed ring
{s ∈ S : g(s) = s for all g ∈ G} there is a canonical retraction map map S → SG, called
the Reynolds operator, that is SG-linear. Thus, R = SG is a direct summand of S as an
R-module.

In particular, if S is a polynomial ring over a field K and G is a linearly reductive
linear algebraic group acting on S1, the vector space of 1-forms of S, and, hence, all of S
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(the action should be an appropriate one, i.e., determined by a K-morphism of G into the
automorphisms of the vector space S1), then the fixed ring SG is a Cohen-Macaulay ring
R. What is a Cohen-Macaulay ring? The issue is local: for a local ring the condition means
that some (equivalently, every) system of parameters is a regular sequence. In the graded
case the Cohen-Macaulay condition has the following pleasant interpretation: when R is
represented as a finitely generated module over a graded polynomial subring A , R is free
over A. This is a very restrictive and useful condition on R, especially in higher dimension.
The Cohen-Macaulay condition is very important in intersection theory. Notice that since
moduli spaces are frequently constructed as quotients of smooth varieties by actions of
reductive groups, Theorem 1.1 implies the Cohen-Macaulay property for many moduli
spaces.

Theorem 1.1 was first proved by a complicated reduction to characteristic p > 0 [HR].
Boutot [Bou] gave a shorter proof for affine algebras in characteristic 0 using resolution of
singularities and the Grauert-Riemenschneider vanishing theorem. The tight closure proof
of Theorem 1.1o is the simplest in many ways.

Theorem 1.2 (Briançon-Skoda theorem). Let R be a regular ring and I an ideal of
R generated by n elements. Then In ⊆ I.

We gave one characterization of what u ∈ J means earlier. It turns out to be equivalent
to require that there be an equation

uh + j1u
h−1 + · · ·+ jh = 0

such that every jt ∈ J t, 1 ≤ t ≤ h. We shall give a third characterization later.

Theorem 1.2 was first proved by analytic techniques: cf. (4) of the Introduction. See
[BrS] and [Sk]: in the latter paper the analytic criteria needed were proved. The first
algebraic proofs were given in [LT] (for a very important special case) and [LS]. There are
several instances in which tight closure can be used to prove results that were first proved
either by analytic techniques or by results like the Kodaira vanishing theorem and related
characteristic 0 vanishing theorems in algebraic geometry. Cf. [HuS] for a discussion of the
connection with the Kodaira vanishing theorem.

Theorem 1.3 (Ein-Lazarsfeld-Smith comparison theorem). Let P be a prime ideal
of codimension h in a regular ring. Then P (hn) ⊆ Pn for every integer n.

This was most unexpected. The original proof, valid in characteristic 0, ultimately
depends on resolution of singularities and deep vanishing theorems, as well as a theory
of asymptotic multiplier ideals. Cf. [ELS]. The tight closure proof [HH14] permits one to
extend the results to characteristic p as well as recovering the characteristic 0 result. There
are other connections between tight closure theory and the theory of multiplier ideals: cf.
[Sm3], [Ha2], and [HaY].



6 MELVIN HOCHSTER

Theorem 1.4 (Hochster-Huneke). Let R be a reduced equidimensional finitely gen-
erated K-algebra, where K is algebraically closed. Let f1, . . . , fh be elements of R that
generate an ideal I of codimension (also called height) h mod every minimal prime of
R. Let J be the Jacobian ideal of R over K. Then J annihilates the Koszul cohomology
Hi(f1, . . . , fh;R) for all i < h, and hence the local cohomology Hi

I(R) for i < h.

This result is a consequence of phantom homology theory, test element theory for tight
closure, and the Lipman-Sathaye Jacobian theorem [LS], all of which we will describe
eventually. If

R ∼= K[x1, . . . , xn]/(f1, . . . , fm)

has codimension r in AnK , then J is the ideal of R generated by the images of the size r
minors of the Jacobian matrix (∂fj/∂xj), and defines the non-smooth (over K) locus in
Spec R. The ideal J ⊆ R turns out to be independent of which presentation of R one
chooses.

Here is a more geometrically flavored corollary.

Corollary 1.5. Let R be a finitely generated graded domain of dimension n + 1 over an
algebraically closed field K, so that X = Proj (R) is a projective variety of dimension n

over an algebraically closed field K. Let g denote a homogeneous element of the Jacobian
ideal J ⊆ R of degree d (so that g gives a global section of OX(d) ). Then for 1 ≤ j ≤ n−1,
the map Hj(X, OX(t))→ Hj(X, OX(t+ d)) induced by multiplication by g is 0.

The reason that this is a Corollary of Theorem 1.4 is that for j ≥ 1, if we let M =⊕
t∈Z H

j(X,OX(t)), then M is isomorphic (as an R-module) with Hj+1
m (R) which may

be viewed as an R-module. We may replace m by the ideal generated by a homogeneous
system of parameters, since the two have the same radical. Then Theorem 1.4 implies that
the Jacobian ideal of R kills M for 1 ≤ j ≤ n− 1. Cf. also Corollary 8.3 of §8.

2. The definition of tight closure in positive characteristic p

One of our guidelines towards a heuristic feeling for when an element u of a Noetherian
ring R should be viewed as “almost” in an ideal I ⊆ R will be this: if R has a module-finite
extension S such that u ∈ IS then u is “almost” in I.

Notice that if R is a normal domain (i.e., integrally closed in its field of fractions)
containing the rational numbers and S is a module-finite extension, then IS ∩ R = I, so
that for normal rings containing Q we are not allowing any new elements into the ideal.
One can see this as follows. By first killing a minimal prime ideal of S disjoint from
R − {0} we may assume that S is a domain. Let L → L′ be the corresponding finite
algebraic extension of fraction fields, and suppose it has degree d. Let trL′/L denote field

trace. Then
1
d

trL′/L : S → R gives an R-linear retraction when R is normal. This implies
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that IS ∩R = I for every ideal I of R. (We only need the invertibility of the single integer
d in R for this argument.)

The situation for normal domains of positive characteristic is very different, where it
is an open question whether the elements that are “almost” in an ideal in this sense may
coincide with the tight closure in good cases. Our definition of tight closure may seem
unrelated to the notion above at first, but there is a close connection.

For simplicity we start with the case of ideals in Noetherian domains of characteristic
p > 0. Recall that in characteristic p the Frobenius endomorphism F = FR on R maps
r to rp, and is a ring endomorphism. When R is reduced, we denote by R1/pe

the ring
obtained by adjoining pe th roots for all elements of R: it is isomorphic to R, using the
e th iterate of its Frobenius endomorphism with the image restricted to R. Recall that in a
ring of positive characteristic p, when q = pe, we denote by I [q] the ideal of R generated by
all q th powers of elements of I. It is easy to see that this ideal is generated by q th powers
of generators of I. Notice that it is much smaller, typically, than the ordinary power Iq.
Iq is generated by all monomials of degree q in the generators of I, not just q th powers of
generators.

Definition 2.1. Let R be a Noetherian domain of characteristic p > 0, let I be an ideal
of R, and let u be an ideal of R. We say that u ∈ R is in the tight closure I∗ of I in R if
there exists an element c ∈ R−{0} such that for all sufficiently large q = pe, we have that
cuq ∈ I [q].

It is equivalent in the definition above to say “for all q” instead of “for all sufficiently
large q”. We want to discuss why this condition should be thought of as placing u “almost”
in I in some sense. Let I = (f1, . . . , fh)R. Note that for every large q = pe one has

cuq = r1qf
q
1 + · · · rhqfqh

and if we take q th roots we have

c1/qu = r
1/q
1q f1 + · · · r1/q

hq fh,

an equation that holds in the ring Sq = R[c1/q, r1/q
iq : 1 ≤ i ≤ h]. S is a module-finite

extension of R. But this is not quite saying that u is in IS: rather, it says that c1/qu is
in IS. But for very large q, for heuristic purposes, one may think of c1/q as being close to
1: after all, the exponent is approaching 0. Thus, u is multiplied into ISq in a sequence
of module-finite extensions by elements that are getting closer and closer to being a unit,
in a vague heuristic sense. This may provide some motivation for the idea that elements
that are in the tight closure of an ideal are “almost” in the ideal.

It is ironic that tight closure is an extremely useful technique for proving theorems about
regular rings, because it turns out that in regular rings the tight closure of any ideal I is
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simply I itself. In some sense, the reason that tight closure is so useful in regular rings is
that it gives a criterion for being in an ideal that, on the face of it, is considerably weaker
than being in the ideal. We shall return to this point later.

We may extend the definition to Noetherian rings R of positive prime characteristic p
that are not necessarily integral domains in one of two equivalent ways:
(1) Define u to be in I∗ if the image of u in R/P is in the tight closure of I(R/P ) in R/P

for every minimal prime P of R.
(2) Define u to be in I∗ if there is an element c ∈ R and not in any minimal prime of R

such that cuq ∈ I [q] for all q = pe � 0.

3. Basic properties of tight closure and the Briançon-Skoda theorem

The following facts about tight closure in a Noetherian ring R of positive prime char-
acteristic p are reasonably easy to verify from the definition.

(a) For any ideal I of R, (I∗)∗ = I∗.
(b) For any ideals I ⊆ J of R, I∗ ⊆ J∗.

We shall soon need the following characterization of integral closure of ideals in Noe-
therian domains.

Fact 3.1. Let R be a Noetherian domain and let J be an ideal. Then u ∈ R is in J if and
only if for some c ∈ R − {0} and every integer positive integer n, cun ∈ In. It suffices if
cun ∈ In for infinitely many values of n.

Comparing this with the definition of tight closure and using the fact that I [q] ⊆ Iq for
all q = pe, we immediately get

(c) For any ideal I of R, I∗ ⊆ I. In particular, I∗ is contained in the radical of I.

Less obvious is the following theorem that we will prove later.

Theorem 3.1. If R is regular, every ideal of R is tightly closed.

Assuming this fact for a moment, we can prove the following result:

Theorem 3.2 (tight closure form of the Briançon-Skoda theorem in character-
istic p). Let I = (f1, . . . , fn)R be an ideal of a regular ring R of characteristic p > 0.
Then In ⊆ I. When R is not necessarily regular, it is still true that In ⊆ I∗.

Proof. Assuming Theorem 3.1 for the moment, we need only check the final assertion. It
suffices to work modulo each minimal prime of R in turn, so we may assume that R is a
domain. Then u ∈ In implies that for some nonzero c, cum ∈ (In)m for all m. Restricting
m = q = pe we find that cum ∈ Inq ⊆ I [q] for all q, since a monomial in n elements of
degree nq must have a factor in which one of the elements is raised to the q th power. �

Why is every ideal in a regular ring tightly closed? We first need the following:
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Fact 3.3. If R is regular of positive characteristic p then the Frobenius endomorphism is
flat.

This can be shown as follows: the issue is local on R. In the local case it suffices to
prove it for the completion R̂ because R→ R̂ is faithfully flat. We have therefore reduced
to considering the case R ∼= K[[x1, . . . , xn]]. The Frobenius map is then isomorphic with
the ring inclusion Kp[[xp1, . . . , x

p
n]] ⊆ K[[x1, . . . , xn]]. Letting Kp = k, we may factor

this map as k[[xp1, . . . , x
p
n]] ⊆ k[[x1, . . . , xn]] ⊆ K[[x1, . . . , xn]]. The first extension is

free on the monomials xh1
1 · · ·xhn

n with 0 ≤ hi < p for all i. The flatness of the second
map (for any field inclusion k ⊆ K) may be seen as follows: since K is flat (in fact, free)
over k, K[x1, . . . , xn] is flat over k[x1, . . . , xn]. This is preserved when we localize at the
maximal ideal generated by the x ’s in the larger ring and its contraction (also generated
by the x ’s) to the smaller ring. Finally, it is further preserved when we complete both
local rings. �

Recall that for an ideal I of R and element u ∈ R, I : u = {r ∈ R : ur ∈ I}. This may
thought of as the annihilator in R of the image of u in R/I.

Fact 3.4. If f : R→ S is flat, I ⊆ R and u ∈ R, then IS :S f(u) = (I :R u)S.

To see why, note the exact sequence (I : u)/I → R/I → R/I where the map is multi-
plication by u. Applying S⊗R preserves exactness, from which the stated result follows.

Corollary 3.5. If R is regular of positive characteristic, I is any ideal, and u ∈ R, then
I [q] : uq = (I : u)[q] for all q = pe.

The point is that since F : R → R is flat, so is its e th iterate F e. If S denotes R
viewed as an R-algebra via F e then IS = I [pe] when we “remember” that S is R. With
this observation, Corollary 3.5 follows from Fact 3.4.

Proof of Theorem 3.1. We can reduce to the case where R is a domain. If c 6= 0 and
cuq ∈ I [q] for all q = pe, then c ∈

⋂
q I

[q] : uq =
⋂
q(I : u)[q] ⊆

⋂
q(I : u)q. Since the

intersection is not 0, we must have that I : u = R, i.e., that u ∈ R. �

We also want to mention here the following very useful fact: tight closure captures
contracted extensions from module-finite extensions.

Theorem 3.6. Let S be a domain module-finite over R and let I be an ideal of R. Then
IS ∩R ⊆ I∗.

Proof. S can be embedded in a finitely generated free R-module. One of the projection
maps back to R will be nonzero on the identity element of S. That is, there is an R-linear
map f : S → R that sends 1 ∈ S to c ∈ R − {0}. If u ∈ IS ∩ R, then uq ∈ I [q]S for all q.
Applying f to both sides yields that cuq ∈ Iq. �
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Although we have not yet given the definitions the analogous fact holds for submodules
of free modules, and can even be formulated for arbitrary submodules of arbitrary modules.

4. Direct summands of regular rings are Cohen-Macaulay

Elements x1, . . . , xn in a ring R are called a regular sequence on an R-module M if
(x1, . . . , xn)M 6= M and xi+1 is not a zerodivisor on M/(x1, . . . , xi)M , 0 ≤ i < n. A
sequence of indeterminates in a polynomial or formal power series ring R, with M = R (or
a nonzero free R-module) is an example. We shall make use of the following fact:

Fact 4.1. Let A be a polynomial ring over a field K, say A = K[x1, . . . , xd] or let A be a
regular local ring in which x1, . . . , xd is a minimal set of generators of the maximal ideal.
Then a finitely generated nonzero A-module M (assumed graded in the first case) is A-free
if and only if x1, . . . , xd is a regular sequence on M . Thus, a module-finite extension ring
R (graded if A is a polynomial ring) of A is Cohen-Macaulay if and only if x1, . . . , xd is
a regular sequence on R.

The following two lemmas make the connection between tight closure and the Cohen-
Macaulay property.

Proposition 4.2. Let S be a module-finite domain extension of the domain R (torsion-
free is sufficient) and let x1, . . . , xd be a regular sequence in R. Suppose 0 ≤ k < d and
let I = (x1, . . . , xk)R. Then IS :S xk+1 ⊆ (IS)∗ in S.

Thus, if every ideal of S is tightly closed, and x1, . . . , xd is a regular sequence in R, it
is a regular sequence in S.

Proof. Because S is a torsion-free R-module there is an an element c of R − {0} that
multiplies S into an R-free submodule G ∼= Rh of S. (This is really all we need about S.)
Suppose that uxk+1 ∈ IS. Raise both sides to the q = pe power to get uqxqk+1 ∈ I [q]S.
Multiply by c to get (cuq)xqk+1 ∈ I [q]G. Because the xj form a regular sequence on G, so
do their q th powers, and we find that cuq ∈ I [q]S = (IS)[q]. Since this holds for all q = pe,
we are done. �

Proposition 4.3. Let R be a domain module-finite over a regular local ring A or N-
graded and module-finite over a polynomial ring A. Suppose that R is a direct summand
of a regular ring S as an R-module. Then R is Cohen-Macaulay (i.e., A-free).

Proof. Let x1, . . . , xd be as in Fact 4.1. The result comes down to the assertion that
x1, . . . , xd is a regular sequence on R. By Proposition 4.2, it suffices to show that every
ideal of R is tightly closed. But if J is an ideal of R and u ∈ R is in J∗, then it is clear
that u ∈ (JS)∗ = JS, since S is regular, and so u ∈ JS ∩ R = J , because R is a direct
summand of S. �
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Pushing this idea a bit further, one gets a full proof of Theorem 1.1. We need to extend
the notion of tight closure to equal characteristic 0, however. This is tackled in §6.

5. The Ein-Lazarsfeld-Smith comparison theorem

We give here the characteristic p proof of (1.3), and we shall even allow radical ideals,
with h taken to be the largest height of any minimal prime. For a prime ideal P , P (N),
the N th symbolic power, is the contraction of PNRP to R. When I is a radical ideal with
minimal primes P1, . . . , Pk and W = R −

⋃
j Pj , we may define P (N) either as

⋂
j P

(N)
j

or as the contraction of IN (W−1R) to R.

Suppose that I 6= (0) is radical ideal. If u ∈ I(hn), then for every q = pe we can
write q = an + r where a ≥ 0 and 0 ≤ r ≤ n − 1 are integers. Then ua ∈ I(han) and
Ihnua ⊆ Ihrua ⊆ I(han+hr) = I(hq). We now come to a key point: we can show that
(∗) I(hq) ⊆ I [q]. To see this, note that because the Frobenius endomorphism is flat for
regular rings, I [q] has no associated primes other than the minimal primes of I, and it
suffices to check (∗) after localizing at each minimal prime P of I. But after localization,
I has at most h generators, and so each monomial of degree hq in these generators is a
multiple of the q th power of at least one of the generators. This completes the proof of
(∗). Taking n th powers gives that Ihn

2
uan ⊆ (I [q])n = (In)[q], and since q ≥ an, we have

that Ihn
2
uq ⊆ (In)[q] for fixed h and n and all q. Let d be any nonzero element of Ihn

2
.

The condition that duq ∈ (In)[q] for all q says precisely that u is in the tight closure of In

in R. But in a regular ring, every ideal is tightly closed, and so u ∈ In, as required. �

6. Extending the theory to affine algebras in characteristic 0

In this section we discuss briefly how to extend the results of tight closure theory to
finitely generated algebras over a field K of characteristic zero. There is a good theory
with essentially the same properties as in positive characteristic. Cf. [HH12], [Ho3].

Suppose that we have a finitely generated K-algebra R. We may think of R as having the
form K[x1, . . . , xn]/(f1, . . . , fm) for finitely many polynomials fj . An ideal I ⊆ R can
be given by specifying finitely many polynomials gj ∈ T = K[x1, . . . , xn] that generate
it, and an element u of R can be specified by giving a polynomial h that maps to. We can
then choose a finitely generated Z-subalgebra B of K that contains all of the coefficients
of the fj , the gj and of h. We can form a ring RB = B[x1, . . . , xn]/(f1, . . . , fm) and we
can consider the ideal IB of the RB generated by the images of the gj in RB . It turns out
that after localizing B at one nonzero element we can make other pleasant assumptions:
that IB ⊆ RB ⊆ R, that RB and RB/IB are B-free (the lemma of generic freeness), and
that tensoring with K over B converts IB ⊆ RB to I ⊆ R. Moreover, h has an image in
RB ⊆ R that we may identify with u.
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We then define u to be in the tight closure of I in R provided that for all maximal Q
in a dense open subset of the maximal spectrum of B, with κ = B/Q, the image of u in
Rκ = κ ⊗B RB is in the characteristic p tight closure of Iκ = IRκ — this makes sense
because B/Q will be a finite field.

This definition turns out to be independent of the choices of B RB , IB , etc.

Here is one very simple example. Let R = K[x, y, z]/(x3 + y3 + z3) where K is any
field of characteristic 0, e.g., the complex numbers, let I = (x, y) and u be the image of
z2. In this case we may take B = Z, RZ = Z[x, y, z]/(x3 + y3 + z3) and IZ = (x, y)RZ.
Then z2 is in the characteristic 0 tight closure of (x, y)R because for every prime integer
p 6= 3 (these correspond to the maximal ideals of Z, the image of z2 is in the characteristic
p tight closure of (x, y)(Z/pZ)[x, y, z]/(x3 + y3 + z3). Take c = x, for example. One can
check that c(z2)q ∈ (xq, yq)(RZ/pRZ) for all q = pe. Write 2q = 3k + a, a ∈ {1, 2}, and
use that xz2q = ±x(x3 + y3)kza. Each term in x(x3 + y3)k has the form x3i+1y3j where
3i+ 3j = 3k ≥ 2q − 2. Since (3i+ 1) + 3j ≥ 2q − 1, at least one of the exponents is ≥ q.

7. Test elements

In this section we again study the case of rings of characteristic p > 0. Let R be a
Noetherian domain. We shall say that an element c ∈ R−{0} is a test element if for every
ideal I of R, cI∗ ⊆ I. An equivalent condition is that for every ideal I and element u of
R, u ∈ I∗ if and only if cuq ∈ I [q] for every q = pe ≥ 1. The reason that this holds is
the easily verified fact that if u ∈ I∗, then uq ⊆ (I [q])∗ for all q. Thus, an element that
is known to be a test element can be used in all tight closure tests. A priori the element
used in tight closure tests for whether u ∈ I∗ in the definition of tight closure can vary
with both I and u. The test elements together with 0 form an ideal called the test ideal.

Test elements are known to exist for domains finitely generated over a field. Any element
d 6= 0 such that Rd is regular turns out to have a power that is a test element. We won’t
prove this here.

We will explain, however, why the Jacobian ideal of a domain finitely generated over
an algebraically closed field is contained in the test ideal, which is one of the ingredients
of Theorem 1.4. The discussion of the results on test elements needed for Theorem 1.4 is
continued in the next section.

Here is a useful result that leads to existence theorems for test elements.

Theorem 7.1. Let R be a Noetherian domain module-finite over a regular domain A of
characteristic p > 0, and suppose that the extension of fraction fields is separable. Then:
(a) There are elements d ∈ A− {0} such that dR1/p ⊆ R[A1/p].
(b) For any d as in part (a), if c = d2 then (∗) cR1/q ⊆ R[A1/q for all q. Let Rq = R[A1/q].
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(c) Any element c 6= 0 of R that satisfies the condition (∗) of part (b) is a test element
for R.

Thus, R has test elements.

Proof. If we localize at all nonzero elements of A we are in the case where A is a field and
R is a separable field extension. This is well-known and is left as an exercise for the reader.
It follows that R1/p/R[A1/p], which we may think of as a finitely generated A1/p-module,
is a torsion module. But then it is killed by an element of A1/p − {0} and, hence, by an
element of A− {0}.

For part (b) note we note that since dR1/p ⊆ R[A1/p], we have that d1/qR1/pq ⊆
R1/q[A1/pq] for all q = pe. Thus,

d1+1/pR1/p2 ⊆ d(d1/pR1/p2) ⊆ d(R1/p[A1/p2 ]) ⊆ R[A1/p][A1/p2 ] = R[A1/p2 ].

Continuing in this way, one concludes easily by induction that

d1+1/p+···+1/pe−1
R1/pe

⊆ R[A1/pe

].

Since 2 > 1 + 1/p+ · · · 1/pe−1 for all p ≥ 2, we obtain the desired result.
Finally, suppose that c satisfies condition (∗). It suffices to show that for all I and

u ∈ I∗, that cu ∈ I. But if u ∈ I∗ we can choose a ∈ A − {0} (all nonzero elements of R
have nonzero multiples in A) such that auq ∈ I [q] for all q = pe. Taking q th roots gives
a1/qu ∈ IR1/q for all q. Multiplying by c gives that a1/qcu ∈ IR[A1/q] = IRq for all q,
and so a1/q ∈ IRq :Rq cu for all q. It is not hard to show that R⊗A A1/q ∼= R[A1/q] here.
(The obvious map is onto, and since R is torsion-free over A and A1/q is A-flat, R⊗AA1/q

is torsion-free over, so that we can check injectivity after localizing at A − {0}, and we
thus reduce to the case where A is a field and R is a finite separable extension field, where
the result is the well-known linear disjointness of separable and purely inseparable field
extensions.) The flatness of Frobenius for A means precisely that A1/q is flat over A, so
that Rq is flat over R; this is simply a base change. Thus, IRq :Rq

cu = (I :R cu)Rq ⊆
(I :R cu)R1/q. Hence, for all q = pe, a1/q ∈ JR1/q, where J = I :R cu. This shows that
a ∈ J [q] for all q. Since a 6= 0, we must have that J is the unit ideal, i.e., that cu ∈ I.

The same argument works essentially without change when I is a submodule of a free
module instead of an ideal. �

8. Test elements using the Lipman-Sathaye theorem

This section describes some material from Section (1.4) of [HH12].

For the moment, we do not make any assumption on the characteristic. Let T ⊆ R

be a module-finite extension, where T is a Noetherian domain, R is torsion-free as a T -
module and the extension is generically smooth. Thus, if K is the fraction field of T and
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L = K ⊗T R is the total quotient ring of R then K −→ L is a finite product of separable
field extensions of K. The Jacobian ideal J (R/T ) is defined as the 0 th Fitting ideal of
the R-module of Kähler R-differentials ΩR/T , and may be calculated as follows: write
R ∼= T [X1, . . . , Xn]/P and then J (R/T ) is the ideal generated in R by the images of
all the Jacobian determinants ∂(g1, . . . , gn)/∂(X1, . . . , Xn) for n-tuples g1, . . . , gn of
elements of P . Moreover, to generate J (R/T ) it suffices to take all the n-tuples of gi from
a fixed set of generators of P .

Now suppose in addition that T is regular. Let R′ be the integral closure of R in
L, which is well known to be module-finite over T (the usual way to argue is that any
discriminant multiplies it into a finitely generated free T -module). Let J = J (R/T ) and
J ′ = J (R′/T ). The result of Lipman and Sathaye ([LS], Theorem 2, p. 200) may be stated
as follows:

(8.1) Theorem (Lipman-Sathaye). With notation as above (in particular, there is no
assumption about the characteristic, and T is regular), suppose also that R is an integral
domain. If u ∈ L is such that uJ ′ ⊆ R′ then uJR′ ⊆ R. In particular, we may take u = 1,
and so JR′ ⊆ R. �

This property of “capturing the normalization” will enable us to produce test elements.

(8.2) Corollary (existence of test elements via the Lipman-Sathaye theorem). If
R is a domain module-finite over a regular domain A of characteristic p such that the
extension of fraction fields is separable, then every element c of J = J (R/A) is such that
cR1/q ⊆ A1/q[R] for all q, and, in particular, cR∞ ⊆ A∞[R]. Thus, if c ∈ J ∩ (R − {0}),
it is a test element.

Proof. Since A1/q[R] ∼= A1/q ⊗A R, the image of c is in J (A1/q[R]/A1/q), and so the
Lipman-Sathaye theorem implies that c multiplies the normalization S of A1/q[R] into
A1/q[R]. Thus, it suffices to see that R1/q is contained in S. Since it is clearly integral over
A1/q[R] (it is obviously integral over R), we need only see that the elements of R1/q are in
the total quotient ring of A1/q[R], and for this purpose we may localize at Ao = A− {0}.
Thus, we may replace A by its fraction field and assume that A is a field, and then R is
replaced by (Ao)−1R, which is a separable field extensions. Thus, we come down to the fact
that if A ⊆ R is a finite separable field extension, then the injection A1/q⊗AR→ R1/q (the
map is an injection because separable and purely inseparable field extensions are linearly
disjoint) is an isomorphism, which is immediate by a degree argument. �

(8.3) Corollary (more test elements via the Lipman-Sathaye theorem). Let K
be a field of characteristic p and let R be a d-dimensional geometrically reduced (i.e., the
ring stays reduced even when one tensors with an inseparable extension of K — this is
automatic if K is perfect) domain over K that is finitely generated as a K-algebra. Let



TIGHT CLOSURE THEORY AND CHARACTERISTIC P METHODS 15

R = K[x1, . . . , xn]/(g1, . . . , gr) be a presentation of R as a homomorphic image of a
polynomial ring. Then the (n− d)× (n− d) minors of the Jacobian matrix (∂gi/∂xj) are
contained in the test ideal of R, and remain so after localization and completion. Thus,
any element of the Jacobian ideal generated by all these minors that is in R−{0} is a test
element.

Proof. We pass to K(t)⊗KR, if necessary, where K(t) is a simple transcendental extension
of K, to guarantee that the field is infinite. Our hypothesis remains the same, the Jacobian
matrix does not change, and, since K(t)⊗KR is faithfully flat over R, it suffices to consider
the latter ring. Thus, we may assume without loss of generality that K is infinite. The
calculation of the Jacobian ideal is independent of the choice of indeterminates. We are
therefore free to make a linear change of coordinates, which corresponds to choosing an
element of G = GL(n,K) ⊆ Kn2

to act on the one-forms of K[x1, . . . , xn]. For a dense
Zariski open set U of G ⊆ Kn2

, if we make a change of coordinates corresponding to an
element γ ∈ U ⊆ G then, for every choice of d of the (new) indeterminates, if A denotes
the K-subalgebra of R that these d new indeterminates generate, the two conditions listed
below will hold:

(1) R will be module-finite over A (and the d chosen indeterminates will then, per force,
be algebraically independent) and

(2) R will be generically smooth over A.

We may consider these two statements separately, for if each holds for a dense Zariski
open subset of G we may intersect the two subsets. The first statement follows from
the standard “linear change of variable” proofs of the Noether normalization theorem for
affine K-algebras (these may be used whenever the ring contains an infinite field). For the
second, we want each d element subset, say, after renumbering, x1, . . . , xd, of the variables
to be a separating transcendence basis for the fraction field L of R over K. (The fact that
R is geometrically reduced over K implies that L is separably generated over K.) By, for
example, Theorem 5.10 (d) of [Ku], a necessary and sufficient condition for x1, . . . , xd to be
a separating transcendence basis is that the differentials of these elements dx1, . . . , dxd
in ΩL/K ∼= Ld be a basis for ΩL/K as an L-vector space. Since the differentials of the
original variables span ΩL/K over L, it is clear that the set of elements of G for which all d
element subsets of the new variables have differentials that span ΩL/K contains a Zariski
dense open set.

Now suppose that a suitable change of coordinates has been made, and, as above, let
A be the ring generated over K by some set of d of the elements xi. Then the n− d size
minors of (∂gi/∂xj) involving the n− d columns of (∂gi/∂xj) that correspond to variables
not chosen as generators of A precisely generate J (R/A). R is module-finite over A by
the general position argument, and since it is equidimensional and reduced, it is likewise
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torsion-free over A, which is a regular domain. It is generically smooth likewise, because of
the general position of the variables. The result is now immediate from (8.2): as we vary
the set of d variables, every n− d size minor occurs as a generator of some J (R/A) �

9. Tight closure for submodules

In this section we make some brief remarks on how to extend the theory of tight closure
to submodules of arbitrary modules.

Let R be a Noetherian ring of positive prime characteristic p and let G be a free R-
module with a specified free basis uj , which we allow to be infinite. Then we may define
an action of the Frobenius endomorphism F and its iterates on G very simply as follows:
if g =

∑t
i=1 riuji (where the ji are distinct) we let F e(g), which we also denote gp

e

, be∑t
i=1 r

pe

i uji . Thus, we are simply letting F act (as it does on the ring) on all the coefficients
that occur in the representation of an element of G in terms of the free basis. If N ⊆ G

is a submodule, we let N [pe] denote the submodule of G spanned by all the elements gp
e

for g ∈ N . We then define an element x ∈ G to be in N∗ if there exists c ∈ Ro such that
cxp

e ∈ N [pe] for all e� 0.

More generally, if M is any R-module, N is a submodule, and we want to determine
whether x ∈ M is in the tight closure N∗ of N in M , we can proceed by mapping a free
module G onto M , taking an element g ∈ G that maps to x, letting H be the inverse image
of N in G, and letting x be in N∗M precisely when g ∈ H∗G, where we are using subscripts
to indicate the ambient module. This definition turns out to be independent of the choice
of free module G mapping onto M , and of the choice of free basis for G.

I believe that there are many important questions about the behavior of tight closure
for modules that are not finitely generated over the ring, especially for Artinian modules
over local rings. See question 3. of the next section.

However, for the rest of this section we restrict attention to the case of finitely generated
modules. The theory of test elements for tight closure of ideals extends without change to
the generality of modules.

In order to prove the result of Theorem 1.4 one may make use of a version of the
phantom acyclicity theorem. We first recall the result of [BE] concerning when a finite free
complex over a Noetherian ring R is acyclic. Suppose that the complex is

0→ Rbn → · · · → Rb0 → 0

and that ri is the (determinantal) rank of the matrix αi giving the map from Rbi → Rbi−1 ,
0 ≤ i ≤ n + 1, where bn+1 is defined to be 0. The result of [BE] is that the complex is
acyclic if and only if
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(1) for 0 ≤ i ≤ n, bi = ri+1 + ri
(2) for 1 ≤ i ≤ n, the depth of the ideal Ji generated by the ri size minors of αi is at

least i (this is automatic if the ideal generated by the minors is the unit ideal; by
convention, the unit ideal has depth +∞).

A complex 0 → Gn → · · · → G0 → 0 is said to be phantom acyclic if for all i ≥ 1, one
has that the kernel Zi of Gi → Gi−1 is in the tight closure of the module of boundaries
Bi (the image of Gi+1 in Gi) in Gi. Note that this implies that Zi/Bi is killed by the test
ideal.

Consider the following weakening of condition (2) above:

(2o) for 1 ≤ i ≤ n, the height of the ideal Ji generated by the ri size minors of αi is at
least i (this is automatic if the ideal generated by the minors is the unit ideal; by
convention, the unit ideal has height +∞).

We then have:

Theorem 9.1 (phantom acyclicity criterion). Let R be a reduced biequidimensional
Noetherian ring of characteristic p > 0. A finite free complex as above is phantom acyclic
provided that conditions (1) and (2 o) hold.

We refer the reader to [HH4] and [HH8] for detailed treatments where the result is
established in much greater generality and a partial converse is proved, and to [Ab] for the
further development of the closely related notion of finite phantom projective dimension.

Note that in a domain, condition (2o) simply says that every Ji has height at least i:
this replaces the subtle and difficult notion of “depth” by the much more tractable notion
of “height” (or “codimension”).

Theorem 1.4 is simply the result of applying the phantom acyclicity criterion to a Koszul
complex. The conditions (1) and (2) are easy to verify. Therefore, the higher homology is
killed by the test ideal, which contains the Jacobian ideal.

There is another point of view that is very helpful in understanding the phantom acyclic-
ity theorem. It involves the main result of [HH5]. If R is a domain, let R+ denote the
integral closure of R in an algebraic closure of its fraction field, which is a maximal integral
extension of R that is a domain. It is unique up to non-unique isomorphism. The theorem
of [HH5] is that every system of parameters of R is a regular sequence in R+: thus, R+

is a big Cohen-Macaulay algebra for R (and for any module-finite extension domain of
R, all of which are embeddable in R+. Suppose that one has a complex that satisfies
the hypothesis of the phantom acyclicity criterion. When one tensors with R+ it actu-
ally becomes acyclic: heights become depths in R+, and one may apply a generalization
to the non-Noetherian case of the acyclicity criterion of [BE] presented in great detail in
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[Nor]. One may use this to see that any cycle becomes a boundary after tensoring with
a sufficiently large but module-finite extension of R. The fact that the cycles are in the
tight closure of the boundaries is now analogous to the fact that when an ideal I ⊆ R is
expanded and then contracted from a module-finite extension S of R, IS ∩ R ⊆ I∗: cf.
Theorem 3.6.

Finally, we want to mention the vanishing theorem for maps of Tor. Let A ⊆ R → S

be maps of rings of characteristic p, where A is regular, R is module-finite and torsion-free
over A, and S is any regular ring. The map R → S is arbitrary here: it need not be
injective nor surjective. Let M be any R-module.

(9.2) Theorem (the vanishing theorem for maps of Tor). With assumptions as just
above, the maps TorAi (M, R)→ TorAi (M, S) are 0 for all i ≥ 1.

Sketch of proof. One may easily reduce to the case where S is complete local and then to
the case where A is complete local. By a direct limit argument one may reduce to the case
where M is finitely generated over A. Then M has a finite free resolution over A, which
satisfies the hypothesis of the characterization of acyclic complexes given in [BE]. When
we tensor with R over A we get a free complex over R that satisfies the phantom acyclicity
theorem: every cycle is in the tight closure of the boundaries. Taking its homology gives
the TorAi (M, R). Now when we tensor S, every module is tightly closed, so the cycles
coming from the complex over R are now boundaries, which gives the desired result. �

Cf. [HH4], [HH8], the discussion in [HH11], and [Rang]. This is an open question in
mixed characteristic. This vanishing result is amazingly powerful. In the case where S is
simply a field, it implies the direct summand conjecture, i.e., that regular rings are direct
summands of their module-finite extensions. In the case where S is regular and R is a
direct summand of S it implies that R is Cohen-Macaulay. Both questions are open in
mixed characteristic. The details of these implications are given in [HH11]. In [Rang], it
is shown, somewhat surprisingly, that the vanishing theorem for maps of Tor is actually
equivalent to the following question about splitting: let R be a regular local ring, let S
be a module-finite extension, and suppose that P is a height one prime ideal of S that
contracts to xR, where x is a regular parameter in R. Then xR is a direct summand of S
as an R-module.

10. Further thoughts and questions

What we have said about tight closure so far is only the tip of an iceberg. Here are
some major open questions.

1. Does tight closure commute with localization under mild assumptions on the ring?
This is not known to be true even for finitely generated algebras over a field. Aspects of
the problem are discussed in [AHH], [HH13], and [Vr1].



TIGHT CLOSURE THEORY AND CHARACTERISTIC P METHODS 19

2. Under mild conditions, if a ring has the property that every ideal is tightly closed,
does that continue to hold when one localizes? This is not known for finitely generated
algebras over a field, nor for complete local rings. An affirmative answer to 1. would imply
an affirmative answer to 2.

Rings such that every ideal is tightly closed are called weakly F-regular. The word
“weakly” is omitted if this property also holds for all localizations of the ring. Weakly
F-regular rings are Cohen-Macaulay and normal under very mild conditions — this holds
even if one only assumes that ideals generated by parameters are tightly closed (this weaker
property is called F-rationality and is closely related to the notion of rational singularities;
cf. [Ha1], [Sm2], [Vel], [En]). Both of the conditions of weak F-regularity and F-rationality
tend to imply that the singularities of the ring are in some sense good. However, the theory
is complicated: cf. [HaW]. It is worth noting that weak F-regularity does not deform [Si],
and that direct summands of F-rational rings are not necessarily F-rational [Wat]. See also
[HaWY1,2]. Weak F-regularity is established for some important classes of rings (those
defined by the vanishing of the minors of fixed size of a matrix of indeterminates, and
homogeneous coordinate rings of Grassmannians) in [HH10], Theorem 7.14.

3. Let M be an Artinian module over, say, a complete reduced local ring with a perfect
residue field. Let N be a submodule of M , Is it true that u ∈ N∗M if and only if there exists
Q with N ⊆ Q ⊆M with Q/N of finite length such that u ∈ N∗Q? This is true in a graded
version and for isolated singularities [LySm1,2]; other cases are established in [Elit].

For any domain R, let R+ denote the integral closure of R in an algebraic closure of its
fraction field. This is unique up to non-unique isomorphism, and may be thought of as a
“largest” domain extension of R that is integral over R.

4. For an excellent local domain R, is an element r ∈ R in the tight closure of I if
and only if it is in IS for some module-finite extension domain of R? It is equivalent to
assert that for such a local domain R, I∗ = IR+ ∩ R. This is known for ideals generated
by part of a system of parameters: cf. [Sm1]. It is known that IR+ ∩ R ⊆ I∗. For some
results on homogeneous coordinate rings of elliptic curves, see the remarks following the
next question.

It is known in characteristic p that for a complete local domain R, and element u ∈ R
is in I∗ if and only if it is in IB ∩R for some big Cohen-Macaulay algebra extension ring
B of R: cf. §11 of [Ho1].

It is worth mentioning that there is an intimate connection between tight closure and
the existence of big Cohen-Macaulay algebras B over local rings (R,m), i.e., algebras B
such that mB 6= B and every system of parameters for R is a regular sequence on B.
Tight closure ideas led to the proof in [HH7] that if R is an excellent local domain of
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characteristic p then R+ is a big Cohen-Macaulay algebra. Moreover, for complete local
rings R, it is known [Ho1], §11, that u ∈ I∗ if and only if R has a big Cohen-Macaulay
algebra B such that u ∈ IB.

5. Is there an effective way to compute tight closures? The answer is not known even
for ideals of cubical cones, i.e., of rings of the form K[X, Y, Z]/(X3 +Y 3 +Z3) in positive
characteristic different from 3. However, in cones over elliptic curves, tight closure agrees
with plus closure (i.e., with IR+∩R) for homogeneous ideals I primary to the homogeneous
maximal ideal : cf. [Bren1,2]. For ideals that are not homogeneous, the question raised in
4. is open even for such rings. When the characteristic of K is congruent to 2 mod 3, it
is even possible that tight closure agrees with Frobenius closure in these rings. Cf. [McD]
and [Vr2].

6. How can one extend tight closure to mixed characteristic? By far the most intriguing
result along these lines is due to Ray Heitmann [Heit], who has proved that if (R,m) is
a complete local domain of dimension 3 and mixed characteristic p, then every Koszul
relation on parameters in R+ is annihilated by multiplication by arbitrarily small positive
rational powers of p (i.e., by p1/N for arbitrarily large integers n). This implies that regular
local rings of dimension 3 are direct summands of their module-finite extension rings.
Heitmann’s result can be used to prove the existence of big Cohen-Macaulay algebras in
dimension 3: cf. [Ho5]. Other possibilities are explored in [Ho4] and [HoV].
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