
Math 615, Winter 2020: Lecture of Wednesday, April 1

Another use of tight closure:
contracted expansions from module-finite extension rings

In this lecture we discuss the problem of understanding IS ∩R when R is a Noetherian
domain and S is a module-finite or integral extension. If R contains the rational numbers
Q and is normal, the situation is simple: it turns out that IS ∩ R = I. In characteristic
p > 0 the problem is much more difficult. Even when R is normal, IS ∩R can be strictly
larger than I. But we shall show that IS ∩ R ⊆ I∗, which provides another use for tight
closure. One can also consider the union of the ideals IS∩R as S runs through all module-
finite extensions of R (it turns out not to matter whether the extension is also a domain),
which gives a new kind of closure of I, called the plus closure I+ such that I ⊆ I+ ⊆ I∗ in
positive characteristic p.

We also discuss the status of several questions about tight closure that were either open
questions for a considerable length of time and then resolved, or that continue to be open
questions.

Let R be a domain. Suppose that R ⊆ S is a module-finite extension. In general,
I ⊆ IS ⊆ R, but IS ∩R may be larger than I. The main case is where S is also a domain.
For S has a minimal prime p disjoint from the multiplicative system R−{0}, and R injects
into S = S/p, which is a domain module-finite over R. Moreover, if r ∈ R is in IS, then
the image of r in S/p is in IS.

Suppose that f ∈ R, g ∈ R−{0}, and f/g is integral over R but not in R, which means
that f /∈ gR. We may take S = R[f/g]. Then f ∈ gS ∩ R − gR, so that when R is not
normal even principal ideals fail to be contracted from module-finite extensions. But if R
is normal and contains Q, then every ideal is contracted from every module-finite extension
S. To see this, first note that it suffices to consider the case where S is a domain, by the
argument above. Let K and L be the respective fraction fields of R and S. Multiplication
by an element of L gives a map L → L which is K-linear. If we simply think of this map as
an endomorphism of the finite-dimensional K-vector space L, we may take its trace: i.e.,
pick a basis for L over K, and take the sum of the diagonal entries of the matrix of the
multiplication map with respect to this basis. This is independent of the choice of basis.

This trace map TrL/K : L → K is K-linear (hence, R-linear) and has value h on 1, where
h = [L : K]. When R is a normal Noetherian ring, it turns out that the values of this map
on S are in R. (One can see this as follows. First, R is the intersection of its localizations
RP at height one primes P . For if f, g ∈ R, g 6= 0, and f/g is in the fraction field of R but
not in R, then f /∈ gR. The associated primes of gR have height one, because R is normal.
Using the primary decomposition of gR, we see that f /∈ A for some ideal A primary to
an associated P of gR of height one, and since elements of R − P are not zerodivisors on
A, f /∈ ARP and so f /∈ gRP , i.e., f/g /∈ RP . If TrL/K has a value on S not in R, we
may preserve this while localizing at a height one prime P of R. But then we may replace
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R, S by RP , SP and assume that R = RP is a Noetherian discrete valuation ring. Since
S is a torsion-free module over R, it is free, and has a free basis over R, say s1, . . . , sj ,
consisting of elements of S. This is also a basis for L over K, and can be used to calculate
the trace of s. But now the matrix for multiplication by s has entries in R: for every si
we have

ssi =
h∑
j=1

rijsj

with the rij ∈ R. But then the trace is
∑h
i=1 rii and is in R after all. The condition that

R be Noetherian is not really needed: for example, in the general case, an integrally closed
domain can be shown to be a directed union of Noetherian integrally closed domains, from
which the general case can be deduced. There are several other lines of argument.)

Finally,
1

h
TrL/K : S → R splits R ↪→ S as a map of R-modules: by R-linearity, the fact

that 1 maps to itself implies that the same holds for every element of R. Since we have a
splitting, it follows that every ideal of R is contracted from S.

Although ideals are contracted from module finite-extensions of normal Noetherian do-
mains that contain Q, this is false in positive characteristic p.

Example. Let R = K[X, Y, Z]/(X3+Y 3+Z3) where K is a field of characteristic 2. Then
z2 /∈ (x, y)R, as noted earlier. But if we make a module-finite domain extension S of R
that contains x1/2, y1/2, and z1/2, then since z3 = x3 + y3 (we are in characteristic 2, so
that minus signs are not needed) we have z3/2 = x3/2 + y3/2 (since squaring commtutes
with addition and elements have at most one square root in domains of characteristic 2,
taking square roots also commutes with addition in domains of characteristic 2). But then

z2 = z1/2z3/2 = z1/2(xx1/2 + yy1/2) = x1/2z1/2x+ y1/2z1/2y ∈ (x, y)S ∩R−R.

However, tight closure “captures” the contracted expansion to a module-finite extension,
which gives another proof that z2 ∈ (x, y)∗ in the Example just above.

Theorem. Let R be a Noetherian domain, and let S be any integral extension of R. Then
for every ideal I of R, IS ∩R ⊆ I∗.

Proof. Suppose that f ∈ R and

(∗) f =

h∑
i=1

fjsj

where the fj ∈ I and the sj ∈ S. We may replace S by R[s1, . . . , sh] ⊆ S, and so assume
that S is module-finite over R. Second, we may kill a minimal prime of S disjoint from
R−{0} and so assume that S is a module-finite domain extension of R. Choose a maximal
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set of R-linearly independent elements of S, say u1, . . . , uk, so that Ru1 + · · · + Ruk is
R-torsion. It follows that some nonzero element r ∈ R, we have that

S ∼= rS ⊆ Ru1 + · · ·+Ruk.

Thus, we have an embedding S ↪→ Rk. Suppose that 1 ∈ S has as its image in Rk an

element whose i th coordinate is nonzero, so that the composite map S ↪→ Rk
πi−→ R is

nonzero on the element 1 ∈ S, where πi is the i th coordinate projection of Rk � R. This
gives an R-linear map θ : S → R such that θ(1) = c ∈ R is nonzero. Now take q th powers
of both sides of (∗), yielding

(∗∗) fq · 1 =
h∑
i=1

fqj s
q
j .

Since θ is R-linear and f, f1, . . . , fh ∈ R, this yields

fqθ(1) =
h∑
i=1

fqj θ(s
q
j),

and so cfq ∈ I [q] for all q. This implies that f ∈ I∗. �

Open questions: tight closure, plus closure, and localization

We want to consider some open questions in tight closure theory, and some related
problems about when rings split from their module-finite extension algebras. After we do
this, we shall prove some specific results in the characteristic p theory. It will turn out
that to proceed further, we will need the structure theory of complete local rings, which
we will develop next.

One of the longest standing and most important questions about tight closure is when
tight closure commutes with localization. E.g., if R is Noetherian of prime characteristic
p > 0, I is an ideal of R, and W is a multiplicative system of R, when is W−1(I∗R) the
same as (W−1)∗W−1R? It is easy to prove that W−1(I∗R) ⊆ (W−1)∗W−1R. This was an
open question for more than twenty years. It is known to be true in many cases, but false
in general, by a result of [H. Brenner and P. Monsky, See, for example, [I. Aberbach, M.
Hochster, and C. Huneke, Localization of tight closure and and modules of finite phantom
projective dimension, J. Reine Angew. Math. (Crelle’s Journal) 434 (1993), 67–114], and
[M. Hochster and C. Huneke, Test exponents and localization of tight closure, Michigan
Math. J. 48 (2000), 305–329] for a discussion of the problem.

We saw in the Theorem proved on p. 168 of this lecture that tight closure “captures”
contracted extension from module-finite and even integral extensions. We shall add this
as (6) to our list of desirable properties for a tight closure theory, which becomes the
following:
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(0) u ∈ N∗M if and only if the image u of u in M/N is in 0∗M/N .

(1) N∗M is a submodule of M and N ⊆ N∗M . If N ⊆ Q ⊆M then N∗M ⊆ Q∗M .

(2) If N ⊆M , then (N∗M )∗M = N∗M .

(3) If R ⊆ S are domains, and I ⊆ R is an ideal, I∗ ⊆ (IS)∗, where I∗ is taken in R
and (IS)∗ in S.

(4) If A is a local domain then, under mild conditions on A (the class of rings allowed
should include local rings of a finitely generated algebra over a complete local ring or over
Z), and f1, . . . , fd is a system of parameters for A, then for 1 ≤ i ≤ d−1, (f1, . . . , fi)A :A
fi+1 ⊆

(
(f1, . . . , fi)A

)∗
.

(5) If R is regular, then I∗ = I for every ideal I of R.

(6) For every module-finite extension ring R of S and every ideal I of R, IS ∩R ⊆ I∗.

These are all properties of tight closure in prime characteristic p > 0, and also of the
theory of tight closure for Noetherian rings containing Q that we described in the Lecture
of March 30. In characteristic p > 0, (4) holds for homomorphic images of Cohen-Macaulay
rings, and for excellent local rings. If R ⊇ Q, (4) holds if R is excellent. We will prove
that (4) holds in prime characteristic for homomorphic images of Cohen-Macaulay rings
quite soon. We have proved (5) in prime characteristic p > 0 for polynomial rings over a
field, but not yet for all regular rings. To give the proof for all regular rings we need to
prove that the Frobenius endomorphism is flat for all such rings, and we shall eventually
use the structure theory of complete local rings to do this.

An extremely important open question is whether there exists a closure theory satisfying
(1) — (6) for Noetherian rings that need not contain a field.

The Theorem proved on p. 168 of this lecture makes it natural to consider the following
variant notion of closure. Let R be any integral domain. Let R+ denote the integral closure
of R in an algebraic closure K of its fraction field K. We refer to this ring as the absolute
integral closure of R. R+ is unique up to non-unique isomorphism, just as the algebraic
closure of a field is. Any module-finite (or integral) extension domain S of R has fraction
field algebraic over K, and so S embeds in K. It follows that S embeds in R+, since the
elements of S are integral over R. Thus, R+ contains an R-subalgebra isomorphic to any
other integral extension domain of R: it is a maximal extension domain with respect to
the property of being integral over R. R+ is the directed union of its finitely generated
subrings, which are module-finite over R. R+ is also charactized as follows: it is a domain
that is an integral extension of R, and every monic polynomial with coefficients in R+

factors into monic linear polynomials over R+.

Given an ideal I ⊆ R, the following two conditions on f ∈ R are equivalent:

(1) f ∈ IR+ ∩R.

(2) For some module-finite extension S of R, f ∈ IS ∩R.

The set of such elements, which is IR+∩R, is denoted I+, and is called the plus closure
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of I. (The definition can be extended to modules N ⊆M by defining N+
M to be the kernel

of the map M → R+ ⊗R (M/N).)

By the Theorem on p. 168 of the notes for this lecture, which is property (6) above in
characteristic p > 0, we have that

I ⊆ I+ ⊆ I∗

in prime characteristic p > 0. Whether I+ = I∗ in general under mild conditions for
Noetherian rings of prime characteristic p > 0 is another very important open question.
It is not known to be true even in finitely generated algebras of Krull dimension 2 over a
field.

However, there are some substantial positive results. It is known that under the mild
conditions on the local domain R (e.g., when R is excellent), if I is generated by part of a
system of parameters for R, then I+ = I∗. See [K. E. Smith, Tight closure of parameter
ideals, Inventiones Math. 115 (1994) 41–60]. Moreover, H. Brenner [H. Brenner, Tight
closure and plus closure in dimension two, Amer. J. Math. 128 (2006) 531–539] proved that
if R is the homogeneous coordinate ring of a smooth projective curve over the algebraic
closure of Z/pZ for some prime integer p > 0, then I∗ = I+ for homogeneous ideals
primary to the homogeneous maximal ideal. In [G. Dietz, Closure operations in positive
characteristic and big Cohen-Macaulay algebras, Thesis, Univ. of Michigan, 2005] the
condition that the ideal be homogeneous is removed: in fact, there is a corresponding
result for modules N ⊆ M when M/N has finite length. Brenner’s methods involve the
theory of semi-stable vector bundles over a smooth curve (in fact, one needs the notion
of a strongly semi-stable vector bundle, where “strongly” means that the bundle remains
semi-stable after pullback by the Frobenius map).

One reason for the great interest in whether plus closure commutes with tight closure is
that it is known that plus closure commutes with localization. Hence, if I∗ = I+ in general
(under mild conditions on the ring) one gets the result that tight closure commutes with
localization.

The notion of plus closure is of almost no help in understanding tight closure when the
ring contains the rationals. The reason for this is the result established using field trace
in the first two pages of the notes for this lecture, which we restate formally here.

Theorem. Let R be a normal Noetherian domain with fraction field K and let S be a
module-finite extension domain with fraction field L. Let h = [L : K]. If Q ⊆ R, or, more

generally, if h has an inverse in R, then
1

h
TrL/K gives an R-module retraction S → R. �

It follows that if Q ⊆ R and R is a normal domain, then I+ = I for every ideal I
of R. Many normal rings (in some sense most normal rings) that are essentially of finite
type over Q are not Cohen-Macaulay, and so contain parameter ideals that are not tightly
closed. This shows that plus closure is not a greatly useful notion in Noetherian domains
that contain Q.


