
Math 615, Winter 2020: Lecture of Friday, April 17

We first discuss the tight closure proof that direct summands of regular rings are Cohen-
Macaulay. This is the only part of this material that is not optional.

We then introduce the notion of integral dependence on an ideal and integral closure of
ideals. A Supplement on integral closure has been provided. We then give the amazingly
easy tight closure proof of a strengthend form of the Briançon-Skoda theorem. All of this
material is optional in the sense that it will not be covered on the last quiz.

Direct summands of regular rings are Cohen-Macaulay

The following result application of tight closure theory is immediate from what we have
already done.

Theorem. A direct summand R of a weakly F-regular domain S is weakly F-regular.
Hence, a direct summand of a regular ring of positive prime characteristic p that is a
homomorphic image of a Cohen-Macaulay ring is Cohen-Macaulay.

Proof. The first statement is part of the Theorem stated at the bottom of the first page
of the Lecture of April 3. The second statement is the immediate from the final Theorem
of the Lecture of April 8. �

Again, material in the lecture notes beyond this point will not be tested in the remaining
quiz.

Discussion. The restriction that R be a homomorphic image of a Cohen-Macaulay ring
is not needed. One can localize R at a maximal ideal and then S at prime lying over
the maximal ideal of R while maintaining the property that every ideal of R is contracted
from S, and so assume that both are local. One can then complete R with respect to its
maximal ideal m and S with respect to mS and so assume that R is complete, and that
every ideal is contracted from S. Now R is a homomorphic image of a regular ring, and one
has colon-capturing. If x1, . . . , xd is a system of parameters for R, and Ii = (xi1, . . . , i)
for 0 ≤ i ≤ d− 1, then Ii : xi+1 ⊆ I∗ in R, and this is contained in (IiS)∗ in S and in R.
But (IiS)∗ = IS since S is regular, and IiS ∩R = Ii. �

The extension of tight closure theory to rings containing the rational numbers gives a
proof of the same result for rings containing the rationals, and the result has recently been
extended to mixed characteristic by perfectoid methods.
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The Briançon-Skoda theorem

This section is optional.

We first discuss the notion of the integral closure of an ideal in the Noetherian case.

Theorem. Let R be Noetherian, I an ideal, and let r ∈ R. The following conditions are
equivalent, and define the condition that an element r ∈ R be integral over an ideal I of
R.

(1) There is an element c not in any minimal prime of R such that crn ∈ In for all
n� 0 (equivalently, for infinitely many values of n).

(2) There is an element c not in any minimal prime of R such that crn ∈ In for
infinitely many values of n.

(3) For every map of R into a Noetherian discrete valuation domain V , the image of
r is IV .

(4) For every minimal prime p of R and Noetherian discrete valuation domain between
R/p and its fraction field, the image of r is in IV .

(5) rt is integral over the Rees ring R[It] ⊆ R[t] (the latter is the polynomial ring in
one variable t overR).

(6) For some positive integer n, the element r satisfies a polynomial equation of the
form

rn + i1r
n−1 + · · ·+ ijr

n−j + · · ·+ in−1r + in = 0

where the coefficient ij ∈ Ij.

Note that it suffices if rn ∈ In: let in := rn, and use the equation rn − in = 0.

For our purposes here, we will take (2) as the definition of when an element is integral
over an ideal in the Noetherian case. When R is not Noetherian, (5) and (6) are equivalent
and imply the other conditions and either may be taken as the definition of when r is in
the integral closure of I. In all cases, the set of elements integral over I is an ideal called
the integral closure of I, and denoted I. There is a treatment of integral closure of ideals
in a new Supplement on the Web page. There is a great deal more on the subject in the
Lecture Notes for Math 615, Winter 2019.

We first note:

Theorem. Let R be a Noetherian ring of positive prime characteristic p. If r ∈ I∗, then
r ∈ I. In other words, I∗ ⊆ I.

Tight closure is typically much smaller than integral closure. For example in K[x, y] or
K[[x, y]], where x, y are indeterminates, the ideal (xn, yn) is tightly closed for all integers n.
But its integral closure contains (x, y)n, since if i+j = n, (xiyj)n = (xn)i(yn)j ∈ (xn, yn)n.

The following result was first proven for algebras over the complex numbers and con-
vergent power series rings over the complex numbers by analytic methods.
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Theorem (Briançon-Skoda). If I is an ideal of a regular ring and is generated by n
elements, then In ⊆ I.

There are many refined versions, but, for simplicity, we only consider this statement
here.

Later, an algebraic proof of the Briançon-Skoda theorem was given by J. Lipman and
A. Sathaye that is valid in all characteristics, including mixed characteristic: we refer to
the Lecture Notes from Math 615, Winter 2019 for a full treatment.

Tight closure theory permits an extremely simple proof of a stronger result in the case
where the ring contains a field, which we want to give here. We first want to note two
corollaries of the Briançon-Skoda theorem, but we refer to the Lecture Notes from Math
615, Winter 2019 for the details of how they follow from it.

Corollary. Suppose that f ∈ C{z1, . . . , zn} is a convergent power series in n variables
with complex coefficients that defines a hypersurface with an isolated singularity at the
origin, i.e., f and its partial derivatives ∂f/∂zi, 1 ≤ i ≤ n, have an isolated common zero
at the origin. Then fn is in the ideal generated by the partial derivatives of f in the ring
C{z1, . . . , zn}.

This answers affirmatively a question raised by John Mather.

Second:

Corollary. Let f1, . . . , fn+1 be polynomials in n variables over a field. Then fn
1 · · · fn

n ∈
(fn+1

1 , . . . , fn+1
n+1 ).

For example, when n = 2 this implies that if f, g, h ∈ K[x, y] are polynomials in two
variables over a field K then f2g2h2 ∈ (f3, g3, h3). This statement is rather elementary:
the reader is challenged to prove it by elementary means.

Here is the tight closure version in characteristic p > 0.

Theorem (Generalized Briançon-Skoda theorem). Let R be a ring of positive prime
characteristic p . Let I = (f1, . . . , fn) be an ideal of R generated by n elements. Then
In ⊆ I∗.

Proof. Suppose r ∈ In and c is an element not in any minimal prime of R such that
crh ∈ Ih for all h � 0. Then when h = q = pe � 0 we have crq ∈

(
(f1, . . . , fn)h

)q
=

(f1, . . . , fn)nq ⊆ (fq
1 , . . . , f

q
n) because, in a monomial of degree nq in n elements, at least

one of the exponents on one of the elements must be at least q. Hence, crq ∈ I [q] for all
q ∈ 0. �

We now recover the usual Briançon-Skoda theorem not just for regular rings, but for
every weakly F-regular ring, since in that case I∗ = I.
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Remark. One easily gets the same result for algebras containing the rational numbers
using the notion of tight closure in equal characteristic 0 that was discussed briefly earlier,
and this recovers the original Briançon-Skoda theorem.


