Math 615, Winter 2020 Problem Set #4 Solutions

1. Since 0 = R L5 R = 0isa projective resolution of R/ f R, we have that Ext*(R/fR, M)

is the cokernel of the map M L M obtained when we apply Hompg(_, M) to the res-
olution, and this is M/fM = (R/fR) ®g M. In case (a), this is R/fR. In case (b), we
get R/(f,g)R in all cases, but this is R/fR if g is a multiple of f and it is R/gR if f
is a multiple of g. It does not matter whether ¢ is a nonzerodivisor nor whether f,g is
a regular sequence, only that f is not a zerodivisor. In case R is a PID both M and N
can be written as a finite direct sum of cyclic modules, where each summand is either R
or R/f"R with the various f occurring are irreducible, and we can do the same with N,
where each summand is either R or R/gF¥R. We can now distribute Ext}, in all possible
ways over the pairs of summands. When the input on the left is R, we get 0. Now assume
the input on the left is R/f"R. We get R/f"R when the input on the right is . When
the input on the left is R/g* we get 0 if f, g generate distinct prime ideals, since then
(f", g*)R is the unit ideal. If f and g generate the same prime (we might as well assume
they are equal, since each is a unit times the other), we get R/ froin{h kY R Alternatively,
we have shown that if M = G & T, where G is free and T is torsion and so a direct sum
of cyclic torsion modules, then Ext! (M, N) = T'® N, since Ext' (G, N) = 0 and the result
follows by distributing over the cyclic torsion direct summands of T'.

2. The fact that R is regular is not needed, only that it is local. Take a minimal free
resolution of M. We can compute the various Ext modules by applying Homg(_, K) and
taking cohomology. When we map G to K, if m is the maximal ideal of R, mP maps
to 0, and Homp(G, K) = Homg (K ®g G, K). (One may also think of this a the basic
result on base change.) Hence if G; & R% is the i th module in the minimal free resolution,
Homp(G;, K) — Hompg(G,41, K) is the dual into K of themap d; : K®QrG; - KQrGiy1.
All of the d; are 0 because the resolution is minimal and the matrices have entries in m.
Thus, when we apply Hompg(_, K) to the minimal free resolution, all of the maps are 0.
Hence, Ext%(M , K) may be identified with the dual into K of K ®p G;. The dimension
of this K-vector space is the same as the rank of b; of the free R-module G;.

3. We have two obvious relations on z, y, namely (y, —z) and (u, —v). Two check that
these span all relations, suppose FX +GY = H(XU —YV) in S, so that X(F — HU) +
Y(G+ HV) = 0. This shows that F— HU is a multiple of Y, say LY, and F' = HU + JY.
This shows that if fx + gy = 0 then f = hu + jy, and so by subtracting j(y, —z) and
h(u, —v) we obtain a new relation in which the coefficient of = is 0. Since we are in a
domain, the coefficient of y is also 0. Thus, the two obvious relations are the only ones.

This means that that we have an exact sequence R2 —=» R% — P — 0 where the matrix

A= (—yx —uv) has these relations as columns. Here, the standard generators of R?

map to x and y, respectively. The map to P is the restriction of the map R? — R with
matrix C = (z y), and CA = 0. To continue the resolution we need to find the relations
on the columns of A. The two columns are proportional over the fraction field of A: the
second is u/y = v/x times the first, which means that these are the same as the relations
on y and u (or x and v — note that the minus signs have no effect). From the symmetries



of the equation XU — YV in the variables it follows that these are generated by (—v,x)
and (—u,y). Hence, if we use these as the columns of B = (;v —yu we get the next
matrix needed in the free resolution. The columns of this matrix are again proportional:
the second is u/v = y/x times the first, and so the relations on these two columns are the
same as the relations on x and y. Hence, the next matrix needed is A again. It follows by
a completely straightforward induction that the free resolution consists entirely of copies

of R?, with the matrices of the maps alternating between A and B:
o RrREBR AR B R AR B R AR 0

We have omitted the augmentation P. To compute Extf(P, Q) we apply Homg(_, Q).
We keep track only of what happens around the spot indexed by the number 1, which
corresponds to the occurrence of R? above that is second from the right. We have:

9 Btr 9 Atr 9
QY —— QF — @

We need to calculate the cohomology at the middle spot. The kernel of B'" consists of
s
t
on the columns of BY¥, which are the rows of B. The rows are proportional, so that
the relations are the same as those on —v and z. If we allow coefficients in R we know
these are spanned by (z,v) and (y,u): these correspond to the columns of A™ with one
change of sign. Therefore we need to find all R-linear combinations f(x,v) + g(y,u) of
these two vectors that have entries in (. If we look at this condition in R/Q = K|z, y]
we see that we need f(z,0) +g(y,0) = (0,0), where f, g are the images of f, g modulo Q.
Hence, mod @, (f, g) is a multiple of (y, —x). It follows that the relations are spanned by
u(z,v),v(z,v),u(y,u),v(y,u) and y(x,v) — z(y,u) = (0,0), so the last is not needed. This
shows that all relations are in the image of the map A' applied to Q? = Q ® Q. Hence,
Ext'(P,Q) = 0.

An approach that does not succeed is to note Ext (P, Q) = Ext*(R/P, Q). Since the depth
of @ (which is a maximal Cohen-Macaulay module module) on P is 1, we can conclude
Ext'(R/P, Q) # 0, but, a priori, higher Ext modules may or may not vanish.

Remark. It is actually the case that P = @ as R-modules. P = uP = (ux,uy)R =
(vy, uy )R =yQ = Q.

4. Let N = M/(f1, ..., fn—1M. Then f; is not a zerodivisor on N, and we need to show

that [N/f,N] = 0. But from the short exact sequence 0 — N ELIN NN N/fyN — 0 we
have that [N/f,N] = [N]—[N]=0. O

elements (s,t) where s,t € @ such that B"™ ( = 0, which means that (s,t) is a relation

5. Let P; be the minimal prime generated by the image of ;. We have a map Go(R/F;) —
Go(R) whose image contains all [R/Q] such that Q O P,. Since every prime contains a
minimal prime, Go(R) is spanned by the images of the groups Go(R/P;). Since R/P; is
a polynomial ring, Go(R/Pr) is spanned by [R/F;]. It follows that Go(R) is spanned by



the n elements [R/FP;], 1 < i < n. It will suffice to show that there are no relations on
these. Suppose Y., h;[R/P;] = 0. Since for every i, we have an additive map 6; : M —
Crp, (Mp,) which induces a map Go(R) — Z which is 1 on R/P; and 0 on [R/P;] if j # i,
it follows that h; =0,1<i<n. O

6. In the presence of the condition mM # M faithful flatness is equivalent to flatness
and improper regular sequences on M are regular sequences. If M is flat, _ p M preserves
whether elements are nonzerodivisors and commutes with quotients: hence it preserves
(possibly) improper regular sequences. Since every system of parameters for R is regular
local (hence, Cohen-Macaulay module), every system of parameters (or part thereof) is a
regular sequence, and this remains true on M.

It remains to show that if every system of parameters in R is a regular sequence on M,
then M is flat. Let R-modules A C B be given. Then B is the directed union of its
submodules By O A such that By is generated by A and finitely many more elements.
Thus, it suffices to show that injectivity is preserved when B/A is finitely generated,
Hence, from the long exact sequence for Tor, it suffices to show that for every finitely
generated R-module N = B/A, Tori(N, M) = 0. We shall prove that for all finitely
generated modules N and i > 1, we have that Tor/ (N, M) = 0. Note that we already
know this if N & R/(x1, ... ,xn)R, where 1, ...,z is part of a system of parameters:
the Koszul complex gives a free resolution of N = R/(x1, ... ,zp)R that case, and the
modules Tor{*(N, M) are the same as Koszul homology, which vanishes for i > 1 because
x1, ... ,x; is a regular sequence on M. Also note that Tor;(N, M) = 0 for i > dim (R),
since R is regular and pdp N < dim (R). It will suffice to show that if Tor;1 (N, M) =0
for all finitely generated modules N with ¢ > 1, then Tor;(N, M) = 0 for all finitely
generated modules N. We shall use induction on the number of factors in a prime cyclic
filtration of N. Note that if the number of factors is s + 1, we have a short exact sequence
0 — No — N — R/P — 0 where Ny has a prime cyclic filtration with s factors and P is
prime. The long exact sequence for Tor implies at once that if TorZR (No, R/P) = 0 and
Tor®(R/P, M) = 0, then Tor®(N, M) = 0, and the Krull dimensions of Ny and R/ P are at
most that of N. We have therefore reduced to the case where N = R/P. If dim (R/P) =0
then P = m is generated by a regular sequence, and we are done. Assume the height of
P is h < dim (R) and choose a maximal regular sequence z1, ...,z in P. Then, since
R is Cohen-Macaulay, the height of P is h, and it follows that P is a minimal prime of
(1, ... ,xp)R and so an associated prime of x1, ... ,z,)R. Hence, we have a short exact
sequence 0 — R/P — R/(x1, ... ,xp)R) — W — 0. Then part of the long exact sequence
for Tor is - -+ — Torjy (W, M) — Tor]*(R/P, M) — Tor; (R/(x1, ... ,ap)R, M) — -+,
and since the term on the left is 0 by the induction hypothesis on i and the term on the
right is 0 by the fact noted above, the middle term is 0 as well. [



