
Integral Closure of Ideals

We discuss the notion of integral closure of ideals, and prove some basic facts about its
behavior. It turns out that in the case of a Noetherian ring R, and ideal I and an element
r ∈ R, the following conditions are equivalent:

(1) There is an element c not in any minimal prime of R such that crn ∈ In for all
n� 0 (equivalently, for infinitely many values of n).

(2) There is an element c not in any minimal prime of R such that crn ∈ In for
infinitely many values of n.

(3) For every map of R into a Noetherian discrete valuation domain V , the image of r
is IV .

(4) For every minimal prime p of R and map Noetherian discrete valuation domain
between R/p and its fraction field, the image of r is in IV .

(5) rt is integral over the Rees ring R[It] ⊆ R[t] (the latter is the polynomial ring in
one variable t overR.

(6) For some positive integer n, the element r satisfies a polynomial equation of the
form

rn + i1r
n−1 + · · · ijrn−j + · · ·+ in−1r + in = 0

where the coefficient ij ∈ Ij .
These facts will be established below: see the Theorem on p. 13.

Our first objective is to review some facts about integral elements and integral ring
extensions.

Recall that if R ⊆ S are rings then s ∈ S is integral over R if, equivalently, either

(1) s satsifies a monic polynomial with coefficients in R or

(2) R[s] is finitely generated as an R-module.

The elements of S integral over R form a subring of S containing R, which is called the
integral closure of R in S. If S is an R-algebra, S is called integral over R if every element is
integral over the image of R in S. S is called module-finite over R if it is finitely generated
as an R-module. If S is module-finite over R it is integral over R. S is module-finite over
R if and only if it is finitely generated as an R-algebra and integral over R. S is integral
over R if and only if every finitely generated R-subalgebra is module-finite over R.

Given a commutative diagram of algebras

S
f−−−−→ Ux x

R −−−−→ T

and an element s ∈ S integral over the image of R, the image of S in U is integral over
the image of T . One can see this simply by applying the homomorphism f to the monic
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equation s satisfies. When the vertical maps are inclusions, we see that the integral closure
of R in S maps into the integral closure of T in U .

Note also that if R→ S and S → T are both module-finite (respectively, integral) then
R→ T is also module-finite (respectively, integral).

The total quotient ring of the ring R is W−1R, where W is the multiplicative system of
all nonzerodivisors. We have an injection R ↪→W−1R. If R is a domain, its total quotient
ring is its field of fractions. If R is reduced, R is called normal or integrally closed if it is
integrally closed in its total quotient ring. Thus, a domain R is integrally closed if and
only if every fraction that is integral over R is in R.

Let (H, +) be an additive commutative semigroup with additive identity 0. A commu-
tative ring R is said to be H-graded if it has a direct sum decomposition

R ∼=
⊕
h∈H

Rh

as abelian groups such that 1 ∈ R0 and for all h, k ∈ H, RhRk ⊆ Rh+k. Elements of
Rh are then called homogeneous elements or forms of degree h. If s is the sum of nonzero
forms s1 + · · ·+ sn of mutually distinct degrees hi, then si ∈ Rhi

is called the homogenous
component of s of degree hi. The homogeneous components in other degrees are defined
to be 0. The most frequent choices for H are the nonnegative integers N and the integers
Z.

Theorem. Let R ⊆ S be an inclusion of N-graded (or Z-graded) rings compatible with
the gradings, i.e., such that Rh ⊆ Sh for all h. Then the integral closure of R in S is also
compatibly graded, i.e., every homogeneous component of an element of S integral over R
is integral over R.

Proof. First suppose that R has infinitely many units of degree 0 such that the difference
of any two is a unit. Each unit u induces an endomorphism θu of R whose action on forms
of degree d is multiplication by ud. Then θuθv = θuv, and θu is an automorphism whose
inverse is θu−1 . These automorphisms are defined compatibly on both R and S: one has a
commutative diagrams

S
θu−−−−→ Sx x

R −−−−→
θu

S

for every choice of unit u. If s ∈ S is integral over R, one may apply θu to the equation of
integral dependence to obtain an equation of integral dependence for θu(s) over R. Thus,
θu stabilizes the integral closure T of R in S. (This is likewise true for θu−1 , from which
one deduces that θu is an automorphism of T , but we do not really need this.)

Suppose we write
s = sh+1 + · · ·+ sh+n
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for the decomposition into homogeneous components of an element s ∈ S that is integral
over R, where each sj has degree j. What we need to show is that each sj is integral over
R. Choose units u1, . . . , un such that for all h 6= k, uh − uk is a unit — we are assuming
that these exist. Letting the θui

act, we obtain n equations

uh+1
i sh+1 + · · ·+ uh+ni sh+n = ti, 1 ≤ j ≤ n,

where ti ∈ T . Let M be the n × n matrix
(
uh+ji

)
. Let V be the n × 1 column vector sh+1

...
sh+n

 and let W be the n × 1 column vector

 t1
...
tn

. In matrix form, the displayed

equations are equivalent to MV = W . To complete this part of the argument, it will suffice
to show that the matrix M is invertible over R, for then V = M−1W will have entries
in T , as required. We can factor uh+1

i from the i th row for every i: since all the ui are

units, this does not affect invertibility and produces the Van der Monde matrix
(
uj−1i

)
.

The determinant of this matrix is the product∏
j>i

(uj − ui)

(see the Discussion below), which is invertible because every uj − ui is a unit.

In the general case, suppose that

s = sh+1 + · · ·+ sh+n

as above is integral over R. Let t be an indeterminate over R and S. We can give this
indeterminate degree 0, so that R[t] = R0[t] ⊗R0 R is again a graded ring, now with 0 th
graded piece R0[t], and similarly S[t] is compatibly graded with 0 th graded piece S0[t]. Let
U ⊆ R0[t] be the multiplicative system consisting of products of powers of t and differences
tj − ti, where j > i ≥ 0. Note that U consists entirely of monic polynomials. Since all
elements of U have degree 0, we have an inclusion of graded rings U−1R[t] ⊆ U−1S[t]. In
U−1R[t], the powers of t constitute infinitely many units of degree 0, and the difference
of any two distinct powers is a unit. We may therefore conclude that every sj is integral
over U−1R[t], by the case already done. We need to show sj is integral over R itself.

Consider an equation of integral dependence

sdj + f1s
d−1
j + · · ·+ fd = 0,

where every fi ∈ U−1R[t]. Then we can pick an element G ∈ U that clears denominators,
so that every Gfi = Fi ∈ R[t], and we get an equation

Gsdj + F1s
d−1
j + · · ·+ Fd = 0.

Let G have degree m, and recall that G is monic in t. The coefficient of tm on the left hand
side, which is an element of S, must be 0, and so its degree jd homogeneous component
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must be 0. The contribution to the degree jd component of this coefficient from Gsdj is,

evidently, sdj , while the contribution from Fis
d−i
j clearly has the form ris

d−i
j , where ri ∈ R

has degree ji. This yields the equation

sdj + r1s
d−1
j + · · ·+ rd = 0,

and so sj is integral over R, as required. �

Discussion: Van der Monde matrices. Let u1, . . . , un be elements of a commutative
ring. Let M be the n× n matrix

(
uj−1i

)
.

(a) We want to show that the determinant of M is
∏
j>i(uj − ui). Hence, M is invertible

if uj − ui is a unit for j > i. It suffices to prove the first statement when the ui are
indeterminates over Z. Call the determinant D. If we set uj = ui, then D vanishes
because two rows become equal. Thus, uj − ui divides D in Z[u1, . . . , un]. Since the
polynomial ring is a UFD and these are relatively prime in pairs, the product P of the
uj − ui divides D. But they both have degree 1 + 2 + · · · + n − 1. Hence, D = aP for
some integer a. The monomial x2x

2
3 · · ·xn−1n obtained from the main diagonal of matrix

in taking the determinant occurs with coefficient 1 in both P and D, so that a = 1. �

(b) We can also show the invertibility of M as follows: if the determinant is not a unit,
it is contained in a maximal ideal. We can kill the maximal ideal. We may therefore
assume that the ring is a field K, and the ui are mutually distinct elements of this field.
If the matrix is not invertible, there a nontrivial relation on the columns with coefficients
c0, . . . , cn−1 in the field. This implies that the nonzero polynomial

cn−1x
n−1 + · · ·+ c1x+ c0

has n distinct roots, u1, . . . , un, in the field K, a contradiction. �

Corollary. If a R is integrally closed in S, then R[t] is integrally closed in S[t]. If R is
a normal domain, then R[t] is normal.

Proof. The integral closure ofR[t] in S[t] will be graded and so spanned by integral elements
of S[t] of the form stk, where s is homogenous. Take an equation of integral dependence
for stk of degree, say, n on R[t]. The coefficient of tkn is 0, and this gives an equation of
integral dependence for s on R. For the second part, R[t] is integrallly closed in K[t], where
K = frac (R), and K[t] is integrally closed in K(t) = frac (R[t]) since K[t] is a UFD. �

We next want to discuss integral closure of ideals.

Let R be any ring and let I be an ideal of R. We define an element u of R to be integral
over I or to be in the integral closure I of I if it satisfies a monic polynomial f(z) of
degree n with the property that the coefficient of zn−t is in It, 1 ≤ t ≤ n. We shall use the
temporary terminology that such a monic polynomial is I-special . Note that the product
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of two I-special polynomials is I-special, and hence any power of an I-special polynomial
is I-special.

Let t be an indeterminate over R and let R[It] denote the subring of the polynomial
ring R[t] generated by the elements it for i ∈ I. This ring is called the Rees ring of I. It
is N-graded, with the grading inherited from R[t], so that the k th graded piece is Itk.

It follows easily that the integral closure of R[It] in R[t] has the form

R+ J1t+ J2t
2 + · · ·+ Jkt

k + · · ·

where, since this is an R-algebra, each Jk is an ideal of R. We note that with this notation,
J1 = I. To see this, note that if rt, where r ∈ R is integral over R[It], satisfying an equation
of degree n, then by taking homogeneous components of the various terms we may find an
equation of integral dependence in which all terms are homogeneous of degree n. Dividing
though by tn then yields an equation of integral dependence for r on I. This argument
is reversible. (Exercise: in this situation, show that Jk is the integral closure of Ik.) We
note several basic facts about integral closures of ideals that follow easily either from the
definition or this discussion.

Proposition. Let I be an ideal of R and let u ∈ R.

(a) The integral closure of I in R is an ideal containing I, and the integral closure of I is
I.

(b) If h : R → S is a ring homomorphism and u is integral over I then h(u) is integral
over IS. If J is an integrally closed ideal of S then the contraction of J to R is
integrally closed.

(c) u is integral over I if and only if its image modulo the ideal N of nilpotent elements
is integral over I(R/N). In particular, the integral closure of (0) is N .

(d) The element u is integral over I if and only if for every minimal prime P of R, the
image of u modulo P is integral over I(R/P ).

(e) Every prime ideal of R and, more generally, every radical ideal of R is integrally
closed.

(f) An intersection of integrally closed ideals is integrally closed.

(g) In a normal domain, a principal ideal is integrally closed.

(h) If S is an integral extension of R then IS ∩R = I.

Proof. That I ⊆ I is obvious. If r is in the integral closure of I then rt is integral over
R[It]. But this ring is generated over R[It] by the elements r1t such that r1 ∈ I, i.e., such
that r1t is integral over R[It]. It follows that R[It] is integral over R[It], and then rt is
integral over R[It] by the transitivity of integral dependence. This proves (a).

The first statement in (b) is immediate from the definition of integral dependence: apply
the ring homomorphism to the equation of integral dependence. The second statement in
(b) is essentially the contrapositive of the first statement.
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The “only if” part of (c) follows from (b) applied with S = R/N . The “if” part follows
from (d), and so it will suffice to prove (d).

The “only if” part of (d) likewise follows from (b). To prove the “if” part note that the
values of I-special polynomials on u form a multiplicative system: hence, if none of them
vanishes, we can choose a minimal prime P of R disjoint from this multiplicative system,
and then no I(R/P )-special polynomial vanishes on the image of u in R/P .

(e) follows from the second statement in (c) coupled with the second statement in (b),
while (f) is immediate from the definition. To prove (g), suppose that b is an element of
R and a ∈ bR. If b = 0 it follows that a = 0 and we are done. Otherwise, we may divide
a degree n equation of integral dependence for a on bR by bn to obtain an equation of
integral dependence for a/b on R. Since R is normal, this equation shows that a/b ∈ R,
and, hence, that a ∈ bR.

Finally, suppose that r ∈ R is integral over IS. Then rt is integral over S[ISt], and
this ring is generated over R[It] by the elements of S, each of which is integral over R. It
follows that S[ISt] is integral over R[It], and so rt is integral over R[It] by the transitivity
of integral dependence. �

Recall that a domain V with a unique maximal ideal m is called a valuation domain if
for any two elements one divides the other. This implies that for any finite set of elements,
one of the elements divides the others, and so generates the same ideal that they all do
together. We shall use the term discrete valuation ring , abbreviated DVR, for a Noetherian
valuation domain: in such a ring, the maximal ideal is principal, and every nonzero element
of the maximal ideal is a unit times a power of the generator of the maximal ideal. A DVR
is the same thing as a local principal ideal domain (PID).

We recall the following terminology: (R,m,K) is quasilocal means that R has unique
maximal ideal m and residue class field K = R/m. Sometimes K is omitted from the
notation. We say that (R,m,K) is local if it is quasilocal and Noetherian.

The next result reviews some facts about integral closures of rings and integrally closed
rings.

Theorem. Let R be an integral domain.

(a) R is normal if and only if R is an intersection of valuation domains with the same
fraction field as R. If R is Noetherian, these may be taken to be the discrete valuation
rings obtained by localizing R at a height one prime.

(b) If R is one-dimensional and local, then R is integrally closed if and only if R is a
DVR. Thus, a local ring of a normal Noetherian domain at a height one prime is a
DVR.

(c) If R is Noetherian and normal, then principal ideals are unmixed, i.e., if r ∈ R is not
zero not a unit, then every associated prime of rR has height one.

Proof. For (a) and (b) see [M.F. Atiyah and I.G. Macdonald, Introduction to Commutative
Algebra, Addison-Wesley, Reading, Massachusetts, 1969], Corollary 5.22, Proposition 9.2
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and Proposition 5.19, respectively, and [O. Zariski and P. Samuel, Commutative Algebra, D.
Van Nostrand Company, Princeton, New Jersey, 1960], Corollary to Theorem 8, p. 17; for
(c) see H. Matsumura, Commutative Algebra, W.A. Benjamin, New York, 1970], §17. �

For the convenience of the reader we shall give a proof of (a) below in the case where
R is not necessarily Noetherian.

Examples of integral closure of ideals. Note that whenever r ∈ R and I ⊆ R is
an ideal such that rn = in ∈ In, we have that r ∈ I. The point is that r is a root of
zn − in = 0, and this polynomial is monic with the required form.

In particular, if x, y are any elements of R, then xy ∈ (x2, y2), since (xy)2 =
(x2)(y2) ∈ I2. This holds even when x and y are indeterminates.

More generally, if x1, . . . , xn ∈ R are any elements and I = (xn1 , . . . , x
n
k )R, then

every monomial r = xi11 · · ·x
ik
k of degree n (here the ij are nonnegative integers whose sum

is n) is in I, since

rn = (xn1 )i1 · · · (xnk )ik ∈ In,

since every xnj ∈ I and
∑k
j=1 ij = n.

Now let K be any field of characteristic 6= 3, and let X, Y, Z be indeterminates over
K. Let

R = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z],

which is a normal domain with an isolated singularity. Here, we are using lower case letters
to denote the images of corresponding upper case letters after taking a quotient: we shall
frequently do this without explanatory comment. Let I = (x, y)R. Then z3 ∈ I3, and so
z ∈ I. This shows that an ideal generated by a system of parameters in a local ring need
not be integrally closed, even if the elements are part of a minimal set of generators of the
maximal ideal. It also follows that z2 ∈ I2, where I is a two generator ideal, while z2 /∈ I.
Thus, the Briançon-Skoda theorem, as we stated it for regular rings, is not true for R.
(There is a version of the theorem that is true: it asserts that for an n-generator ideal I,
In ⊆ I∗, where I∗ is the tight closure of I. But we are not assuming familiarity with tight
closure here.)

Here is another example. Let x, y, u, v be indeterminates over a field K and R =
K[x, y, u, v]. Let J = (x, y) ∩ (u, v) = (x, y)(u, v) = (xu, yu, xv, yv). Then J is integral
over I = (xu, yv, xv+ yu), since the generators of J not in I, namely xv, yu, are the roots
of the equation z2 − (xv + yu)z + (xv)(yu) = 0, where the second coefficient is in I and
the third coefficient = (xu)(yv) ∈ I2.

We next want to give a proof that, even when a normal domain R is not Noetherian,
it is an intersection of valuation domains. We first show:

Lemma. Let L be a field, R ⊆ L a domain, and I ⊂ R a proper ideal of R. Let x ∈ L−{0}.
Then either IR[x] is a proper ideal of R[x] or IR[1/x] is a proper ideal of R[1/x].



8

Proof. We may replace R by its localization at a maximal ideal containing I, which only
makes the problem harder. If IR[1/x] is not proper we obtain an equation

(#) 1 = j0 + j1(1/x) + · · · jm(1/xm),

where all of ji ∈ I ⊆ m. This yields

(##) (1− j0)xm = j1x
m−1 + · · · jm.

Since 1− j0 is a unit, this shows that x is integral over R. Hence m lies under a maximal
ideal of R[x], and mR[x] is proper. �

Corollary. Let R ⊆ L, a field, and let I ⊂ R be a proper ideal of R. Then there is a
valuation domain V with R ⊆ V ⊆ L such that IV 6= V .

Proof. Consider the set S of all rings S such that R ⊆ S ⊆ L and IS 6= S. This set
contains R, and so is not empty. The union of a chain of rings in S is easily seen to be in
S. Hence, by Zorn’s lemma, S has a maximal element V . We claim that V is a valuation
domain with fraction field L. For let x ∈ L− {0}. By the preceding Lemma, either IV [x]
or IV [1/x] is a proper ideal. Thus, either V [x] ∈ S or V [1/x] ∈ S. By the maximality of
V , either x ∈ V or 1/x ∈ V . �

We now can prove the result we were aiming for.

Corollary. Let R be a normal domain with fraction field L. Then R is the intersection
of all valuation domains V with R ⊆ V ⊆ L.

Proof. Let x ∈ L−R. It suffices to find V with R ⊆ V ⊆ L such that x /∈ V . Let y = 1/x.
We claim that y is not a unit in R[y], for its inverse is x, and if y were a unit we would
have

x = r0 + r1(1/x) + · · ·+ rn(1/x)n

for some positive integer n and rj ∈ R. Multiplying through by xn gives an equation of
integral dependence for x on R, and since R is normal this yields x ∈ R, a contradiction.
Since yR[y] is a proper ideal, by the preceding Corollary we can choose a valuation domain
V with R[y] ⊆ V ⊆ K such that yV is a proper ideal of V . But this implies that x /∈ V . �

We note the following example of a non-Noetherian valuation domain. Let R = K[x, y]
be a polynomial ring in two variables over a field K, which has fraction field L = K(x, y).
Then we have a chain of polynomial rings K[x, y] ⊆ K[x, y/x] ⊆ K[x, y/x2] ⊆ · · · ⊆
K[x, y/xn] ⊆ L. Let S be the union of the rings Rn = K[x, y/xn]: since a directed union
of normal domains is normal, S is normal. The ideal m = (x)S + (y/xn : n ≥ 1)S is a
maximal ideal, and there exists a valuation domain (V,M) with S ⊆ V ⊆ L such that mV
is proper ideal, i.e., m ⊆ M. Then V is not Noetherian, since x is in the maximal ideal
and y is a nonzero element in the intersection of the ideals xnV .

The following important result can be found in most introductory texts on commu-
tative algebra, including [M.F. Atiyah and I.G. Macdonald, Introduction to Commuta-
tive Algebra, Addison-Wesley, Reading, Massachusetts, 1969], which we refer to briefly as
Atiyah-Macdonald.



9

Theorem. If R is a normal Noetherian domain, then the integral closure S of R in a
finite separable extension G of its fraction field F is module-finite over R.

Proof. See Proposition 5.19 of Atiyah-MacDonald for a detailed argument. We do mention
the basic idea: choose elements s1, . . . , sd of S that are basis for G over F , and then
the discriminant D = det

(
TraceG/F sisj

)
, which is nonzero because of the separability

hypothesis, multiplies S into the Noetherian R-module
∑d
i=1Rsi. �

Theorem (Nagata). Let R be a complete local domain. Then the integral closure of R
in a finite field extension of its fraction field is a finitely generated R-module.

Proof. Because R is module-finite over a formal power series ring over a field, or, if R does
not contain a field, over a DVR whose fraction field has characteristic zero, we may replace
the original R by a formal power series ring, which is regular and, hence, normal. Unless R
has characteristic p the extension is separable and we may apply the Theorem just above.

Thus, we may assume that R is a formal power series ring K[[y1, . . . , yn]] over a
field K of characteristic p. If we prove the result for a larger finite field extension, we
are done, because the original integral closure will be an R-submodule of a Noetherian
R-module. This enables us to view the field extension as a purely inseparable extension
followed by a separable extension. The separable part may be handled using the Theorem
just above. It follows that we may assume that the field extension is contained in the

fraction field of K1/q[[x1, . . . , xn]] with xi = y
1/q
i for all i. We may adjoin the xi to

the given field extension, and it suffices to show that the integral closure is module-finite
over K[[x1, . . . , xn]], since this ring is module-finite over K[[y1, . . . , yn]]. Thus, we have
reduced to the case where R = K[[x1, . . . , xn]] and the integral closure S will lie inside
K1/q[[x1, . . . , xn]], since this ring is regular and, hence, normal.

Now consider the set L of leading forms of the elements of S, viewed in the ring
K1/q[[x1, . . . , xn]]. Let d be the degree of the field extension from the fraction field of R
to that of S. We claim that any d + 1 or more F1, . . . , FN of the leading forms in L are
linearly dependent over (the fraction field of) R for, if not, choose elements sj of S which
have them as leading forms, and note that these will also be linearly independent over R,
a contradiction (if a non-trivial R-linear combination of them were zero, say

∑
j rjsj = 0,

where the rj are in R, and if Fj has degree dj while the leading form gj of rj has degree
d′j , then one also gets

∑
j gjFj = 0, where the sum is extended over those values of j for

which dj + d′j is minimum). Choose a maximal set of linearly independent elements fj of
L. Let K ′ denote the extension of K generated by all of their coefficients. Since there are
only finitely many, T = K ′[[x1, . . . , xn]] is module-finite over R. But T contains every
element L of L, for each element of L is linearly dependent over R on the fj , and so is in
the fraction field of T , and has its q th power in R ⊆ T . Since T is regular, it is normal,
and so must contain L.

Thus, the elements of L span a finitely generated R-submodule of T , and so we can
choose a finite set L1, . . . , Lk ⊆ L that span an R-module containing all of L,. We can
then choose finitely many elements s1, . . . , sk of S whose leading forms are the L1, . . . , Lk.
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Let S0 be the module-finite extension of R generated by the elements s1, . . . , sk. We
complete the proof by showing that S0 = S. We first note that for every element L of L,
S0 contains an element s whose leading form is L. To see this, observe that if we write L
as an R-linear combination

∑
j rjLj , the same formula holds when every rj is replaced by

its homogeneous component of degree degL− degLj . Thus, the rj may be assumed to be
homogeneous of the specified degrees. But then

∑
j rjsj has L as its leading form.

Let s ∈ S be given. Recursively choose u0, u1, . . . , un, . . . ∈ S0 such that u0 has the
same leading form as s and, for all n, un+1 has the same leading form a s− (u0 + · · ·+un).
For all n ≥ 0, let vn = u0+ · · ·+un. Then {vn}n is a Cauchy sequence in S0 that converges
to s in the topology given by the powers mh

T of the maximal ideal of T = K ′[[x1, . . . , xn]].
Since S0 is module-finite over K[[x1, . . . , xn]], S0 is complete. By Chevalley’s lemma,
which is discussed below, when we intersect the mh

T with S0 we obtain a sequence of ideals
cofinal with the powers of the maximal ideal of S0. Thus, the sequence, which converges
to s, is Cauchy with respect to the powers of the maximal ideal of S0. Since, as observed
above, S0 is complete, we have that s ∈ S0, as required. �

In the proof of the preceding Theorem, we used Chevalley’s Lemma:

Theorem. Let M be a finitely generated module over a complete local ring (R, m, K).
Let {Mn}n be a decreasing sequence of submodules whose intersection is 0. Then for all
k ∈ N there exists N such that Mn ⊆ mkM .

Proof. For all h, the modules Mn +mhM are eventually stable (we may consider instead
their images in the Artinian module M/mhM , which has DCC), and so we may choose
nh such that Mn + mhM = Mn′ + mhM for all n, n′ ≥ nh. We may replace nh by any
larger integer, and so we may assume that the sequence nh is increasing. We replace the
original sequence by the {Mnh

}h. Thus we may assume without loss of generality that
Mn + mhM = Mn′ + mhM for all n, n′ ≥ h. We claim Mk ⊆ mkM for all k: if not,
choose k and vk ∈Mk−mkM . Now choose vk+1 ∈Mk+1 such that vk+1 ≡ vk mod mkM ,
and, recursively, for all s ≥ 0 choose vk+s ∈Mk+s such that vk+s+1 ≡ vk+s mod mk+sM :
this is possible because Mk+s ⊆ Mk+s+1 + mk+sM . This gives a Cauchy sequence with
nonzero limit. Since all terms are eventually in any given Mn, so is the limit (each Mn is
m-adically closed), which is therefore in the intersection of the Mn. �

We have been assuming that valuation domains V are integrally closed. It is very
easy to see this: if f is in the fraction field L of V but not in V , then x = 1/f is in the
maximal ideal m of V . Some maximal M of the integral closure V ′ lies over m, and so x
is not a unit of V ′, i.e., f /∈ V ′. Thus, V ′ = V .

It is also easy to see that if K ⊆ L are fields and V is a valuation domain with fraction
field L, then V ∩K is a valuation domain with fraction field K. Moreover, if V is a DVR,
then V ∩K is a DVR or is K. For the first statement, each f ∈ K −{0} has the property
that f or 1/f is in V , and, hence, in V ∩K, as required. Now suppose that V is a DVR
and that x generates the maximal ideal. Let W = V ∩K 6= K. Each nonzero element of
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the maximal ideal m of W has the form uxk in V , where k is a positive integer. Choose
an element y of the maximal ideal of W such that k is minimum. Then every z ∈ m is a
multiple of y in V , and the multiplier is in W . Thus, m is principal. It follows that every
nonzero element m has the form uyt, where t > 0, since it is clear that the intersection of
the powers of m is zero.

We next want to prove:

Theorem. Let R be a Noetherian domain. Then the integral closure R′ of R is the
intersection of the discrete valuation rings between R and its fraction field L.

Proof. Let f = b/a be an element of L not in R′, where a, b ∈ R and b 6= 0. It suffices
to find a DVR containing R and not b/a: we may then intersect it with L. Localize at a
prime of R in the support of the R-module (R′ + Rf)/R′. Since localization commutes
with integral closure we may assume that (R,m,K) is local. Nonzero elements of R are

nonzerodivisors in R̂ by flatness, and so the fraction field of R embeds in the total quotient

ring of R̂, and we may view b/a as an element of the total quotient ring of R̂. If b + p is

in the integral closure of a(R/p) for every minimal prime p of R̂, then b is integral over

aR̂. If the equation that demonstrates the integral dependence has degree n, we find that

bn ∈ (bn−1a, bn−2a2, . . . , ban−1, an)R̂, and since R̂ is faithfully flat over R, this implies
that bn ∈ (bn−1a, bn−2a2, . . . , ban−1, an)R as well. Dividing by an then shows that b/a

is integral over R, a contradiction. Thus, we can choose a minimal prime p of R̂ such that

b+ p is not integral over aR̂/p. It follows that b/a is not integral over R̂/p, where the bars

over the letters indicate images in R̂/p. Note that R injects into R̂/p. Thus, the integral

closure (R̂/p)′ of R̂/p does not contain b/a, and since it is module-finite over R̂/p by the
Theorem of Nagata on p. 9, it is a normal Noetherian ring. Thus, it is an intersection of

DVR’s by part (a) of the Theorem on p. 6, and we can choose a DVR V containing (R̂/p)′

and not b/a, which is the image of b/a, so that V contains the isomorphic image of R but
not the image of b/a. Now we may intersect V with the fraction field of R. �

Theorem. Let R be any ring and let I ⊆ J be ideals of R.

(a) r ∈ R is integral over I if and only if there exists an integer n such that (I+rR)n+1 =
I(I + rR)n. Thus, if J is generated over I by one element, then J is integral over I
if and only if there exists an integer n ∈ N such that Jn+1 = IJn.

(b) If Jn+1 = IJn with n ∈ N then Jn+k = IkJn for all k ∈ N.

(c) If Jn+1 = IJn and Q ⊇ J is an ideal and r ∈ N an integers such that Qr+1 = JQr,
then Qn+r+1 = IQn+r.

(d) If J is integral over I and generated over I by finitely many elements, then there is
an integer n ∈ N such that Jn+1 = IJn. If R is Noetherian then J is integral over I
if and only if there exists an integer n ∈ N such that Jn+1 = IJn.

(e) If R is a domain and M is a finitely generated faithful R-module such JM = IM then
J is integral over I. If R is a Noetherian domain, then J is integral over I if and only
if there is a finitely generated faithful R-module M such that JM = IM .



12

Proof. Note that

(I + rR)n = In + rIn−1 + · · ·+ rtIn−t + · · ·+ rnR.

Comparing the expansions for (I + rR)n+1 and I(I + rR)n, we see that the condition for
equality is simply that rn+1 be in I(I + rR)n = rnI + · · ·+ In+1, and this is precisely the
condition for r to satisfy an equation of integral dependence on I of degree n + 1. This
proves (a).

We prove (b) by induction on k. The result is clear if k = 0 and holds by hypothesis
if k = 1. Assuming that Jn+k = IkJn, for k ≥ 1 we have that

Jn+k+1 = Jn+kJ = (IkJn)J = IkJn+1 = IkIJn = Ik+1Jn,

as required. This proves (b).

For (c), note that Qr+n+1 = Jn+1Qr = (IJn)Qr = I(JnQr) = IQn+r.

It follows by induction on the number of elements needed to generate J over I that if
J is finitely generated over I and integral over I then there is an integer n such thatJn+1 =
IJn.

Next, we want to show that if R is Noetherian and Jn+1 = IJn then J is integral over
I. The condition continues to hold if we consider the images of I, J modulo a minimal
prime of R, and so it suffices to consider the case where R is a domain. Moreover, if
I = (0) the result is immediate, and so we may assume that I 6= 0. Thus, Jn is a faithful
R-module, and so the proof will be complete once we have established the first sentence
of part (e).

Suppose that JM = IM and let u1, . . . , un be generators for M . Let r be an element
of J . Then for every ν we can write ruν =

∑n
µ=1 iµνuµ where the iµν ∈ I. Let 1 denote

the size n identity matrix, and let B denote the size n matrix (iµν). Let U be an n × 1
column vector whose entries are the ui. Then, in matrix notation, rU = BU , so that
(r1−B)U = 0. Let C be the transpose of the cofactor matrix of r1−B. Then C(r1−B)
is D1, where D = det(r1 − B) is the characteristic polynomial of B evaluated at r. It
is easy to see that the characteristic polynomial of a matrix with entries in I is I-special.
Now, when we multiply the equation (r1−B)U = 0 on the left by C we find that D1U = 0,
i.e., that DU = 0, and since D kills all the generators of M and M is faithful, it follows
that D = 0, giving an equation of integral dependence for r on I. This proves the first
sentence of part (e), and also completes the proof of (d).

Finally, if R is a Noetherian domain and J is integral over I, then if I = (0) we have
that J = (0) and we may choose M = R, while if I 6= (0) then J 6= (0). In this case we
can choose n such that Jn+1 = IJn, and we may take M = Jn. �

The next Theorem gives several enlightening characterizations of integral closure. We
first note:
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Lemma. Let I be an ideal of the ring R, r ∈ I, and h : R → S a homomorphism to a
normal domain S such that IS is principal. Then h(r) ∈ IS.

Proof. By persistence of integral closure, h(r) ∈ IS. But IS is a principal ideal of a normal
domain, and so integrally closed, which implies that r ∈ IS. �

Theorem. Let R be a ring, let I be an ideal of R, and let r ∈ R.

(a) r ∈ I if and only if for every homomorphism from R to a valuation domain V , r ∈ IV .

(b) r ∈ I if and only if for every homomorphism f from R to a valuation domain V such
that the kernel of f is a minimal prime P of R, f(r) ∈ IV . (Thus, if R is a domain,
r ∈ I if and only if for every valuation domain V containing R, r ∈ IV .) Moreover,
it suffices to consider valuation domains contained in the fraction field of R/P .

(c) If R is Noetherian, r ∈ I if and only if for every homomorphism from R to a DVR
V , r ∈ IV .

(d) If R is Noetherian, r ∈ I if and only if for every homomorphism f from R to a DVR
V such that the kernel of f is a minimal prime of R, f(r) ∈ IV . (Thus, if R is a
domain, r ∈ I if and only if for every DVR V containing R, r ∈ IV .) Moreover, it
suffices to consider valuation domains contained in the fraction field of R/P .

(e) If R is a domain and I = (u1, . . . , un)R is a finitely generated ideal, let

Si = R[
u1
ui
, . . . ,

un
ui

] ⊆ Rui
,

and let Ti be the integral closure of Si. Then r ∈ R is in I if and only if r ∈ ITi for
all i.

(f) Let R be a Noetherian domain. Then r ∈ I if and only if there is a nonzero element
c ∈ R such that crn ∈ In for all n ∈ N. (Note: I0 is to be interpreted as R even if
I = (0).)

(g) Let R be a Noetherian domain. Then r ∈ I if and only if there is a nonzero element
c ∈ R such that crn ∈ In for infinitely many values of n ∈ N.

Proof. We first observe that in any valuation domain, every ideal is integrally closed:
every ideal is the directed union of the finitely generated ideals it contains, and a directed
union of integrally closed ideals is integrally closed. In a valuation domain every finitely
generated is principal, hence integrally closed, since a valuation domain is normal, and it
follows that every ideal is integrally closed.

Now suppose that r ∈ I. Then for any map of f of R to a valuation domain V , we
have that r ∈ IV = IV . This shows the “only if” part of (a). To complete the proof of
both (a) and (b) it will suffice to show that if f(r) ∈ IV whenever the kernel of f is a
minimal prime, then r ∈ I. But if r /∈ I this remains true modulo some minimal prime
by part (d) of the Proposition on p. 6, and so we may assume that R is a domain, and
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that rt is not integral over R[It]. But then, by the second Corollary on p. 8, we can find a
valuation domain V containing R[It] and not rt (in the Noetherian case V may be taken
to be a DVR by the first Theorem on p. 11). Then r ∈

∑n
j=1 ijvj with the ij ∈ I and the

vj ∈ V implies rt =
∑n
j=1(ijt)vj ∈ V (since each ijt ∈ It ⊆ V ), a contradiction. The fact

that it suffices to consider only those V within the fraction field of R/P follows from the
observation that one may replace V by its intersection with that field.

The proofs of (c) and (d) in the Noetherian case are precisely the same, making use
of the parenthetical comment about the Noetherian case given in the paragraph above.

To prove (e) first note that the expansion of I to Si is generated by ui, since uj =
uj

ui
ui,

and so ITi = uiTi as well. If r ∈ I then r ∈ ITi by the preceding Lemma. Now suppose
instead that we assume that r ∈ ITi for every i instead. Consider any inclusion R ⊆ V ,
where V is a valuation domain. Then in V , the image of one of the uj , say ui, divides all
the others, and so we can choose i such that Si ⊆ V . Since V is normal, we then have
Ti ⊆ V as well, and then r ∈ ITi implies that r ∈ IV . Since this holds for all valuation
domains containing R, r ∈ I.

Finally, it will suffice to prove the “only if” part of (f) and the “if” part of (g). If
I = (0) we may choose c = 1, and so we assume that I 6= 0. Suppose that J = I +Rr and
choose h ∈ N so that Jh+1 = IJh, so that Jn+h = InJh for all n ∈ N: see parts (a) and
(c) of the second Theorem on p. 11. Choose c to be a nonzero element of Jh. Then, for
all n, crn ∈ Jn+h = InJh ⊆ In, as required.

Now suppose that c is a nonzero element such that crn ∈ In for arbitrarily large
values of n. If r /∈ I we can choose a discrete valuation v such that the value of v on r
is smaller than the value of v on any element of I: then v(r) + 1 ≤ v(u) for all u ∈ I.
Choose n > v(c). Then nv(r) + n ≤ v(w) for all w ∈ In. But if we take w = crn we have
v(w) = v(c) + nv(r) < nv(r) + n ≤ v(w), a contradiction. �

For those familiar with the theory of schemes, we note that the condition in part
(e) can be described in scheme-theoretic terms. There is a scheme, the blow-up Y of
X = SpecR along the closed subscheme defined by I, which has a finite open cover by
open affines corresponding to the affine schemes SpecSi. The normalization Y ′ of Y , i.e.,
the normalized blow-up, has a finite open cover by the open affines SpecTi. I corresponds
to a sheaf of ideals on X, which pulls back (locally, via expansion) to a sheaf of ideals J
on Y ′. The integral closure of I is then the ideal of global sections of J intersected with
R.


