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Preface

These notes give an introduction to tight closure theory based on lectures at
the University of Michigan given in Math 711 in Fall, 2007, which were revised for
Math 615 in Winter 2022. It is primarily the positive characteristic theory that is
covered. There are several novel aspects to this treatment. One is that the theory
for all modules, not just finitely generated modules, is developed systematically. It
is shown that all the known methods of proving the existence of test elements yield
completely stable test elements that can be used in testing tight closure for all pairs
of modules. The notion of strong F-regularity is developed without the hypothesis
that the ring be F-finite. The definition is simply that every submodule of every
module is closed, without the hypothesis of finite generation. This agrees with the
usual definition in the F-finite case, which is developed first in these notes. The
structure of the individual lectures has been preserved.

|
Subsidiary material has been included in the notes that was not covered in

detail in the lectures. Such material has usually been indicated by enclosing it in
special brackets. This paragraph is an example of the use of these indicators.

|

There are five sets of supplementary problems interspersed, with solutions given
at the end.

The author would like to thank Karl Schwede and Kevin Tucker for their very
helpful comments.

The author would also like to thank the National Science Foundation for its
support over a period of years through grants DMS-0400633, DMS-0901145, DMS-
1401384, and DMS-1902116.
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1. Lecture 1

Our objective is to discuss tight closure closure theory and its connection with
the existence of big Cohen-Macaulay algebras, as well as the applications that each
of these have: they have many in common.

Throughout these lecture notes all given rings are assumed commutative, as-
sociative, with identity and modules are assumed unital. Homomorphisms are
assumed to preserve the identity. With a few exceptions that will be noted as they
occur, given rings are assumed to be Noetherian. However, we usually include this
hypothesis, especially in formal statements of theorems.

|
At certain points in these notes we will include material not covered in class

that we want to assume. We indicate where such digressions begin and end with
double bars before and after, just as we have done for these two paragraphs. On
first perusal, the reader may wish to read only the unfamiliar definitions and the
statements of theorems given, and come back to the proofs later.

In particular, the write-up of this first lecture is much longer than will be usual,
since a substantial amount of prerequisite material is explained, often in detail, in
this manner.

|

By a quasilocal ring (R, m, K) we mean a ring with a unique maximal ideal
m: in this notation, K = R/m. A quasilocal ring is called local if it is Noetherian.
A homomorphism h : R→ S from a quasilocal ring (R, m, K) to a quasilocal ring
(S, mS ,KS) is called local if h(m) ⊆ mS , and then h induces a map of residue fields
K → KS .

If x1, . . . , xn ∈ R and M is an R-module, the sequence x1, . . . , xn is called
a possibly improper regular sequence on M if x1 is not a zerodivisor on M and
for all i, 0 ≤ i ≤ n − 1, xi+1 is not a zerodivisor on M/(x1, . . . , xi)M . A pos-
sibly improper regular sequence is called a regular sequence on M if, in addition,
(∗) (x1, . . . , xn)M 6= M . When (∗) fails, the regular sequence is called improper.
When (∗) holds we may say that the regular sequence is proper for emphasis, but
this use of the word “proper” is not necessary.

Note that every sequence of elements is an improper regular sequence on the 0
module, and that a sequence of any length consisting of the element 1 (or units of
the ring) is an improper regular sequence on every module.

If x1, . . . , xn ∈ m, the maximal ideal of a local ring (R, m, K), and M is a
nonzero finitely generated R-module, then it is automatic that if x1, . . . , xn is a
possibly improper regular sequence on M then x1, . . . , xn is a regular sequence on
M : we know that mM 6= M by Nakayama’s Lemma.

If x1, . . . , xn ∈ R is a possibly improper regular sequence on M and and S is
any flat R-algebra, then the images of x1, . . . , xn in S form a possibly improper
regular sequence on S ⊗RM . By a straightforward induction on n, this reduces to
the case where n = 1, where it follows from the observation that if 0 → M → M
is exact, where the map is given by multiplication by x, this remains true when we
apply S ⊗R . In particular, this holds when S is a localization of R.

If x1, . . . , xn is a regular sequence on M and S is flat over R, it remains a
regular sequence provided that S ⊗R

(
M/(x1, . . . , xn)M

)
6= 0, which is always the

case when S is faithfully flat over R.
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|

1.1. Nakayama’s Lemma, including the homogeneous case. Recall that
in Nakayama’s Lemma one has a finitely generated module M over a quasilocal
ring (R, m, K). The lemma states that if M = mM then M = 0. (In fact, if
u1, . . . , uh is a set of generators of M with h minimum, the fact that M = mM
implies that M = mu1 + · · ·muh. In particular, uh = f1u1 + · · · + fhuh, and so
(1− fh)uh = f1u1 + · · ·+ fh−1uh−1 (or 0 if h = 1). Since 1− fh is a unit, uh is not
needed as a generator, a contradiction unless h = 0.)

By applying this result to M/N , one can conclude that if M is finitely generated
(or finitely generated over N), and M = N + mM , then M = N . In particular,
elements of M whose images generate M/mM generate M : if N is the module they
generate, we have M = N + mM . Less familiar is the homogeneous form of the
Lemma: it does not need M to be finitely generated, although there can be only
finitely many negative graded components (the detailed statement is given below).

First recall that if H is an additive semigroup with 0 and R is an H-graded
ring, we also have the notion of an H-graded R-module M : M has a direct sum
decomposition

M =
⊕
h∈H

Mh

as an abelian group such that for all h, k ∈ H, RhMk ⊆Mh+k. Thus, every Mh is
an R0-module. A submodule N of M is called graded (or homogeneous) if

N =
⊕
h∈H

(N ∩Mh).

An equivalent statement is that the homogeneous components inM of every element
of N are in N , and another is that N is generated by forms of M .

Note that if we have a subsemigroup H ⊆ H ′, then any H-graded ring or
module can be viewed as an H ′-graded ring or module by letting the components
corresponding to elements of H ′ −H be zero.

In particular, an N-graded ring is also Z-graded, and it makes sense to consider
a Z-graded module over an N-graded ring.

Theorem 1.1. Nakayama’s Lemma, homogeneous form Let R be an N-graded
ring and let M be any Z-graded module such that M−n = 0 for all sufficiently large
n (i.e., M has only finitely many nonzero negative components). Let I be the ideal
of R generated by elements of positive degree. If M = IM , then M = 0. Hence, if
N is a graded submodule such that M = N+IM , then N = M , and a homogeneous
set of generators for M/IM generates M .

Proof. If M = IM and u ∈M is nonzero homogeneous of smallest degree d,
then u is a sum of products itvt where each it ∈ I has positive degree, and every vt
is homogeneous, necessarily of degree ≥ d. Since every term itvt has degree strictly
larger than d, this is a contradiction. The final two statements follow exactly as in
the case of the usual form of Nakayama’s Lemma. �

|

In general, regular sequences are not permutable: in the polynomial ring R =
K[x, y, z] over the field K, x−1, xy, xz is a regular sequence but xy, xz, x−1 is not.
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However, if M is a finitely generated nonzero module over a local ring (R, m, K),
a regular sequence on M is permutable. This is also true if R is N-graded, M is
Z-graded but nonzero in only finitely many negative degrees, and the elements of
the regular sequence in R have positive degree.

|
To see why, note that we get all permutations if we can transpose two con-

secutive terms of a regular sequence. If we kill the ideal generated by the preceding
terms times the module, we come down to the case where we are transposing the
first two terms. Since the ideal generated by these two terms does not depend on
their order, it suffices to consider the case of regular sequences x, y of length 2.
The key point is to prove that y is not a zerodivisor on M . Let N ⊆ M by the
annihilator of y. If u ∈ N , yu = 0 ∈ xM implies that u ∈ xM , so that u = xv.
Then y(xv) = 0, and x is not a zerodivsior on M , so that yv = 0, and v ∈ N . This
shows that N = xN , contradicting Nakayama’s Lemma (the local version or the
homogeneous version, whichever is appropriate).

The next part of the argument does not need the local or graded hypothesis:
it works quite generally. We need to show that x is a nonzerodivisor on M/yM .
Suppose that xu = yv. Since y is a nonzerodivisor on xM , we have that v = xw,
and xu = yxw. Thus x(u − yw) = 0. Since x is a nonzerodivisor on M , we have
that u = yw, as required. �

|

The Krull dimension of a ring R may be characterized as the supremum of
lengths of chains of prime ideals of R, where the length of the strictly ascending
chain

P0 ⊂ P1 ⊂ · · · ⊂ Pn
is n. The Krull dimension of the local ring (R, m, K) may also be characterized
as the least integer n such that there exists a sequence x1, . . . , xn ∈ m such that
m = Rad

(
(x1, . . . , xn)R

)
(equivalently, such that R = R/(x1, . . . , xn)R is a zero-

dimensional local ring, which means that R is an Artinian local ring).
Such a sequence is called a system of parameters for R.

|
One can always construct a system of parameters for the local ring (R, m, K)

as follows. If dim (R) = 0 the system is empty. Otherwise, the maximal ideal can-
not be contained in the union of the minimal primes of R. Choose x1 ∈ m not
in any minimal prime of R. In fact, it suffices to choose x1 not in any mini-
mal primes P such that dim (R/P ) = dim (R). Once x1, . . . , xk have been cho-
sen so that x1, . . . , xk is part of a system of parameters (equivalently, such that
dim

(
R/(x1, . . . , xk)R

)
= dim (R) − k) ), if k < dim (R) the minimal primes of

(x1, . . . , xk)R cannot cover m. It follows that we can choose xk+1 not in any such
minimal prime, and then x1, . . . , xk+1 is part of a system of parameters. By induc-
tion, we eventually reach a system of parameters for R. Notices that in choosing
xk+1, it actually suffices to avoid only those minimal primes Q of (x1, . . . , xk)R
such that dim (R/Q) = dim

(
R/(x1, . . . , xk)R

)
(which is dim (R)− k).

|
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Discussion 1.2. Cohen-Macaulay rings A local ring is called Cohen-Macaulay
if some (equivalently, every) system of parameters is a regular sequence on R. These
include regular local rings: if one has a minimal set of generators of the maximal
ideal, the quotient by each in turn is again regular and so is a domain, and hence
every element is a nonzerodivisor modulo the ideal generated by its predecessors.
Moreover, local complete intersections, local complete intersection i.e., local rings
of the form R/(f1, . . . , fh) where R is regular and f1, . . . , fh is part of a system of
parameters for R, are Cohen-Macaulay. It is quite easy to see that if R is Cohen-
Macaulay, so is R/I whenever I is generated by a regular sequence.

If R is a Cohen-Macaulay local ring, the localization of R at any prime ideal
is Cohen-Macaulay. We define an arbitrary Noetherian ring to be Cohen-Macaulay
if all of its local rings at maximal ideals (equivalently, at prime ideals) are Cohen-
Macaulay.

|

1.2. Cohen-Macaulay rings in the graded and local cases. We want to
put special emphasis on the graded case for several reasons. One is its importance
in projective geometry. Beyond that, there are many theorems about the graded
case that make it easier both to understand and to do calculations. Moreover, many
of the most important examples of Cohen-Macaulay rings are graded.

We first note:

Theorem 1.3. Let M be an N-graded or Z-graded module over an N-graded or
Z-graded Noetherian ring S. Then every associated prime of M is homogeneous.
Hence, every minimal prime of the support of M is homogeneous and, in particular
the associated (hence, the minimal) primes of S are homogeneous.

Proof. Any associated prime P of M is the annihilator of some element u
of M , and then every nonzero multiple of u 6= 0 can be thought of as a nonzero
element of S/P ∼= Su ⊆ M , and so has annihilator P as well. If ui is a nonzero
homogeneous component of u of degree i, its annihilator Ji is easily seen to be a
homogeneous ideal of S. If Jh 6= Ji we can choose a form F in one and not the
other, and then Fu is nonzero with fewer homogeneous components then u. Thus,
the homogeneous ideals Ji are all equal to, say, J , and clearly J ⊆ P . Suppose that
s ∈ P − J and subtract off all components of S that are in J , so that no nonzero
component is in J . Let sa /∈ J be the lowest degree component of s and ub be the
lowest degree component in u. Then sa ub is the only term of degree a+b occurring
in su = 0, and so must be 0. But then sa ∈ AnnS ub = Jb = J , a contradiction. �

Corollary 1.4. Let K be a field and let R be a finitely generated N-graded
K-algebra with R0 = K. Let M =

⊕∞
d=1Rj be the homogeneous maximal ideal of

R. Then dim (R) = height (M) = dim (RM).

Proof. The dimension of R will be equal to the dimension of R/P for one
of the minimal primes P of R. Since P is minimal, it is an associated prime and
therefore is homogenous. Hence, P ⊆ M. The domain R/P is finitely generated
over K, and therefore its dimension is equal to the height of every maximal ideal
including, in particular, M/P . Thus,

dim (R) = dim (R/P ) = dim
(
(R/P )M

)
≤ dimRM ≤ dim (R),
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and so equality holds throughout, as required. �

Proposition 1.5. (homogeneous prime avoidance) Let R be an N-graded al-
gebra, and let I be a homogeneous ideal of R whose homogeneous elements have
positive degree. Let P1, . . . , Pk be prime ideals of R. Suppose that every homoge-

neous element f ∈ I is in
⋃k
i=1 Pi. Then I ⊆ Pj for some j, 1 ≤ j ≤ k.

Proof. We have that the set H of homogeneous elements of I is contained in⋃k
i=1 Pk. If k = 1 we can conclude that I ⊆ P1. We use induction on k. Without

loss of generality, we may assume that H is not contained in the union of any k− 1
if the Pj . Hence, for every i there is a homogeneous element gi ∈ I that is not in
any of the Pj for j 6= i, and so it must be in Pi. We shall show that if k > 1 we
have a contradiction. By raising the gi to suitable positive powers we may assume
that they all have the same degree. Then gk−1

1 + g2 · · · gk ∈ I is a homogeneous
element of I that is not in any of the Pj : g1 is not in Pj for j > 1 but is in P1, and
g2 · · · gk is in each of P2, . . . , Pk but is not in P1. �

Now suppose that R is a finitely generated N-graded algebra over R0 = K,
where K is a field. By a homogenous system of parameters for R we mean a
sequence of homogeneous elements F1, . . . , Fn of positive degree in R such that
n = dim (R) and R/F1, . . . , Fn) has Krull dimension 0. When R is a such a graded
ring, a homogeneous system of parameters always exists. By homogeneous prime
avoidance, there is a form F1 that is not in the union of the minimal primes of R.
Then dim (R/F1) = dim (R) − 1. For the inductive step, choose forms of positive
degree F2, . . . , Fn whose images in R/F1R are a homogeneous system of parameters
for R/F1R. Then F1, . . . , Fn is a homogeneous system of parameters for R. �

Moreover, we have:

Theorem 1.6. Let R be a finitely generated N-graded K-algebra with R0 = K
such that dim (R) = n. A homogeneous system of parameters F1, . . . , Fn for R
always exists. Moreover, if F1, . . . , Fn is a sequence of homogeneous elements of
positive degree, then the following statements are equivalent.

(1) F1, . . . , Fn is a homogeneous system of parameters.
(2) m is nilpotent modulo (F1, . . . , Fn)R.
(3) R/(F1, . . . , Fn)R is finite-dimensional as a K-vector space.
(4) R is module-finite over the subring K[F1, . . . , Fn].

Moreover, when these conditions hold, F1, . . . , Fn are algebraically independent over
K, so that K[F1, . . . , Fn] is a polynomial ring.

Proof. We have already shown existence.
(1) ⇒ (2). If F1, . . . , Fn is a homogeneous system of parameters, we have that

dim
(
R/F1, . . . , Fn)

)
= 0.

We then know that all prime ideals are maximal. But we know as well that the
maximal ideals are also minimal primes, and so must be homogeneous. Since there
is only one homogenous maximal ideal, it must be m/(F1, . . . , Fn)R, and it follows
that m is nilpotent on (F1, . . . , Fn)R.

(2) ⇒ (3). If m is nilpotent modulo (F1, . . . , Fn)R, then the homogeneous
maximal ideal of R = R/(F1, . . . , Fn)R is nilpotent, and it follows that [R]d = 0
for all d� 0. Since each Rd is a finite dimensional vector space over K, it follows
that R itself is finite-dimensional as a K-vector space.
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(3) ⇒ (4). This is immediate from the homogeneous form of Nakayama’s
Lemma: a finite set of homogeneous elements of R whose images in R are a K-
vector space basis will span R over K[F1, . . . , Fn], since the homogenous maximal
ideal of K[F1, . . . , Fn] is generated by F1, . . . , Fn.

(4) ⇒ (1). If R is module-finite over K[F1, . . . , Fn], this is preserved mod
(F1, . . . , Fn), so that R/(F1, . . . , Fn) is module-finite over K, and therefore zero-
dimensional as a ring.

Finally, when R is a module-finite extension of K[F1, . . . , Fn], the two rings
have the same dimension. Since K[F1, . . . , Fn] has dimension n, the elements
F1, . . . , Fn must be algebraically independent. �

The technique described in the discussion that follows is very useful both in
the local and graded cases.

Discussion 1.7. Making a transition from one system of parameters
to another. Let R be a Noetherian ring of Krull dimension n, and assume that
one of the two situations described below holds.

(1) (R, m, K) is local and f1, . . . , fn and g1, . . . , gn are two systems of pa-
rameters. (1)

(2) R is finitely generated N-graded over R0 = K, a field, m is the homoge-
neous maximal ideal, and f1, . . . , fn and g1, . . . , gn are two homogeneous
systems of parameters for R.

We want to observe that in this situation there is a finite sequence of systems of
parameters (respectively, homogeneous systems of parameters in case (2)) starting
with f1, . . . , fn and ending with g1, . . . , gn such that any two consecutive elements
of the sequence agree in all but one element (i.e., after reordering, only the i th
terms are possibly different for a single value of i, 1 ≤ i ≤ n). We can see this by
induction on n. If n = 1 there is nothing to prove. If n > 1, first note that we
can choose h (homogeneous of positive degree in the graded case) so as to avoid all
minimal primes of (f2, . . . , fn)R and all minimal primes of (g2, . . . , gn)R. Then
it suffices to get a sequence from h, f2, . . . , fn to h, g2, . . . , gn, since the former
differs from f1, . . . , fn in only one term and the latter differs from g1, . . . , gn in
only one term. But this problem can be solved by working in R/hR and getting a
sequence from the images of f2, . . . , fn to the images of g2, . . . , gn, which we can
do by the induction hypothesis. We lift all of the systems of parameters back to
R by taking, for each one, h and inverse images of the elements in the sequence in
R (taking a homogeneous inverse image in the graded case), and always taking the
same inverse image for each element of R/hR that occurs. �

The following result now justifies several assertions about Cohen-Macaulay
rings made without proof earlier.

Note that a regular sequence in the maximal ideal of a local ring (R, m, K) is
always part of a system of parameters: each element is not in any associated prime
of the ideal generated by its predecessors, and so cannot be any minimal primes
of that ideal. It follows that as we kill successive elements of the sequence, the
dimension of the quotient drops by one at every step.

Corollary 1.8. Let (R, m, K) be a local ring. There exists a system of pa-
rameters that is a regular sequence if and only if every system of parameters is a
regular sequence. In this case, for every prime ideal I of R of height k, there is a
regular sequence of length k in I.
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Moreover, for every prime ideal P of R, RP also has the property that every
system of parameters is a regular sequence.

Proof. For the first statement, we can choose a chain as in the comparison
statement just above. Thus, we can reduce to the case where the two systems of pa-
rameters differ in only one element. Because systems of parameters are permutable
and regular sequences are permutable in the local case, we may assume that the
two systems agree except possibly for the last element. We may therefore kill the
first dim (R)−1 elements, and so reduce to the case where x and y are one element
systems of parameters in a local ring R of dimension 1. Then x has a power that is
a multiple of y, say xh = uy, and y has a power that is a multiple of x. If x is not
a zerodivisor, neither is xh, and it follows that y is not a zerodivisor. The converse
is exactly similar.

Now suppose that I is any ideal of height h. Choose a maximal sequence
of elements (it might be empty) of I that is part of a system of parameters, say
x1, . . . , xk. If k < h, then I cannot be contained in the union of the minimal
primes of (x1, . . . , xk): otherwise, it will be contained in one of them, say Q, and
the height of Q is bounded by k. Chose xk+1 ∈ I not in any minimal prime
of (x1, . . . , xk)R. Then x1, . . . , xk+1 is part of a system of parameters for R,
contradicting the maximality of the sequence x1, . . . , xk.

Finally, consider the case where I = P is prime. Then P contains a regular
sequence x1, . . . , xk, which must also be regular in RP , and, hence, part of a system
of parameters. Since dim (RP ) = k, it must be a system of parameters. �

Lemma 1.9. Let K be a field and assume either that

(1) R is a regular local ring of dimension n and x1, . . . , xn is a system of
parameters or

(2) R = K[x1, . . . , xn] is a graded polynomial ring over K in which each of
the xi is a form of positive degree.

Let M be a nonzero finitely generated R-module which is Z-graded in case (2). Then
M is free if and only if x1, . . . , xn is a regular sequence on M .

Proof. The “only if” part is clear, since x1, . . . , xn is a regular sequence on R
and M is a direct sum of copies of R. Let m = (x1, . . . , xn)R. Then V = M/mM
is a finite-dimensional K-vector space that is graded in case (2). Choose a K-
vector space basis for V consisting of homogeneous elements in case (2), and let
u1, . . . , uh ∈ M be elements of M that lift these basis elements and are homo-
geneous in case (2). Then the uj span M by the relevant form of Nakayama’s
Lemma, and it suffices to prove that they have no nonzero relations over R. We
use induction on n. The result is clear if n = 0.

Assume n > 0 and let N = {(r1, . . . , rh) ∈ Rh : r1u1 + · · · + rhuh = 0}.
By the induction hypothesis, the images of the uj in M/x1M are a free basis for
M/x1M . It follow that if ρ = (r1, . . . , rh) ∈ N , then every rj is 0 in R/x1R,
i.e., that we can write rj = x1sj for all j. Then x1(s1u1 + · · · + shuh) = 0, and
since x1 is not a zerodivisor on M , we have that s1u1 + · · · + shuh = 0, i.e., that
σ = (s1, . . . , sh) ∈ N . Then ρ = x1σ ∈ x1N , which shows that N = x1N . Thus,
N = 0 by the appropriate form of Nakayama’s Lemma. �

We next observe:
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Theorem 1.10. et R be a finitely generated graded algebra of dimension n over
R0 = K, a field. Let m denote the homogeneous maximal ideal of R. The following
conditions are equivalent.

(1) Some homogeneous system of parameters is a regular sequence.
(2) Every homogeneous system of parameters is a regular sequence.
(3) For some homogeneous system of parameters F1, . . . , Fn, R is a free-

module over K[F1, . . . , Fn].
(4) For every homogeneous system of parameters F1, . . . , Fn, R is a free-

module over K[F1, . . . , Fn].
(5) Rm is Cohen-Macaulay.
(6) R is Cohen-Macaulay.

Proof. The proof of the equivalence of (1) and (2) is the same as for the local
case, already given above.

The preceding Lemma yields the equivalence of (1) and (3), as well as the
equivalence of (2) and (4). Thus, (1) through (4) are equivalent.

It is clear that (6)⇒ (5). To see that (5)⇒ (2) consider a homogeneous system
of parameters in R. It generates an ideal whose radical is m, and so it is also a
system of parameters for Rm. Thus, the sequence is a regular sequence in Rm.
We claim that it is also a regular sequence in R. If not, xk+1 is contained in an
associated prime of (x1, . . . , xk) for some k, 0 ≤ k ≤ n − 1. Since the associated
primes of a homogeneous ideal are homogeneous, this situation is preserved when
we localize at m, which gives a contradiction.

To complete the proof, it will suffice to show that (1) ⇒ (6). Let F1, . . . , Fn
be a homogeneous system of parameters for R. Then R is a free module over
A = K[F1, . . . , Fn], a polynomial ring. Let Q be any maximal ideal of R and let P
denote its contraction to A, which will be maximal. These both have height n. Then
AP → RQ is faithfully flat. Since A is regular, AP is Cohen-Macaulay. Choose a
system of parameters for AP . These form a regular sequence in AP , and, hence, in
the faithfully flat extension RQ. It follows that RQ is Cohen-Macaulay. �

|

From part (2) of the Lemma 1.9 we also have:

Theorem 1.11. Let R be a module-finite local extension of a regular local ring
A. Then R is Cohen-Macaulay if and only if R is A-free.

It it is not always the case that a local ring (R, m, K) is module-finite over a
regular local ring in this way. But it does happen frequently in the complete case.
Notice that the property of being a regular sequence is preserved by completion,

since the completion R̂ of a local ring is faithfully flat over R, and so is the property

of being a system of parameters. Hence, R is Cohen-Macaulay if and only if R̂ is
Cohen-Macaulay.

If R is complete and contains a field, then there is a coefficient field for R, i.e.,
a field K ⊆ R that maps isomorphically onto the residue class field K of R. Then,
if x1, . . . , xn is a system of parameters, R turns out to be module-finite over the
formal power series ring K[[x1, . . . , xn]] in a natural way. Thus, in the complete
equicharacteristic local case, we can always find a regular ring A ⊆ R such that
R is module-finite over A, and think of the Cohen-Macaulay property as in the
Theorem above.
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The structure theory of complete local rings is discussed in detail in the Lecture
Notes from Math 615, Winter 2007: see the Lectures of March 21, 23, 26, 28, and
30 as well as the Lectures of April 2 and April 4.

|

1.3. Cohen-Macaulay modules. All of what we have said about Cohen-
Macaulay rings generalizes to a theory of Cohen-Macaulay modules. We give a few
of the basic definitions and results here: the proofs are very similar to the ring case,
and are left to the reader.

If M is a module over a ring R, the Krull dimension of M is the Krull dimension
of R/AnnR(I). If (R, m, K) is local and M 6= 0 is finitely generated of Krull
dimension d, a system of parameters for M is a sequence of elements x1, . . . , xd ∈ m
such that, equivalently:

(1) dim
(
M/(x1, . . . , xd)M

)
= 0.

(2) The images of x1, . . . , xd form a system of parameters in R/AnnRM .
In this local situation, M is Cohen-Macaulay if one (equivalently, every) system

of parameters for M is a regular sequence on M . If J is an ideal of R/AnnRM of
height h, then it contains part of a system of parameters for R/AnnRM of height
h, and this will be a regular sequence on M . It follows that the Cohen-Macaulay
property for M passes to MP for every prime P in the support of M . The arguments
are all essentially the same as in the ring case.

If R is any Noetherian ring M 6= 0 is any finitely generated R-module, M is
called Cohen-Macaulay if all of its localizations at maximal (equivalently, at prime)
ideals in its support are Cohen-Macaulay.

|

The Cohen-Macaulay condition is increasingly restrictive as the Krull dimen-
sion increases. In dimension 0, every local ring is Cohen-Macaulay. In dimension
one, it is sufficient, but not necessary, that the ring be reduced: the precise char-
acterization in dimension one is that the maximal ideal not be an embbeded prime
ideal of (0). Note that K[[x, y]]/(x2) is Cohen-Macaulay, while K[[x, y]]/(x2, xy) is
not. Also observe that all one-dimensional domains are Cohen-Macaulay.

In dimension 2, it suffices, but is not necessary, that the ring R be normal,
i.e., integrally closed in its ring of fractions. Note that a normal Noetherian ring
is a finite product of normal domains. If (R, m, K) is local and normal, then it is
a domain. The associated primes of a principal ideal are minimal if R is normal.
Hence, if x, y is a system of parameters, y is not in any associated prime of xR, i.e.,
it is not in any associated prime of the module R/xR, and so y is not a zerodivisor
modulo xR.

The two dimensional domains K[[x2, x2, y, xy]] and K[x4, x3y, xy3, y4]] (one
may also use single brackets) are not Cohen-Macaulay: as an exercise, the reader
may try to see that y is a zerodivisor mod x2 in the first, and that y4 is a zerodivisor
mod x4 in the second. On the other hand, while K[[x2, x3, y2, y3]] is not normal,
it is Cohen-Macaulay.
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|

1.4. Direct summands of rings. Let R ⊆ S be rings. We want to discuss
the consequences of the hypothesis that the inclusion R ↪→ S splits as a map of
R-modules. When this occurs, we shall simply say that R is a direct summand of
S. When we have such a splitting, we have an R-linear map ρ : S → R that is the
identity on R. Here are some facts.

Proposition 1.12. Let R be a direct summand of S. Then:

(a) For every ideal I of R, IS ∩R = I.
(b) If S is Noetherian, then R is Noetherian.
(c) If R is an N-graded ring with R0 = A and S is Noetherian , then R is

finitely generated over A.
(d) If S is a normal domain, then R is normal.

Proof. Let ρ be a splitting.

(a) If r ∈ R is such that r =
∑h
i=1 fisi with the fi ∈ I and the si ∈ S, so that

r is a typical element of IS ∩ R, then r = ρ(r) =
∑n
i=1 fiρ(si), since the fi ∈ R.

Since each ρ(si) ∈ R, we have that r ∈ I.
(b) If {In}n is a nondecreasing chain of ideals of R, we have that the chain

{InS}n is stable from some point on, say ItS = INS for all t ≥ N . We may then
apply (a) to obtain that It = ItS ∩R = INS ∩R = IN for all t ≥ N .

(c) From part (b), R is Noetherian, and so the ideal J spanned by all forms
of positive degree is finitely generated, say by forms F1, . . . , Fn of positive degree.
Then R = A[F1, . . . , Fn]: otherwise, choose a form G of least degree that is in R
and not in A[F1, . . . , Fn]. Then G ∈ J , and so we can write G as a sum of terms
HjFj where every Hj is a nonzero form such that deg(Hj) + deg(Fj) = deg(G).
Since deg(Hj) < deg(G), every Hj ∈ A[F1, . . . , Fn], and the result follows.

(d) Let a, b ∈ R with b 6= 0 such that a/b is integral over R. Then a/b is an
element of frac (S) integral over S as well, and so a/b ∈ S. Thus, a ∈ bS ∩R = bR
by part (a). and so a = br with r ∈ R. This shows that r = a/b ∈ R. �

|

|

1.5. Segre products. Let R and S be finitely generated N-graded K-algebras
with R0 = S0 = K. We define the Segre product R#KS of R and S over K to be
the ring

∞⊕
n=1

Rn ⊗K Sn,

which is a subring of R ⊗K S. In fact, R ⊗K S has a grading by N × N whose
(m,n) component is Rm ⊗K Sn. (There is no completely standard notation for
Segre products: the one used here is only one possbility.) The vector space⊕

m 6=n

Rm ⊗K Sn ⊆ R⊗K S
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is an R#KS-submodule of R ⊗K S that is an R#KS-module complement for
R#KS. That is, R#KS is a direct summand of R⊗KS when the latter is regarded
as an R#KS-module. It follows that R#KS is Noetherian and, hence, finitely
generated over K. Moreover, if R⊗K S is normal then so is R#KS. In particular,
if R is normal and S is a polynomial ring over K then R#KS is normal.

|

Example 1.13. Let S = K[X, Y, Z]/(X3 + Y 3 + Z3) = K[x, y, z], where K
is a field of characteristic different from 3: this is a homogeneous coordinate ring
of an elliptic curve C, and is often referred to as a cubical cone. Let T = K[s, t],
a polynomial ring, which is a homogeneous coordinate ring for the projective line
P1 = P1

K . The Segre product of these two rings is R = K[xs, ys, zs, xt, yt, zt] ⊆
S[s, t], which is a homogeneous coordinate ring for the smooth projective variety
C × P1. This ring is a normal domain with an isolated singularity at the origin:
that is, its localization at any prime ideal except the homogeneous maximal ideal
m is regular. R and Rm are normal but not Cohen-Macaulay.

|
We give a proof that R is not Cohen-Macaulay. The equations

(zs)3 +
(
(xs)3 + (ys)3

)
= 0 and (zt)3 +

(
(xt)3 + (yt)3

)
= 0

show that zs and zt are both integral over D = K[xs, ys, xt, zt] ⊆ R. The ele-
ments x, y, s, and t are algebraically independent, and the fraction field of D is
K(xs, ys, t/s), so that dim (D) = 3, and

D ∼= K[X11, X12, X21, X22]/(X11X22 −X12X21)

with X11, X12, X21, X22 mapping to xs, ys, xt, yt respectively.
It is then easy to see that ys, xt, xs−yt is a homogeneous system of parameters

for D, and, consequently, for R as well. The relation

(zs)(zt)(xs− yt) = (zs)2(xt)− (zt)2(ys)

now shows that R is not Cohen-Macaulay, for (zs)(zt) /∈ (xt, ys)R. To see this,
suppose otherwise. The map

K[x, y, z, s, t]→ K[x, y, z]

that fixes K[x, y, z] while sending s 7→ 1 and t 7→ 1 restricts to give a K-algebra
map

K[xs, ys, zs, xt, yt, zt]→ K[x, y, z].

If (zs)(zt) ∈ (xt, ys)R, applying this map gives z2 ∈ (x, y)K[x, y, z], which is false
— in fact, K[x, y, z]/(x, y) ∼= K[z]/(z3). �

|

Cohen-Macaulay rings are wonderfully well-behaved in many ways: we shall
discuss this at considerable length later. Of course, regular rings are even better.

One of the main objectives in these lectures is to discuss two ways of dealing
with rings in which the Cohen-Macaulay property fails. One is the development of
a tight closure theory. The other is to prove the existence of “lots” of big Cohen-
Macaulay algebras. These two methods are closely related, and we shall explore
that relationship. In any case, one conclusion that one may reach is that rings that
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do not have the Cohen-Macaulay property nonetheless have better behavior than
one might at first expect.

The situation right now is that there are relatively satisfactory results for both
of these techniques for Noetherian rings containing a field. There are also results
for local rings of mixed characteristic in dimension at most 3. (For a mixed charac-
teristic local domain, the characteristic of the residue class field is a positive prime
p while the characteristic of the fraction field is 0. The p-adic integers give an
example, as well as module-finite extensions of formal power series rings over the
p-adic integers.)

|

1.6. The integral closure of an ideal. The Briançon-Skoda theorem dis-
cussed in (2) below refers to the integral closure I of an ideal I. We make the
following comments: for proofs, see the Lecture Notes from Math 711, Fall 2006,
September 13 and September 15 (those notes also give a detailed treatment of the
Lipman-Sathaye proof of the Briançon-Skoda theorem). If I ⊆ R and u ∈ R then
u ∈ I precisely if for some n, u satisfies a monic polynomial

xn + r1x
n−1 + · · ·+ rn = 0

with rj ∈ Ij , 1 ≤ j ≤ n.
Alternatively, if one forms the Rees ring

R[It] = R+ It+ I2t2 + I3t3 + · · ·+ Intn + · · · ⊆ R[t],

where t is an indeterminate, the integral closure of R[It] in R[t] has the form

R+ J1t+ J2t
2 + J3t

3 + · · ·+ Jnt
n + · · ·

where every Jn ⊆ R is an ideal. It turns out that J1 = I, and, in fact, Jn = In for
all n ≥ 1.

It turns out as well that for u ∈ R, one has that u ∈ I if and only if u ∈ IV for
every map from R to a valuation domain V . When R is Noetherian, it suffices to
consider maps to Noetherian discrete valuation domains (we refer to such a domain
as a DVR: this is the same as a regular local ring of Krull dimension 1) such that
the kernel of the map is a minimal prime of R. In particular, if R is a Noetherian
domain, it suffices to consider injective maps of R into a DVR.

If R is a Noetherian domain, yet another characterization of I is as follows:
u ∈ I if and only if there is an element c ∈ R−{0} such that cun ∈ In for all n ∈ N
(it suffices if cun ∈ In for infinitely many values of n ∈ N).

|

Discussion 1.14. Consequences of tight closure theory. Here are some
of the results that can be proved using tight closure theory, which we shall present
even though we have not yet discussed what tight closure is.

(1) If R ⊆ T are rings such that T is regular and R is a direct summand of T
as an R-module, then R is Cohen-Macaulay. (This is known in the equal
characteristic case: it is an open question in general.)

(2) If I = (f1, . . . , fn) is an ideal of a regular ring R, then In ⊆ I. (The
case where R is regular is known even in mixed characteristic. In the case
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where R is equicharacteristic, it is known that In is contained in the tight
closure of I, with no restriction on the Noetherian ring R.)

(3) If I ⊆ R is an ideal and S is module-finite extension of R, then IS ∩ R
is contained in the tight closure of I in equal characteristic. (That is,
tight closure “controls” how large the contracted expansion of an ideal to
a module-finite extension ring can be.)

(4) Tight closure can be used to prove that if R is regular, then R is a direct
summand of every module-finite extension ring. More generally, in equal
characteristic, every ring such that every ideal is tightly closed is a direct
summand of every module-finite extension ring. Whether the converse
holds in positive prime characteristic is an open question.

(5) Tight closure can be used to prove theorems controlling the behavior of
symbolic powers of prime ideals in regular rings. (We shall give more
details about this in the next lecture.)

(6) Tight closure can be used in the proof of several subtle statements about
homological properties of local rings. These statements are known as “the
local homological conjectures.” Some are now theorems in equal charac-
teristc but open in mixed characteristic. Others are now known in general.
Some remain open in every characteristic. We shall discuss these in more
detail later.

By a big Cohen-Macaulay module for a local ring (R, m, K) we mean a not
necessarily finitely generated R-module M such that every system of parameters of
R is a regular sequence on M . It is not sufficient for one system of parameters to
be a regular sequence, but if one system of parameters is a regular sequence then
the m-adic completion of M has the property that every system of parameters is a
regular sequence. Some authors use the term “big Cohen-Macaulay module” when
one system of parameters is a regular sequence, and call the big Cohen-Macaulay
module “balanced” if every system of parameters is a regular sequence.

An R-algebra S is called a big Cohen-Macaulay algebra over R if it is a big
Cohen-Macaulay module as well as an R-algebra.

The existence of big Cohen-Macaulay algebras was first shown when the ring R
contains a field [Ho94a, HH95] . The proof in equal characteristic 0 depends on
reduction to characteristic p > 0. In mixed characteristic, it is easy in dimension at
most 2 and follows from difficult results of Heitmann in dimension 3. Cf. [Heit02,
Ho02]. Recently, the result has been proved in general: see [And20, ?].

Big Cohen-Macaulay algebras can be used to prove results like those mentioned
in (1), (4), and (6) for tight closure. In fact the existence of a tight closure theory
with sufficiently good properties in mixed characteristic is closed to being equiv-
alent to the existence of sufficiently many big Cohen-Macaulay algebras in mixed
characteristic. This is a somewhat vague statement, in that I am not being precise
about the meaning of the word “sufficiently” in either half, but it is a point of view
that forms one of the themes of these lectures, and will be developed further. There
are specific results in this direction in [Die10, R.G.18, Jia21b]
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2. Lecture 2

2.1. Symbolic powers. We want to make a number of comments about the
behavior of symbolic powers of prime ideals in Noetherian rings, and to give at least
one example of the kind of theorem one can prove about symbolic powers of primes
in regular rings: there was a reference to such theorems in ?? (5) from Lecture 1.

Let P be a prime ideal in any ring. We define the n th symbolic power P (n) of
P as

{r ∈ R : for some s ∈ R− P, sr ∈ Pn}.
Alternatively, we may define P (n) as the contraction of PnRP to R. It is the
smallest P -primary ideal containing Pn. If R is Noetherian, it may be described
as the P -primary component of Pn in its primary decomposition.

While P (1) = P , and P (n) = Pn when P is a maximal ideal, in general P (n) is
larger than Pn, even when the ring is regular. Here is one example. Let x, y, z, and
t denote indeterminates over a field K. Grade R = K[x, y, z] so that x, y, and z
have degrees 3, 4, and 5, respectively. Then there is a degree preserving K-algebra
surjection

R� K[t3, t4, t5] ⊆ K[t]

that sends x, y, and z to t3, t4, and t5, respectively. Note that the matrix

X =

(
x y z
y z x2

)
is sent to the matrix (

t3 t4 t5

t4 t5 t6

)
.

The second matrix has rank 1, and so the 2 × 2 minors of X are contained in
the kernel P of the surjection R � K[t3, t4, t5]. Call these minors f = xz − y2,
g = x3 − yz, and h = yx2 − z2. It is not difficult to prove that these three minors
generate P , i.e., P = (f, g, h). We shall exhibit an element of P (2) −P . Note that
f , g, and h are homogeneous of degrees 8, 9, and 10, respectively.

Next observe that g2−fh vanishes mod xR: it becomes (−yz)2−(−y2)(−z2) =
0. Therefore, g2 − fh = xu. g2 has an x6 term which is not canceled by any term
in fh, so that u 6= 0. (Of course, we could check this by writing out what u is
in a completely explicit calculation.) The element g2 − fh ∈ P 2 is homogeneous
of degree 18 and x has degree 3. Therefore, u has degree 15. Since x /∈ P and
xu ∈ P 2, we have that u ∈ P (2). But since the generators of P all have degree at
least 8, the generators of P 2 all have degree at least 16. Since deg(u) = 15, we have
that u /∈ P 2, as required.

Understanding symbolic powers is difficult. For example, it is true that if
P ⊆ Q are primes of a regular ring then P (n) ⊆ Q(n): but this is somewhat difficult
to prove! See the Lectures of October 20 and November 1, 6, and 8 of the Lecture
Notes from Math 711, Fall, 2006.
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|
This statement about inclusions fails in simple examples where the ring is

not regular. For example, consider the ring

R = K[U, V, W, X, Y, Z]/(UX + V Y +WZ) = K[u, v, w, x, y, z]

where the numerator is a polynomial ring. Then R is a hypersurface: it is Cohen-
Macaulay, normal, with an isolated singularity. It can even be shown to be a UFD.
Let Q be the maximal ideal generated by the images of all of the variables, and let
P be the prime ideal (v, w, x, y, z)R. Here, R/P ∼= K[U ]. Then P ⊆ Q but it is
not true that P (2) ⊆ Q(2). In fact, since −ux = yy + wz ∈ P 2 and u /∈ P , we have
that x ∈ P (2), while x /∈ Q(2), which is simply Q2 since Q is maximal.

|

The following example, due to Rees, shows that behavior of symbolic powers
can be quite bad, even in low dimension.

Let P be a prime ideal in a Noetherian ring R. Let t be an indeterminate over
R. When I is an ideal of R, a very standard construction is to form the Rees ring

R[It] = R+ It+ · · ·+ Intn + · · · ⊆ R[t],

which is finitely generated over R: if f1, . . . , fh generate the ideal I, then

R[It] = R[f1t, . . . , fht].

An analogous construction when I = P is prime is the symbolic power algebra

R+ Pt+ P (2)t2 + · · ·+ P (n)tn + · · · ⊆ R[t].

We already know that this algebra is larger than R[Pt], but one might still hope
that it is finitely generated. Roughly speaking, this would say that the elements in
P (n) − Pn for sufficiently large n arise a consequence of elements in P (k) − P k for
finitely many values of k.

However, this is false. Let

R = C[X, Y, Z]/(X3 + Y 3 + Z3),

where C is the field of complex numbers. This is a two-dimensional normal surface:
it has an isolated singularity. It is known that there are height one homogeneous
primes P that have infinite order in the divisor class group: this simply means that
no symbolic power of P is principal. David Rees proved that the symbolic power
algebra of such a prime P is not finitely generated over R. This was one of the early
indications that Hilbert’s Fourteenth Problem might have a negative solution, i.e.,
that the ring of invariants of a linear action of a group of invertible matrices on
a polynomial ring over a field K may have a ring of invariants that is not finitely
generated over K. M. Nagata gave examples to show that this can happen in 1958.

|

2.2. Analytic spread. In order to give a proof of the result of Rees described
above, we introduce the notion of analytic spread. Let (R, m, K) be local and I ⊆ m
an ideal. When K is infinite, the following two integers coincide:

(1) The least integer n such that I is integral over an ideal J ⊆ I that is
generated by n elements.

(2) The Krull dimension of the ring K ⊗R R[It].
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The integer defined in (2) is called the analytic spread of I, and we shall denote
it a(I). See the Lecture Notes of September 15 and 18 from Math 711, Fall 2006
for a more detailed treatment.

The ring in (2) may be written as

S = K ⊕ I/mI ⊕ I2/mI2 ⊕ · · · ⊕ In/mIn ⊕ · · ·

Note that if we define the associated graded ring grI(R) of R with respect to I
as

R⊕ I/I2 ⊕ I2/I3 ⊕ · · · ⊕ In/In+1 ⊕ · · · ,
which may also be thought of as R[It]/IR[It], then it is also true that S ∼= K ⊗R
grI(R).

The idea underlying the proof that when K is infinite and h = a(I), one can
find f1, . . . , fh ∈ I such that I is integral over J = (f1, . . . , fh)R is as follows.
The K-algebras S is generated by its one-forms. If K is infinite, one can choose a
homogeneous system of parameters for S consisting of one-forms: these are elements
of I/mI, and are represented by elements f1, . . . , fh of I. Let J be the ideal
generated by f1, . . . , fh in R. The S is module-finite over the image of K ⊗R[Jt],
and using this fact and Nakayama’s Lemma on each component, one can show that
R[It] is integral over R[Jt], from which it follows that I is integral over J .

|

|

2.3. Proof that Rees’s symbolic power algebra is not finitely gen-
erated. Here is a sketch of Rees’s argument. Assume that the symbolic power
algebra is finitely generated. We now replace the graded ring R by its localiza-
tion at the homogeneous maximal ideal. By the local and homogeneous versions of
Nakayama’s Lemma, the least number of generators of an ideal generated by ho-
mogeneous elements of positive degree does not change. It follows that P continues
to have the property that no symbolic power is principal. We shall prove that the
symbolic power algebra cannot be finitely generated even in this localized situation,
which implies the result over the original ring R.

Henceforth, (R, m, K) is a normal local domain of dimension 2 and P is a
height one prime such that no symbolic power of P is principal. We shall show that
the symbolic power algebra of P cannot be finitely generated over R. Assume that
it is finitely generated.

This implies that for some integer k, P (nk) = (P (k))n for all positive integers n.
Let I = P (k). The ring S = R[It] has dimension 3, since the transcendence degree
over R is one. The elements x, y are a system of parameters for R. We claim that
there is a regular sequence of length two in m on each symbolic power J = P (h).
To see this, we take x to be the first term. Consider J/xJ . If there is no choice
for the second term, then the maximal ideal m of R must be an associated prime
of J/xJ , and we can choose v ∈ J − xJ such that mv ⊆ xJ . But then yv ∈ xR,
and x, y is a regular sequence in R. It follows that v = xu with u ∈ R − J . Then
mxu ⊆ xJ shows mu ⊆ J . But elements of m − P are not zerodivisors on J , so
that u ∈ J , a contradiction. It follows that every system of parameters in R is a
regular sequence on J : J is a Cohen-Macaulay module.
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Thus, if the symbolic power algebra is finitely generated, x, y is a regular se-
quence on every P (n), and therefore x, y is a regular sequence in S. It follows that
killing (x, y) decreases the dimension of the ring S by two. Since the radical of (x, y)
is the homogeneous maximal ideal of R, we see that (R/m) ⊗R S has dimension
one. This shows that the analytic spread of I is one. But then I is integral over a
principal ideal. In a normal ring, principal ideals are integrally closed. Thus, I is
principal. But this contradicts the fact that no symbolic power of P is principal. �

|

2.4. The notion of tight closure for ideals. We next want to introduce
tight closure for ideals in prime characteristic p > 0. We need some notations. If
R is a Noetherian ring, we use R ◦ to denote the set of elements in R that are not
in any minimal prime of R. If R is a domain, R ◦ = R − {0}. Of course, R ◦ is a
multiplicative system.

We shall use e to denote an element of N, the nonnegative integers. For ty-
pographical convenience, shall use q as a symbol interchangeable with pe, so that
whenever one writes q it is understood that there is a corresponding value of e such
that q = pe, even though it may be that e is not shown explicitly.

When R is an arbitrary ring of characteristic p > 0, we write FR or simply F
for the Frobenius endomorphism of the ring R. Thus, F (r) = rp for all r ∈ R. F eR
or F e indicates the e th iteration of FR, so that F e(r) = rq for all r ∈ R.

If R has characteristic p, I [q] denotes the ideal generated by all q th powers of
elements of I. If one has generators for I, their q th powers generate I [q]. (More
generally, if f : R → S is any ring homomorphism and I ⊆ R is an ideal with
generators {rλ}λ∈Λ, the elements {f(rλ)}λ∈Λ generate IS.)

of I in R, denoted I∗, if there exists c ∈ R ◦ such that for all sufficiently large
q, cuq ∈ I [q].

This may seem like a very strange definition at first, but it turns out to be
astonishingly useful. Of course, in presenting the definition, we might have written
“for all sufficiently large e, cup

e ∈ I [pe] ” instead.
The choice of c is allowed to depend on I and u, but not on q.
It is quite easy to see that I∗ is an ideal containing I. Of great importance is

the following fact, to be proved later:

Theorem 2.1. Let R be a Noetherian ring of prime characteristic p > 0. . If
R is regular, then every ideal of R is tightly closed.

If one were to use tight closure only to study regular rings, then one might
think of this Theorem as asserting that the condition in the Definition above gives
a criterion for when an element is in an ideal that, on the face of it, is somewhat
weaker than being in the ideal. Even if the whole theory were limited in this fashion,
it provides easy proofs of many results that cannot be readily obtained in any other
way. We want to give a somewhat different way of thinking of the definition above.
First note that it turns out that tight closure over a Noetherian ring can be tested
modulo every minimal prime. Therefore, for many purposes, it suffices to consider
the case of a domain.

Let R be any domain of prime characteristic p > 0. Within an algebraic closure
L of the fraction field of R, we can form the ring {r1/q : r ∈ R}. The Frobenius map
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F is an automorphism of L: this is the image of R under the inverse of F e, and so
is a subring of L isomorphic to R. We denote this ring R1/q. This ring extension of
R is unique up to canonical isomorphism: it is independent of the choice of L, and
its only R-automorphism is the identity: r has a unique q th root in R1/q, since the
difference of two distinct q th roots would be nilpotent, and so every automorphism

that fixes r fixes r1/q as well. The maps f Rq ⊆ R, R
F e−−→ R, and R ⊆ R1/q are

isomorphic in the domain case.

|

2.5. The reduced case. When R is reduced rather than a domain there is
also a unique (up to unique isomorphism) reduced R-algebra extension ring R1/q

whose elements are precisely all q th roots of elements of R. One can construct such

an extension ring by taking the map R
F e−−→ R to give the algebra map, so that one

has the same situation as in the domain case.
That it, as in the domain case one has a commutative diagram:

Rq
ι−−−−→ Ry yid

R
F e−−−−→ Ry F−e

y
R

id−−−−→ R1/q

where the horizontal maps are injections and the vertical maps are all isomorphisms.
The map ι is the inclusion map and F−e(r) = r1/q.

The proof of uniqueness is straightforward: if S1 and S2 are two such exten-
sions, the only possible isomorphism must let the unique q th root of r ∈ R in S1

correspond to the unique q th root of R in S2 for all r ∈ R. It is easy to check that
this gives a well-defined map that is the identity on R, and that it is a bijection
and a homomorphism.

|

In both the domain and the reduced case, we have canonical embeddings
R1/q ↪→ R1/q′ when q ≤ q′, and we define

R∞ =
⋃
q

R1/q.

Discussion 2.2. When one has that

cuq = r1f
q
1 + · · ·+ rhf

q
h

one can take q th roots to obtain

c1/qu = r
1/q
1 f1 + · · ·+ r

1/q
h fh.

Keep in mind that in a reduced ring, taking q th roots preserves the ring operations.
We can therefore rephrase the definition of tight closure of an ideal I in a Noetherian
domain R of characteristic p > 0 as follows:



2. LECTURE 2 25

(#) An element u ∈ R is in I∗ iff there is an element c ∈ R ◦ such that for all
sufficiently large q, c1/qu ∈ IR1/q.

Heuristically, one should think of an element of R that is in IS, where S is
a domain that is an integral extension of R, as “almost” in I. Note that in this
situation one will have u = f1s1 + · · ·+ fhsh for f1, . . . , fh ∈ I and s1, . . . , sh ∈ S,
and so one also has u ∈ IS0, where S0 = R[s1, . . . , sh] is module-finite over R.

The condition (#) is weaker in a way: R1/q ⊆ R∞ is an integral extension of
R, but, u is not necessarily in IR∞: instead, it is multiplied into IR∞ by infinitely
many elements c1/q. These elements may be thought of as approaching 1 in some
vague sense: this is not literally true for a topology, but the exponents 1/q → 0 as
q →∞.

2.6. Some useful properties of tight closure. We state some properties
of tight closure for ideals: proofs will be given later. Here, R is a Noetherian ring of
characteristic p, and I, J are ideals of R. We shall write Rred for the homomorphic
image of R obtained by killing the ideal of nilpotent elements. (R, m, K) is called
equidimensional if for every minimal prime P of R, dim (R/P ) = dim (R). An
algebra over R is called essentially of finite type over R if it is a localization at
some multiplicative system of a finitely generated R-algebra. If I, J are ideals of
R, we define I :R J = {r ∈ R : rJ ⊆ I}, which is an ideal of R. If J = uR, we may
write I :R u for I :R uR.

|

2.7. Excellent rings. In some of the statements below, we have used the
term “excellent ring.” The excellent rings form a subclass of Noetherian rings with
many of the good properties of finitely generated algebras over fields and their
localizations. We shall not give a full treatment in these notes, but we do discuss
certain basic facts that we need. For the moment, the reader should know that the
excellent rings include any ring that is a localization of a finitely generated algebra
over a complete local (or semilocal) ring. The class is closed under localization at
any multiplicative system, under taking homomorphic images, and under formation
of finitely generated algebras. We give more detail later. Typically, Noetherian
rings arising in algebraic geometry, number theory, and several complex variables
are excellent.

|

2.8. Properties of tight closure. Here are nine properties of tight closure.
Property (2) was already stated as a Theorem earlier.

(1) I ⊆ I∗ = (I∗)∗. If I ⊆ J , then I∗ ⊆ J∗.
(2) If R is regular, every ideal of R is tightly closed.
(3) If R ⊆ S is a module-finite extension, IS ∩R ⊆ I∗.
(4) If P1, . . . , Ph are the minimal primes of R, then u ∈ R is in I∗ if and

only if the image of u in Dj = R/Pj is in the tight closure of IDj in Dj ,
working over Dj , for 1 ≤ j ≤ h.
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(5) If u ∈ R then u ∈ I∗ if and only if its image in Rred is in the tight closure
of IRred, working over Rred.

The statements in (4) and (5) show that the study of tight closure can often
be reduced to the case where R is reduced or even a domain.

The following is one of the most important properties of tight closure. It is what
enables one to use tight closure as a substitute for the Cohen-Macaulay property
in many instances. It is the key to proving that direct summands of regular rings
are Cohen-Macaulay in characteristic p.

(6) (Colon-capturing) If (R, m, K) is a complete local domain (more gen-
erally, if (R, m, K) is a reduced, excellent, and equidimensional), the el-
ements x1, . . . , xk, xk+1 are part of a system of parameters for R, and
Ik = (x1, . . . , xk)R, then Ik :R xk+1 ⊆ I∗k .

Of course, if R were Cohen-Macaulay then we would have Ik :R xk+1 = Ik.

(7) Under mild conditions on R, u ∈ R is in the tight closure of I ⊆ R if
and only if the image of u in RP is in the tight closure of IRP , working
over RP , for all prime (respectively, maximal) ideals P of R. (The result
holds, in particular, for algebras essentially of finite type over an excellent
semilocal ring.)

Tight closure does not commute with localization. But property (7) shows that it
has an important form of compatibility with localization.

(8) If (R, m, K) is excellent, I∗ =
⋂
n(I +mn)∗.

Property (8) shows that tight closure is determined by its behavior on m-
primary ideals in the excellent case.

(9) If (R, m, K) is reduced and excellent, u ∈ I∗ if and only if u is in the

tight closure of IR̂ in R̂ working over R̂.

These properties together show that for a large class of rings, tight closure is
determined by its behavior in complete local rings and, in fact, in complete local
domains. Moreover, in a complete local domain it is determined by its behavior on
m-primary ideals.

We next want to give several further characterizations of tight closure, although
these require some additional condition on the ring. For the first of these, we need
to discuss the notion of R+ for a domain R first.

2.9. The absolute integral closure R+ of a domain R. Let R be any
integral domain (there are no finiteness restrictions, and no restriction on the char-
acteristic). By an absolute integral closure of R, we mean the integral closure of R

in an algebraic closure of its fraction field. It is immediate that R+ is unique up
to non-unique isomorphism, just as the algebraic closure of a field is.

Consider any domain extension S of R that is integral over R. Then the
fraction field frac (R) is contained in the algebraic closure L of frac (S), and L is
also an algebraic closure for R, since the elements of S are integral over R and,
hence, algebraic over frac (R). The algebraic closure of R in L is R+. Thus,

we have an embedding S ↪→ R+ as R-algebras. Therefore, R+ is a maximal
domain extension of R that is integral over R: this characterizes R+. It is also
clear that (R+)+ = R+. When R = R+ we say that R is absolutely integrally
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closed. The reader can easily verify that a domain S is absolutely integrally closed
if and only if every monic polynomial in one variable f ∈ S[x] factors into monic
linear factors over S. It is easy to check that a localization at any multiplicative
system of an absolutely integrally closed domain is absolutely integrally closed,
and that a domain that is a homomorphic image of an absolutely integrally closed
domain is absolutely integrally closed. (A monic polynomial over S/P lifts to a
monic polynomial over S, whose factorization into monic linear factors gives such
a factorizaton of the original polynomial over S/P .)

If S ↪→ T is an extension of domains, the algebraic closure of the fraction field
of S contains an algebraic closure of the fraction field of R. Thus, the map S ↪→ T
extends to an injection. S+ ↪→ T+.

If R� S is a surjection of domains, so that S ∼= R/P , by the lying-over theorem

there is a prime ideal Q of R+ lying over P , since R ↪→ R+ is an integral extension.
Then R → R+/Q has kernel Q ∩ R = P , and so we have S ∼= R/P ↪→ R+/Q.

Since R+ is integral over R, R+/Q is integral over R/P ∼= S. But since R+ is

absolutely integrally closed, so is R+/Q. Thus, R+/Q is an integral extenson of
S, and is an absolutely integrally closed domain. It follows that we may identify
this extension with S+, and so we have a commutative diagram

R+ � S+

↑ ↑
R � S

where both vertical maps are inclusions.
Any homomorphism of domains R → T factors R � S ↪→ T where S is the

image of R in T . The two facts that we have proved yield a commutative diagram

R+ � S+ ↪→ T+

↑ ↑ ↑
R � S ↪→ T

where all of the vertical maps are inclusions. Hence:

Proposition 2.3. For any homomorphism R → T of integral domains there
is a commutative diagram

R+ → T+

↑ ↑
R → T

where both vertical maps are inclusions.

2.10. Other characterizations of tight closure. For many purposes it suf-
fices to characterize tight closure in the case of a complete local domain. Let
(R, m, K) be a complete local domain of characteristic p. One can always choose a
DVR (V, tV V, L) containing R such that R ⊆ V is local. This gives a Z-valued val-
uation nonnegative on R and positive on m. This valuation extends to a Q-valued
valuation on R+. To see this, note that R+ ⊆ V+. V+ is a directed union of
module-finite normal local extensions W of V , each of which is a DVR. Let tW be
the generator of the maximal ideal of W . Then tV = thWW α for some positive integer
hW and unit α of W , and we can extend the valuation to W by letting the order of
tW be 1/hW . (To construct V in the first place, we may write R as a module-finite
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extension of a complete regular local ring (A, mA, K). By the remarks above, it
suffices to construct the required DVR for A. There are many possibilities. One is
to define the order of a nonzero element a ∈ A to be the largest integer k such that
u ∈ mk

A. This gives a valuation because grmAA is a polynomial ring over K, and,
in particular, a domain.)

Theorem 2.4. Let (R, m, K) be a complete local domain of characteristic p,
u ∈ R, and I ⊆ R. Choose a complete DVR (V, mV , L) containing (R, m, K) such
that R ⊆ V is local. Extend the valuation on R given by V to a Q-valued valuation
on R+: call this ord. Then u ∈ I∗ if and only if there exists a sequence of nonzero
elements cn ∈ R+ such that for all n, cnu ∈ IR+ and ord(cn)→ 0 as n→∞.

See Theorem (3.1) of [HH91b].
This is clearly a necessary condition for u to be in the tight closure of I. We

have R1/q ⊆ R∞ ⊆ R+, and in so in the reformulation (#) of the definition of tight

closure for the domain case, one has c1/qu ∈ IR1/q ⊆ IR+ for all sufficiently large
q. Since one has

ord (c1/q) =
1

q
ord (c),

we may use the elements c1/q to form the required sequence. What is surprising in
the theorem above is that one can use arbitrary, completely unrelated multipliers
in testing for tight closure, and u is still forced to be in I∗.

2.11. Solid modules and algebras and solid closure. Ler R be any do-
main. An R-module M is called solid if it has a nonzero R-linear map M → R.
That is, HomR(M, R) 6= 0.

An R-algebra S is called solid if it is solid as an R-module. In this case, we
can actually find an R-linear map θ : S → R such that θ(1) 6= 0. For if θ0 is any
nonzero map S → M , we can choose s ∈ S such that θ0(s) 6= 0, and then define θ
by θ(u) = θ0(su) for all u ∈ S. A detailed treatment may be found in [Ho94a].

When R is a Noetherian domain and M is a finitely generated R-module, the
property of being solid is easy to understand. It simply means that M is not
a torsion module over R. In this case, we can kill the torsion submodule N of
M , and the torsion-free module M/N will embed a free module Rh. One of the
coordinate projections πj will be nonzero on M/N , and the composite

M �M/N ↪→ Rh
πj−→ R

will give the required nonzero map.
However, if S is a finitely generated R-algebra it is often very difficult to de-

termine whether M is solid or not.
For those familiar with local cohomology, we note that if (R, m, K) is a com-

plete local domain of Krull dimension d, then M is solid over R if and only
Hd
m(M) 6= 0. Local cohomology theory will be developed in supplementary lec-

tures, and we will eventually prove this criterion. This criterion can be used to
show the following.

Theorem 2.5. Let (R, m, K) be a complete local domain. Then a big Cohen-
Macaulay algebra for R is solid.
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We will eventually prove the following characterization of tight closure for com-
plete local domains. This result begins to show the close connection between tight
closure and the existence of big Cohen-Macaulay algebras.

Theorem 2.6. Let (R, m, K) be a complete local domain of characteristic p.
Let u ∈ R. Let I ⊆ R be an ideal. The following conditions are equivalent:

(1) u ∈ I∗.
(2) There exists a solid R-algebra S such that u ∈ IS.
(3) There exists a big Cohen-Macaulay algebra S over R such that u ∈ IS.

Of course, (3)⇒ (2) is immediate from the preceding theorem. Conditions (2)
and (3) are of considerable interest because they characterize tight closure without
refrring to the Frobenius endomorphism, and thereby suggest closure operations not
necessarily in characteristic p that may be useful. The characterization (2) leads to
a notion of “solid closure” which has many properties of tight closure in dimension
at most 2. In equal characteristic 0 in dimension 3 and higher it appears to be the
wrong notion, in that ideals of regular rings need not be closed. An example due
to Paul Roberts [Rob94] shows that if K has characteristic 0 and R = K[[x, y, z]],
then in R one has that x2y2z2 is in the solid closure of (x3, y3, z3). Specifically, the
algebra K[[x, y, z]][u, v, w]/(x2y2z2 − ux3 − vy3 − wz3) is solid! This is proved not
by exhibiting the nonzero map back to R but by proving that a specific element
in the local cohomology is not 0. The argument uses classical identities involving
detteereminants of matrices of binomial coefficients.

However, whether solid closure gives a really useful theory in mixed character-
istic in dimension 3 and higher remains mysterious.

The characterization in (3) suggests defining a “big Cohen-Macaulay algebra”
closure. This is promising idea in all characteristics and all dimensions, and the
existence of big Cohen-Macaulay algebras in mixed characteristic is now known:
see, for example [And20].

3. Lecture 3

In order to give our next characterization of tight closure, we need to discuss a
theory of multiplicities suggested by work of Kunz and developed much further by
P. Monsky [Mo83]. We use `(M) for the length of a finite length module M .

3.1. Hilbert-Kunz multiplicities. Let (R, m, K) be a local ring, A an m-
primary ideal and M a finitely generated nonzero R-module. The standard theory
of multiplicities studies `(M/AnM) as a function of n, especially for large n. This
function, the Hilbert function of M with respect to A, is known to coincide, for all
sufficiently large n, with a polynomial in n whose degree d is the Krull dimension of
M . This polynomial is called the Hilbert polynomial of M with respect to A. The

leading term of this polynomial has the form
e

d!
nd, where e is a positive integer.

In prime characteristic p > 0 one can define another sort of multiplicity by
using Frobenius powers instead of ordinary powers.

Theorem 3.1 (P. Monsky). Let (R, m, K) be a local ring of characteristic p
and let M 6= 0 be a finitely generated R-module of Krull dimension d. Let A be an
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m-primary ideal of R. Then there exist a positive real number γ and a positive real
constant C such that

|`(M/A[q]M)− γqd| ≤ Cqd−1

for all q = pe.

One may also paraphrase the conclusion by writing

`(M/A[q]M) = γqd +O(qd−1)

where the vague notation O(qd−1)) is used for a function of q bounded in absolute
value by some fixed positive real number times qd−1. The function e 7→ `(M/A[q]M)
is called the Hilbert-Kunz function of M with respect to A. The real number γ is
called the Hilbert-Kunz multiplicity of M with respect to A. In particular, one can
conclude that

γ = lim
q→∞

`(M/A[q]M)

qd
.

Note that this is the behavior one would have if `(M/A[q]M) were eventually a
polynomial of degree d in q with leading term γqd: but this is not true. One often
gets functions that are not polynomial.

When M = R, we shall write γA for the Hilbert-Kunz multiplicity of R with
respect to A.

Monsky’s proof of the existence of the limit γ is, in a sense, not constructive.

He achieves this by proving that {`(M/A[q]M)

qd
}q is a Cauchy sequence. The limit

is only known to be a real number, not a rational number.

Example 3.2. Here is one instance of the non-polynomial behavior of Hilbert-
Kunz functions. See [HaMo83]. Let

R = (Z/5Z)[[W, X, Y, Z]]/(W 4 +X4 + Y 4 + Z4),

with maximal ideal m. Then

`(R/m[5e]) =
168

61
(5e)3 − 107

61
(3e).

Hilbert-Kunz multiplicities give a characterization of tight closure in certain
complete local rings:

Theorem 3.3. Let (R, m, K) be a complete local ring of characteristic p that
is reduced and equidimensional. Let A and B be m-primary ideals such that A ⊆ B.
Then B ⊆ A∗ if and only if γA = γB.

This has two immediate corollaries. Suppose that (R, m, K) and A are as in
the statement of the Theorem. Then, first, A∗ is the largest ideal B between A and
m such that γB = γA. Second, if u ∈ m, then u ∈ A∗ if and only if γA+Ru = γA.
Therefore, the behavior of Hilbert-Kunz multiplicities determines what tight closure
is in the case of a complete local ring, since one can first reduce to the case of a
complete local domain, and then to the case of an m-primary ideal. This in turn
determines the behavior of tight closure in all algebras essentially of finite type over
an excellent local (or semilocal) ring.
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3.2. The rings R+. We shall spend some effort in these lectures on under-
standing the behavior of the rings R+. One of the early motivations for doing so
is the following result from [HH92].

Theorem 3.4. Let (R, m, K) be a complete (excellent also suffices) local do-

main of characteristic p. Then R+ is a big Cohen-Macaulay algebra over R.

Although this result has been stated in terms of the very large ring R+, it can
also be thought of as a theorem entirely about Noetherian rings. Here is another
statement, which is readily seen to be equivalent.

Theorem 3.5. Let (R, m, K) be a complete local domain of characteristic p.
Let x1, . . . , xk+1 be part of a system of parameters for R. Suppose that we have
a relation rk+1xk+1 = r1x1 + · · · + rkxk. Then there is a module-finite extension
domain S of R such that rk+1 ∈ (x1, . . . , xk)S.

The point here is that R+ is the directed union of all module-finite extension
domains S of R.

We should note that this theorem is not at all true in equal characteristic 0. In
fact, if one has a relation

(∗) rk+1xk+1 = r1x1 + · · ·+ rkxk

on part of a system of parameters in a normal local ring (R, m, K) that contains
the rational numbers Q and rk+1 /∈ (x1, . . . , xk)R, then there does not exist any
module-finite extension S of R such that rk+1 ∈ (x1, . . . , xk)S. In dimension
3 or more there are always complete normal local domains that are not Cohen-
Macaulay. see Example ??. In such a ring one has relations such as (∗) on a system
of parameters with rk+1 /∈ (x1, . . . , xk)R, and one can never “get rid of” these
relations in a module-finite extension domain. Thus, these relations persist even in
R+.

3.3. Using trace to get a retraction. One key point is the following:

Theorem 3.6. Let R be a normal domain. Let S be a module-finite extension
domain of R such that the fraction field L of S has degree d over the fraction field

K of R. Suppose that
1

d
∈ R, which is automatic if Q ⊆ R. Then

1

d
traceL/K

gives an R-module retraction of S to R. In particular, for every ideal I of R,
IS ∩R = I.

The last statement follows from part (a) of 1.12

|

Here is an explanation of why trace gives such a retraction. First off, recall that
traceL/K is defined as follows: if λ ∈ L, multiplication by λ defines a K-linear map
L → L. The value of traceL/K(λ) is simply the trace of this K-linear endomorphism
of L to itself. It may be computed by choosing any basis v1, . . . , vd for L as a vector
space over K. If M is the matrix of the K-linear map given by multiplication by
λ, this trace is simply the sum of the entries on the main diagonal of this matrix.
Its value is independent of the choice of basis, since a different basis will yield a
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similar matrix, and the similar matrix will have the same trace. It is then easy to
verify that this gives a K-linear map from L → K.

Now suppose that s ∈ S. We want to verify that its trace is in R. There are
several ways to argue. We shall give an argument in which we descend to the case
where R is the integral closure of Noetherian domain, and we shall then be able to
reduce to the case where R is a DVR, i.e., a Noetherian valuation domain, which
is very easy.

Note that K⊗RS is a localization of S, hence, a domain, and that it is module-
finite over K, so that it is zero-dimensional. Hence, it is a field, and it follows that
K ⊗R S = L. Hence, every element of L has a multiple by a nonzero element of R
that is in S. In particular, we can choose a basis s1, . . . , sd for L over K consisting
of elements of S. Extend it to a set of generators s1, . . . , sn for S as an R-module.
Without loss of generality we may assume that s = sn is among them. We shall
now construct a new counter-example in which R is replaced by the integral closure
R0 of a Noetherian subdomain and S by

R0s1 + · · ·+R0sn.

To construct R0, note that every sisj is an R-linear combination of s1, . . . , sn.
Hence, for all 1 ≤ i, j ≤ n we have equations

(∗) sisj =

n∑
k=1

rijksk

with all of the rijk in R. For j > d, each sj is a K-linear combination of s1, . . . , sd.
By clearing denominators we obtain equations

(∗∗) rjsj =

d∑
k=1

rjksj

for d < j ≤ n such that every rj ∈ R− {0} and every rjk ∈ R.
Let R1 denote the ring generated over the prime ring (either Z or some finite

field Z/pZ) by all the rijk, rjk, and rj . Of course, R1 is a Noetherian ring. Let R0

be the integral closure of R1 in its fraction field. (It is possible to show that R0 is
Noetherian, but we don’t need this fact.) Now let S0 = R0s1 + · · · + R0sn, which
is evidently generated as an R0-module by s1, . . . , sn. The equations (∗) hold over
R0, and so S0 is a subring of S. It is module-finite over R0. The equations (∗∗) hold
over R0, and sd+1, . . . , sn are linearly dependent on s1, . . . , sd over the fraction
field K0 of R0. Finally, s1, . . . , sd are linearly independent over K0, since this is
true even over K. Hence, s1, . . . , sd is a vector space basis for L0 over K0.

The matrix of multiplication by s = sn with respect to the basis s1, . . . , sd is
the same as in the calculation of the trace of s from L to K. This trace is not in
R0, since it is not in R. We therefore have a new counterexample in which R0 is
the integral closure of the Noetherian ring R1. By the Theorem near the bottom
of the first page of the Lecture Notes of September 13 from Math 711, Fall 2006,
R0 is an intersection of Noetherian valuation domains that lie between R0 and K0.
Hence, we can choose such a valuation domain V that does not contain the trace
of s. We replace R0 by V and S0 by

T = V s1 + · · ·+ V sn,

which gives a new counter-example in which the smaller ring is a DVR. The proof
that T is a ring module-finite over V with module generators s1, . . . , sn such that a
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basis for the field extension is s1, . . . , sd is the same as in the earlier argument when
we replaced R by R0. Likewise, the trace of s with respect to the two new fraction
fields is not affected. In fact, we can use any integrally closed ring in between R0

and R.
Consequently, we may assume without loss of generality that R = V is a DVR.

Since S is a finitely generated torsion-free R-module and R is a principal ideal
domain, S is free as R-module. Therefore, we may choose s1, . . . , sd ∈ S to be
a free basis for S over R, and it will also be a basis for L over K. The matrix
for multiplication by s then has entries in R. It follows that its trace is in R, as
required. �

Corollary 3.7. Let R be a normal domain containing the rational numbers
Q. Let S be an extension ring of R, not necessarily a domain.

(a) If S is module-finite over R, then R is a direct summand of S.
(b) If S is integral over R, then for every ideal I of R, IS ∩R = I.

Proof. For part (a), we may choose a minimal prime P of S disjoint from the
multiplicative system R − {0} ⊆ S. Then R → S → S/P is module-finite over R,
and since P ∩R = {0}, ι : R ↪→ S/P is injective. By the result just proved, R is a
direct summand of S/P : let θ : S/P → R be a splitting, so that θ ◦ ι is the identity

on R. Then the composite S → S/P
θ−→ R splits the map R→ S.

For the second part, suppose that r ∈ R and r ∈ IS. Then there exist
f1, . . . , fh ∈ I and s1, . . . , sh ∈ S such that

r = f1s1 + · · ·+ fhsh.

Let S1 = R[s1, . . . , sh]. Then S1 is module-finite over R, and so by part (a), R is
a direct summand of S1. But we still have that r ∈ IS1 ∩R, and so by part (a) of
the Proposition 1.12, we have that r ∈ I. �

|

The fact that ideals of normal rings containing Q are contracted from integral
extensions may seem to be an advantage. But the failure of this property in char-
acteristic p > 0, which, in fact, enables one to use module-finite extensions to get
rid of relations on systems of parameters, is perhaps an even bigger advantage of
working in positive characteristic.

3.4. Absolute integral closure, plus closure, and related ideas. Note
that the result on homomorphisms of absolute integral closures of rings given in
the Proposition 2.3 then yields:

Theorem 3.8. Let R→ S be a local homomorphism of complete local domains
of characteristic p. Then there is a commutative diagram:

B −−−−→ Cx x
R −−−−→ S

such that B is a big Cohen-Macaulay algebra over R and C is a big Cohen-Macaulay
algebra over S.
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The point is that one can take B = R+ and C = S+, and then one has the
required map B → C by the Proposition cited just before the statement of the
Theorem. The same result can be proved in equal characteristic 0, but the proof
depends on reduction to characteristic p > 0. When we discussed the existence of
“sufficiently many big Cohen-Macaulay algebras” in mixed characteristic, it is this
sort of result that we had in mind.

The following result of Karen Smith [Sm94] (which also contains a form of the
result when the ring is not necessarily local) may be viewed as providing another
connection between big Cohen-Macaulay algebras and tight closure.

Theorem 3.9. Let R be a complete (or excellent) local domain and let I be an

ideal generated by part of a system of parameters for R. Then I∗ = IR+ ∩R.

Property (3) of 2.8 implies that IR+ ∩R ⊆ I∗, since R+ is a directed union of
module-finite extension domains S. The converse for parameter ideals is a difficult
theorem.

This result suggests defining a closure operation on ideals of any domain R
as follows: the of I is IR+ ∩ R. This plus closure is denoted I+. Thus, plus
closure coincides with tight closure for parameters ideals in excellent local domains
of characteristic p > 0. Note that plus closure is not very interesting in equal
characteristic 0, for if I is an ideal of a normal ring R that contains the rationals,
I+ = I.

It is very easy to show that plus closure commutes with localization. Thus, if it
were true in general that plus closure agrees with tight closure, it would follow that
tight closure commutes with localization. However, tight closure does not commute
with localization [?].

Recently, the Theorem thatR+ is a big Cohen-Macaulay algebra when (R, m, K)
is an excellent local domain of characteristic p has been strengthened by C. Huneke
and G. Lyubeznik. See [HuLy07]. Roughly speaking, the original version provides
a module-finite extension domain S of R that trivializes one given relation on pa-
rameters. The Huneke-Lyubeznik result provides a module-finite extension S that
simultaneously trivializes all relations on all systems of parameters in the original
ring. Their hypothesis is somewhat different. R need not be excellent: instead, it
is assumed that R is a homomorphic image of a Gorenstein ring. Note, however,
that the new ring S need not be Cohen-Macaulay: new relations on parameters
may have been introduced.

The arguments of Huneke and Lyubeznik give a global result. The ring need
not be assumed local. Under mild hypotheses, in characteristic p, the Noetherian
domain R has a module finite extension S such that for every local ring RP of R,
all of the relations on all systems of parameters in RP become trivial in SP . In
order to prove this result, we need to develop some local cohomology theory.

Next, we want to mention the following result of Ray Heitmann [Heit02],
referred to earlier. Ideas related to this result have led to vast recent progress,
in which the existence of big Cohen-Macaulay algebras have been shown to ex-
ist in general by arguments utiizing almost mathematics, perfectoid geometry (cf.
[HeitMa18, And20]) and in some cases very sophisticated cohomological tech-
niques: see [Bha21].
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Theorem 3.10 (R. Heitmann). Let R be a complete local domain of mixed
characteristic p. Let x, y, z be a system of parameters for R. Suppose that rz ∈
(x, y)R. Then for every N ∈ N, p1/Nr ∈ (x, y)R+.

The condition satisfied by r in this Theorem bears a striking resemblance to
one of our characterizations of tight closure: see condition (#) in Discussion 2.2.
In a way, it is very different: in tight closure theory, the element c is anything but
p, which is 0. [Heit05] that in the Theorem above, one can use any element of

R+, not just p. The entire maximal ideal of R+ multiplies r into (x, y)R+.
Heitmann’s result stated in the Theorem above already suffices to prove the

existence of big Cohen-Macaulay algebras in dimension 3 in mixed characteristic:
see [Ho02].

For some of the most recent advances in this area we refer the reader to [And20,
Bha21, Jia21b]. As indicated in [Jia21b] and the earlier papers [Die10] and
[R.G.18], the construction of big Cohen-Macaulay algebras and the existence of
operations similar to tight closure go hand in hand.

4. Lecture 4

In our treatment of tight closure for modules it will be convenient to use the
Frobenius functors, which we view as special cases of base change. We first review
some basic facts about base change.

4.1. Base change. If f : R → S is an ring homomorphism, there is a base
change functor S ⊗R from R-modules to S-modules. It takes the R-module M
to the R-module S ⊗R M and the map h : M → N to the unique S-linear map
S ⊗R M → S ⊗R N that sends s ⊗ u 7→ s ⊗ h(u) for all s ∈ S and u ∈ M . This
map may be denoted idS ⊗R h or S ⊗R h. Evidently, base change from R to S is a
covariant functor. We shall temporarily denote this functor as BR→S . It also has
the following properties.

(1) Base change takes R to S.
(2) Base change commutes with arbitrary direct sums and with arbitrary di-

rect limits.
(3) Base change takes Rn to Sn and free modules to free modules.
(4) Base change takes projective R-modules to projective S-modules.
(5) Base change takes flat R-modules to flat S-modules.
(6) Base change is right exact: if

M ′ →M →M ′′ → 0

is exact, then so is

S ⊗RM ′ → S ⊗RM → S ⊗RM ′′ → 0.

(7) Base change takes finitely generated modules to finitely generated mod-
ules: the number of generators does not increase.

(8) Base change takes the cokernel of the matrix
(
rij
)

to the cokernel of the

matrix
(
f(rij)

)
.

(9) Base change takes R/I to S/IS.
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(10) For every R-module M there is a natural R-lineaar map M → S ⊗M
that sends u 7→ 1 ⊗ u. More precisely, R-linearity means that ru 7→
g(r)(1⊗ u) = g(r)⊗ u for all r ∈ R and u ∈M .

(11) Given homomorphisms R→ S and S → T , the base change functor BR→T
for the composite homomorphism R→ T is the composition BS→T ◦BR→S .

Part (1) is immediate from the definition. Part (2) holds because tensor prod-
uct commutes with arbitrary direct sums and arbitrary direct limits. Part (3) is
immediate from parts (1) and (2). If P is a projective R-module, one can choose
Q such that P ⊕Q is free. Then (S ⊗R P )⊕ (S ⊗RQ) is free over S, and it follows
that both direct summands are projective over S. Part (5) follows because if M is
an R-module, the functor (S ⊗R M) ⊗S on S-modules may be identified with
the functor M ⊗R on S-modules. We have

(S ⊗RM)⊗S U ∼= (M ⊗R S)⊗S U ∼= M ⊗RM,

by the associativity of tensor. Part (6) follows from the corresponding general fact
for tensor products. Part (7) is immediate, for if M is finitely generated by n
elements, we have a surjection Rn � M , and this yields Sn � S ⊗R M . Part (8)
is immediate from part (6), and part (9) is a consequence of (6) as well. (10) is
completely straightforward, and (11) follows at once from the associativity of tensor
products.

4.2. The Frobenius functors. Let R be a ring of characteristic p. The
Frobenius or Peskine-Szpiro functor FR from R-modules to R-modules is simply
the base change functor for f : R → S when S = R and the homomorphism
f : R→ S is the Frobenius endomorphism F : R→ R, i.e, F (r) = rp for all r ∈ R.
We may take the e-fold iterated composition of this functor with itself, which we
denote FeR. This is the same as the base change functor for the homomorphism

F e : R → R, where F e(r) = rp
e

for all r ∈ R, by the iterated application of (11)
above. When the ring is clear from context, the subscript R is omitted, and we
simply write F or Fe.

We then have, from the corresponding facts above:

(1) Fe(R) = R.
(2) cF e commutes with arbitrary direct sums and with arbitrary direct limits.
(3) Fe(Rn) = Rn and Fe takes free modules to free modules.
(4) Fe takes projective R-modules to projective R-modules.
(5) Fe takes flat R-modules to flat R-modules.
(6) Fe is right exact: if

M ′ →M →M ′′ → 0

is exact, then so is

Fe(M ′)→ Fe(M)→ Fe(M ′′)→ 0.

(7) Fe takes finitely generated modules to finitely generated modules: the
number of generators does not increase.

(8) Fe takes the cokernel of the matrix
(
rij
)

to the cokernel of the matrix(
rp
e

ij

)
.

(9) Fe takes R/I to R/I [q]R.
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By (10) in the list of properties of base change, for every R-module M there is a
natural map M → Fe(M). We shall use uq to denote the image of u under this
map, which agrees with usual the usual notation when M = R. R-linearity then
takes the following form:

(10) For every R-module M the natural map M → Fe(M) is such that for all
r ∈ R and all u ∈M , (ru)q = rquq.

We also note the following: given a homomorphism g : R → S of rings of
characteristic p, we always have that g ◦ F eR = F eS ◦ g. In fact, all this says is
that g(rq) = g(r)q for all r ∈ R. This yields a corresponding isomorphism of
compositions of base change functors:

(11) Let R→ S be a homomorphism of rings of characteristic p. Then for every
R-module M , there is an identification S⊗R FeR(M) ∼= FeS(S⊗RM) that
is natural in the R-module M .

When N ⊆ M the map Fe(N) → Fe(M) need not be injective. We denote

that image of this map by N [q] or, more precisely, by N
[q]
M . However, one should

keep in mind that N [q] is a submodule of Fe(M), not of M itself. It is very easy
to see that N [q] is the R-span of the elements of Fe(M) of the form uq for u ∈ N .
The module N [q] is also the R-span of the elements uqλ as uλ runs through any set
of generators for N .

A very important special case is when M = R and N = I, an ideal of R. In this

situation, I
[q]
R is the same as I [q] as defined earlier. What happens here is atypical,

because F e(R) = R for all e.

4.3. Tight closure for modules. Let R be a Noetherian ring of prime char-
acteristic p > 0. If N ⊆M , we define the tight closure N∗M of N in M to consist of
all elements u ∈M such that for some c ∈ R ◦,

cuq ∈ N [q]
M ⊆ F

e(M)

for all q � 0. Evidently, this agrees with our definition of tight closure for an ideal
I, which is the case where M = R and N = I. If M is clear from context, the
subscript M is omitted, and we write N∗ for N∗M . Notice that we have not assumed
that M or N is finitely generated. The theory of tight closure in Artinian modules
is of very great interest. Note that c may depend on M , N , and even u. However,
c is not permitted to depend on q. Here are some properties of tight closure:

Proposition 4.1. Let R be a Noetherian ring of prime characteristic p > 0. .
Let N, M , and Q be R-modules.

(a) N∗M is an R-module.
(b) If N ⊆M ⊆ Q are R-modules, then N∗Q ⊆M∗Q and N∗M ⊆ N∗Q.

(c) If Nλ ⊆Mλ is any family of inclusions, and N =
⊕

λNλ ⊆
⊕

λMλ = M ,
then N∗M =

⊕
λ(N∗λ)Mλ

.
(d) If R is a finite product of rings R1 × · · · × Rn, Ni ⊆ Mi are Ri-modules,

1 ≤ i ≤ n, M is the R-module M1×· · ·×Mn, and N ⊆M is N1×· · ·×Nn,
then N∗M may be identify with (N1)∗M1

× · · · × (Nn)∗Mn
.

(e) If I is an ideal of R, I∗N∗M ⊆ (IN)∗M .
(f) If N ⊆ M and V ⊆ W are R-modules and h : M → W is an R-linear

map such that h(N) ⊆ V , then h(N∗M ) ⊆ V ∗W .
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Proof. (a) Let c, c′ ∈ R ◦. If cuq ∈ N [q] for q ≥ q0, then c(ru)q ∈ N [q] for
q ≥ q0. If c′vq ∈ Nq for q ≥ q1 then (cc′)(u+ v)q ∈ N [q] for q ≥ max{q0, q1}.

(b) The first statment holds because we have that N
[q]
Q ⊆ M

[q]
Q for all q, and

the second because the map F e(M)→ F e(Q) carries N
[q]
M into N

[q]
Q .

(c) is a straightforward application of the fact that tensor product commutes
with direct sum and the definition of tight closure. Keep in mind that every element
of the direct sum has nonzero components from only finitely many of the modules.

(d) is clear: note that (R1 × · · · ×Rn) ◦ = R ◦1 × · · · ×R ◦n .
(e) If c, c′ ∈ R ◦, cfq ∈ I [q] for q � 0, and c′u[q] ∈ N [q] for q � 0, then

(cc′)(fu)q = (cfq)(c′uq) ∈ I [q]N [q] for q � 0, and I [q]N [q] = (IN)[q] for every q.
(f) This argument is left as an exercise �

Let R and S be Noetherian rings of characteristic p. We will frequently be in
the situation where we want to study the effect of base change on tight closure.
For this purpose, when N ⊆ M are R-modules, it will be convenient to use the
notation 〈S ⊗R N〉 for the image of S ⊗R N in S ⊗R M . Of course, one must
know what the map N ↪→ M is, not just what N is, to be able to interpret this
notation. Therefore, we may also use the more informative notation 〈S ⊗R N〉M
in cases where it is not clear what M is. Note that in the case where M = R and
N = I ⊆ R, 〈S ⊗R I〉 = IS, the expansion of I to S. More generally, if N ⊆ G,
where G is free, we may write NS for 〈S ⊗R N〉G ⊆ S ⊗G, and refer to NS as the
expansion of N , by analogy with the ideal case.

Proposition 4.2. Let R → S be a homomorphism of Noetherian rings of
characteristic p such that R ◦ maps into S ◦. In particular, this hypothesis holds (1)
if R ⊆ S are domains, (2) if R→ S is flat, or if (3) S = R/P where P is a minimal
prime of S. Then for all modules N ⊆M , 〈S ⊗R N∗M 〉M ⊆ (〈S ⊗R N〉M )∗S⊗RM .

Proof. It suffices to show that if u ∈ N∗ then 1 ⊗ u ∈ 〈S ⊗R N〉∗. Since
the image of c is in S ◦, this follows because c(1 ⊗ uq) = 1 ⊗ cuq ∈ 〈S ⊗R N [q]〉 =

〈S ⊗R N〉[q].
The statement about when the hypothesis holds is easily checked: the only

case that is not immediate from the definition is when R → S is flat. This can
be checked by proving that every minimal prime Q of S lies over a minimal prime
P of R. But the induced map of localizations RP → SQ is faithfully flat, and so
injective, and QSQ is nilpotent, which shows that PRP is nilpotent. �

Tight closure, like integral closure, can be checked modulo every minimal prime
of R.

Theorem 4.3. Let R be a Noetherian ring of prime characteristic p > 0. Let
P1, . . . , Pn be the minimal primes of R. Let Di = R/Pi. Let N ⊆M be R-modules,
and let u ∈ M . Let Mi = Di ⊗R M = M/PiM , and let Ni = 〈Di ⊗R N〉. Let ui
be the image of u in Mi. Then u ∈ N∗M over R if and only if for all i, 1 ≤ i ≤ n,
ui ∈ (Ni)

∗
Mi

over Di. If M = R and N = I, we have that u ∈ I∗ if and only if the

image of u in Di is in (IDi)
∗ in Di, working over Di, for all i, 1 ≤ i ≤ n.

Proof. The final statement is just a special case of the Theorem. The “only
if” part follows from the preceding Proposition. It remains to prove that if u is in
the tight closure modulo every Pi, then it is in the tight closure. This means that for
every i there exists ci ∈ R−Pi such that for all q � 0, ciu

q ∈ N [q] +PiF
e(M), since
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Fe(M/PiM) working over Di may be identified with Fe(M)/PiFe(M). Choose di
so that it is in all the Pj except Pi. Let J be the intersection of the Pi, which is
the ideal of all nilpotents. Then for all i and all q � 0,

(∗i) diciu
q ∈ N [q] + JF e(M),

since every diPi ⊆ J .
Then c =

∑n
i=1 dici cannot be contained in the union of Pi, since for all i the

i th term in the sum is contained in all of the Pj except Pi. Adding the equations
(∗i) yields

cuq ∈ N [q] + JF e(M)

for all q � 0, say for all q ≥ q0. Choose q1 such that J [q1] = 0. Then cq1uqq1 ∈ N [qq1]

for all q ≥ q0, which implies that cquq ∈ N [q] for all q ≥ q1q0. �

Let R have minimal primes P1, . . . , Pn, and let J = P! ∩ · · · ∩ Pn, the ideal of
nilpotent elements of R, so that Rred = R/J . The minimal primes of R/J are the
ideals Pi/J , and for every i, Rred/(Pi/J) ∼= R/Pi. Hence:

Corollary 4.4. Let R be a Noetherian ring of prime characteristic p > 0, and
let J be the ideal of all nilpotent elements of R. Let N ⊆M be R-modules, and let
u ∈ M . Then u ∈ N∗M if and only if the image of u in M/JM is in 〈N/J〉∗M/JM

working over Rred = R/J .

We should point out that it is easy to prove the result of the Corollary directly
without using the preceding Theorem.

We also note the following easy fact:

Proposition 4.5. Let R be a Noetherian ring of prime characteristic p > 0. .
Let N ⊆M be R-modules. If u ∈ N∗M , then for all q0 = pe0 , uq0 ∈ (N [q0])∗Fe0 (M).

Proof. This is immediate from the fact that (N [q0])[q] ⊆ Fe
(
Fe0(M)

)
, if we

identify the latter with Fe0+e(M), is the same as N [q0q]. �

We next want to consider what happens when we iterate the tight closure
operation. When M is finitely generated, and quite a bit more generally, we do not
get anything new. Later we shall develop a theory of test elements for tight closure
that will enable us to prove corresponding results for a large class of rings without
any finiteness conditions on the modules.

Theorem 4.6. Let R be a Noetherian ring of prime characteristic p > 0. . Let
N ⊆M be R-modules. Consider the condition:

(#) there exist an element c ∈ R ◦ and q0 = pe0 such that for all u ∈ N∗,
cuq ∈ N [q] for all q ≥ q0, which holds whenever N∗/N is a finitely generated R-

module. If (#) holds, then (N∗M )∗M = N∗M .

Proof. We first check that (#) holds when N∗/N is finitely generated. Let
u1, . . . , un be elements of N∗ whose images generate N∗/N . Then for every i we
can choose ci ∈ R ◦ and qi such that for all q ≥ qi, we have that ciu

q ∈ N [q] for
all q ≥ qi. Let c = c1 · · · cn and let q0 = max{q1, . . . , qn}. Then for all q ≥ q0,
cuqi ∈ N [q], and if u ∈ N , the same condition obviously holds. Since every element
of N∗ has the form r1u1 + · · · + rnun + u where the ri ∈ R and u ∈ N , it follows
that (#) holds.
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Now assume # and let v ∈ (N∗)∗. Then there exists d ∈ R ◦ and q′ such that
for all q ≥ q′, dvq ∈ (N∗)[q], and so dvq is in the span of elements wq for w ∈ N∗.
If q ≥ q0, we know that every cwq ∈ N [q]. Hence, for all q ≥ max{q′, q0}, we have
that (cd)vq ∈ N [q], and it follows that v ∈ N∗. �

Of course, if M is Noetherian, then so is N∗, and condition (#) holds. Thus:

Corollary 4.7. Let R be a Noetherian ring of prime characteristic p > 0,
and let N ⊆M be finitely generated R-modules. Then (N∗M )∗M = N∗M . �

5. Lecture 5

The following result is very useful in thinking about tight closure.

Proposition 5.1. Let R be a Noetherian ring of prime characteristic p > 0. .
Let N ⊆ M be R-modules, and let u ∈ M . Then u ∈ N∗M if and only if the image
u of u in the quotient M/N is in 0∗M/N .

Hence, if we map a free module G onto M , say h : G�M , let H = h−1(N) ⊆
G, and let v ∈ G be such that h(v) = u, then u ∈ N∗M if and only if v ∈ H∗G.

Proof. For the first part, let c ∈ R0. Note that, by the right exactness of
tensor products, Fe(M/N) ∼= Fe(M)/N [q]. Consequently, cuq ∈ N [q] for all q ≥ q0

if and only if cuq = 0 in Fe(M/N) for q ≥ q0.
For the second part, simply note that the image of v in G/H ∼= M/N corre-

sponds to u in M/N . �

It follows many questions about tight closure can be formulated in terms of
the behavior of tight closures of submodules of free modules. Of course, when M
is finitely generated, the free module G can be taken to be finitely generated with
the same number of generators.

Given a free module G of rank n, we can choose an ordered free basis for G.
This is equivalent to choosng an isomorphism G ∼= Rn = R ⊕ · · · ⊕ R. In the case
of Rn, one may understand the action of Frobenius in a very down-to-earth way.
We may identify Fe(Rn) ∼= Rn, since we have this identification when n = 1. Keep
in mind, however, that the identification of Fe(G) with G depends on the choice
of an ordered free basis for G. If u = r1 ⊕ · · · ⊕ rn ∈ Rn, then uq = rq1 ⊕ · · · ⊕ rqn.

With H ∈ Rn, H [q] is the R-span of the elements uq for u ∈ H (or for u running
through generators of H). Very similar remarks apply to the case of an infinitely
generated free module G with a specified basis bλ. The elements bqλ give a free basis
for Fe(G), and if u = r1bλ1

+ · · · + rsbλs , then uq = rq1b
q
λ1

+ · · · + rqsb
q
λs

gives the

representation of uq as a linear combination of elements of the free basis {bqλ}λ.
We could have defined tight closure for submodules of free modules using this

very concrete description of uq and H [q]. The similarity to the case of ideals in the
ring is visibly very great. But we are then saddled with the problem of proving
that the notion is independent of the choice of free basis. Moreover, if we take this
approach, we need to define N∗M by mapping a free module G onto M and replacing
N by its inverse image in G. We then have the problem of proving that the notion
we get is independent of the choices we make.
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5.1. Criteria for flatness. Our next objective is to prove that in a regular
ring, every ideal is tightly closed. This depends on knowing that F : R→ R is flat
for regular rings of characteristic p.

Eventually we sketch below a proof of the flatness of F that depends on the
structure theory for complete local rings of characteristic p. Later, we shall give a
different proof, based on the following result, which is valid without restriction on
the characteristic:

Theorem 5.2. Let (R, m, K) be a regular local ring and M and R-module.
Then M is a big Cohen-Macaulay module for R if and only if M is faithfully flat
over R.

We postpone the proof of this result for a while: it makes considerable use of
the properties of the functor Tor. However, we do want to make several comments.

First note that it immediately implies that when R is regular, F : R → R is
flat. In general, R → S is flat if and only if for every prime ideal Q of S with
contraction P to R, the map RP → SQ is flat.

|
To see this, note that for RP -modules M , the natural map SQ ⊗R M →

SQ ⊗RP M is an isomorphism, because M → RP ⊗RP M is an isomorphism, and
we have

SQ ⊗RP M ∼= SQ ⊗RP (RP ⊗RM) ∼= SQ ⊗RM.

The latter is also SQ ⊗S (S ⊗R M). If S is flat over R, since SP is flat over S
we have that SP is flat over R. On the other hand, if N ↪→ M is an injection of
R-modules and S ⊗R N → S ⊗R M is not injective, we can localize at a prime Q
of S in the support of the kernel. This yields a map SQ ⊗R N → SQ ⊗R M that
is not injective. But if Q contracts to P , we do have that NP → MP is injective.
This shows that SQ is not flat over RP . �

|

Note that when S = R and the map is F , the contraction of P ∈ Spec (R)
is P . Thus, it suffices to show that F is flat on RP for all primes P . This is
now obvious given the Theorem above: any regular sequence (equivalently, system
of parameters) in R, say x1, . . . , xn, maps to xp1, . . . , x

p
n in R, which is again a

regular sequence. Hence, R is a big Cohen-Macaulay algebra for R under the map
F : R→ R, and this proves that R is faithfully flat over R.

Discussion 5.3. We have the following additional comments on the Theorem.
Suppose that M is a module over a local ring (R, m, K) and suppose that we
know that x1, . . . , xn is a system of parameters that is a regular sequence on M .
Let A = (x1, . . . , xn)R. By the definition of a regular sequence, we have that
AM 6= M . We want to point out that this condition implies the a priori stronger
condition that mM 6= M . The reason is that m is nilpotent modulo A. Thus, we
can choose s such that ms ⊆ A. If M = mM , we can multiply by mt to conclude
that mtM = mt(mM) = mt+1M . Thus

M = mM = m2M = · · · = mtM = · · · .
Then

M = msM ⊆ AM ⊆M,

and we find that AM = M , a contradiction.
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If M is faithfully flat over R, we have that (R/m)⊗M = M/mM 6= 0, so that
mM 6= M . Moreover, whenever x1, . . . , xn is a system of parameters for R, it is
a regular sequence on R, and the fact that M is faithfully flat over R implies that
x1, . . . , xn is a regular sequence on M . This shows that a faithfully flat R-module
is a big Cohen-Macaulay module over R. The converse remains to be proved.

We next sketch a completely different proof that F is flat for a regular ring
R. As noted above, this comes down to the local case. We use the fact that a

local map R → S of local rings is flat if and only if the induced map R̂ → Ŝ is
flat. Hence, by the structure theory of complete local rings, we may assume that
R = K[[x1, . . . , xn]] is a formal power series ring over a field. Since this ring is
the completion of K[x1, . . . , xn]P where P = (x1, . . . , xn), it suffices to prove the
result for the localized polynomial ring R = K[x1, . . . , xn] itself. But F (R) =
Kp[xp1, . . . , x

p
n]. Thus, all we need to show is that Kp[x1, . . . , xn] ⊆ K[x1, . . . , xn]

is flat. We prove a stronger result: R is free over F (R) in this case. Since K is
free over Kp, K[xp1, . . . , x

p
n] is free on the same basis over Kp[xp1, . . . , x

p
n]. Thus,

we need only see that K[x1, . . . , xn] is free over K[xp1, . . . , x
p
n]. It is easy to check

that the monomials xa11 · · ·xann such that 0 ≤ ai ≤ p− 1 are free basis. �

|

We now fill in the missing details of the argument sketched above.

Proposition 5.4. Let θ : (R, m, K) → (S, n, L) be a homomorphism of local
rings that is local, i.e., θ(m) ⊆ n. Let Q be a finitely generated S-module. Then
Q is flat over R if and only if for every injective map N ↪→ M of finite length
R-modules, Q⊗R N → Q⊗RM is injective.

Proof. The condition is obviously necessary. We shall show that it is suffi-
cient. Since tensor commutes with direct limits and every injection N ↪→ M is a
direct limit of injections of finitely generated R-modules, it suffices to consider the
case where N ⊆ M are finitely generated. Suppose that some u ∈ S ⊗R N is such
that u 7→ 0 in S ⊗R M . It will suffice to show that there is also such an example
in which M and N have finite length. Fix any integer t > 0. Then we have an
injection

N/(mtM ∩N) ↪→M/mtM

and there is a commutative diagram

Q⊗R N
ι−−−−→ Q⊗RM

f

y g

y
Q⊗R

(
N/(mtM ∩N)

) ι′−−−−→ Q⊗R
(
M/mtM

).
The image f(u) of u in Q ⊗R

(
N/(mtM ∩ N)

)
maps to 0 under ι′, by the com-

mutativity of the diagram. Therefore, we have the required example provided that
f(u) 6= 0. However, for all h > 0, we have from the Artin-Rees Lemma that for ev-
ery sufficiently large integer t, mtM ∩N ⊆ mhN . Hence, the proof will be complete
provided that we can show that the image of u is nonzero in

Q⊗R(N/mhN) ∼= Q⊗R
(
(R/mh)⊗RN

) ∼= (R/mh)⊗R(Q⊗RN) ∼= (Q⊗RN)/mh(Q⊗RN)
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for h� 0. But
mh(Q⊗R N) ⊆ nh(Q⊗R N),

and the result follows from the fact that the finitely generated S-module Q ⊗R N
is n-adically separated. �

We can now prove the following result, which is the only missing ingredient
needed to fill in the details of our proof that F is flat.

Lemma 5.5. Let (R, m, K)→ (S, n, L) be a local homomorphism of local rings.

Then S is flat over R if and only if Ŝ is flat over R̂, and this holds iff Ŝ is flat over
R.

Proof. If S is flat over R then, since Ŝ is flat over S, we have that Ŝ is flat

over R. Conversely, if Ŝ is flat over R, then S is flat over R because Ŝ is faithfully
flat over S: if N ↪→ M is injective but S ⊗R N → S ⊗R M has a nonzero kernel,

the kernel remains nonzero when we apply Ŝ⊗S , and this has the same effect as

applying Ŝ ⊗R to N ↪→M , a contradiction.

We have shown that R → S is flat if and only R → Ŝ is flat. If R̂ → Ŝ is flat

then since R→ R̂ is flat, we have that R→ Ŝ is flat, and we are done. It remains

only to show that if R → S is flat, then R̂ → Ŝ is flat. By the Proposition, it

suffices to show that if N ⊆M have finite length, then Ŝ⊗N → Ŝ⊗M is injective.
Suppose that both modules are killed by mt. Since S/mtS is flat over R/mt, if Q
is either M or N we have that

Ŝ ⊗R̂ Q ∼= Ŝ/mtŜ ⊗R̂/mtR̂ Q ∼= Ŝ/mtŜ ⊗R/mt Q ∼= Ŝ ⊗R Q,

and the result now follow because Ŝ is flat over R. �

|

The following result on behavior of the colon operation on ideals under flat
base change, while quite easy and elementary, plays a very important role in tight
closure theory. Recall that when I ⊆ R and R → S is a flat homomorphism, the
map I ⊗R S → R ⊗R S = S is injective. Its image is clearly IS, the expansion of
I to S. Thus, I ⊗R S may be naturally identified with IS when S is flat over R.
Recall that if I and J are ideals of R, then

I :R J = {r ∈ R : rJ ⊆ I},
which is an ideal of R. If J = fR is principal, we may write I :R f for IR : fR.

Proposition 5.6. Let R → S be flat and let I and J be ideals of R such that
J is finitely generated. Then IS :R JS = (I :R J)S.

Proof. Let J = (f1, . . . , fn)R. We have an exact sequence

0→ I :R J ↪→ R→ (R/I)⊕n

where the rightmost map sends r 7→ (rf1, . . . , rfn); here, g denotes the image of
g modulo I. The exactness is preserved when we apply S ⊗R , which yields an
exact sequence

(∗) 0→ (I :R J)S ↪→ S → (S/IS)⊕n

where the rightmost map sends s 7→ (s̃f1, . . . , s̃fn) and g̃ denotes the image of g
modulo IS. From the definition of this map, the kernel is IS :S JS, while from the
exact sequence (∗) just above, the kernel is (I :R J)S. �
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|

The result is false without the hypothesis that J be finitely generated. Let K be
a field, and let R = K[y, x1, x2, x3, . . .] be a polynomial ring in infinitely many vari-
ables over K. Let I = (x1y, x2y

2, . . . , xny
n, . . .) and let J = (x1, x2, . . . , xn, . . .).

Then I :R J = I, but if S = Ry, IS = JS and IS :S JS = S.

|

The proposition above has the following very important consequence:

Corollary 5.7. Let R be a regular Noetherian ring of characteristic p. Let I
and J be any two ideals of R. Then for every q = pe, we have that I [q] :R J [q] =
(I :R J)[q].

Proof. Take R→ S to be the map F e : R→ R, which is flat. Then

I [q] :R J
[q] = IS :S JS = (I :R J)S = (I :R J)[q].

�

We can now prove that every ideal of a regular ring is tightly closed.

Theorem 5.8. Let R be a regular Noetherian ring of characteristic p. Let
I ⊆ R be any ideal. Then I = I∗.

Proof. Suppose that we have a counterexample with u ∈ I∗ − I. Choose a
prime P in the support of (I + Ru)/I. In RP , the image of u is still in (IRP )∗

working over RP , while it is not in IRP by our choice of P . Therefore, it suffices
to prove the result for a regular local ring (R, m, K). Since u ∈ I∗ − I, we have
that I :R u is a proper ideal of R. Hence, I :R u ⊆ m. We know that there exists
c ∈ R ◦ such that for all q � 0, cuq ∈ I [q]. Hence, for all q ≥ q0 we have

c ∈ I [q] :R u
q = (I :R u)[q] ⊆ m[q] ⊆ mq,

i.e., c ∈
⋂
q≥q0 m

q = (0), contradicting that c ∈ R ◦. �

6. Lecture 6

6.1. Weaky F-regular rings. if every ideal is tightly closed. R is called
F-regular if all of its localizations are weakly F-regular.

It is an open question whether, under mild conditions, e.g., excellence, weakly
F-regular implies F-regular.

We shall show eventually that over a weakly F-regular ring, every submodule
of every finitely generated module is tightly closed.

Since we have already proved that every regular ring of characteristic p is weakly
F-regular and since the class of regular rings is closed under localization, it follows
that every regular ring is F-regular.

|
We note the following fact.

Lemma 6.1. Let R be any Noetherian ring, let M be a finitely generated module,
and let u ∈M . Suppose that N ⊆M is maximal with respect to the condition that
u /∈ N . Then M/N has finite length, and it has a unique associated prime, which
is a maximal ideal m with a power that kills M . In this case u spans the socle
AnnMNm of M/N .



6. LECTURE 6 45

Proof. The maximality of N implies that the image of u is in every nonzero
submodule of M/N . We change notation: we may replace M by M/N , u by its
image in M/N , and N by 0. Thus, we may assume that u is in every nonzero
submodule of M , and we want to show that M has a unique associated prime. We
also want to show that this prime is maximal. If v ∈ M and w ∈ M have distinct
prime annihilators P and Q, we have that Rv ∼= R/P and Rw ∼= R/Q. Any nonzero
element of Rv ∩Rw has annihilator P (thinking in R/P ) and also has annihilator
Q. It follows that P = Q after all.

Thus, Ass (M) consists of a single prime ideal P . If P is not maximal, we have
an embedding R/P ↪→M . Then u is in the image of R/P , and is in every nonzero
ideal of R/P . If R/P = D has dimension one or more, then it has a prime ideal P ′

other than 0. Then u must be in every power of P ′, and so u is in every power of
the maximal ideal of the local ring DP ′ , a contradiction. It follows that Ass (M)
consists of a single maximal ideal m. This implies that M has a finite filtration by
copies of R/m, and is therefore killed by a power of m. Then u must be in the socle
AnnMm, which must be a one-dimensional vector space over K = R/m, or else it
will have a subspace that does not contain u. �

Proposition 6.2 (prime avoidance for cosets). Let S be any commutative ring,
x ∈ S, I ⊆ S an ideal and P1, . . . , Pk prime ideals of S. Suppose that the coset

x+ I is contained in
⋃k
i=1 Pi. Then there exists j such that Sx+ I ⊆ Pj.

Proof. If k = 1 the result is clear. Choose k ≥ 2 minimum giving a coun-
terexample. Then no two Pi are comparable, and x + I is not contained in the
union of any k − 1 of the Pi. Now x = x + 0 ∈ x + I, and so x is in at least one
of the Pj : say x ∈ Pk. If I ⊆ Pk, then Sx + I ⊆ Pk and we are done. If not,

choose i0 ∈ I − Pk. We can also choose i ∈ I such that x + i /∈
⋃k−1
j=1 Pi. Choose

uj ∈ Pj − Pk for j < k, and let u be the product of the uj . Then ui0 ∈ I − Pk,
but is in Pj for j < k. It follows that x + (i + ui0) ∈ x + I, but is not in any Pj ,
1 ≤ j ≤ k, a contradiction. �

Proposition 6.3. Let R be a Noetherian ring and let W be a multiplicative
system. Then every element of (W−1R) ◦ has the form c/w where c ∈ R ◦ and
w ∈W .

Proof. Suppose that c/w ∈ (W−1R) ◦ where c ∈ R and w ∈ W . Let
p1, . . . , pk be the minimal primes of R that do not meet W , so that the ideals
pjW

−1R for 1 ≤ j ≤ k are all of the minimal primes of W−1R. It follows that
the image of p1 ∩ · · · ∩ pk is nilpotent in W−1R, and so we can choose an integer
N > 0 such that I = (p1 ∩ · · · ∩ pk)N has image 0 in W−1R. If c+ I is contained in
the union of the minimal primes of R, then by the coset form of prime avoidance
above, it follows that cR + I ⊆ p for some minimal prime p of R. Since I ⊆ p, we
have that p1 ∩ · · · ∩ pk ⊆ p, and it follows that pj = p for some j, where 1 ≤ j ≤ k.
But then c ∈ pj , a contradiction, since c/w and, hence, c/1, is not in any minimal
prime of R ◦. Thus, we can choose g ∈ I such that c+ g is in R ◦, and we have that
c/w = (c+ g)/w since g ∈ I. �

Lemma 6.4. Let R be a Noetherian ring of prime characteristic p > 0. Let A
be an ideal of R primary to a maximal ideal m of R. Then A is tightly closed in R
if and only if ARm is tightly closed in Rm.
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Proof. Note that R/A is already a local ring whose only maximal ideal is
m/A. It follows that (∗) R/A ∼= (R/A)m = Rm/ARm. If u ∈ R − A but u ∈ A∗,
this is evidently preserved when we localize at m. Hence, if ARm is tightly closed
in Rm, then A is tightly closed in R. Now suppose (ARm)∗ in Rm contains an
element not in ARm. Without loss of generality, we may assume that this element
has the form f/1 where f ∈ R. Suppose that c1 ∈ R ◦m has the property that
c1f

q ∈ A[q]Rm = (ARm)[q] for all q � 0. By the preceding Proposition, c1 has
the form c/w where c ∈ R ◦ and w ∈ R − m. We may replace c1 by wc1, since
w is a unit, and therefore assume that c1 = c/1 is the image of c ∈ R ◦. Then
cfq/1 ∈ A[q]Rm for all q � 0. It follows from (∗) above that cfq ∈ A[q] for all
q � 0, and so f ∈ A∗R, as required. �

We have the following consequence:

Theorem 6.5. Let R be a Noetherian ring of prime characteristic p > 0. Then
the following conditions are equivalent:

(a) R is weakly F-regular.
(b) Rm is weakly F-regular for every maximal ideal m of R.
(c) Every ideal of R primary to a maximal ideal of R is tightly closed.

Proof. It is clear that (a) ⇒ (c). To see that (c) ⇒ (a), assume (c) and
suppose, to the contrary, that u ∈ I∗ − I in R. Let A be maximal in R with
respect to the property of containing I but not u. By Lemma 6.1 R/A is killed by
a power of a maximal ideal m, so that A is m-primary. We still have u ∈ A∗ − A,
a contradiction. Then (b) holds if and only if all ideals primary to the maximal
ideal of some Rm are tightly closed, and the equivalence with (c) follows from
Lemma 6.4. �

|

We next make the following elementary observations about tight closure.

Proposition 6.6. Let R be a Noetherian ring of prime characteristic p > 0.

(a) The tight closure of 0 in R is the ideal J of all nilpotent elements of R.
(b) For every ideal I ⊆ R, I∗ ⊆ I ⊆ Rad (I).
(c) Prime ideals, radical ideals, and integrally closed ideals are tightly closed

in R.

Proof. (a) If cuq = 0 and c is not in any minimal prime, then uq is in every
minimal prime, and, hence, so is u. This shows that 0∗ ⊆ J . On the other hand, if
u is nilpotent, uq0 = 0 for sufficiently large q0, and then 1 · uq = 0 for all q ≥ q0.

(b) Suppose u ∈ I∗. To show that u ∈ I, it suffices to verify this modulo every
minimal prime P of R. When we pass to R/P , we still have that the image of
u is in the tight closure of I(R/P ). Hence, we may assume that R is a domain.
We then have c 6= 0 such that cuq ∈ I [q] ⊆ Iq for all sufficiently large q, and, in
particular, for infinitely many q. This is sufficient for u ∈ I. If u ∈ I, u satisfies a
monic polynomial

un + f1u
n−1 + · · ·+ fn = 0

with fj ∈ IJ for j ≥ 1. Thus, all terms but the first are in I, and so un ∈ I, which
implies that u ∈ Rad (I).
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(c) It is immediate from part (b) that integrally closed ideals are tightly closed
in R, and that radical ideals are integrally closed. Of course, prime ideals are
radical. �

6.2. The Briançon-Skoda theorem. We next give a tight closure version
of the Briançon-Skoda theorem. This result was proved by Briançon and Skoda
[BrSk74] for finitely generated C-algebras and analytic regular local rings using a
criterion of Skoda [Sk72] for when an analytic function is in an ideal in terms of
the finiteness of a certain integral. Lipman and Teissier [LT81] gave an algebraic
proof for certain cases, and Lipman and Sathaye [LS81] proved the result in general
for regular rings, even in mixed caracteristic. A detailed treatment of the Lipman-
Sathaye argument is given in the Lecture Notes from Math 711, Fall 2006: see
particularly the Lectures of September 25, 27, and 29, as well as the Lectures of
October 2, 4, 6, 9, 11, and 13.

Tight closure gives an unbelievably simple proof of the theorem that is more
general than these results in the equicharacteristic case, but the Lipman-Sathaye
argument is the only one that is valid in mixed characteristic. Notice that in the
tight closure version of the Theorem just below, the first statement is valid for any
Noetherian ring of characteristic p.

Theorem 6.7 (Briançon-Skoda). Let R be a Noetherian ring of prime char-
acteristic p > 0. Let I be an ideal of R that is generated by n elements. Then
In ⊆ I∗. Hence, if R is regular (or weakly F-regular) then In ⊆ I.

Proof. We may work modulo each minimal prime in turn, and so assume
that R is a domain. If u ∈ In there exists c 6= 0 such that for all k � 0, cuk ∈
(In)k = Ink. In particular, this is true when k = q = pe. The ideal Inq =
(f1, . . . , fn)nq is generated by the monomials fa11 · · · fann of degree nq in the fj .
But when a1 + · · ·+ aq = nq, at least one of the ai is ≥ q: if all are ≤ q − 1, their

sum is ≤ n(q−1) < nq. Thus, Inq ⊆ I [q], and we have that cuq ∈ I [q] for all q � 0.
This shows that u ∈ I∗. The final statement holds because all ideals of a regular
ring are tightly closed, �

|
The Briançon-Skoda Theorem is often stated in a stronger but more technical

form. The hypothesis is the same: I is an ideal generated by n elements. The
conclusion is that In+m−1 ⊆ (Im)∗ for all integers m ≥ 1. The version we stated
first is the case where m = 1. The argument for the strengthened version is very
similar, but slightly more technical. Again, we may assume that R is a domain and
that cuq ⊆ (In+m−1)q for all q � 0. Consider a monomial fa11 · · · fann where the
sum of the ai is (n+m−1)q. We can write each ai = biq+ri, where 0 ≤ ri ≤ q−1.
It will suffice to show that the sum of the bi is at least m, for then the monomial is in
(Im)[q], and we have that u ∈ (Im)∗. But if the sum of the bi is at most m−1, then
the sum of the ai is bounded by (m−1)q+n(q−1) = (n+m−1)q−n < (n+m−1)q,
a contradiction. �

|

The equal characteristic 0 form of the Theorem can be deduced from the char-
acteristic p form by standard methods of reduction to characteristic p.
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The basic tight closure form of the Briançon-Skoda theorem is of interest even
in the case where n = 1, which has the following consequence.

Proposition 6.8. Let R be a Noetherian ring of prime characteristic p > 0.
The tight closure of the principal ideal I = fR is the same as its integral closure.

Proof. By the Briançon-Skoda theorem when n = 1, we have that I ⊆ I∗,
while the other inclusion always holds. �

We next observe:

Theorem 6.9. Let R be a Noetherian ring of prime characteristic p > 0. If
the ideal (0) and the principal ideals generated by nonzerodivisors are tightly closed,
then R is normal. Thus, if every principal ideal of R is tightly closed, then R is
normal. Consequently, weakly F-regular rings are normal.

Proof. The hypothesis that (0) is tightly closed is equivalent to the assump-
tion that R is reduced. Henceforth, we assume that R is reduced.

If R is a product S × T then the hypothesis on R holds in both factors. E.g.,
if s is a nonzerodivisor in S, then (s, 1) is a nonzerodivisor in T : it generates the
ideal sS × T , and its tight closure in S × T is (sS)∗S × T . But this is the same as
sS × T if and only if sS is tightly closed in S.

Therefore, we may assume that R is not a product, i.e., that Spec (R) is con-
nected. We first want to show that R is a domain in this case. If not, there are min-
imal primes P1, . . . , Pn, n ≥ 2, and we can choose an element ui in Pi−

⋃
j 6=i Pj for

every i. Let u = u1, which is in P1 and no other minimal prime, and v = u2 · · ·un,
which is in P2 ∩ · · · ∩ Pn and not in P1. Then uv is in every minimal prime, and
so is 0, while f = u+ v is a not in any minimal prime, and so is not a zerodivisor.
We claim that u ∈ (fR)∗. It suffices to check this modulo every Pi. But mod P1,
u ≡ 0 = 0 · f , and mod Pj for j > 1, u ≡ f = 1 · f . Since (fR)∗ = fR, we can
write u = e(u + v) for some element e ∈ R. This means that (1 − e)u = ev. Mod
P1, u ≡ 0 while v 6≡ 0, and so e ≡ 0 mod P1. Mod Pj for j > 1, u 6≡ 0 while v ≡ 0,
and so e ≡ 1 mod Pj . It follows that e2 − e is in every minimal prime, and so is 0.
Since whether its value mod Pi is 0 or 1 depends on i, e is a non-trivial idempotent
in R, a contradiction.

Thus, we may assume that R is a domain. Now suppose that f, g ∈ R with
g 6= 0 and that f/g is integral over R. Then we have an equation of integral
dependence

(f/g)s + r1(f/g)s−1 + · · ·+ rj(f/g)s−j + · · ·+ rs = 0

with the rj ∈ R. Multiplying by gs we obtain

fs + (r1g)fs−1 + · · · (rjgj)fs−j + · · ·+ rsg
s = 0,

which shows that f is in the integral closure of gR. Thus, f ∈ (gR)∗, and this is gR
by hypothesis. Consequently, f = gr with r ∈ R, which shows that f/g = r ∈ R,
as required. �

We next want to discuss the use of tight closure to prove theorems about the
behavior of symbolic powers in regular rings of characteristic p. The characteristic
p results imply corresponding results in equal characteristic 0. The following result
was first proved in equal characteristic 0 by Ein, Lazarsfeld, and Smith [ELS01],
using the theory of multiplier ideals. The proof we give here may be found in
[HH02].
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Theorem 6.10. Let P be a prime ideal of height h in a regular ring R of
characteristic p. Then for every integer n ≥ 1, P (hn) ⊆ Pn.

The version stated above remains true with the hypotheses weakened in various
ways. For example P onlty needs to be a radical ideal, and there are many other
refinements. See, for example, [HH02].

There are sharper results if one places additional hypotheses on R/P . An
extreme example is to assume that R/P is regular so that, locally, P is generated
by a regular sequence. In this case, the symbolic and ordinary powers of P are
equal. Doubtless the best results of this sort remain to be discovered.

Using the methods of perfectoid geometry, the result for radical ideaals was
extended to the case of mixed characteristic in [MaSch18] under mild hypotheses
on the regular ring. Stronger results valid for all regular rings have been obtained
quite recently in [Mur22].

There are further comments about what can be proved in the sequel: see Dis-
cussion 6.12 at the end of this subsection. We have attempted to give a result that
is of substantial interest but that has relatively few technicalities in its proof. The
methods used here also yield the result that, without any regularity hypothesis on
R, if R/P has finite projective dimension over R then

P (hn) ⊆ (Pn)∗.

Of course, if R is regular the hypothesis of finite projective dimension is automatic,
while one does not need to take the tight closure on the right because, in a regular
ring, every ideal is tightly closed.

We postpone the proof of the Theorem to give a preliminary result that we will
need.

Lemma 6.11. Let P be a prime ideal of height h in a regular ring R of charac-
teristic p.

(a) P [q] is primary to P .
(b) P (qh) ⊆ P [q].

Proof. For part (a), we have that Rad (P [q]) = P , clearly. Let f ∈ R− P . It
suffices to show that f is not a zerodivisor on R/P [q]. Since

0→ R/P
f ·−→ R/P

is exact, it remains exact when we tensor with R viewed as an R-algebra via F e,
since this is a flat base change. Thus,

0→ Fe(R/P )
fq·−−→ Fe(R/P )

is exact, and this is

0→ R/P [q] fq·−−→ R/P [q].

Since fq is not a zerodivisor on R/P [q], neither is f .
Suppose u ∈ P (qh) − P [q]. Make a base change to RP . Then the image of u is

in P qhRP , but not in P [q]RP = (PRP )[q]: if u were in the expansion of P [q]RP , it
would be multiplied into P [q] by some element of R − P . Since such an element is
not in P [q] by part (a), we have u /∈ (PRP )[q]. But PRP is generated by h elements,
and so

(PRP )qh ⊆ (PRP )[q]
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exactly as in the proof of the Briançon-Skoda Theorem: if a monomial in h elements
has degree qh, at least one of the exponents occurring on one of the elements must
be at least q. �

Proof of the symbolic power theorem. If u ∈ P (hn) − Pn, then this continues to
be the case after localizing at a maximal ideal in the support of (Pn + Ru)/Pn.
Hence, we may assume that R is regular local. We may also assume that P 6= 0.
Given q = pe we can write q = an+ r where a ≥ 0 and 0 ≤ r ≤ n− 1 are integers.
Then ua ∈ P (han) and

Phnua ⊆ Phrua ⊆ P (han+hr) = P (hq) ⊆ P [q].

Taking n th powers gives that

Phn
2

uan ⊆ (P [q])n = (Pn)[q],

and since q ≥ an, we have that

Phn
2

uq ⊆ (Pn)[q]

for fixed h and n and for all q. Let d be any nonzero element of Phn
2

. The condition
that duq ∈ (Pn)[q] for all q says precisely that u is in the tight closure of Pn in R.
But in a regular ring, every ideal is tightly closed, and so u ∈ Pn, as required. �

|

Discussion 6.12. One can prove a similar result for ideals I without assum-
ing that I is prime and without assuming that the ring is regular. We can define
symbolic powers of ideals that are not necessarily prime as follows. If W is the mul-
tiplicative system of nonzerodivisors on I, define I(t) as the contraction of ItW−1R
to R. Suppose that R/I has finite projective dimension over R and that the local-
ization of I at any associated prime of I can be generated by at most h elements
(or even that its analytic spread is at most h). Then one can show I(nh) ⊆ (In)∗

for all n ≥ 1. See Theorem (1.1) of [HH02]

|

7. Lecture 7

7.1. Test elements. The definition of tight closure allows the element c ∈ R ◦
to vary with N , M , and the element u ∈M being “tested” for membership in N∗M .
But under mild conditions on a reduced ring R, there exist elements, called test
elements, that can be used in every tight closure test. It is somewhat difficult to
prove their existence, but they play a very important role in the theory of tight
closure.

Definition 7.1. Let R be a Noetherian ring of prime characteristic p > 0.
An element c ∈ R ◦ is called a test element (respectively, big test element) for R
if for every inclusion of finitely generated modules N ⊆ M (respectively, arbitrary

modules N ⊆ M) and every u ∈ M , u ∈ N∗M if and only if cuq ∈ N [q]
M for every

q = pe ≥ 1. A (big) test element is called locally stable if it is a (big) test element
in every localization of R. A (big) test element is called completely stable if it is a
(big) test element in the completion of every local ring of R.
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It will be a while before we can prove that test elements exist. But we shall
eventually prove the following:

Theorem 7.2. Let R be a Noetherian ring of prime characteristic p > 0 that is
reduced and essentially of finite type over an excellent semilocal ring R. Let c ∈ R ◦
be such that Rc is regular (such elements always exist). Then c has a power that is
a completely stable big test element for R.

We want to record some easy facts related to test elements. We first note:

Lemma 7.3. If N ⊆ M are R-modules, S is faithfully flat over R, and v ∈
M \N , then 1⊗ v is not in 〈S ⊗R N〉 in S ⊗RM .

Proof. We may replace M by M/N , N by 0, and v by its image in M/N . The
result then asserts that the map M → S ⊗R M is injective. Let v ∈ M be in the
kernel. Then S⊗RRv ↪→ S⊗RM , and it suffices to see that (∗) Rv → S⊗RRv is
injective. Let I = AnnRv. Then (∗) is equivalent to the assertion that R/I → S/IS
is injective. Since S/IS is faithfully flat over R/I, we need only show that if R→ S
is faithfully flat, it is injective. Let J ⊆ R be the kernel. Then J ⊗ S ∼= JS = 0,
which implies that J = 0. �

Proposition 7.4. Let R be a Noetherian ring of prime characteristic p > 0,
and let c ∈ R.

(a) If for every pair of modules (respectively, finitely generated modules) N ⊆
M one has cN∗M ⊆ N , then one also has that whenever u ∈ N∗M , then

cuq ∈ N
[q]
M for all q. Thus, c is a big test element (respectively, test

element) for R if and only if c ∈ R ◦ and cN∗M ⊆ N for all inclusions of
modules (respectively, finitely generated modules) N ⊆M .

(b) If c ∈ R0, S is faithfully flat over R, and c is (big) test element for S,
then it is a (big) test element for R. If c is a completely stable (big) test
element for S, then c is a completely stable (big) test element for S.

(c) If the image of c ∈ R ◦ is a (big) test element in Rm for every maximal
ideal m of R, then c is a (big) test element for R.

(d) If c ∈ R ◦ and c is a (big) test element for RP for every prime ideal P of
R, then c is a (big) test element for W−1R for every multiplicative system
W of R, i.e., c is a locally stable (big) test element for R.

(e) If c is a completely stable (big) test element for R then it is a locally stable
(big) test element for R.

Proof. In each part, if we are proving a statement about test elements we
assume that N ⊆ M are finitely generated, while if we are proving a statement
about big test elements, we allow them to be arbitrary.

(a) If u ∈ N∗M we also have that uq ∈ (N [q])∗Fe(M) for all q, and hence that

cuq ∈ N [q], as required.
(b) Suppose that u ∈ N∗M . Then 1 ⊗ u is in 〈S ⊗R N〉∗ in S ⊗R M , and it

follows that c(1⊗u) = 1⊗cu is in 〈S ⊗R N〉 in S⊗RM . Because S is faithfully flat
over R, it follows from the preceding Lemma that cu ∈ N . The second statement
follows from the first, because of P is prime in R and Q is a minimal prime of PS,
then RP → SQ is faithfully flat, and hence so is the induced map of completions

R̂P → ŜQ. Since c is a (big) test element for ŜQ, it is a (big) test element for R̂P .
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(c) Suppose that u ∈ N∗M in R. If cu /∈ N , then there exists a maximal ideal
m in the support of (N +Rcu)/N . When we pass to Rm, Nm ⊆Mm, and u/1, the
image of u in M , we still have that u/1 is in (Nm)∗Mm

working over Rm. If follows
that cu/1 ∈ Nm, a contradiction.

(d) follows from (c), because every localization of W−1R at a maximal ideal is
a localization of R at some prime ideal P .

(e) follows from (d) and (b), because for every prime ideal P of R, the comple-
tion of RP is faithfully flat over RP . �

Definition 7.5 (Test ideals.). Let R be a Noetherian ring of prime charac-
teristic p > 0, and assume that R is reduced. We define the τ(R) to be the set
of elements c ∈ R such that cN∗M ⊆ N for all inclusion maps N ⊆ M of finitely
generated R-modules. Alternatively, we may write:

τ(R) =
⋂

N⊆M finitely generated

N :R N
∗
M ,

and we also have that
N :R N

∗
M = AnnR(N∗M/N).

We refer τ(R) as the test ideal of R.

We define τb(R) to be the set of elements c ∈ R such that cN∗M ⊆ N for all
inclusion maps N ⊆M of arbitrary R-modules. Alternatively, we may write:

τb(R) =
⋂

N⊆M

N :R N
∗
M ,

and refer to τb(R) as the big test ideal of R, although it is obviously contained in
τ(R). We shall see below that if R has a (big) test element, then τ(R) (respectively,
τb(R)) is generated by all the (big) test elements of R. We first note:

Lemma 7.6. Let R be any ring and P1, . . . , Pk any finite set of primes of R.
Let

W = R−
k⋃
i=1

Pi.

If an ideal I of R is not contained in any of the Pj, then I is generated by its
intersection with W . In particular, if R is Noetherian and I is not contained in
any minimal prime of R, then I is generated by its intersection with R ◦.

Proof. Let J be the ideal generated by all elements of I ∩W . Then

I ⊆ J ∪ P1 ∪ · · · ∪ Pk,
since every element of I not in any of the Pi is in J . Since all but one of the ideals
on the right is prime, we have that I ⊆ J or I ⊆ Pi for some i. Since I contains at
least one element of W , it is not contained in any of the Pi. Thus, J ⊆ I ⊆ J , and
so J = I, as required. The final statement now follows because a Noetherian ring
has only finitely many minimal primes. �

Proposition 7.7. Let R be a Noetherian ring of prime characteristic p > 0,
and assume that R is reduced.

(a) τb(R) ⊆ τ(R).
(b) τ(R)∩R ◦ (respectively, τb(R)∩R ◦) is the set of test elements (respectively,

big test elements) of R.
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(c) If R has at least one test element (respectively, one big test element), then
τ(R) (respectively, τb(R)) is the ideal of R generated by all test elements
(respectively, all big test elements) of R.

Proof. (a) is clear from the definition, and so is (b). Part (c) then follows
from the preceding Lemma. �

Discussion 7.8. Earlier, in 2.7 we discussed very briefly the class of excel-
lent Noetherian rings. The condition that a ring be excellent or, at least, locally
excellent, is the right hypothesis for many theorems on tight closure. The theory
of excellent rings is substantial enough to occupy an entire course, and we do not
want to spend an inordinate amount of time on it here. We shall summarize what
we need to know about excellent rings in this lecture. In the sequel, the reader
who prefers may restrict attention to rings essentially of finite type over a field or
over a complete local ring, which is the most important family of rings for appli-
cations. The definition of an excellent Noetherian ring was given by Grothendieck.
A readable treatment of the subject, which is a reference for all of the facts about
excellent rings stated without proof in this lecture, is [Mat70, Chapter 13].

Before discussing excellence, we want to review the notion of fibers of ring
homomorphisms.

7.2. Fibers. Let f : R → S be a ring homomorphism and let P be a prime
ideal of R. We write κP for the canonically isomorphic R-algebras

frac (R/P ) ∼= RP /PRP .

By the fiber of f over P we mean the κP -algebra

κP ⊗R S ∼= (R− P )−1S/PS

which is also an R-algebra (since we have R→ κP ) and an S-algebra. One of the
key points about this terminology is that the map

Spec (κP ⊗R S)→ Spec (S)

gives a bijection between the prime ideals of κP ⊗R S and the prime ideals of S
that lie over P ⊆ R. In fact, it is straightforward to check that Spec (κP ⊗R S) is
homeomorphic with its image in Spec (S).

It is also said that Spec (κP ⊗R S) is the scheme-theoretic fiber of the map

Spec (S)→ Spec (R).

This is entirely consistent with thinking of the fiber of a map of sets g : Y → X
over a point P ∈ X as

g−1(P ) = {Q ∈ Y : g(Q) = P}.

In our case, we may take g = Spec (f), Y = Spec (S), and X = Spec (R), and then
Spec (κP ⊗R S) may be naturally identified with the set-theoretic fiber of

Spec (S)→ Spec (R).

If R is a domain, the fiber over the prime ideal (0) of R, namely frac (R)⊗R S,
is called the generic fiber of R→ S.

If (R, m, K) is quasilocal, the fiber K ⊗R S = S/mS over the unique closed
point m of Spec (R) is called the closed fiber of R→ S.
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7.3. Geometric regularity. Let κ be a field. A Noetherian κ-algebra R, is
called geometrically regular over κ if the following two equivalent conditions hold:

(1) For every finite algebraic field extension κ′ of κ, κ′ ⊗κ R is regular.
(2) For every finite purely inseparable field extension κ′ of κ, κ′⊗κR is regular.

Of course, since we may take κ′ = κ, if R is geometrically regular over κ then it
is regular. In equal characteristic 0, geometric regularity is equivalent to regularity,
using characterization (2).

When R is essentially of finite type over κ, these conditions are also equivalent
to

(3) K ⊗κ R is regular for every field K
(4) K ⊗κ R is regular for one perfect field extension K of κ.
(5) K ⊗κ R is regular when K = κ is the algebraic closure of κ.

These conditions are not equivalent to (1) and (2) in general, because K ⊗κ R
need not be Noetherian.

|
We indicate how the equivalences are proved. This will require a very con-

siderable effort.

Theorem 7.9. Let R → S be a faithfully flat homomorphism of Noetherian
rings. If S is regular, then R is regular.

Proof. We use the fact that a local ring A is regular if and only its residue class
field has finite projective dimension over A, in which case every finitely generated
module has finite projective dimension over A. Given a prime P of R, there is a
prime Q of S lying over it. It suffices to show that RP is regular, and we have
a faithfully flat map RP → SQ. Therefore we may assume that (R, P, K) →
(S, Q, L) is a flat, local homomorphism and that S is regular. Consider a minimal
free resolution of R/P over R, which, a priori, may be infinite:

· · · → Rbn
αn−−−−→ Rbn−1 −−−−→ · · · α1−−−−→ Rb0 −−−−→ R/P −−−−→ 0.

By the minimality of the resolution, the matrices αj all have entries in P . Now
apply S ⊗R . We obtain a free resolution

· · · → Sbn
αn−−−−→ Sbn−1 −−−−→ · · · α1−−−−→ Sb0 −−−−→ S ⊗R S/PS −−−−→ 0,

where we have identified R with its image in S under the injection R ↪→ S. This
resolution of S/PS is minimal: the matrices have entries in Q because R ↪→ S is
local. Since S is regular, S/PS has finite projective dimension over S, and so the
matrices αj must be 0 for all j � 0. But this implies that the projective dimension
of R/P over R is finite. �

Corollary 7.10. If R is a Noetherian K-algebra and L is an extension field
of K such that L ⊗K R is regular (in general, this ring may not be Noetherian,
although it is if R is essentially of finite type over K, because in that case L⊗K R
is essentially of finite type over L, and therefore Noetherian), then R is regular.

Proof. Since L is free over K, it is faithfully flat over K, and so L ⊗K R is
faithfully flat over R and we may apply the preceding result. �

Proposition 7.11. Let (R, m, K) → (S, Q, L) be a flat local homomorphism
of local rings. Then
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(a) dim (S) = dim (R) + dim (S/mS), the sum of the dimensions of the base
and of the closed fiber.

(b) If R is regular and S/mS is regular, then S is regular.

Proof. (a) We use induction on dim (R). If dim (R) = 0, m and mS are
nilpotent. Then dim (S) = dim (S/mS) = dim (R) + dim (S/mS), as required. If
dim (R) > 0, let J be the ideal of nilpotent elements in R. Then dim (R/J) =
dim (R), dim (S/JS) = dim (S), and the closed fiber of R/J → S/JS, which is
still a flat and local homomorphism, is S/mS. Therefore, we may consider the map
R/J → S/JS instead, and so we may assume that R is reduced. Since dim (R) > 0,
there is an element f ∈ m not in any minimal prime of R, and, since R is reduced,
f is not in any associated prime of R, i.e., f is a nonzerodivisor in R. Then the
fact that S is flat over R implies that f is not a zerodivisor in S. We may apply
the induction hypothesis to R/fR→ S/fS, and so

dim (S)−1 = dim (S/fS) = dim (R/f)+dim (S/mS) = dim (R)−1+dim (S/mS),

and the result follows.
(b) The least number of generators of Q is at most the sum of the number

of generators of m and the number of generators of Q/mS, i.e., it is bounded by
dim (R) + dim (S/mS) = dim (S) by part (a). The other inequality always holds,
and so S is regular. �

Corollary 7.12. Let R→ S be a flat homomorphism of Noetherian rings. If
R is regular and the fibers of R→ S are regular, then S is regular.

Proof. If Q is any prime of S we may apply part (b) of the preceding Theorem,
since SQ/PSQ is a localization of the fiber κP ⊗R S, and therefore regular. �

Corollary 7.13. Let R be a regular Noetherian K-algebra, where K is a field,
and let L be a separable extension field of K such that L⊗K R is Noetherian. Then
L⊗K R is regular.

Proof. The extension is flat, and so it suffices to show that every κP⊗R (L⊗K
R) ∼= κP ⊗K L is regular. Since L is algebraic over K, this ring is integral over
κP and so zero-dimensional. Since L⊗K R is Noetherian by hypothesis, κP ⊗K L
is Noetherian, and so has finitely many minimal primes. Hence, it is Artinian,
and if it is reduced, it is a product of fields and, therefore, regular as required.
Thus, it suffices to show that κP ⊗K L is reduced. Since L is a direct limit of
finite separable algebraic extension, it suffices to prove the result when L is a finite
separable extension of K. In this case, L has a primitive element θ, and L ∼= K[x]/g
where g ∈ K[x] is a monic irreducible separable polynomial over K ⊆ κP . Let Ω
denote the algebraic closure of κP . Then κP ⊗K L ⊆ Ω⊗K L, and so it suffices to
show that

Ω⊗K L ∼= Ω⊗K (K[x]/gK[x]) ∼= Ω[x]/gΩ[x]

is reduced. This follows because g is separable, and so has distinct roots in Ω. �

Theorem 7.14. Let K be an algebraically closed field and let L be any finitely
generated field extension of K. Then L has a separating transcendence basis B,
i.e., a transcendence basis B such that L is separable over the pure transcendental
extension K(B).
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Proof. If F is a subfield of L, let F sep denote the separable closure of F
in L. Choose a transcendence basis x1, . . . , xn so as to minimize [L : L′] where
L′ = K(x1, . . . , xn)sep. Suppose that y ∈ L is not separable over K(x1, . . . , xn).
Choose a minimal polynomial F (z) for y over K(x1, . . . , xn). Then every ex-
ponent on z is divisible by p. Put each coefficient in lowest terms, and mul-
tiply F (z) by a least common multiple of the denominators of the coefficients.
This yields a polynomial H(x1, . . . , xn, z) ∈ K[x1, . . . , xn][z] such that the coeffi-
cients in K[x1, . . . , xn] are relatively prime, and such that the polynomial is irre-
ducible over K(x1, . . . , xn)[z]. By Gauss’s Lemma, this polynomial is irreducible in
K[x1, . . . , xn, z]. It cannot be the case that every exponent on every xj is divisible
by p, for if that were true, since the field is perfect, H would be a p th power, and
not irreducible. By renumbering the xi we may assume that xn occurs with an
exponent not divisible by p. Then the element xn is separable algebraic over the
field K(x1, . . . , xn−1, y), and we may use the transcendence basis x1, . . . , xn−1, y
for L. Note that xn, y ∈ K(x1, . . . , xn−1, y)sep = L′′, which is therefore strictly
larger than L′ = K(x1, . . . , xn)sep. Hence, [L : L′′] < [L : L′], a contradiction. �

We can now prove:

Theorem 7.15. Let R be a Noetherian κ-algebra, where κ is a field. Then the
following two conditions are equivalent:

(1) For every finite algebraic field extension κ′ of κ, κ′ ⊗κ R is regular.
(2) For every finite purely inseparable field extension κ′ of κ, κ′⊗κR is regular.

Moreover, if R is essentially of finite type over κ then the following three conditions
are equivalent to (1) and (2) as well:

(3) K ⊗κ R is regular for every field K.
(4) K ⊗κ R is regular for one perfect field extension K of κ.
(5) K ⊗κ R is regular when K = κ is the algebraic closure of κ.

Proof. We shall repeatedly use that if we have regularity for a larger field
extension, then we also have it for a smaller one: this follows from the Corollary ??

Evidently, (1) ⇒ (2). But (2) ⇒ (1) as well, because given any finite algebraic
extension κ′ of κ, there is a larger finite field extension obtained by first making
a finite purely inseparable extension and then a finite separable extension. The
purely inseparable extension yields a regular ring by hypothesis, and the separable
field extension yields a regular ring by Corollary refsepreg

Now consider the case where R is essentially of finite type over κ. Evidently,
(3) ⇒ (5) ⇒ (4) ⇒ (2) (the last holds because any perfect field extension con-
tains the perfect closure, and this contains every finite purely inseparable algebraic
extension), and it will suffice to prove that (2) ⇒ (3).

Let κ∞ denote the perfect closure
⋃
q

κ1/q of κ. We first show that κ∞ ⊗κ R is

regular. Replace R by Rm. Then B = κ∞ ⊗R Rm is purely inseparable over Rm:
consequently, it is a local ring of the same dimension as Rm, and it is the directed
union of the local rings κ′ ⊗κ Rm as κ′ runs through finite purely inseparable
extensions of κ contained in κ∞. All of these local rings have the same dimension:
call it d. Let u1, . . . , un be a minimal set of generators of the maximal ideal of
B = κ∞ ⊗κ Rm, and choose κ′ sufficiently large that u1, . . . , un are elements of
A = κ′ ⊗R Rm. Let J = (u1, . . . , un)A. Since B is faithfully flat over A, we have
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that JB ∩A = J . But JB is the maximal ideal of B, which lies over the maximal
ideal of A, and so J generates the maximal ideal of A. None of the generators is
an A-linear combination of the others, or else this would also be true in B. Hence,
u1, . . . , un is a minimal set of generators of the maximal ideal of A. Since A is
regular, n = d, and so B is regular.

Since the algebraic closure of κ is separable over κ∞, it follows from the second
Corollary 7.13 that (2) ⇒ (5). To complete the proof, it suffices to show that if κ
is algebraically closed, R is regular, and L is any field extension of κ, then L⊗κ R
is regular. Since R → L ⊗κ R is flat, it suffices to show the fibers L ⊗κ κP are
regular, and κP is finitely generated as a field over κ. Hence, κP has a separating
transcendence basis x1, . . . , xn over κ. Let K = κ(x1, . . . , xn). Then

L⊗κ κP = (L⊗κ κ(x1, . . . , xn))⊗K κP .

Since κP is a finite separable algebraic extension of K, it suffices prove that L⊗κK
is regular. But this ring is a localization of L[x1, . . . , xn], and so the proof is
complete. �

|

We say that a homomorphism R → S of Noetherian rings is geometrically
regular if it is flat and all the fibers κP → κP ⊗R S are geometrically regular.
(Some authors use the term “regular” for this property.)

For those readers familiar with smooth homomorphisms, we mention that if S
is essentially of finite type over R, then S is geometrically regular if and only if it
is smooth.

By a very deep result of Popescu every geometrically regular map is a direct
limit of smooth maps. Whether Popescu’s argument was correct was controversial
for a while. Richard Swan showed that Popescu’s argument was essentially correct
in [Swan98].

7.4. Catenary and universally catenary rings. A Noetherian ring is called
catenary if for any two prime ideals P ⊆ Q, any two saturated chains of primes
joining P to Q have the same length. In this case, the common length will be the
same as the dimension of the local domain RQ/PRQ.

Nagata was the first to give examples of Notherian rings that are not catenary.
E.g., in [Nag, pp. 204–5, Appendix], Nagata gives an example of a local domain
(D, m) of dimension 3 containing a height one prime P such that dim (D/P ) = 1,
so that (0) ⊂ Q ⊂ m is a saturated chain, while the longest saturated chains joining
(0) to m have the form (0) ⊂ P1 ⊂ P2 ⊂ m. One has to work hard to construct
Noetherian rings that are not catenary. Nagata also gives an example of a ring R
that is catenary, but such that R[x] is not catenary.

Notice that a localization or homomorphic image of a catenary ring is auto-
matically catenary.

R is called universally catenary if every polynomial ring over R is catenary.
This implies that every ring essentially of finite type over R is catenary.

A very important fact about Cohen-Macaulay rings is that they are cate-
nary. Moreover, a polynomial ring over a Cohen-Macaulay ring is again a Cohen-
Macaulay ring, which then implies that every Cohen-Macaulay ring is universally
catenary. In particular, regular rings are universally catenary. Cohen-Macaulay
local rings have a stronger property: they are equidimensional, and all saturated
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chains from a minimal prime to the maximal ideal have length equal to the dimen-
sion of the local ring.

|
We shall prove the statements in the paragraph above. We first note:

Theorem 7.16. If R is Cohen-Macaulay, so is the polynomial ring in n vari-
ables over R.

Proof. By induction, we may assume that n = 1. Let M be a maximal ideal
of R[X] lying over m in R. We may replace R by Rm and so we may assume
that (R, m, K) is local. Then M, which is a maximal ideal of R[x] lying over m,
corresponds to a maximal ideal of K[x]: each of these is generated by a monic
irreducible polynomial f , which lifts to a monic polynomial F in R[x]. Thus, we
may assume that M = mR[x] + FR[X]. Let x1, . . . , xd be a system of parameters
in R, which is also a regular sequence. We may kill the ideal generated by these
elements, which also form a regular sequence in R[X]M. We are now in the case
where R is an Artin local ring. It is clear that the height ofM is one. Because F is
monic, it is not a zerodivisor: a monic polynomial over any ring is not a zerodivisor.
This shows that the depth of M is one, as needed. �

Theorem 7.17. Let (R, m, K) be a local ring and M 6= 0 a finitely generated
Cohen-Macaulay R-module of Krull dimension d. Then every nonzero submodule
N of M has Krull dimension d.

Proof. We replace R by R/AnnRM . Then every system of parameters for R
is a regular sequence on M . We use induction on d. If d = 0 there is nothing to
prove. Assume d > 0 and that the result holds for smaller d. If M has a submodule
N 6= 0 of dimension ≤ d − 1, we may choose N maximal with respect to this
property. If N ′ is any nonzero submodule of M of dimension < d, then N ′ ⊆ N .
To see this, note that N ⊕ N ′ has dimension < d, and maps onto N + N ′ ⊆ M ,
which therefore also has dimension < d. By the maximality of N , we must have
N + N ′ = N . Since M is Cohen-Macaulay and d ≥ 1, we can choose x ∈ m not
a zerodivisor on M , and, hence, also not a zerodivisor on N . We claim that x is
not a zerodivisor on M = M/N , for if u ∈ M − N and xu ∈ N , then Rxu ⊆ N
has dimension < d. But this module is isomorphic with Ru ⊆ M , since x is not a
zerodivisor, and so dim (Ru) < d. But then Ru ⊆ N . Consequently, multiplication
by x induces an isomorphism of the exact sequence 0 → N → M → M → 0 with
the sequence 0 → xN → xM → xM → 0, and so this sequence is also exact. But
we have a commutative diagram

0 −−−−→ N −−−−→ M −−−−→ M −−−−→ 0x x x
0 −−−−→ xN −−−−→ xM −−−−→ xM −−−−→ 0

where the vertical arrows are inclusions. By the nine lemma, or by an elementary
diagram chase, the sequence of cokernels 0 → N/xN → M/xM → M/xM → 0 is
exact. Because x is not a zerodivisor on M , it is part of a system of parameters
for R, and can be extended to a system of parameters of length d, which is a
regular sequence on M . Since x is a nonzerodivisor on N and M , dim (N/xN) =
dim (N) − 1 < d − 1, while M/xM is Cohen-Macaulay of dimension d − 1. This
contradicts the induction hypothesis. �
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Corollary 7.18. If (R, m, K) is Cohen-Macaulay, R is equidimensional: ev-
ery minimal prime p is such that dim (R/p) = dim (R).

Proof. If p is minimal, it is an associated prime of R, and we have R/p ↪→ R.
Since all nonzero submodules of R have dimension dim (R), the result follows. �

Thus, a Cohen-Macaulay local ring cannot exhibit the kind of behavior one
observes in R = K[[x, y, z]]/

(
(x, y) ∩ (z)

)
: this ring has two minimal primes. One

of them, p1, generated by the images of x and y, is such that R/p1 has dimension
1. The other, p2, generated by the image of z, is such that R/p2 has dimension 2.
Note that while R is not equidimensional, it is still catenary.

We next observe:

Theorem 7.19. In a Cohen-Macaulay ring R, if P ⊆ Q are prime ideals of
R then every saturated chain of prime ideals from P to Q has length height (Q)−
height (P ). Thus, R is catenary. It follows that every ring essentially of finite type

over a Cohen-Macaulay ring is universally catenary.

Proof. The issues are unaffected by localizing at Q. Thus, we may assume
that R is local and that Q is the maximal ideal. There is part of a system of param-
eters of length h = height (P ) contained in P , call it x1, . . . , xh, by Corollary 1.8
This sequence is a regular sequence on R and so on RP , which implies that its image
in RP is system of parameters. We now replace R by R/(x1, . . . , xh): when we kill
part of a system of parameters in a Cohen-Macaulay ring, the image of the rest of
that system of parameters is both a system of parameters and a regular sequence in
the quotient. Thus, R remains Cohen-Macaulay. Q and P are replaced by their im-
ages, which have heights dim (R)−h and 0, and dim (R)−h = dim

(
R/(x1, . . . , xh)

)
.

We have therefore reduced to the case where (R, Q) is local and P is a minimal
prime.

We know that dim (R) = dim (R/P ), and so at least one saturated chain from
P to Q has length height (Q)−height (P ) = height (Q)−0 = dim (R). To complete
the proof, it will suffice to show that all saturated chains from P to Q have the
same length, and we may use induction on dim (R). Consider two such chains, and
let their smallest elements other than P be P1 and P ′1. We claim that both of these
are height one primes: if, say, P1 is not height one we can localize at it and obtain a
Cohen-Macaulay local ring (S, m) of dimension at least two and a saturated chain
p ⊆ m with p = PS minimal in S. Choose an element y ∈ m that is not in any
minimal primes of S: its image will be a system of parameters for S/p, so that
Ry+p is m-primary. Extend y to a regular sequence of length two in S: the second
element has a power of the form ry+u, so that y, ry+u is a regular sequence, and,
hence, so is y, u. But then u, y is a regular sequence, a contradiction, since u ∈ p.
Thus, P1 (and, similarly, P ′1), have height one.

Choose an element f in P1 not in any minimal prime of R, and an element g
of P ′1 not in any minimal prime of R. Then fg is a nonzerodivisor in R, and P1,
P ′1 are both minimal primes of xy. The ring R/(xy) is Cohen-Macaulay of dimen-
sion dim (R)− 1. The result now follows from the induction hypothesis applied to
R/(xy): the images of the two saturated chains (omitting P from each) give sat-
urated chains joining P1/(xy) (respectively, P ′1/(xy)) to Q/(xy) in R/(xy). These
have the same length, and, hence, so did the original two chains.

The final statement now follows because a polynomial ring over a Cohen-
Macaulay ring is again Cohen-Macaulay. �
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7.5. Excellent rings revisited. A Noetherian ring R is called a G-ring (“G”

as in “Grothendieck”) if for every local ring A of R, the map A→ Â is geometrically
regular.

An excellent ring is a universally catenary Noetherian G-ring R such that in ev-
ery finitely generated R-algebra S, the regular locus {P ∈ Spec (S) : SP is regular}
is Zariski open.

Excellent rings include the integers, fields, and complete local rings, as well as
convergent power series rings over C and R. Every discrete valuation ring of equal
characteristic 0 or of mixed characteristic is excellent. The following two results
contain most of what we need to know about excellent rings.

Theorem 7.20. Let R be an excellent ring. Then every localization of R,
every homomorphic image of R, and every finitely generated R-algebra is excellent.
Hence, every algebra essentially of finite type over R is excellent.

Theorem 7.21. Let R be an excellent ring.

(a) If R is reduced, the normalization of R is module-finite over R.

(b) If R is local and reduced, then R̂ is reduced.

(c) If R is local and equidimensional, then R̂ is equidimensional.

(d) If R is local and normal, then R̂ is normal.

For proofs of these results, we refer the reader to [Mat70], as mentioned earlier.
Note that one does not expect the completion of an excellent local doman to

be a domain. For example, consider the domain S = C[x, y]/(y2 − x2 − x3), which
has dimension one. This is a domain because x2 + x3 is not a perfect square in
C[x, y] (and, hence, not in its fraction field either, since C[x, y] is normal). If
m = (x, y)S, then Sm is a local domain of dimension one. The completion of
this ring is ∼= C[[x, y]]/(y2 − x2 − x3). This ring is not a domain: the point is that
x2+x3 = x2(1+x) is a perfect square in the formal power series ring. Its square root
may be written down explicitly using Newton’s binomial theorem. Alternatively,
one may see this using Hensel’s Lemma: see p. 2 of the lecture notes of March 21
from Math 615, Winter 2007.

One does have from parts (b) and (c) of the Theorem above that the completion
of an excellent local domain is reduced and equidimensional.

|

Example 7.22. A DVR that is not excellent. Let K be a perfect field of
characteristic p, and let

t1, t2, t3, . . . , tn, . . .

be countably many indeterminates over K. Let

L = K(t1, . . . , tn, . . .),

and let Ln = Lp(t1, . . . , tn), which contains the p th power of every tj and the first
powers of t1, . . . , tn. Let x be a formal indeterminate, and let Vn = Ln[[x]], a DVR
in which every nonzero element is a unit times a power of x. Let

V =

∞⋃
n=1

Vn,
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which is also a DVR in which every element is unit times a power of x. V has

residue field L, and V̂ ∼= L[[x]], but V only contains those power series such that
all coefficients lie in a fixed choice of Ln. For example,

f = t1x+ t2x
2 + · · ·+ tnx

n + · · · ∈ V̂ − V.

Note that the p th power of every element of V̂ is in V . Thus, the generic fiber

K = frac (V )→ frac (V̂ ) = L

is a purely inseparable field extension, and is not geometrically regular. The ring

K[f ]⊗K L

is not even reduced: f ⊗ 1− 1⊗ f is a nonzero nilpotent. Thus, V is not a G-ring.

|

8. Lecture 8

8.1. F-finite rings. Let R be a Noetherian ring of characteristic p. R is called
F-finite if the Frobenius endomorphism F : R→ R makes R into a module-finite R-
algebra. This is equivalent to the assertion that R is module-finite over the subring
F (R) = {rp : r ∈ R}, which may also be denoted Rp. When R is reduced, this is
equivalent to the condition that R1/p is module-finite over R, since in the reduced
case the inclusion R ⊆ R1/p is isomorphic to the homomorphism F : R→ R.

Proposition 8.1. Let R be a Noetherian ring of characteristic p.

(a) R is F-finite if and only if Rred is F-finite.
(b) R is F-finite if and only and only if F e : R→ R is module-finite for all e

if and only if F e : R→ R is module-finite for some e ≥ 1.
(c) If R is F-finite, so is every homomorphic image of R.
(d) If R is F-finite so is every localization of R.
(e) If R is F-finite, so is every algebra finitely generated over R.
(f) If R is F-finite, so is the formal power series ring R[[x1, . . . , xn]].
(g) If (R, m, K) is a complete local ring, R is F -finite if and only if the field

K is F-finite.
(h) If R is F-finite, so is every ring essentially of finite type over R.
(i) If K is a field that is finitely generated as a field over a perfect field, then

every ring essentially of finite type over K is F-finite.

Proof. Parts (c) and (d) both follow from the fact that if B is a finite set of
generators for R as F (R)-module, the image of B in S will generate S over F (S)
if S = R/J and also if S = W−1R. In the second case, it should be noted that
F (W−1R) may be identified with W−1F (R) because localizing at w and a wp have
the same effect.

For part (a), note that if R is F -finite, so is Rred by part (c), since Rred = R/J ,
where J is the ideal of all nilpotent elements. Now suppose that I is any ideal of
R such that R/I is F-finite. Let the images of u1, . . . , un span R/I over the image
of (R/I)p, and let v1, . . . , vh generate I over R. Let A = Rpu1 + · · ·+Rpun. Then
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R = A + Rv1 + · · · + Rvh. If we substitute the same formula for each copy of R
occuring in an Rvj term on the right, we find thtat

R = A+
∑
i,j

Rpuivj +
∑
j,j′

Rv′jvj .

It follows that the n+nh elements ui and uivj span R/I2 over the image of (R/I2)p.

Thus, (R/I2) is F-finite. By a straightforward induction, R/I2k is F -finite for all
k. Hence if I = J is the ideal of nilpotents, we see that R itself is F-finite.

For part (b), note that if F : R → R is F-finite, so is the e-fold composition.
On the other hand, if F e : R → R is finite, so is F e : S → S, where S = Rred.

Then we have S ⊆ S1/p ⊆ S1/q, and since S1/q is a Noetherian S-module, so is
S1/p. Thus, S is F-finite, and so is R by part (a).

To prove (e), it suffices to consider the case of a polynomial ring in a finite
number of variables over R, and, by induction it suffices to consider the case where
S = R[x]. Likewise, for part (f) we need only show that R[[x]] is F-finite. Let
u1, . . . , un span R over Rp. Then, in both cases, the elements uix

j , 1 ≤ i ≤ n,
1 ≤ j ≤ p− 1, span S over Sp = Rp[xp] (respectively, Rp[[xp]]).

For (g), note that K = R/m, so that if (R, m, K) is F-finite, so is K. If R is
complete it is a homomorphic image of a formal power series ring K[[x1, . . . , xn]],
where K is the residue class field of R. By part (f), if K is F-finite, so is R.

Part (h) is immediate from parts (e) and (d). For part (i) first note that K
itself is essentially of finite type over a perfect field, and a perfect field is obviously
F -finite. The final statement is then immediate from part (h). �

A proof of the following result of Ernst Kunz would take us far afield. We refer
the reader to [Ku76].

Theorem 8.2 (Kunz). Every F-finite ring is excellent.

We are aiming to prove the following result about F-finite rings:

Theorem 8.3. [existence of test elements] Let R be a reduced F-finite ring, and
let c ∈ R ◦ be such that Rc is regular. Then c has a power cN that is a completely
stable big test element.

This is terrifically useful. Elements c ∈ R ◦ such that Rc is regular always exist.
In any excellent ring,

{P ∈ Spec (R) : RP is regular}
is open. Since the complement is closed, there is an ideal I such that

V(I) = {P ∈ Spec (R) : RP is not regular}.

We refer to this set of primes as the singular locus of Spec (R) or of R. Note that
if R is reduced, we cannot have I ⊆ p for any minimal prime p of R, because that
would mean the Rp is not regular, and Rp is a field. Hence, I is not contained in
the union of the minimal primes of R, which means that I meets R ◦. If c ∈ I ∩R ◦,
then Rc is regular: primes that do not contain c cannot contain I. Hence, in a
reduced F-finite (or any reduced excellent) ring, there is always an element r ∈ R ◦
such that Rc is regular, and this means that Theorem above can be applied. Hence:

Corollary 8.4. Every reduced F-finite ring has a completely stable big test
element.
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It will take some time before we can prove the Theorem on existence of test
elements. Our approach requires studying the notion of a strongly F-regular ring.
We give the definition below. However, we first want to comment on the notion of
an F-split ring.

Definition 8.5. F-split rings. Let R be a ring of characteristic p. We shall
say that R is F-split if, under the map F : R → R, the left hand copy of R is a
direct summand of the right hand copy of R.

If R is F-split, F : R→ R must be injective. This is equivalent to the condition
that R be reduced. An equivalent condition is therefore that R be reduced and
that R be a direct summand of R1/p as an R-module, i.e., there exists an R-linear
map θ : R1/p → 1 such that θ(1) = 1.

Proposition 8.6. Let R be a reduced ring of characteristic p. The following
conditions are equivalent:

(1) R is F-split.
(2) R→ R1/q splits as a map of R-modules for all q.
(3) R→ R1/q splits as a map of R-modules for at least one value of q > 1.

Proof. (1) ⇒ (2). Let θ : R1/p → R be a splitting. Then for all q = pe > 1,

if q′ = pe−1, we may define a splitting θe : R1/q → R1/q′ by

θe(r
1/q) =

(
θ(r1/p)

)1/q′
.

Thus, the diagram:

R1/q θe−−−−→ R1/q′

∼=
x ∼=

x
R1/p θ−−−−→ R

commutes, where the vertical arrows are the isomorphisms r1/p 7→ r1/q and r 7→
r1/q′ , respectively. Of course, θ1 = θ. Then θe is R1/q′ -linear and, in particular,
R-linear. Hence, the composite map

θ1 ◦ θ2 ◦ · · · ◦ θe : R1/q → R

gives the required splitting.
(2) ⇒ (3) is clear. Finally, assume (3). Then R ⊆ R1/p ⊆ R1/q, so that a

splitting R1/q → R may simply be restricted to R1/p, and (1) follows. �

8.2. Strongly F-regular rings. We have defined a ring to be weakly F-
regular if every ideal is tightly closed, and to be F-regular if all of its localizations
have this property as well. We next want to introduce the notion of a strongly
F-regular ring R: for the moment, we make this definition only when R is F -finite.

The definition is rather technical, but this condition turns out to be easier to
work with than the other notions. It implies that every submodule of every module
is tightly closed, it passes to localizations automatically, and it leads to a proof of
the theorem on existence of test elements (Theorem 8.3) stated earlier.

Of course, the value of this notion rests on whether there are examples of
strongly F-regular rings. We shall soon see that every regular F-finite ring is
strongly F-regular. Let 1 ≤ t ≤ r ≤ s be integers. If K is an algebraically
closed field (or an F-finite field), and X is an r × s matrix of indeterminates over
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K, then the ring obtained from the polynomial ring K[X] in the entries of X by
killing the ideal It(X) generated by the t× t minors of X is strongly F-regular, and
so is the ring generated over K by the r × r minors of X (this is the homogeneous
coordinate ring of a Grassman variety). The normal rings generated by finitely
many monomials in indeterminates are also strongly F-regular. Thus, there are
many important examples.

In fact, in the F-finite case, every ring that is known to be weakly F-regular is
known to be strongly F-regular.

Conjecture 8.7. Every weakly F-regular F-finite ring is strongly F-regular.

This is a very important open question. It is known to be true in many cases:
we shall discuss what is known at a later point.

Definition 8.8. Strong F-regularity. Let R be a Noetherian ring of char-
acteristic p, and suppose that R is reduced and F-finite. We define R to be strongly
F-regular if for every c ∈ R ◦ there exists qc such that the map R → R1/qc that
sends 1 7→ c1/qc splits over R. That is, for all c ∈ R ◦ there exist qc and an R-linear
map θ : R1/qc → R such that θ(c1/qc) = 1.

The element qc will usually depend on c. For example, one will typically need
to make a larger choice for cp than for c.

Remark 8.9. The following elementary fact is very useful. Let h : R → S be
a ring homomorphism and let M be any S-module. Let u be any element of M .
Suppose that the unique R-linear map R→M such that 1 7→ u (and r 7→ ru) splits
over R. Then R is a direct summand of S, i.e., there is an R-module splitting for
h : R → S. In fact, if θ : M → R is R-linear and θ(u) = 1, we get the required
splitting by defining φ(s) = θ(su) for all s ∈ S. Note also that the fact that R→M
splits is equivalent to the assertion that R→ Ru such that 1 7→ u is an isomorphism
of R-modules, together with the assertion that Ru is a direct summand of M as
an R-module. Also note that if there exists an element s ∈ S such that the map
α : R → M with 1 7→ su splits, then the map β : R → M with 1 7→ u splits. If θ
splits α, the map θ′ define by θ′(m) = θ(sm) splits β.

We may apply this remark to the case where S = R1/qc in the above definition.
Thus:

Proposition 8.10. A strongly F-regular ring R is F-split. In fact, if R is
reduced and F-finite and there exists an element c ∈ R ◦ and a choice of q = pe

such that the map R→ R1/q with 1 7→ c1/q splits, then R is F -split.

We also note:

Proposition 8.11. Suppose that R is a reduced Noetherian ring of character-
istic p, that c ∈ R ◦, and that R→ R1/qc sending 1 7→ c1/qc splits over R. Then for
all q ≥ qc, the map R→ R1/q sending 1 7→ c1/q splits over R.

Proof. It suffices to show that if we have a splitting for a certain q, we also get
a splitting for the next higher value of q, which is qp. Suppose that θ : R1/q → R
is R-linear and θ(c1/q) = 1. We define θ′ : R1/pq → R1/p by the rule

θ′(r1/pq) =
(
θ(r1/q)

)1/p
.
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That is, the diagram

R1/pq θ′−−−−→ R1/p

∼=
x ∼=

x
R1/q θ−−−−→ R

commutes. Then θ′ is R1/p-linear and θ′(c1/pq) = 1 ∈ R1/p. By Remark 8.9,
R → R1/q splits, and so R is F-split, i.e., we have an R-linear map β : R1/p → R
such that β(1) = 1. Then β ◦ θ′ is the required splitting. �

The following fact is now remarkably easy to prove.

Theorem 8.12. Let R be a strongly F-regular ring. Then for every inclusion
of N ⊆M of modules (these are not required to be finitely generated), N is tightly
closed in M .

Proof. We may map a free module G onto M and replace N by its inverse
image H ⊆ G. Thus, it suffices to show that H = H∗G when G is free. Suppose that

u ∈ H∗G. We want to prove that u ∈ H. Since u ∈ H∗G, for all q � 0, cuq ∈ H [q].

Choose qc such that R → R1/qc with 1 7→ c1/qc splits. Then fix q ≥ qc such that
cuq ∈ H [q]. Then the map R → R1/q sending 1 → c1/q also splits, and we can
choose θ : R1/q → R such that θ(c1/q) = 1.

The fact that cuq ∈ H [q] gives an equation

cuq =

n∑
i=1

rih
q
i

with the ri ∈ R and the hi ∈ H. We work in R1/q ⊗R G and take q th roots to
obtain

(∗) c1/qu =

n∑
i=1

r
1/q
i hi.

We have adopted the notation r1/qg for r1/q ⊗ g. By tensoring with G, from the
R-linear map θ : R1/q → R we get an R-linear map θ′ : R1/q ⊗ G → G such that
θ′(r1/qg) = θ(r1/q)g for all g ∈ G. We may now apply θ′ to (∗) to obtain

u = 1 · u = θ(c1/q)u =

n∑
i=1

θ(r
1/q
i )hi.

Since every θ(r
1/q
i ) ∈ R, the right hand side is in H, i.e., u ∈ H. �

Corollary 8.13. A strongly F-regular ring is weakly F-regular and, in partic-
ular, normal. �

8.3. Flat base change and Hom. We want to discuss in some detail when
a short exact sequence splits. The following result is very useful.

Theorem 8.14 (Hom commutes with flat base change). If S is a flat R-algebra
and M , N are R-modules such that M is finitely presented over R, then the canon-
ical homomorphism

θM : S ⊗R HomR(M,N)→ HomS(S ⊗RM,S ⊗R N)

sending s⊗ f to s(idS ⊗ f) is an isomorphism.
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|

Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2
may be

identified with θM1 ⊕ θM2 , so that θG is an isomorphism whenever G is a finitely
generated free R-module.

Since M is finitely presented, we have an exact sequence H → G � M → 0
where G, H are finitely generated free R-modules. In the diagram below the right
column is obtained by first applying S⊗R (exactness is preserved since ⊗ is right
exact), and then applying HomS( , S⊗RN), so that the right column is exact. The
left column is obtained by first applying HomR( , N), and then S⊗R (exactness
is preserved because of the hypothesis that S is R-flat). The squares are easily seen
to commute.

S ⊗R HomR(H,N)
θH−−−−→ HomS(S ⊗R H,S ⊗R N)x x

S ⊗R HomR(G,N)
θG−−−−→ HomS(S ⊗R G,S ⊗R N)x x

S ⊗R HomR(M,N)
θM−−−−→ HomS(S ⊗RM,S ⊗R N)x x

0 −−−−→ 0
From the fact, established in the first paragraph, that θG and θH are isomor-

phisms and the exactness of the two columns, it follows that θM is an isomorphism
as well (kernels of isomorphic maps are isomorphic). �

|

Corollary 8.15. If W is a multiplicative system in R and M is finitely pre-
sented, we have that W−1HomR(M,N) ∼= HomW−1R(W−1M,W−1N). Moreover,

if (R,m) is a local ring and both M , N are finitely generated, we may identify

HomR̂(M̂, N̂) with the m-adic completion of HomR(M,N) (since m-adic comple-

tion is the same as tensoring over R with R̂ (as covariant functors) on finitely
generated R-modules). �

9. Lecture 9

9.1. Properties of Tor. We give a very brief treatment of the Tor functors.
If M is any R-module we may form a left resolution of M by projective or even
free modules: this means we have a left complex P•

dn+1−−−→ Pn
dn−→ Pn−1

dn−1−−−→ · · · → · · · d2−→ P1
d1−→→ P0 → 0

such that the Coker (d1) ∼= M and the complex is exact at Pi for i ≥ 1. Then for

any R-module N , TorRi (M,N) := Hi(P•⊗RN), which turns out to be independent
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of the choice of P• up to canonical isomorphsim. One may also use a projective
resolution Q• of N to obtain the same modules. Then:

Theorem 9.1. Let R be any commutative ring and M and N denote R-
modules. Then:

(a) TorRi (M,M) is a covariant functor of M and N .

(b) TorR0 (M,N) ∼= M ⊗R N as functors in M, N .
(c) TorRi (M,N) vanishes for i ≥ 1 if M or N is flat (hence, if either is free

or projective).
(d) If 0→M ′ →M →M ′′ → 0 is exact there is long exact sequence

· · · → TorRi (M ′, N)→ TorRi (M, N)→ TorRi (M ′′, N)→ TorRi−1(M ′, N)

→ · · · → TorR1 (M ′, N)→ TorR1 (M, N)→ TorR1 (M ′′, N)

→M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0.

(e) TorRi (M,N) ∼= TorRi (N,M) as functors of two variables.

(f) The endomorphism induced on TorRi (M,N) by multiplication by r ∈ R

acting on either M or N is multiplication by r acting on TorRi (M.N).

(g) AnnRM + AnnRN kills TorRi (M,N).

(h) If S is a flat R-algebra, S ⊗R TorRi (M,N) ∼= TorSi (S ⊗RM,S ⊗R N).

(i) The calculation of TorRI (M,N), commutes with arbitrary direct sums and
direct limits in either M or N .

(j) If R, M and N are Noetherian, then every TorRi (M,N) is Noetherian.

9.2. Regular sequences and Tor. We next want to note some elementary
connections between properties of regular sequences and the vanishing of Tor.

Theorem 9.2. Let x1, . . . , xn ∈ R and let M be an R-module. Suppose that
x1, . . . , xn is a possibly improper regular sequence in R, and is also a possibly
improper regular sequence on M . Let Ik = (x1, . . . , xk)R, 0 ≤ k ≤ n, so that
I0 = 0. Then

TorRi (R/Ik,M) = 0

for i ≥ 1 and 0 ≤ k ≤ n.

Proof. If k = 0 this is clear, since R is free and has a projective resolution
in which the terms with a positive index all vanish. We use induction on k. We
assume the result for some k < n, and we prove it for k + 1. From the short exact
sequence

0→ R/Ik
xk+1·−−−→ R/Ik → R/Ik+1 → 0

we have a long exact sequence for Tor, part of which is

TorRi (R/Ik, M)→ TorRi (R/Ik+1, M)→ TorRi−1(R/Ik, M)
xk+1·−−−→ TorRi−1(R/Ik, M)

If i ≥ 2, the result is immediate from the induction hypothesis, because the terms
surrounding TorRi (R/Ik+1, M) are 0. If i = 1, this becomes:

0→ TorR1 (Ik+1, M)→M/IkM
xk+1·−−−→M/IkM

which shows that TorR1 (Ik+1, M) is isomorphic with the kernel of the map given by
multiplication by xk+1 on M/IkM , and this is 0 because x1, . . . , xn is a possibly
improper regular sequence on M . �
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The following result was stated earlier, as Theorem 5.2, and was used to give
one of the proofs of the flatness of the Frobenius endomorphism for a regular ring
R. We now give a proof, but in the course of the proof, we assume the theorem that
(∗) over a regular local ring, every module has a finite free resolution of length at
most the dimension of the ring. The condition (∗) actually characterizes regularity.
Later, we shall develop results on Koszul complexes that permit a very easy proof
that the condition (∗) holds over every regular local ring.

Theorem 9.3. Let (R, m, K) be a regular local ring and let M be an R-module.
Them M is a big Cohen-Macaulay module over R if and only if M is faithfully flat
over R.

Proof. By Discussion 5.3, we already know that both conditions in the theo-
rem imply thatmM 6= M , and that a faithfully flat module is a big Cohen-Macaulay
module. It remains only to prove that if M is a big Cohen-Macaulay module over
R, then M is flat.

It suffices to show that for every R-moduleN and every i ≥ 1, TorRi (N, M) = 0.
In fact, it suffices to show this when i = 1, for then if 0 → N0 → N1 → N → 0 is
exact, we have

0 = TorR1 (M, N)→M ⊗R N0 →M ⊗R N1

is exact, which yields the needed injectivity. However, we carry through the proof
by reverse induction on i, so that we need to consider all i ≥ 1.

Because Tor commutes with direct limits, we may reduce to the case where N
is finitely generated. We then know that TorRi (N, M) = 0 for i > n, because N
has a free resolution of length at most n by the condition (∗) satisfied by regular
local rings that was discussed in the paragraph just before the statement of the
Theorem. Hence, it suffices to prove that if i ≥ 1 and for all finitely generated
R-modules N we have that TorRj (N, M) = 0 for j ≥ i + 1, then Tori(N, M) = 0
for all finitely generated R-modules N as well.

We first consider the case where N = R/P is prime cyclic. By Corollary 1.8,
there is a regular sequence whose length is the height of P contained in P , say
x1, . . . , xh, and then P is a minimal prime of R/(x1, . . . , xh). This implies that
P is also an associated prime of R/(x1, . . . , xh)R, so that we have a short exact
sequence

0→ R/P → R/(x1, . . . , xh)R→ C → 0

for some R-module C. The long exact sequence for Tor then yields, in part:

TorRi+1(C, M)→ TorRi (R/P, M)→ TorRi (R/(x1, . . . , xh)R, M)

The leftmost term is 0 by the induction hypothesis, and the rightmost term is 0 by
Theorem 9.2. Hence, TorRi (R/P, M) = 0.

We can now proceed by induction on the least number of factors in a finite
filtration of N by prime cyclic modules. The case where there is just one factor was
handled in the preceding paragraph. Suppose that R/P = N1 ⊆ N begins such
a filtration. Then N/N1 has a shorter filtration. The long exact sequence for Tor
yields

TorRi (R/P, M)→ TorRi (N, M)→ TorRi (N/N1, M).

The first term vanishes by the result of the preceding paragraph, and the third
term by the induction hypothesis. �
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9.3. When does a short exact sequence split? Throughout this section,

0 −−−−→ N
α−−−−→ M

β−−−−→ Q→ 0

is a short exact sequence of modules over a ring R. There is no restriction on the
characteristic of R. We want to discuss the problem of when this sequence splits.
One condition is that there exist a map η : M → N such that ηα = idN . Let
Q′ = Ker (η). Then Q′ is disjoint from the image α(N) = N ′ of N in M , and
N ′ +Q′ = M . It follows that M is the internal direct sum of N ′ and Q′ and that
β maps Q′ isomorphically onto Q.

Similarly, the sequence splits if there is a map θ : Q→M such that βθ = idQ.
In this case let N ′ = α(N) and Q′ = θ(Q). Again, N ′ and Q′ are disjoint, and
N ′ +Q′ = M , so that M is again the internal direct sum of N ′ and Q′.

Proposition 9.4. Let R be an arbitrary ring and let

(#) 0 −−−−→ N
α−−−−→ M

β−−−−→ Q→ 0

be a short exact sequence of R-modules. Consider the sequence

(∗) 0 −−−−→ HomR(Q, N)
α∗−−−−→ HomR(Q, M)

β∗−−−−→ HomR(Q, Q)→ 0

which is exact except possibly at HomR(Q, Q), and let C = Coker (β∗). The follow-
ing conditions are equivalent:

(1) The sequence (#) is split.
(2) The sequence (∗) is exact.
(3) The map β∗ is surjective.
(4) C = 0.
(5) The element idQ is in the image of β∗.

Proof. Because Hom commutes with finite direct sum, we have that (1)⇒ (2),
while (2) ⇒ (3) ⇔ (4) ⇒ (5) is clear. It remains to show that (5) ⇒ (1). Suppose
θ : Q → M is such that β∗(θ) = idQ. Since β∗ is induced by composition with β,
we have that βθ = idQ. �

A split exact sequence remains split after any base change. In particular, it
remains split after localization. There are partial converses. Recall that if I ⊆ R,

V(I) = {P ∈ Spec (R) : I ⊆ P},

and that

D(I) = Spec (R)− V(I).

In particular,

D(fR) = {P ∈ Spec (R) : f /∈ P},
and we also write D(f) or Df for D(fR).

Theorem 9.5. Let R be an arbitrary ring and let

(#) 0 −−−−→ N
α−−−−→ M

β−−−−→ Q→ 0

be a short exact sequence of R-modules such that Q is finitely presented.

(a) (#) is split if and only if for every maximal ideal m of R, the sequence

0→ Nm →Mm → Qm → 0

is split.
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(b) Let S be a faithfully flat R-algebra. The sequence (#) is split if and only
if the sequence

0→ S ⊗R N → S ⊗RM → S ⊗R Q→ 0

is split.
(c) Let W be a multiplicative system in R. If the sequence

0→W−1N →W−1M →W−1Q→ 0

is split over W−1R, then there exists a single element c ∈W such that

0→ Nc →Mc → Qc → 0

is split over Rc.
(d) If P is a prime ideal of R such that

0→ NP →MP → QP → 0

is split, there exists an element c ∈ R− P such that

0→ Nc →Mc → Qc → 0

is split over Rc. Hence, (#) becomes split after localization at any prime
P ′ that does not contain c, i.e., any prime P ′ such that c /∈ P ′.

(e) The split locus for (#), by which we mean the set of primes P ∈ Spec (R)
such that

0→ NP →MP → QP → 0

is split over RP , is a Zariski open set in Spec (R).

Proof. Let C = Coker
(
Hom(Q, M) → HomR(Q, Q)

)
, as in the preceding

Proposition, and let γ denote the image of idQ in C. By part (4) of the preceding
Propostion, (#) is split if and only if γ = 0.

(a) The “only if” part is clear, since splitting is preserved by any base change.
For the “if” part, suppose that γ 6= 0. The we can choose a maximal ideal m in
the support of Rγ ⊆ C, i.e., such that AnnRγ ⊆ m. The fact that Q is finitely
presented implies that localization commutes with Hom. Thus, localizing at m
yields

0→ HomRm(Qm, Nm)→ HomRm(Qm, Mm)→ HomRm(Qm, Qm)→ Cm → 0,

and since the image of γ is not 0, the sequence 0 → Nm → Mm → Qm → 0 does
not split.

(b) Again, the “only if” part is clear, and since Q is finitely presented and S is
flat, Hom commutes with base change to S. After base change, the new cokernel
is S ⊗R C. But C = 0 if and only if S ⊗R C = 0, since S is faithfully flat, and the
result follows.

(c) Similarly, the sequence is split after localization at W if and only if the
image of γ is 0 after localization at W , and this happens if and only if cγ = 0 for
some c ∈W . But then localiziing at the element c kills γ.

(d) This is simply part (c) applied with W = R− P
(e) If P is in the split locus and c /∈ P is chosen as in part (d), D(c) is a Zariski

open neighborhood of P in the split locus. �
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9.4. Supplementary Problems I.

1. Let R be a Noetherian domain of characteristic p. Let S be a solid R-
algebra: this means that there is an R-linear map θ : S → R such that θ(1) 6= 0.
Show that IS ∩R ⊆ I∗. Note that there is no finiteness condition on S.

2. Let S be weakly F-regular, and let R ⊆ S be such that for every ideal of R,
IS ∩R = I. Show that R is weakly F-regular.

3. Let M be a finitely generated module over a regular ring R of characteristic
p. Show that that for all e ≥ 1, the set of associated primes of Fe(M) is equal to
the set of associated primes of M .

4. Let (R, m, K) be a local ring of characteristic p with dim (R) = d > 0.
Let I ⊆ J be two m-primary ideals of R such that J ⊆ I∗. Prove that there is a
positive constant C such that `(R/J [q]) − `(R/I [q])| ≤ Cqd−1. (This implies that
the Hilbert-Kunz multiplicities of I and J are the same.) [Here is one approach.
Let h, k be the numbers of generators of I, J , respectively. Show that there exists
c ∈ R ◦ such that cJ [q] ⊆ I [q] for q � 0, so that J [q]/I [q] is a module with at most k
generators over R/(I [q] + cR) = R/A[q] where R = R/cR and A = IR. Moreover,
dim (R) = d− 1 and Aqh ⊆ A[q].]

5. Let R be a reduced Noetherian ring of characteristic p. Show that if R/pi
has a test element for every minimal prime pi of R, then R has a test element.

6. Let (R, m, K) be a Cohen-Macaulay local ring, and let x1, . . . , xn be a
system of parameters. Let It = (xt1, . . . , x

t
n)R for t ≥ n and let I = I1.(a) Prove

that there is an isomorphism between the socle (annihilator of the maximal ideal)
in R/I and the socle in R/It induced by multiplication by xt−1

1 · · ·xt−1
n . (b) Prove

that an m-primary ideal J is tightly closed iff no element of (J :R m) − J is in
J∗. Note that (J :R m)/J is the socle in R/J . (That R is Cohen-Macaulay is not
needed here.) (c) Prove that I is tightly closed in R if and only if It is tightly closed

in R for every t ≥ 1.

10. Lecture 10

10.1. Behavior of strongly F-regular rings.

Theorem 10.1. Let R be an F-finite reduced ring. Then the following condi-
tions are equivalent:

(1) R is strongly F-regular.
(2) Rm is strongly F-regular for every maximal ideal m of R.
(3) W−1R is strongly F -regular for every multiplicative system W in R.

Proof. We shall show that (1)⇒ (3)⇒ (2)⇒ (1).
To show that (1) ⇒ (3), suppose that R is strongly F -regular and let W

be a multiplicative system. By the Proposition 6.3, every element of (W−1R) ◦

has the form c/w where w ∈ W and c ∈ R ◦. Given such an element c/w, we
can choose qc and an R-linear map θ : R1/qc → R such that θ(c1/q) = 1. After
localization at c, θ induces a map θc : (Rc)

1/qc → Rc sending (c/1)1/qc to 1/1.
Define η : (Rc)

1/qc → Rc by η(u) = θc(w
1/qcu). Then η : (Rc)

1/qc → Rc is an
Rc-linear map such that η

(
(c/w)1/qc

)
= 1, as required. (3)⇒ (2) is obvious.
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It remains to show that (2) ⇒ (1). Fix c ∈ R ◦. Then for every maximal
ideal m of R, the image of c is in (Rm) ◦, and so there exist qm and a splitting
of the map Rm → (R1/qm)m ∼= (Rm)1/qm that sends 1 7→ c1/qm . Then there
is also such a splitting of the map R → R1/qm after localizing at any prime in
a Zariski neighborhood Um of m. Since the Um cover MaxSpec (R), they cover
Spec (R), and by the quasicompactness of Spec (R) there are finitely many maximal
ideals m1, . . . ,mn such that the open sets Um1 , . . . , Umn cover Spec (R). Let qc =
max {qm1

, . . . , qmn}. Then the map R → R1/qc that sends 1 7→ c1/qc splits after
localizing at any maximal ideal in any of the Umi , i.e., after localizing at any
maximal ideal. By part (a) of the preceding Proposition, the map R → R1/qc

sending 1 7→ c1/qc splits, as required. �

Corollary 10.2. A strongly F-regular ring is F-regular.

Proof. This is immediate from the fact that strongly F-regular rings are
weakly F-regular and the fact that a localization of a strongly F-regular ring is
strongly F-regular. �

Corollary 10.3. R is strongly F-regular if and only if it is a finite product of
strongly F-regular domains.

Proof. If R is strongly F-regular it is normal, and, therefore, a product of
domains. Since the issue of whether R is strongly F-regular is local on the maximal
ideals of R, when R is a product of domains it is strongly F-regular if and only if
each of the factor domains is strongly F-regular. �

Proposition 10.4. If S is strongly F-regular and R is a direct summand of S,
then R is strongly F-regular.

Proof. If R and S are domains, we may proceed as follows. Let c ∈ R ◦ =
R − {0} be given. Since S is strongly F-regular we may choose q and an S-linear
map θ : S1/q → S such that θ(c1/q) = 1. Let α : S → R be R-linear such that
α(1) = 1. Then α ◦ θ : S1/q → R is R-linear and sends c1/q 7→ 1. We may restrict
this map to R1/q.

In the general case, we may first localize at a prime of R: it suffices to see that
every such localization is strongly F -regular. S is a product of F -regular domains
S1 × · · · × Sn each of which is an R-algebra. Let α : S → R be such that α(1) = 1.
The element 1 ∈ S is the sum of n idempotents ei, where ei has component 0 in
Sj for j 6= i while the component in Si is 1. Then 1 = α(1) =

∑n
i=1 α(ei), and

since R is local, at least one α(ei) is not in the maximal ideal m of the local ring
R, i.e., we can fix i such that α(ei) is a unit a of R. We have an R-linear injection
ι : Si → S by identifying Si with 0 × 0 × Si × 0 × 0, i.e., with the set of elements
of S all of whose coordinates except the i th are 0. Then a−1α ◦ ι is a splitting of
R→ Si over R, and so we have reduced to the domain case, which was handled in
the first paragraph. �

We also have:

Proposition 10.5. If R→ S is faithfully flat and S is strongly F-regular then
R is strongly F-regular.

Proof. Let c ∈ R ◦. Then c ∈ S ◦, and so there exists q and an S-linear map
S1/q → S such that c1/q 7→ 1. There is an obvious map S ⊗R R1/q → S1/q, since
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both factors in the tensor product have maps to S1/q as R-algebras. This yields
a map S ⊗R R1/q → S = S ⊗R R that sends 1 ⊗ c1/q 7→ 1 ⊗ 1 that is S-linear.
This implies that the map R → R1/q sending 1 7→ c1/q splits after a faithfully flat
base change to S. By part (b) of the Theorem 9.5, the map R → R1/q such that
1 7→ c1/q spits over R, as required. �

Theorem 10.6. An F-finite regular ring is strongly F-regular.

Proof. We may assume that (R, m, K) is local: it is therefore a domain.
Let c 6= 0 be given. Choose q so large that c /∈ m[q]: this is possible because⋂
qm

[q] ⊆
⋂
qm

q = (0). The flatness of Frobenius implies that R1/q is flat and,

therefore, free over R since R1/q is module-finite over R. Since c /∈ m[q], we have
that c1/q /∈ mR1/q. By Nakayama’s Lemma, c1/q is part of a minimal basis for the
R-free module R1/q, and a minimal basis is a free basis. It follows that there is an
R-linear map R1/q → R such that c1/q 7→ 1: the values can be specified arbitrarily
on a free basis containing c1/q. �

Remark 10.7. q th roots of maps. The following situation arises frequently
in studying strongly F-regular rings. One has q, q0, q1, q2, where these are all
powers of p, the prime characteristic, such that q0 ≤ q1 and q0 ≤ q2, and we have
an R1/q0-linear map α : R1/q1 → R1/q2 . This map might have certain specified
values, e.g., α(u) = v. Here, one or more of the integers q, qi may be 1. Then one
has a map which we denote α1/q : R1/q1q → R1/q2q which is R1/q0q-linear, that is
simply defined by the rule α1/q(s1/q) = α(s)1/q. Then α1/q(u1/q) = v1/q.

The following result makes the property of being a strongly F-regular ring much
easier to test: instead of needing to worry about constructing a splitting for every
element of R ◦, one only needs to construct a splitting for one element of R ◦.

Theorem 10.8. Let R be a reduced F-finite ring of characteristic p, and let c ∈
R ◦ be such that Rc is strongly F-regular. Then R is strongly F-regular if and only if

(∗) there exists qc such that the map R→ R1/qc sending 1 7→ c1/qc splits.

Proof. The condition (∗) is obviously necessary for R to be strongly F-regular:
we need to show that it is sufficient. Therefore, assume that we have an R-linear
splitting

θ : R1/qc → R,

with θ(c1/qc) = 1. By Remark splitrmk we know that R is F-split. Suppose that
d ∈ R ◦ is given.

Since Rc is strongly F-regular we can choose qd and an Rc-linear map β :

R
1/qd
c → Rc such that β(d1/qd) = 1. Since HomRc(R

1/qd
c , Rc) is the localization of

HomR(R1/qd , R) at c, we have that β =
1

cq
α for some sufficiently large choice of

q: since we are free to make the power of c in the denominator larger if we choose,
there is no loss of generality in assuming that the exponent is a power of p. Then
α : R1/qd → R is an R-linear map such that

α(d1/qd) = cqβ(d1/qd) = cq.

By taking qqc roots we obtain a map

α1/qqc : R1/qqcqd → R1/qqc
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that is R1/qqc-linear and sends d1/qqcqd 7→ c1/qc . Because R is F-split, the inclusion
R ↪→ R1/q splits: let γ : R1/q → R be R linear such that γ(1) = 1. Then
γ1/qc : R1/qqc → R1/qc is an R1/qc-linear retraction and sends c1/qc 7→ c1/qc . Then
θ ◦ γ1/qc ◦ α1/qqc : R1/qqcqd → R and sends d1/qqcqd 7→ 1, as required. �

10.2. Strong F-regularity and big test elements. We want to use the
theory of strongly F-regular F-finite rings to prove the existence of big test elements.

We first prove two preliminary results:

Lemma 10.9. Let R be an F-finite reduced ring and c ∈ R ◦ be such that Rc
is F-split (which is automatic if Rc is strongly F-regular). Then there exists an
R-linear map θ : R1/p → R such that the value on 1 is a power of c.

Proof. We can choose an Rc-linear map (Rc)
1/p → Rc such that 1 7→ 1, and

(Rc)
1/p ∼= (R1/p)c.

Then HomRc(R
1/p
c , Rc) is the localization of HomR(R1/p, R) at c, and so we can

write θ =
1

cN
α, where N ∈ N and α : R1/p → R is R-linear. But then α = cNβ

and so α(1) = cNβ(1) = cN , as required. �

Lemma 10.10. Let R be a reduced F-finite ring and suppose that there exists
an R-linear map θ : R1/p → R such that θ(1) = c ∈ R ◦. Then for every q = pe,
there exists an R-linear map ηq : R1/q → R such that ηq(1) = c2.

Proof. We use induction on q. If q = 1 we may take η1 = c2idR, and if q = p
we may take ηp = c θ. Now suppose that ηq has been constructed for q ≥ p. Then

η
1/p
q : R1/pq → R1/p, it is R1/p-linear, hence, R-linear, and its value on 1 is c2/p.

Define
ηpq(u) = θ

(
c(p−2)/pηq(u)

)
.

Consequently, we have, as required, that

ηpq(1) = θ
(
c(p−2)/pηq(1)

)
= θ(c(p−2)/pc2/p) = θ(c) = cθ(1) = c2. �

�

We can now prove the following:

Theorem 10.11. [Existence of big test elements.] Let R be F-finite and reduced.
If c ∈ R ◦ and Rc is strongly F-regular, then c has a power that is a big test element.
If Rc is strongly F-regular and there exists an R-linear map θ : R1/p → R such that
θ(1) = c, then c3 is a big test element.

Proof. Since Rc is strongly F -regular it is F-split. By Lemma 10.9 there
exist an integer N and an R-linear map θ : R1/p → R such that θ(1) = cN . By the
second statement of this theorem, c3N is then a big test element, and so it suffices
to prove the second statement.

Suppose that c satisfies the hypothesis of the second statement. By part (a) of
the Proposition 7.4, it suffices to show that if N ⊆ M are arbitrary modules and
u ∈ N∗M , then c3u ∈ N . We may map a free module G onto M , let H be the inverse
image of N in G, and let v ∈ G be an element that maps to u ∈ N . Then we have
v ∈ H∗G, and it suffices to prove that c3v ∈ H. Since v ∈ H∗G there exists d ∈ R ◦
such that dvq ∈ H [q] for all q ≥ q1. Since Rc is strongly F-regular, there exist qd and
an Rc-linear map β : (Rc)

1/qd → Rc that sends d1/qd → 1: we may take qd larger,
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if necessary, and so we may assume that qd ≥ q1. As usual, we may assume that

β =
1

cq
α where α : R1/qd → R is R-linear. Hence, α = cqβ, and α(d1/qd) = cq. It

follows that α1/q : R1/qdq → R1/q is R1/q-linear, hence, R-linear, and its value on 1
is c. By the preceding Lemma we have an R-linear map ηq : R1/q → R whose value

on 1 is c2, so that ηq(c) = cηq(1) = c3. Let γ = ηq ◦α1/q, which is an R-linear map

R1/qdq → R sending d1/qdq to ηq(c) = c3. Since qdq ≥ q1, we have dvqdq ∈ H [qdq],
i.e.,

(#) dvqdq =

n∑
i=1

rih
qdq
i

for some integer n > 0 and elements r1, . . . , rn ∈ R and h1, . . . , hn ∈ H.
Consider G′ = R1/qqd⊗G. We identify G with its image under the map G→ G′

that sends g 7→ 1⊗ g. Thus, if s ∈ R1/qdq, we may write sg instead of s⊗ g. Note
that G′ is free over R1/qqd, and the R-linear map γ : R1/qqd → R induces an R-linear
map

γ′ : G′ = R1/qqd ⊗R G→ R⊗R G ∼= G

that sends sg 7→ γ(s)g for all s ∈ R1/qqd and all g ∈ G. Note that by taking qdq th
roots in the displayed equation (#) above, we obtain

(†) d1/qdqv =

n∑
i=1

r
1/qdq
i hi.

We may now apply γ′ to both sides of (†): we have

c3v =

n∑
i=1

γ(r
1/qdq
i )hi ∈ H,

exactly as required. �

Discussion 10.12. As noted earlier in Theorem 8.3 and Corollary 8.4, it follows
that every F-finite reduced ring has a big test element: one can choose c ∈ R ◦

such that Rc is regular. This is a consequence of the fact that F-finite rings are
excellent. But one can give a proof of the existence of such elements c in F -finite
rings of characteristic p very easily if one assumes that a Noetherian ring is regular
if and only if the Frobenius endomorphism is flat (we proved the “only if” direction
earlier). See [Ku69]. Assuming the “if” direction, we may argue as follows. First
note that one can localize at one such element c so that the idempotent elements
of the total quotient ring of R are in the localization. Therefore, there is no loss
of generality in assuming that R is a domain. Then R1/p is a finitely generated
torsion-free R-module. Choose a maximal set s1, . . . , sn of R-linearly independent
elements in R1/p. This gives an inclusion

Rn ∼= Rs1 + · · ·+Rsn ⊆ R1/p.

Call the cokernel C. Then C is finitely generated, and C must be a torsion module
over R: if sn+1 ∈ R1/p represents an element of C that is not a torsion element,
then s1, . . . , sn+1 are linearly independent over R, a contradiction. Hence, there
exists c ∈ R ◦ that kills C, and so cR1/p ⊆ Rn. It follows that (R1/p)c ∼= Rnc , and
so (Rc)

1p is free over Rc. But this implies that FRc is flat, and so Rc is regular, as
required. �
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Lemma 10.13. Let R be any Noetherian ring (there is no characteristic restric-
tion) and let M be a finitely generated R-module. Then the set {P ∈ Spec (R) :
MP is RP − free} is Zariski open and is nonempty if R is a domain with fraction
field K, in which case there exists c ∈ R ◦ such that Mc is free.

Proof. We can map a finitely generated free module G�M , and so we have
a short exact sequence 0→ N → G→M → 0. The set of primes P such that this
is split after localization at P is the same as the set of primes P such that MP is
RP -free, and we may apply Theorem 9.5(e). If R is a domain, (0) is in the set. Call
the defining ideal of the non-free locus I, i.e., the non-free locus is V (I). Then I is
a nonzero ideal, or else (0) ⊆ V (I). Choose c ∈ I \ {0}. �

Corollary 10.14. If R is a nonzero reduce F-finite ring, the regular locus is
dense and open.

Proof. It suffices to prove this for each connected component, and so we may
assume that R is a domain. But then the regular locus is the free locus of R1/p. �

In any case, we have proved:

Corollary 10.15. If R is reduced and F-finite, then R has a big test element.
Hence, τb(R) is generated by the big test elements of R, and τ(R) is generated by
the test elements of R.

11. Lecture 11

11.1. The Radu-André theorem and completely stable big test el-
ements. Our next objective is to show that the big test elements produced by
Theorem 10.11 are actually completely stable. In fact, we shall prove something
more: they remain test elements after any geometrically regular base change, i.e.,
their images under a flat map R → S with geometrically regular fibers are again
test elements. This will take a considerable effort.

We are aiming to prove that if R → S is geometrically regular (i.e., flat, with
geometrically regular fibers) and R is strongly F-regular, then S is strongly F-
regular. In order to prove this, we will make use of the following result [?, An93]:

Theorem 11.1. Theorem (Radu-André) Let R→ S be a geometrically regular
map of F-finite rings of characteristic p. Then for all q, the map R1/q⊗RS → S1/q

is faithfully flat.

The Radu-André theorem asserts the same conclusion even when R and S are
not assumed to be F -finite. In fact, R → S is geometrically regular if and only
if the homomorphisms R1/q ⊗R S → S1/q are flat. However, we do not need the
converse, and we only need the theorem in the F-finite case, where the argument is
easier.

The proof of this theorem will require some effort. We first want to note that
it has the following consequence:

Corollary 11.2. Let R → S be a geometrically regular map of F-finite rings
of characteristic p. Then for all q, the map R1/q ⊗R S → S1/q makes R1/q ⊗R S a
direct summand of S1/q.

Note that since S → S1/q is module-finite, we have that R1/q ⊗R S → S1/q

is module-finite as well. The Corollary above then follows from the Radu-André
Theorem and the following fact.
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Proposition 11.3. Let A → B be a faithfully flat map of Noetherian rings
such that B is module-finite over A. Then A is a direct summand of B as an
A-module.

Proof. The issue is local on A. But when (A, m, K) is local, a finitely gen-
erated module is flat if and only if it is free, and so B is a nonzero free A-algebra.
The element 1 ∈ B is not in mB, and so is part of a minimal basis, which will be
a free basis, for B over A. Hence, there is an A-linear map B → A whose value on
1 ∈ B is 1 ∈ A. �

In the proof of the Radu-André Theorem we will need the result just below. A
more general theorem may be found in [Mat70, Ch. 8 (20.C) Theorem 49, p. 146].
but the version we give here will suffice for our purposes.

First note the following fact: if I ⊆ A is an ideal and M is an A-module, then
TorA1 (A/I, M) = 0 if and only if the map I⊗AM → IM , which is alway surjective,
is an isomorphism. This map sends i ⊗ u 7→ iu. The reason is that we may start
with the short exact sequence 0 → I → A → A/I → 0 and apply ⊗A M . The
long exact sequence then gives, in part:

0 = TorA1 (A, M)→ TorA1 (A/I, M)→ I ⊗AM →M

The image of the rightmost map is IM , and so we have

0→ TorA1 (A/I, M)→ I ⊗AM → IM → 0

is exact, from which the statement we want is clear.

Theorem 11.4 (local criterion for flatness). Let A → B be a local homomor-
phism of local rings, let M be a finitely generated B-module and let I be a proper
ideal of A. Then the following three conditions are equivalent:

(1) M is flat over A.
(2) M/IM is flat over A/I and I ⊗AM → IM is an isomorphism.

(3) M/IM is flat over A/I and TorA1 (A/I, M) = 0.

Proof. The discussion of the preceding paragraph shows that (2)⇔ (3), and
(1) ⇒ (3) is clear. It remains to prove (3) ⇒ (1), and so we assume (3). To show
that M is flat, it suffices to show that if N0 ⊆ N is an injection of finitely generated
R-modules then N0⊗AM → N⊗AM is injective. Moreover, by the Proposition 5.4
we need only prove this when N has finite length. Consequently, we may assume
that N is killed by a power of I, and so we have that IkN ⊆ N0 for some k. Let
Ni = N0 + Ik−iN for 0 ≤ i ≤ k. The N0 ⊆ N1 ⊆ · · · ⊆ Nk = N , and it suffices to
show that Nj ⊗AM → Nj+1⊗AM is injective for each j. We have now reduced to
the case where Q = Nj+1/Nj is killed by I. From the long exact sequence for Tor
arising from applying ⊗AM to the short exact sequence

0→ Nj → Nj+1 → Q→ 0,

we have
TorA1 (Q, M)→ Nj ⊗AM → Nj+1 ⊗AM

is exact, and so it suffices to show that if Q is a finitely generated A-module killed
by I, then TorA1 (Q, M) = 0.

Since Q is killed by I, we may think of it as a finitely generated module over
A/I. Hence, there is a short exact sequence

0→ Z → (A/I)⊕h → Q→ 0.
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Applying ⊗AM , from the long exact sequence for Tor we have that

TorA1
(
(A/I)⊕h, M

)
−−−−→ TorA1 (Q, M) −−−−→ Z ⊗AM

α−−−−→ (A/I)⊕h ⊗AM

is exact. By hypothesis, TorA1 (A/I, M) = 0, and so the leftmost term is 0. It

follows that TorA1 (Q, M) ∼= Ker (α). To conclude the proof, it will suffice to show
that α is injective.

Hence, it is enough to show that ⊗AM is an exact functor on A-modules Y
that are killed by I. For such an A-module Y we have that

Y ⊗AM ∼= (Y ⊗A/I A/I)⊗AM ∼= Y ⊗A/I
(
(A/I)⊗AM) ∼= Y ⊗A/I M/IM,

and this is an isomorphism as functors of Y . Since M/IM is flat over A/I, the
injectivity of α follows. �

We want to record the following observation.

Proposition 11.5. Let f : A → B be a homomorphism of Noetherian rings
of characteristic p such that the kernel of f consists of nilpotent elements of A
and for every element b ∈ B there exists q such that bq ∈ f(A). Then Spec (f) :
Spec (B) → Spec (A) is a homeomorphism (recall that this map sends the prime
ideal Q ∈ Spec (B) to the contraction f−1(Q) of Q to A). The inverse maps
P ∈ Spec (A) to the radical of PB, which is the unique prime ideal of B lying over
P .

Proof. Since the induced map Spec (A) → Spec (A/J) is a homeomorphism
whenever J is an ideal whose elements are nilpotent, and the unique prime of
A/J lying over P ∈ Spec (A) is P/J , the image of P in A/J , there is no loss of
generality in considering instead the induced map Ared → Bred, which is injective.
We therefore assume that A and B are reduced, and, by replacing A by its image,
we may also assume that A ⊆ B. Then A ↪→ B is an integral extension, since every
b ∈ B has a power in A, and it follows that there is a prime ideal Q of S lying over
a given prime P of A. If u ∈ Q, then uq ∈ A for some q, and so uq ∈ Q∩A = P . It
follows that Q ⊆ Rad (PB), and since Q is a radical ideal containing PB, we have
that Q = Rad (PB). Therefore, as claimed in the statement of the Proposition, we
have that Rad (PB) is the unique prime ideal of S lying over P . This shows that
Spec (f) is bijective. To show that g = Spec (f) is a homeomorphism, it suffices to
show that its inverse is continuous, i.e., that g maps closed sets to closed sets. But
for any b ∈ B, we may choose q so that bq ∈ A, and then

g
(
V(bB)

)
= V(bqA) ⊆ Spec (A). �

�

The Radu-André Theorem is valid even when R is not reduced. In this case,
we do not want to use the notation R1/q. Instead, we let R(e) denote R viewed as
an R algebra via the structural homomorphism F e : R→ R. We restate the result
using this notation.

Theorem 11.6 (Radu-André). Let R and S be F-finite rings of characteristic p
such that R→ S is flat with geometrically regular fibers. Then for all e, R(e)⊗RS →
S(e) is faithfully flat.
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Proof. Let Te = R(e) ⊗R S. Consider the maps S → Te → S(e). Any
element in the kernel of S → S(e) is nilpotent. It follows that this is also true
of any element in the kernel of S → Te. Note that every element of Te has q th
power in the image of S, since (r ⊗ s)q = rq ⊗ sq = 1 ⊗ rqsq. It follows that
Spec (S(e)) → Spec (Te) → Spec (S) are homeomorphisms. Hence, if S(e) is flat
over Te, then it is faithfully flat over Te.

It is easy to see that geometric regularity is preserved by localization of either
ring, and the issue of flatness is local on the primes of S(e) and their contractions to
Te. Localizing S(e) at a prime gives the same result as localizing at the contraction
of that prime to S. It follows that we may replace S by a typical localization
SQ and R by RP where P is the contraction of S ot R. Thus, we may assume
that (R, m, K) is local, and that R → S is a local homomorphism of local rings.
Evidently, S(e) and R(e) are local as well, and it follows from the remarks in the
first paragraph that the maps S → Te → S(e) are also local.

Let m(e) be the maximal ideal of R(e): of course, if we identify R(e) with the
ring R, then m(e) is identified with the maximal ideal m of R.

We shall now prove that A = Te → S(e) = B is flat using the local criterion
for flatness, taking I = m(e)Te. Note that since R → S is flat, so is R(e) →
R(e) ⊗R S = Te. Therefore, m(e)Te ∼= m(e) ⊗R S. The expansion of I to B = S(e)

may be identified with m(e)S(e), and since R(e) → S(e) as a map of rings is the
same as R → S, we have that S(e) is flat over R(e), and we may identify m(e)S(e)

with m(e) ⊗R(e) S(e).
There are two things to check. One is that B/I is flat over A/I, which says

that S(e)/(m(e)⊗R(e) S(e)) is flat over (R(e)⊗RS)/(m(e)⊗RS). The former may be
identified with (S/mS)(e), and the latter with K(e)⊗K (S/mS), since R(e)/m(e) may
be identified with K(e). Since R is F-finite, so is K, and it follows that K(e) ∼= K1/q

is a finite purely inseparable extension of K. Since the fiber K → K⊗R S = S/mS
is geometrically regular, we have that K(e)⊗R (S/mS) ∼= K(e)⊗K (S/mS) is regular
and, in particular, reduced. Since it is purely inseparable over the regular local ring
S/mS we see that it can be identified with

K(e) ⊗K (S/mS) ∼= (S/mS)[K1/q] ⊆ (S/mS)1/q,

(note that F e is injective) and (S/mS)[K1/q] is a local ring. Hence, it is a regular
local ring.

We have as well that (S/mS)(e) ∼= (S/mS)1/q is regular, since S/mS is, and is
a module-finite extension of (S/mS)[K1/q]. Thus, B/IB = (S/mS)1/q is module-
finite local and Cohen-Macaulay over A/IA = (S/mS)[K1/q], which is regular local.
By the Theorem 1.11 B/IB is free over A/I, and therefore flat.

Finally, we need to check that I ⊗A B � IB is an isomorphism, and this the
map

φ : (m(e) ⊗R S)⊗R(e)⊗RS S
(e) � m(e) ⊗R(e) S(e).

The map takes (u⊗ s)⊗v to u⊗ (sv). We prove that φ is injective by showing that
it has an inverse. There is an R(e)-bilinear map

m(e) × S(e) → (m(e) ⊗R S)⊗R(e)⊗RS S
(e)

that sends (u, v) 7→ (u⊗ 1)⊗ v. This induces a map

ψ : m(e) ⊗R(e) S(e) → (m(e) ⊗R S)⊗R(e)⊗RS S
(e)
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and it is straightforward to see that ψ ◦ φ sends

(u⊗ s)⊗ v 7→ (u⊗ 1)⊗ (sv) = (u⊗ s)⊗ v,
and that φ ◦ ψ sends u⊗ v to itself. �

Note that if a Noetherian ring R is reduced and R → S is flat with reduced
fibers over the minimal primes of R, then S is reduced. (Because nonzerodivisors
in R are nonzerodivisors on S, we can replace R by its total quotient ring, which
is a product of fields, and S becomes the product of the fibers over the minimal
primes of R.) Hence, if R→ S is flat with geometrically regular (or even reduced)
fibers and R is reduced, so is S. This is used several times in the sequel.

Theorem 11.7. If R → S is a flat map of F-finite rings of characteristic p
with geometrically regular fibers and R is strongly F-regular then so is S.

Proof. We can choose c ∈ R ◦ such that Rc is regular, and then we know that
there is an R-linear map θ : R1/q → R sending c1/q 7→ 1. Now Rc → Sc is flat with
regular fibers and Rc is regular, so that Sc is regular as well. By Theorem 10.8,
it will suffice to show that there is an S-linear map S1/q → S such that c1/q 7→ 1.
Let θ′ = θ ⊗R idS : R1/q ⊗R S → S, so that θ′ is an S-linear map such that
θ′(c1/q ⊗ 1) = 1. By Corollary 11.2, the inclusion R1/q ⊗R S → S1/q, which takes
c1/q ⊗ 1 to c1/q, has a splitting α : S1/q → R1/q ⊗R S that is linear over R1/q ⊗R S.
Hence, α is also S-linear, and θ′◦α is the required S-linear map from S1/q to S. �

We also can improve our result on the existence of big test elements now.

Theorem 11.8. Let R be a reduced F-finite ring of characteristic p and let
c ∈ R ◦ be such that Rc is strongly F-regular. Also assume that there is an R-linear
map R1/p → R that sends 1 to c. If S is F-finite and flat over R with geometrically
regular fibers, then the image of c3 in S is a big test element for S. In particular,

for every element c as above, c3 is a completely stable big test element. Hence, every

element c of R ◦ such that Rc is strongly F-regular has a power that is a completely
stable big test element, and remains a completely stable big test element after every
geometrically regular base change to an F-finite ring.

Proof. By Theorem 10.8, to prove the result asserted in the first paragraph it
suffices to show that the image of c in S has the same properties: because the map
is flat, the image is in S ◦, and so it suffices to show that Sc is strongly F-regular
and that there is an S-linear map S1/p → S such that the value on 1 is the image of
c in S. But the map Rc → Sc is flat, Rc is strongly F-regular, and the fibers are a
subset of the fibers of the map R→ S corresponding to primes of R not containing
c. Hence, the fibers are geometrically regular, and so we can conclude that Sc is
strongly F-regular. We have an R-linear map R1/p → R that sends 1 7→ c. We
may apply ⊗R idS to get a map R1/p ⊗R S → S sending 1 to the image of c,
and then compose with a splitting of the inclusion R1/p ⊗R S → S1/p to get the
required map.

The statement of the second paragraph now follows because a localization map
is geometrically regular, and F-finite rings are excellent, so that the map from a
local ring to its completion is geometrically regular as well.

To prove the third statement note that whenever Rc is strongly F-regular,
there is a map R1/p → R whose value on 1 is a power of c: this is a consequence of
Lemma 10.9 �
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12. Lecture 12

12.1. Mapping cones. Let B• and A• be complexes of R-modules with dif-
ferentials δ• and d•, respectively. We assume that they are indexed by Z, although
in the current application that we have in mind they will be left complexes, i.e., all
of the negative terms will be zero. Let φ• be a map of complexes, so that for every
n we have φn : Bn → An, and all the squares

An
dn−−−−→ An−1

φn

x φn−1

x
Bn

δn−−−−→ Bn−1

commute. The mapping cone Cφ•• of φ• is defined so that Cφ•n := An ⊕ Bn−1 with
the differential that is simply dn on An and is (−1)n−1φn−1⊕δn−1 on Bn−1. Thus,
under the differential in the mapping cone,

an ⊕ bn−1 7→
(
dn(an) + (−1)n−1φ(bn−1)

)
⊕ δn−1(bn−1).

If we apply the differential a second time, we obtain(
dn−1

(
dn(an)+(−1)n−1φn−1(bn−1)

)
+(−1)n−2φn−2δn−1(bn−1)

)
⊕δn−2δn−1(bn−1),

which is 0, and so we really do get a complex. We frequently omit the superscript
φ• , and simply write C• for Cφ•• .

Note that A• ⊆ C• is a subcomplex. The quotient complex is isomorphic with
B•, except that degrees are shifted so that the degree n term in the quotient is
Bn−1. This leads to a long exact sequence of homology:

· · · → Hn(A•)→ Hn(C•)→ Hn−1(B•)→ Hn−1(A•)→ · · · .

One immediate consequence of this long exact sequence is the following fact.

Proposition 12.1. Let φ• : B• → A• be a map of left complexes. Suppose
that A• and B• are acyclic, and that the induced map of augmentations H0(B•)→
H0(A•) (which may also be described as the induced map B0/δ1(B1)→ A0/d1(A1))
is injective. Then the mapping cone is an acyclic left complex, and its augmentation
is A0/

(
d1(A1) + φ0(B0)

)
. �

12.2. The Koszul complex. The Koszul complex K•(x1, . . . , xn; R) of a
sequence of elements x1, . . . , xn ∈ R on R may be defined as an iterated mapping
cone as follows. Let K•(x1; R) denote the left complex in which K1(x1; R) = Ru1,
a free R-module, K0(x1, R) = R, and the map is such that u1 7→ x1. I.e., we have

0→ Ru1
u1 7→x1−−−−→ R→ 0.

Then we may define K•(x1, . . . , xn; R) recursively as follows. If n > 1, multi-
plication by xn (in every degree) gives a map of complexes

K•(x1, . . . , xn−1; R)
xn·−−−−→ K•(x1, . . . , xn−1),

and we let K•(x1, . . . , xn; R) be the mapping cone of this map.
We may prove by induction that Kn(x1, . . . , xn; R) is a free complex of length n

in which the degree j term is isomorphic with the free R-module on
(
n
j

)
generators,

0 ≤ j ≤ n. Even more specifically, we show that we may identify Kj(x1, . . . , xn; R)
with the free module on generators uσ indexed by the j element subsets σ of
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{1, 2, . . . , n} in such a way that if σ = {i1, . . . , ij} with 1 ≤ i1 < · · · < ij ≤ n,
then

duσ =

j∑
t=1

(−1)t−1xituσ−{it}.

We shall use the alternative notation ui1i2···ij for uσ in this situation. We also
identify u∅, the generator of K0(x1, . . . , xn; R), with 1 ∈ R.

To carry out the inductive step, we assume that A• = K•(x1, . . . , xn−1; R) has
the specified form. We think of this complex as the target of the map multiplication
by xn, and index its generators by the subsets of {1, 2, . . . , n− 1}. This complex
will be a subcomplex of K•(x1, . . . , xn; R). We index the generators of the complex
B•, which will be the domain for the map given by multiplication by xn, and
which is also isomorphic to K•(x1, . . . , xn−1;R), by using the free generator uσ∪{n}
to correspond to uσ. In this way, it is clear that K•(x1, . . . , xn; R) is free, and
we have indexed its generators in degree j precisely by the j element subsets of
{1, 2, . . . , n}. It is straightforward to check that the differential is as described
above.

12.3. Koszul homology. We define the i th Koszul homology module

Hi(x1, . . . , xn; M)

of M with respect to x1, . . . , xn as the i th homology module Hi

(
K•(x1, . . . , xn; M)

of the Koszul complex.
We note the following properties of Koszul homology.

Proposition 12.2. Let R be a ring and x = x1, . . . , xn ∈ R. Let I = (x)R.
Let M be an R-module.

(a) Hi(x; M) = 0 if i < 0 or if i > n.
(b) H0(x; M) ∼= M/IM .
(c) Hn(x; M) = AnnMI.
(d) AnnRM kills every Hi(x1, . . . , xn; M).
(e) If M is Noetherian, so is its Koszul homology Hi(x; M).
(f) For every i, Hi(x; ) is a covariant functor from R-modules to R-modules.
(g) If

0→M ′ →M →M ′′ → 0

is a short exact sequence of R-modules, there is a long exact sequence of
Koszul homology

· · · → Hi(x; M ′)→ Hi(x; M)→ Hi(x; M ′′)→ Hi−1(x; M ′)→ · · · .

(h) If x1, . . . , xn is a possibly improper regular sequence on M , then Hi(x; M)
= 0, i ≥ 1.

Proof. Part (a) is immediate from the definition. Part (b) follows from the
fact that last map in the Koszul complex from K1(x; M) → K0(x; M) may be
identified with the map Mn →M such that (v1, . . . , vn) 7→ x1v+ · · ·+ xnvn. Part
(c) follows from the fact that the map Kn(x; M)→ Kn−1(x; M) may be identified
with the map M →Mn such that v 7→ (x1v, −x2v, · · · , (−1)n−1xnv).

Parts (d) and (e) are clear, since every term in the Koszul complex is itself a
direct sum of copies of M .
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To prove (f), note that if we are given a map M → M ′, there is an induced
map of complexes

K•(x; R)⊗M → K•(x; R)⊗M ′.

This map induces a map Hi(x; M) → Hix; M ′). Checking that this construction
gives a functor is straightforward.

For part (g), we note that

(∗) 0→ K•(x; R)⊗RM ′ → K•(x; R)⊗RM → K•(x; R)⊗RM ′′ → 0

is a short exact sequence of complexes, because each Kj(x; R) is R-free, so that
the functor Kj(x; R) ⊗R is exact. The long exact sequence is simply the result
of applying the snake lemma to (∗). (This sequence can also be constructed by
interpreting Koszul homology as a special case of Tor: we return to this point
later.)

Finally, part (h) is immediate by induction from the iterative construction of
the Koszul complex as a mapping cone and the Proposition 12.1. The map of
augmentations is the map given by multiplication by xn from M/(x1, . . . , xn−1)M
to itself, which is injective because x1, . . . , xn is a possibly improper regular se-
quence. �

Corollary 12.3. Let x = x1, . . . , xn be a regular sequence on R and let I =
(x)R. Then R/I has a finite free resolution of length n over R, and does not have
any projective resolution of length shorter than n. Moreover, for every R-module
M ,

TorRi (R/I, M) ∼= Hi(x; M).

Proof. By part (f) of the preceding Proposition, K•(x; R) is acyclic. Since
this is a free complex of finitely generated free modules whose augmentation is R/I,
we see that R/I has the required resolution. Then, by definition of Tor, we may

calculate TorRi (R/I, M) as Hi

(
K•(x; R) ⊗RM

)
, which is precisely Hi(x; M). To

see that there is no shorter projective resolution of R/I, take M = R/I. Then

Torn(R/I, R/I) = Hn(x; R/I) = AnnR/II = R/I,

by part (c) of the preceding Proposition. If there were a shorter projective resolu-
tion, we would have Torn(R/I, R/I) = 0. �

We can define the Koszul complex of x1, . . . , xn ∈ R on an R-module M ,
which we denote K•(x1, . . . , xn; M), in two ways. One is simply as the complex
K•(x1, . . . , xn; R)⊗RM . The second is to let K•(x1;M) be the complex

0→ Ru1 ⊗RM →M → 0,

and then to let K•(x1, . . . , xn; M) be the mapping cone of multiplication by xn
mapping the complex K•(x1, . . . , xn−1; M) to itself, just as we did in the case M =
R. It is quite easy to verify that these two constructions give isomorphic results:
in fact, quite generally, ⊗RM commutes with the mapping cone construction on
maps of complexes of R-modules.
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12.4. Alternative description of the Koszul complex using exterior al-
gebra. We can also describe the Koszul complex as follows. Let x := x1, . . . , xn ∈
R. Let K1 := K1(x;R) be the free module Ru1 + · · ·+Run on n generators. Then

we may identify Ki(x;R) with
∧i

(K1) by letting uj1,...,ji correspond to uj1∧· · ·∧uji
when 1 ≤ j1 < j2 < · · · < ji ≤ n. Thus, the entire Koszul complex is the graded
associative skew-commutative algebra

∧
(K1). The skew-commutativity means that

if v has degree i and w has degree j, then u ∧ v = (−1)ijv ∧ u. It then turns out
that the formula

d(uj1 ∧ · · · ∧ uji) =

i∑
t=1

(−1)t−1xjtui1 ∧ · · · ∧ ujt−1 ∧ ujt+1 ∧ · · · ∧ uji

is correct whenever j1, . . . , ji are integers between 1 and n inclusive, regardless
of whether they are in order or whether there are repetitions. In fact, d is an
R-derivation on the exterior algebra in the sense that it is R-linear, and if v has
degree i, then

d(v ∧ w) = dv ∧ w + (−1)iv ∧ dw.
In fact, d is the unique way of extending the map K1 → R such that uj 7→ xj

to such a derivation on the exterior algebra.
Here is an application of this point of view. Let x = x1, . . . , xn and y =

y1, . . . , yn be two sets of generators for the same ideal. Let X and Y be 1 × n
row vectors with these as entries, and suppose that A is n × n matrix such that
XA = Y . One can choose such a matrix to be invertible if the yi are a permutation
of the xi or obtained from them by operations like multiplying a generator by a
unit or adding multiples of one generator to another. Then A induces a map of
Koszul complexes which is an isomorphism if A is invertible. To see this, note that
A is the matrix of map K1(y; R)→ K1(x; R) such that this diagram commutes:

K1(y;R)R
Y−−−−→ R −−−−→ 0

A

y yid

K1(y;R)R
X−−−−→ R −−−−→ 0

The map extends to a map of the entire Koszul complexes using
∧i

A : Ki(y; R) :
Ki(x; R) when Ki is defined using exterior algebra. The map is an isomorphism
when A is invertible. By tensoring with an R-module M we also have that A gives
a map K•(y; M)→ K•(x; M) which is an isomorphism when A is invertible.

Hence, A also induces maps of Koszul homology Hi(y;M) → Hi(x;M) when
which are isomorphisms when A is invertible. Thus, permuting the elements x does
not change the Koszul homology.

When R is local and x1, . . . , xn, y1, . . . , yn generate the same ideal, there is
always an invertible matrix A such thatXA = Y . Hence, in the local case, Hi(x;M)
does not depend on which generators one chooses for the ideal (x) if one does not
change the number of generators.

12.5. Independence of Koszul homology from the choice of base ring.
The following observation is immensely useful. Suppose that we have a ring ho-
momorphism R → S and an S-module M . By restriction of scalars, M is an
R-module. Let x = x1, . . . , xn ∈ R and let y = y1, . . . , yn be the images of the
xi in S. Note that the actions of xi and yi on M are the same for every i. This
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means that the complexes K•(x; M) and K•(y; M) are the same. In consequence,
Hj(x; M) ∼= Hj(y; M) for all j, as S-modules. Note that even if we treat M as an
R-module initially in calculating Hj(x; M), we can recover the S-module structure
on the Koszul homology from the S-module structure of M . For every s ∈ S, mul-
tiplication by s is an R-linear map from M to M , and since Hi(x; ) is a covariant
functor, we recover the action of s on Hi(x; M).

12.6. Koszul homology and Tor. Let R be a ring and let x = x1, . . . , xn ∈
R. Let M be an R-module. We have already seen that if x1, . . . , xn is a regular
sequence in R, then we may interpret Hi(x1, . . . , xn; M) as a Tor over R.

In general, we may interpret Hi(x; M) as a Tor over an auxiliary ring. Let A
be any ring such that R is an A-algebra. We may always take A = Z or A = R. If R
contains a field K, we may choose A = K. Let X = X1, . . . , Xn be indeterminates
over A, and map B = A[X1, . . . , Xn]→ R by sending Xj 7→ xj for all j. Then M
is also a B-module, as in the section above, and X1, . . . , Xn is a regular sequence
in B.

Hence:

Proposition 12.4. With notation as in the preceding paragraph,

Hi(x1, . . . , x;M) ∼= TorBj
(
B/(X)B, M

)
.

Corollary 12.5. Let x = x1, . . . , xn ∈ R, let I = (x)R, and let M be an
R-module. Then I kills Hi(x; M) for all i.

Proof. We use the idea of the discussion preceding the Proposition above,
taking A = R, so that with X = X1, . . . , Xn we have an R-algebra map B =
R[X]→ R such that Xi 7→ xi, 1 ≤ i ≤ n. Then

(∗) Hi(x; M) ∼= TorBi (B/(X)B, M).

When M is viewed as a B-module, every Xi − xi kiils M . But X kills B/(X)B,

and so for every i, both Xi − xi and Xi kill TorBi (B/(X)B, M). It follows that
every xi = Xi − (Xi − xi) kills it as well, and the result now follows from (∗). �

12.7. An application to the study of regular local rings. Let M be a
finitely generated R-module over a local ring (R, m, K). A minimal free resolution
of M may be constructed as follows. Let b0 be the least number of generators of
M , and begin by mapping Rb0 onto M using these generators. If

Rbi
αi−−−−→ · · · α1−−−−→ Rb0

α0−−−−→ M −−−−→ 0

has already been constructed, let bi+1 be the least number of generators of Zi =
Ker (αi), and construct αi+1 : Rbi+1 → Rbi by mapping the free generators of Rbi+1

to a minimal set of generators of Zi ⊆ Rbi . Think of the linear maps αi , i ≥ 1, as
given by matrices. Then it is easy to see that a free resolution for M is minimal if
and only if all of the matrices αi for i ≥ 1 have entries in m.

Discussion 12.6. Syzygies
When M is any R-module and we map a projective module P0 onto M , the

kernel is referrred to as a (first) module of syzygies of M , and denoted syz1M . We
make the convention syz0M = M . These modules are not unique. We then define,
recursively, and i + 1 st module of syzygies syzi+1(M) any syz1

(
syzi(M)

)
. Giving

a projective. resolution of M and giving successive modules of syzygies of M are
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essentially equivalent processes. When (R, m, K) is local and M is finitely gener-
ated, finitely generated projectives are free, and we may calculate may calculate
minimal modules of syzygies. A minimal choice of syz1M is obtained by mapping
a free module onto M so that a free basis for the free module maps to a minimal
set of generators of M . The ranks of the free modules in a minimal free resolution
are called the Betti numbers bi of M . Note that bi is the same as the least number
of generators of a minimal i th module of syzygies of M .

We then have the following:

Proposition 12.7. Let (R, m, K) be local, let M be a finitely generated R-
modules, and let

· · · −−−−→ Rbi
αi−−−−→ · · · −−−−→ Rb0 −−−−→ M −−−−→ 0

be a minimal resolution of M . Then for all i, TorRi (M, K) ∼= Kbi .

Proof. We may use the minimal resolution displayed to calculate the values
of Tor. We drop the augmentation M and apply K⊗R . Since all of the matrices
have entries in m, the maps are alll 0, and we have the complex

· · · 0−−−−→ Kbi 0−−−−→ · · · 0−−−−→ Kb0 0−−−−→ 0.

Since all the maps are zero, the result stated is immediate. �

Theorem 12.8 (Auslander-Buchsbaum). Let (R, m, K) be a regular local ring.
Then every finitely generated R-module has a finite projective resolution of length
at most n = dim (R).

Proof. Let x = x1, . . . , xn be a regular system of parameters for R. These
elements form a regular sequence. It follows that K = R/(x) has a free resolution
of length at most n. Hence, Tori(M, K) = 0 for all i > n and for every R-module
M .

Now let M be a finitely generated R-module, and let

· · · → Rbi → · · · → Rb1 → Rb0 → R→M → 0

be a minimal free resolution of M . For i > n, bi = 0 because Tori(M, K) = 0, and
so Rbi = 0 for i > n, as required. �

It is true that a local ring is regular if and only if its residue class field has finite
projective dimension: the converse part was proved by J.-P. Serre. The argument
may be found in the Lecture Notes of February 13 and 16, Math 615, Winter 2004.

It is an open question whether, if M is a module of finite length over a regular
local ring (R, m, K) of Krull dimension n, one has that

dimKTori(M, K) ≥
(
n

i

)
.

The numbers βi = dimKTorRi (M, K) are called the Betti numbers of M . If x =
x1, . . . , xn is a minimal set of generators of m, these may also be characterized as
the dimensions of the Koszul homology modules Hi(x; M). A third point of view
is that they give the ranks of the free modules in a minimal free resolution of M .

The binomial coefficients are the Betti numbers of K = R/m: they are the
ranks of the free modules in the Koszul complex resolution of K. The question
as to whether these are the smallest possible Betti numbers for an R-module was
raised by David Buchsbaum and David Eisenbud in the first reference listed below,
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and was reported by Harthshorne in a 1979 paper (again, see the list below) as a
question raised by Horrocks. The question is open in dimension 5 and greater. An
affirmative answer would imply that the sum of the Betti numbers is at least 2n:
this weaker form is also open in some cases but was proved when 2 is invertible
in the ring in [Wa17]. We refer the reader interested in learning more about this
problem to the following selected references: [BE77, Chan97, Char91, Du00,
EiHu92, EvGr85, Hart79, HRi05, HuUl87, Sant80] and [Wa17].

13. Lecture 13

13.1. More on mapping cones and Koszul complexes. Let φ• : B• → A•
be a map of complexes that is injective. We shall write d• for the differential on
A• and δ• for the differential on B•. Then we may form a quotient complex Q•
such that Qn = Bn/φn(An) for all n, and the differential on Q• is induced by the
differential on B•. Let C• be the mapping cone of φ•.

Proposition 13.1. With notation as in the preceding paragraph, Hn(C•) ∼=
Hn(Q•) for all n.

Proof. We may assume that every φn is an inclusion map. A cycle in Qn is
represented by an element z ∈ An whose boundary dnz is 0 in An−1/φn−1(Bn−1).
This means that dnz = φn−1(b) for some b ∈ Bn−1. (Once we have specified z there
is at most one choice of b, by the injectivity of φn−1.) The boundaries in Qn are
represented by the elements dn+1(An+1) + φn(B). Thus,

Hn(Q•) ∼=
d−1
n

(
φn−1(Bn−1)

)
dn+1(An+1) + φn(Bn)

.

A cycle in Cn is represented by a sum z ⊕ b′ such that(
dn(z) + (−1)n−1φn−1(b′)

)
⊕ δn−1(b′) = 0

Again, this element is uniquely determined by z, which must satisfy dn(z) ∈
φn−1(Bn−1). b′ is then uniquely determined as (−1)nb where b ∈ Bn−1 is such
that φn−1(b) = dn(z). Such an element b is automatically killed by δn−1, since

φn−2δn−1(b) = dn−1φn−1(b) = dn−1dn(z) = 0,

and φn−2 is injective. A boundary in Cn has the form(
dn+1(a) + (−1)nφn(bn)

)
⊕ δnbn.

This shows that

Hn(C•) ∼=
d−1
n

(
φn−1(Bn−1)

)
dn+1(An+1) + φn(Bn)

,

as required. �

Corollary 13.2. Let x = x1, . . . , xn ∈ R be elements such that xn is not a
zerodivisor on the R-module M . Let x− = x1, . . . , xn−1, i.e., the result of omitting
xn from the sequence. Then Hi(x; M) ∼= Hi(x

−; M/xnM) for all i.

Proof. We apply that preceding Proposition with A• = B• = K•(x−; M),
and φi given by multiplication by xn in every degree i. Since every term of
K•(x−; M) is a finite direct sum of copies of M , the maps φi are injective. The



88 Foundations of Tight Closure Theory

mapping cone, which is K•(x; M), therefore has the same homology as the quotient
complex, which may be identified with

K•(x−, M)⊗ (R/xnR) ∼= K•(x−; R)⊗RM ⊗R R/xnR ∼= K•(x−; R)⊗R (M/xnM)

which is K•(x−; M/xnM), and the result follows. �

We also observe:

Proposition 13.3. Let φ• : B• → A• be any map of complexes and let C• be
the mapping cone. In the long exact sequence

· · · → Hn(A•)→ Hn(C•)→ Hn−1(B•)
∂n−1−−−→ Hn−1(A•)→ · · ·

the connecting homomorphism ∂n−1 is induced by (−1)n−1φn−1.

Proof. We follow the prescription for constructing the connecting homomor-
phism. Let b ∈ Bn−1 be a cycle in Bn−1. We lift this cycle to an element of Cn that
maps to it: one such lifting is 0⊕ b (the choice of lifting does not affect the result).
We now apply the differential in the mapping cone C• to the lifting: this gives

(−1)n−1φn−1(b)⊕ δn−1(b) = (−1)n−1φn−1(b)⊕ 0,

since b was a cycle in Bn−1. Call the element on the right α. Finally, we choose an
element of An−1 that maps to α: this gives (−1)n−1φn−1(b), which represents the
value of ∂n−1([b]), as required. �

Corollary 13.4. Let x = x1, . . . , xn ∈ R be arbitrary elements. Let x− =
x1, . . . , xn−1, i.e., the result of omitting xn from the sequence. Let M be any R-
module. Then there are short exact sequences

0→ Hi(x
−; M)

xnHi(x−; M)
→ Hi(x; M)→ AnnHi−1(x−;M)xn → 0

for every integer i.

Proof. By Proposition 13.3, the long exact sequence for the homology of the
mapping cone of the map of complexes

K•(x−; M)
xn·−−→ K•(x−; M)

has the form

Hi(x
−; M)

(−1)ixn·−−−−−−→ Hi(x
−; M)→ Hi(x; M)→

Hi−1(x−; M)
(−1)i−1xn·−−−−−−−→ Hi−1(x−; M)→ · · ·

Since the maps given by multiplication by xn and by −xn have the same kernel and
cokernel, this sequence implies the existence of the short exact sequences specified
in the statement of the theorem. �
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13.2. Injective modules. In studying tight closure, it turns out to be im-
portant to understand how it behaves in certain injective modules. We therefore
will spend some effort on understanding injective modules.

If 0→M → N → Q→ 0 is an exact sequence of R-modules, we know that for
any R-module N the sequence

0→ HomR(Q, N)→ HomR(M, N)→ HomR(M, N)

is exact. An R-module E is called injective if, equivalently, (1) HomR( , E) is
an exact functor or (2) for any injection M ↪→ N , the map HomR(N, E) →
HomR(M, E) is surjective. In other words, every R-linear map from a submod-
ule M of N to E can be extended to a map of all of N to E.

Proposition 13.5. An R-module E is injective if and only if for every I ideal
I of R and R-linear map φ : I → E, φ extends to a map R→ E.

Proof. “Only if” is clear, since the condition stated is a particular case of the
definition of injective module when N = R and M = I. We need to see that the
condition is sufficient for injectivity. Let M ⊆ N and f : M → E be given. We
want to extend f to all of N . Define a partial ordering of maps of submodules M ′

of N to E as follows: g ≤ g′ means that the domain of g is contained in the domain
of g′ and that g is a restriction of g′ (thus, g and g′ agree on the smaller domain,
where they are both defined). The set of maps that are ≥ f (i.e., extensions of
f to a submodule M ′ ⊆ N with M ⊆ M ′) has the property that every chain has
an upper bound: given a chain of maps, the domains form a chain of submodules,
and we can define a map from the union to E by letting is value on an element of
the union be the value of any map in the chain that is defined on that element:
they all agree. It is easy to see that this gives an R-linear map that is an upper
bound for the chain of maps. By Zorn’s lemma, there is a maximal extension. Let
f ′ : M ′ → N be this maximal extension. If M ′ = N , we are done. Suppose not.
We shall obtain a contradiction by extending f ′ further.

If M ′ 6= N , choose x ∈ N −M ′. It will suffice to extend f ′ to M ′ + Rx. Let
I = {i ∈ R : ix ∈ M ′}, which is an ideal of R. Let φ : I → E be defined by
φ(i) = f ′(ix) for all i ∈ I. This makes sense since every ix ∈ M ′. By hypothesis,
we can choose an R-linear map ψ : R → E such that ψ(i) = φ(i) for all i ∈ I. We
have a map γ : M⊕R→ E defined by the rule γ(u⊕r) = f ′(u)+ψ(r). We also have
a surjection M ⊕R→M +Rx that sends u⊕r 7→ u+rx. We claim that γ kills the
kernel of this surjection, and therefore induces a map M ′ + Rx → E that extends
f ′. To see this, note that if u⊕r 7→ 0 the u = −rx, and then γ(u⊕r) = f ′(u)+ψ(r).
Since −u = rx, r ∈ I, and so ψ(r) = φ(rx) = f ′(−u) = −f ′(u), and the result
follows. �

Recall that a module E over a domain R is divisible if, equivalently,

(1) rE = E for all r ∈ R − {0} or (2) for all e ∈ E and r ∈ R − {0} there exists

e′ ∈ E such that re′ = e.

Corollary 13.6. Over a domain R, every injective module is divisible. Over
a principal ideal domain R, a module is injective if and only if it is divisible.

Proof. Consider the problem of extending a map of a principal ideal aR→ E
to all of R. If a = 0 the map is 0 and the 0 map can be used as the required
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extension. If a 6= 0, then since aR ∼= R is free on the generator a, the map to be
extended might take any value e ∈ E on a. To extend the map, we must specify the
value e′ of the extended map on 1 in such a way that the extended maps takes a to
e: the condition that e′ must satisfy is precisely that ae′ = e. Thus, E is divisible
if and only if every map of a principal ideal of R to E extends to a map of R to E.
The result is now obvious, considering that in a principal ideal domain every ideal
is principal. �

It is obvious that a homomorphic imag e of a divisible module is divisible. In
particular, W = Q/Z is divisible Z-module and therefore injective as a Z-module.
We shall use the fact that W is injective to construct many injective modules over
many other rings. We need several preliminary results.

First note that if C is any ring and V is any C-module, we have a map

M → HomC(HomC(M, V ), V )

for every R-module M . If u ∈M , this maps sends u to

θu ∈ HomC

(
HomC(M, V ), V

)
,

define by the rule that θu(f) = f(u) for all f ∈ HomC(M, V ).

Now let ∨ denote the contravariant exact functor HomZ( , W ), where W =
Q/Z as above. As noted in the preceding paragraph, for every Z-module A we have
a map A→ A∨∨, the double dual into W .

Lemma 13.7. With notation in the preceding paragraph, for every Z-module A,
A the homomorphism θA = θ : A→ A∨∨ is injective.

If A happens to be an R-module then the map A → A∨∨ is R-linear, and for
every R-linear map f : A1 → A2 we have a commutative diagram of R-linear maps

A∨∨1
f∨∨−−−−→ A∨∨2

θA1

x xθA2

A1 −−−−→
f

A2

Proof. Given a nonzero element a ∈ A, we must show that there exists f ∈
HomZ(A, W ) such that the image of f under θa, is not 0, i.e., such that f(a) 6= 0.
The Z-submodule D of A generated by a is either Z or else a nonzero finite cyclic
module, which will be isomorphic to Z/nZ for some n > 1. In either case, there
will exist a surjection D � Z/nZ for some n > 1, and Z/nZ embeds in W : it is
isomorphic to the span of the class of 1/n in Q/Z. Thus, we have a nonzero map
D →W , namely D � Z/nZ ↪→W . Since D ⊆ A and W is injective as a Z-module,
this map extends to a map of f : A→W . Evidently, f(a) 6= 0.

The verifications of the remaining statements are straightforward and are left
to the reader. �

Lemma 13.8. Let R be a C-algebra, let G be a flat R-module, and let W be an
injective C-module. Then HomC(G, W ) is an injective R-module.

Proof. Because of the natural isomorphism

HomR(M, HomC(G, W )) ∼= HomC(M ⊗R G, W )
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we may view the functor

HomR( , HomC(G, W ))

as the composition of two functors: ⊗R F followed by HomC( , W ). Since
G is R-flat, the first is exact, while since W is C-injective, the second is exact.
Therefore, the composition is exact. �

We can now put things together:

Theorem 13.9. Over every commutative ring R, every R-module embeds in
an injective R-module. In fact, this embedding can be achieved canonically, that is,
without making any arbitrary choices.

Proof. Let M be any R-module. In this construction, Z will play the role
of C above. We can map a free R-module F onto HomZ(M, W ), were W = Q/Z
is injective over Z. We can do this canonically, as in the construction of Tor, by
taking one free generator of F for every element of HomZ(M, W ). By Lemma 13.8
F∨ = HomZ(F, W ) is R-injective. Since we have a surjection F � M∨, we may
apply HomZ( , W ) to get an injection M∨∨ ↪→ F∨. But we have injection M ↪→
M∨∨, and so the composite M ↪→M∨∨ ↪→ F∨ embeds M in an injective R-module
canonically. �

While the embedding does not involve the axiom of choice, the proof that it is
an embedding and the proof that F∨ is injective do: both use that W is injective.
The argument for that used that divisible Z-modules are injective, and the proof of
that depended on the Proposition refIext, whose demonstration used Zorn’s lemma.
Note that if E ⊆M are R-modules and E is injective, then the identity map E → E

extends to a map from all of M to E that is the identity on E. This means that
E ⊆ M splits, and so M ∼= E ⊕R (M/E). This is dual to the fact a surjection
M � P , with P projective, splits.

14. Lecture 14

14.1. Essential extensions and injective hulls.

Definition 14.1. If R is a ring, a homomorphism of R-modules h : M → N is
called an essential extension if it is injective and the following equivalent conditions
hold:

(a) Every nonzero submodule of N has nonzero intersection with h(M).
(b) Every nonzero element of N has a nonzero multiple in h(M).
(c) If φ : N → Q is a homomorphism and φh is injective then φ is injective.

Proof. (a) and (b) are equivalent because a nonzero submodule of N will
always have a nonzero cyclic submodule (take the submodule generated by any
nonzero element). If (a) holds and Kerφ is not zero it will meet h(M) in a nonzero
module. On the other hand if (c) holds and W ⊆ N is any submodule, let φ : N →
N/W . If W is not zero, this map is not injective, and so φh is not injective, which
means that W meets h(M). �

Proposition 14.2. Let M , N , and Q be R-modules.

(a) If M ⊆ N ⊆ Q then M ⊆ Q is essential if and only if M ⊆ N and N ⊆ Q
are both essential.
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(b) If M ⊆ N and {Ni}i is a family of submodules of N each containing M
such that

⋃
iNi = N , then M ⊆ N is essential if and only if M ⊆ Ni is

essential for every i.
(c) The identity map on M is an essential extension.
(d) If M ⊆ N then there exists a maximal submodule N ′ of N such that

M ⊆ N ′ is essential.

Proof. (a), (b) and (c) are easy exercises. (d) is immediate from Zorn’s
lemma, since the union of a chain of submodules of N containing M each of which
is an essential extension of M is again an essential extension of M . �

Example 14.3. Let R be an integral domain. The fraction field of R is an
essential extension of R, as R-modules.

Example 14.4. Let (R,m,K) be a local ring and let N be an R-module such
that every element of N is killed by a power of m. Thus, every finitely generated
submodule of N has finite length. Let SocN , the socle of N , be AnnNm, the largest
submodule of N which may be viewed as a vector space over K. The Soc N ⊆ N
is an essential extension. To see this, let x ∈ N be given nonzero element and let t
be the largest integer such that mtx 6= (0). Then we can choose y ∈ mt such that
yx 6= 0. Since mt+1x = 0, my ⊆ mmtx = 0, and so y ∈ SocM . (Exercise: show
that if S ⊆ N is any submodule such that S ⊆ N is an essential extension, then
SocN ⊆ S.)

We leave it as an informal exercise to show that if Mi ⊆ Ni is essential, i = 1, 2,
then M1⊕M2 ⊆ N1⊕N2 is essential, and that the same holds for arbitrary (possibly
infinite) direct sums.

In the situation of Proposition 14.2, we shall say that N ′ is a maximal essential
extension of M within N . If M ⊆ N is an essential extension and N has no
proper essential extension we shall say that N is a maximal essential extension of
M . It is not clear that maximal essential extensions in the absolute sense exist.
However, they do exist: we shall deduce this from the fact that every module can
be embedded in an injective module.

Proposition 14.5. Let R be a ring.

(a) An R-module is injective if and only if it has no proper essential extension.
(b) If M is an R-module and M ⊆ E with E injective, then a maximal essen-

tial extension of M within E is an injective module and, hence, a direct
summand of E. Moreover, it is a maximal essential extension of M in an
absolute sense, since it has no proper essential extension.

(c) If M ⊆ E and M ⊆ E′ are two maximal essential extensions of M , then
there is a (non-canonical) isomorphism of E with E′ that is the identity
map on M .

Proof. (a) It is clear that an injective R-module E cannot have a proper
essential extension: if E ⊆ N then N ∼= E⊕E′, and nonzero elements of E′ cannot
have a nonzero multiple in E. It follows that E′ = 0. On the other hand, suppose
that M has no proper essential extension and embed M in an injective module E.
By Zorn’s lemma we can choose N ⊆ E maximal with respect to the property that
N ∩M = 0. Then M ⊆ E/N is essential, for if N ′/N were a nonzero submodule of
E/N that did not meet M then N ′ ⊆ E would be strictly larger than N and would



14. LECTURE 14 93

meet M in 0. Thus, M → E/N is an isomorphism, which implies that E = M+N .
Since M ∩N = 0, we have that E = M ⊕N , and so M is injective.

(b) Let E′ be a maximal essential extension of M within the injective module
E. We claim that E′ has no proper essential extension whatsoever, for if E′ ⊆ Q
were such an extension the inclusion E′ ⊆ E would extend to a map Q → E,
because E is injective. Moreover, the map Q → E would have to be injective,
because its restriction to E′ is injective and E′ ⊆ Q is essential. This would yield
a proper essential extension of E′ within E, a contradiction. By part (a), E′ is
injective, and the rest is obvious.

(c) Since E′ is injective the map M ⊆ E′ extends to a map φ : E → E′.
Since M ⊆ E is essential, φ is injective. Since E ∼= φ(E) ⊆ E′, φ(E) is injective
and so E′ = φ(E) ⊕ E′′. Since M ⊆ E′ is essential and M ⊆ φ(E), E′′ must be
zero. � �

If M → E is a maximal essential extension of M over R we shall also refer
to E is an injective hull or an injective envelope for M and write E = ER(M)
of E = E(M). Note that every R-module M has an injective hull, unique up to
non-canonical isomorphism. Note also that if M ⊆ E, where E is any injective,
then M has a maximal essential extension E0 within E that is actually a maximal
essential extension of M . Thus, M ⊆ E will factor M ⊆ E(M) ⊆ E, and then
E(M) will split off from E, so that we can think of E as E(M) ⊕ E′, where E′ is
some other injective.

As an informal exercise, show that there is an isomorphism E(M1 ⊕M2) ∼=
E(M1)⊕ E(M2). (The corresponding statement for infinite direct sums is false in
general, because a direct sum of injective modules need not be injective. However,
it is true if the ring is Noetherian.)

14.2. Cosyzygies. If M is a module, we refer to the cokernel of an embedding
M ↪→ E, where E is injective, as a first module of cosyzygies of M . Given 0 →
M → E0 → C1 → 0 exact, where E0 is injective, we can repeat the process: embed
C1 ↪→ E1 and then we get a cokernel C2, a second module of cosyzygies of M .
Recursively, we can define a j + 1 st module of cosyzygies to be a first module
of cosyzygies of a j th module of cosyzygies. We have the analogue of Schanuel’s
lemma on syzygies: given two n th modules of cosyzygies, Cn and C ′n, there are
injectives E and E′ such that Cn ⊕E ∼= Cn ⊕E′. The main point is to see this for
first modules of syzygies. But if we have

0→M
ι−−−−→ E

π−−−−→ C → 0

and

0→M
ι′−−−−→ E′

π′−−−−→ C ′ → 0

then we also have

0→M
ι⊕ι′−−−−→ E ⊕ E′ → C ′′ → 0.

The image of M does not meet E⊕0 ∼= E, and so E injects into C ′′. The quotient is
easily seen to be isomorphic with E′/Im (M) ∼= C ′, i.e., there is an exact sequence

0→ E → C ′′ → C ′ → 0,

and so C ′′ ∼= E ⊕ C ′. Similarly, C ′′ ∼= E′ ⊕ C, and so C ⊕ E′ ∼= C ′ ⊕ E.
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Constructing a sequence of modules of cosyzygies of M is equivalent to giving
a right injective resolution of M , i.e., a right complex E•, say

0→ E0 → E1 → E2 → · · · → En → · · · ,
such that all of the En are injective, n ≥ 0, and which is exact except possibly
at the 0 spot, while M ∼= H0(E•), which is Ker (E0 → E1). An n th module
of cosyzygies for M is recovered from the injective resolution for every n ≥ 1 as
Im (En−1 → En), or as Ker (En → En+1).

14.3. Projective dimension and injective dimension. We can define the
projective dimension (respectively, injective dimension pdRM (respectively, idRM)
of an R-module M as follows. If M = 0 it is −1. Otherwise, it is finite if and only if
M has a finite left projective (respectively, right injective) resolution, and it is the
length of the shortest such resolution. Then pdRM ≤ n (respectively, idRM ≤ n),
where n ≥ 0, if and only if M has a projective (respectively, injective) resolution of
length at most n. If M has no finite projectvive (respectively, injective) resolution
we define pdRM (respectively, idRM) to be +∞. We note that the following are
equivalent conditions on a nonzero module M and nonnegative integer n :

(1) M has a projective (respectively, injective) resolution of length at most n.
(2) Some n th module of syzygies (respectively, cosyzygies) of M is injective.
(3) Every n th module of syzygies (respectively, cosyzygies) of M is injective.

We know that over a regular local ring R, every finitely generated module has
projective dimension at most dim (R).

14.4. Minimal injective resolutions.

Discussion 14.6. Given an R-module M we can form an injective resolution
as follows: let E0 = E(M), let E1 = E(E0/ImM), let E2 = E(E1/ImE0), and, in
general, if

0→ E0 → E1 → · · · → Ei

has been constructed (with M = Ker (E0 → E1)), let Ei+1 = E(Ei/ImEi−1).
Note that we have Ei � Ei/(ImEi−1) ⊆ Ei+1 = E(Ei/ImEi−1) so that we get a
composite map Ei → Ei+1 whose kernel is ImEi−1. It is evident that this yields
an injective resolution of M .

We shall say that a given injective resolution

0→ E0 → · · · → Ei → · · ·
(with M = Ker (Eo → E1)) is a minimal injective resolution of M if M → E0 is an
injective hull for M and if for every i ≥ 0, Im (Ei → Ei+1) ⊆ Ei+1 is an injective
hull for Im (Ei → Ei+1). The discussion just above shows that minimal injective
resolutions exist. It is quite easy to see that any two minimal injective resolutions
for M are isomorphic as complexes.

15. Lecture 15

15.1. Depth and Ext. When R → S is a homomorphism of Noetherian
rings, N is a finitely generated R-module, and M is a finitely generated S-module,
the modules ExtjR(N, M) are finitely generated S-modules. One can see this by
taking a left resolution G• of N by finitely generated free R-modules, so that

ExtjR(N, M) = Hj
(
HomR(G•, M)

)
.
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Since each term of HomR(G•, M) is a finite direct sum of copies of M , the statement
follows.

If I is an ideal of R such that IM 6= M , then any regular sequence in I
on M can be extended to a maximal such sequence that is necessarily finite. To
see that we cannot have an infinite sequence x1, . . . , xn, . . . ∈ I that is a regular
sequence on M we may reason as follows. Because R is Noetherian, the ideals
Jn = (x1, . . . , xn)R must be eventually constant. Alternatively, we may argue
that because M is Noetherian over S, the submodules JnM must be eventually
constant. In either case, once JnM = Jn+1M we have that xn+1M ⊆ JnM , and
so the action of xn+1 on M/JnM is 0. Since Jn ⊆ I and IM 6= M , we have
that M/JnM 6= 0, and this is a contradiction, since xn+1 is supposed to be a
nonzerodivisor on M/JnM . We shall show that maximal regular sequences on M
in I all have the same length, which we will then define to be the depth of M on I.

The following result will be the basis for our treatment of depth.

Theorem 15.1. Let R→ S be a homomorphism of Noetherian rings, let I ⊆ R
be an ideal and let N be a finitely generated R-module with annihilator I. Let M
be a finitely generated S-module with annihilator J ⊆ S.

(a) The support of N ⊗R M is V(IS + J). Hence, N ⊗R M = 0 if and only
if IS + J = S. In particular, M = IM if and only if IS + J = S.

(b) If IM 6= M , then there are finite maximal regular sequences x1, . . . , xd
on M in I. For any such maximal regular sequence, ExtiR(N, M) = 0 if

i < d and ExtdR(N, M) 6= 0. In particular, these statements hold when
N = R/I. Hence, any two maximal regular sequences in I on M have the
same length.

(c) IM = M if and only if ExtiR(N, M) = 0 for all i. In particular, this
statement holds when N = R/I.

Proof. (a) N ⊗RM is clealy killed by J and by I. Since it is an S-module, it
is also killed by IS and so it is killed by IS + J . It follows that any prime in the
support must contain IS+J . Now suppose that Q ∈ Spec (S) is in V(IS+J), and
let P be the contraction of Q to R. It suffices to show that (N ⊗RM)Q 6= 0, and
so it suffices to show that NP ⊗RP MQ 6= 0. Since I ⊆ P , NP 6= 0 and NP /PNP is
a nonzero vector space over κ = RP /PRP : call it κs, where s ≥ 1. MQ maps onto
MQ/QMQ = λt, where λ = SQ/QSQ, is a field, t ≥ 1, and we have κ ↪→ λ. But
then we have

(N ⊗RM)Q ∼= NP ⊗RP MQ � κs ⊗RP λt ∼= κs ⊗κ λt ∼= (κ⊗κ λ)st ∼= λst 6= 0,

as required. The second statement in part (a) is now clear, and the third is the
special case where N = R/I.

Now assume thatM 6= IM , and choose any maximal regular sequence x1, . . . , xd ∈
I on M . We shall prove by induction on d that ExtiR(N, M) = 0 for i < d and that

ExtdR(N, M) 6= 0.
First suppose that d = 0. Let Q1, . . . , Qh be the associated primes of M in S.

Let Pj be the contraction of Qj to R for 1 ≤ j ≤ h. The fact that depth IM = 0
means that I consists entirely of zerodivisors on M , and so I maps into the union
of the Qj . This means that I is contained in the union of the Pj , and so I is
contained in one of the Pj : called it Pj0 = P . Choose u ∈ M whose annihilator
in S is Qj0 , and whose annihilator in R is therefore P . It will suffice to show
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that HomR(N, M) 6= 0, and therefore to show that its localization at P is not
0, i.e., that HomRP (NP ,MP ) 6= 0. Since P contains I = AnnRN , we have that
NP 6= 0. Therefore, by Nakayama’s lemma, we can conclude that NP /PNP 6= 0.
This module is then a nonzero finite dimensional vector space over κP = RP /PRP ,
and we have a surjection NP /PNP � κP and therefore a composite surjection
NP � κP . Consider the image of u ∈ M in MP . Since AnnRu = P , the image v
of u ∈MP is nonzero, and it is killed by P . Thus, AnnRP v = PRP , and it follows
that v generates a copy of κP in MP , i.e., we have an injection κP ↪→ MP . The
composite map NP � κP ↪→MP gives a nonzero map NP →MP , as required.

Finally, suppose that d > 0. Let x = x1, which is a nonzerodivisor on M . Note
that x2, . . . , xd ∈ I is a maximal regular sequence on M/xM . Since x ∈ I, we have
that x kills N . The short exact sequence 0→M →M →M/xM → 0 gives a long
exact sequence for Ext when we apply HomR(N, ). Because x kills N , it kills all
of the Ext modules in this sequence, and thus the maps induced by multiplication
by x are all 0. This implies that the long exact sequence breaks up into short exact
sequences

(∗j) 0→ ExtjR(N, M)→ ExtjR(N, M/xM)→ Extj+1
R (N, M)→ 0

We have from the induction hypothesis that the modules ExtjR(N, M/xM) = 0 for

j < d − 1, and the exact sequence above shows that ExtjR(N, M) = 0 for j < d.

Moreover, Extd−1
R (N, M/xM) 6= 0, and (∗d−1) shows that Extd−1

R (N, M/xM) is

isomorphic with ExtdR(N, M).
The final statement in part (b) follows because the least exponent j for which,

say, ExtjR(R/I, M) 6= 0 is independent of the choice of maximal regular sequence.
It remains to prove part (c). If IM 6= M , we can choose a maximal regular

sequence x1, . . . , xd on M in I, and then we know from part (b) that ExtdR(N, M) 6=
0. On the other hand, if IM = M , we know that IS + AnnRM = S from part (a),

and this ideal kills every ExtjR(N, M), so that all of the Ext modules vanish. �

If R→ S is a map of Noetherian rings, M is a finitely generated S-module, and
IM 6= M , we define depth IM , the depth of M on I, to be, equivalently, the length
of any maximal regular sequence in I on M , or inf{j ∈ Z : ExtjR(R/I, M) 6= 0}. If
IM = M , we define the depth of M on I as +∞, which is consistent with the Ext
characterization.

Note the following:

Corollary 15.2. With hypothesis as in the preceding Theorem, depth IM =
depth ISM . Moreover, if R′ is flat over R, e.g., a localization of R, then depth IR′R

′⊗R
M ≥ depth IM .

Proof. Choose a maximal regular sequence in I, say x1, . . . , xd. These ele-
ments map to a regular sequence in IS. We may replace M by M/(x1, . . . , xd)M .
We therefore reduce to showing that when depth IM = 0, it is also true that
depth ISM = 0 . But it was shown in the proof of the Theorem above that that
under the condition depth IM = 0 there is an element u ∈M whose annihilator is
an associated prime Q ∈ Spec (S) of M that contains IS. The second statement
follows from the fact that calculation of ExtR commutes with flat base change when
the first module is finitely generated over R. (One may also use the characterization
in terms of regular sequences.) �
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16. Lecture 16

16.1. The cohomological Koszul complex. Notice that if P is a finitely
generated projective module over a ring R, ∗ denotes the functor that sends
N 7→ HomR(N, R), and M is any module, then there is a natural isomorphism

HomR(P, M) ∼= P ∗ ⊗RM
such that the inverse map ηP is defined as follows: ηP is the linear map induced
by the R-bilinear map BP given by BP (g, u)(v) = g(v)u for g ∈ P ∗, u ∈ M , and
v ∈ P . It is easy to check that

(1) ηP⊕Q = ηP ⊕ ηQ and (2) that ηR is an isomorphism.

It follows at once that

(3) ηRn is an isomorphism for all n ∈ N.

For any finitely generated projective module P we can choose Q such that
P ⊕Q ∼= Rn, and then, since ηP ⊕ ηQ is an isomorphism, it follows that

(4) ηP is an isomorphism for every finitely generated projective module P .
If R is a ring, M an R-module, and x = x1, . . . , xn ∈ R, the cohomological

Koszul complex K•(x; M), is defined as

HomR

(
K•(x; R), M

)
,

and its cohomology, called Koszul cohomology, is denoted H•(x; M). The coho-
mological Koszul complex of R (and, it easily follows, of M) is isomorphic with
the homological Koszul complex numbered “backward,” but this is not quite ob-
vious: one needs to make sign changes on the obvious choices of bases to get the
isomorphism.

|
To see this, take the elements uj1, ...,ji with 1 ≤ j1 < · · · < ji ≤ n as a basis

for Ki = Ki(x; R). We continue to use the notation ∗ to indicate the functor
HomR( , R). We want to set up isomorphisms K∗n−i ∼= Ki that commute with the
differentials.

Note that there is a bijection between the two free bases for Ki and Kn−i as
follows: given 1 ≤ j1 < · · · < ji ≤ n, let k1, . . . , kn−i be the elements of the set

{1, 2, . . . , n} − {j1, . . . , ji}
arranged in increasing order, and let uj1, ...,ji correspond to uk1, ...,kn−i which we
shall also denote as vj1, ...,ji .

When a free R-module G has free basis b1, . . . , bt, this determines what is called
a dual basis b′1, . . . , b

′
t for G∗, where b′j is the map G→ R that sends bj to 1 and kills

the other elements in the free basis. Thus, K∗n−i has basis v′j1, ...,ji . However, when
we compute the value of the differential d∗n−i+1 on v′j1, ...,ji , while the coefficient of
v′h1, ...,hi−1

does turn out to be zero unless the elements h1 < · · · < hi−1 are included

among the ji, if the omitted element is jt then the coefficient of v′h1, ...,hi−1
is

d∗n−i+1(v′j1, ...,ji)(vh1, ...,hi−1
) = v′j1, ...,ji

(
dn−i+1(vh1, ...,hi−1

)
)
,

which is the coefficient of vj1, ...,ji in dn−i+1(vh1, ...,hi−1).

Note that the complement of {j1, . . . , ji} in {1, 2, . . . , n} is the same as the
complement of {h1, . . . , hi−1} in {1, 2, . . . , n}, except that one additional element,
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jt, is included in the latter. Thus, the coefficient needed is (−1)s−1xjt , where s− 1
is the number of elements in the complement of {h1, . . . , hi−1} that precede jt. The
signs don’t match what we get from the differential in K•(x; R): we need a factor
of (−1)(s−1)−(t−1) to correct (note that t−1 is the number of elements in j1, . . . , ji
that precede jt). This sign correction may be written as (−1)(s−1)+(t−1), and the
exponent is jt− 1, the total number of elements preceding jt in {1, 2, . . . , n}. This
sign implies that the signs will match the ones in the homological Koszul complex

if we replace every v′ji by (−1)Σv′ji , where Σ =
∑i
t=1(jt − 1). This completes the

proof. �

|

This duality enables us to compute Ext using Koszul homology, and, hence,
Tor in certain instances:

Theorem 16.1. Let x = x1, . . . , xn be a possibly improper regular sequence in
a ring R and let M be any R-module. Then

ExtiR(R/(x)R; M) ∼= Hi(x; M) ∼= Hn−i(x; M) ∼= TorRn−i(R/(x)R, M).

Proof. Because the Koszul complex on the xi is a free resolution of R/(x)R,
we may use it to calculate Extj(R/(x)R, M): this yields the leftmost isomorphism.
The middle isomorphism now follows from the self-duality of the Koszul complex
proved above, and we have already proved that the Koszul homology yields Tor
when x is a regular sequence in R: this is simply because we may use again that
K•(x; R) is a free resolution of R/(x)R. �

We also note:

Proposition 16.2. With hypothesis as in the preceding Theorem, let x =
x1, . . . , xn be generators of I ⊆ R. If IM = M , then all of the Koszul homology
Hi(x; M) = 0. If IM 6= M , then Hn−i(x; M) = 0 if i < d, and Hn−d(x; M) 6= 0.

Proof. We may map a Noetherian ring B containing elements X1, . . . , Xn

that form a regular sequence in B to R so that Xi 7→ xi, 1 ≤ i ≤ n. For example,
we may take B = R[X1, . . . , Xn] and map to R using the R-algebra map that sends
Xi 7→ xi, 1 ≤ i ≤ n. Let J = (X1, . . . , Xn)B. Then depth IM = depth JM , and

the latter is determined by the least integer j such that ExtjB(B/(X)B, M) 6= 0.
The result is now immediate from the Theorem 16.1. �

16.2. Cohen-Macaulay rings revisited. A Noetherian local ring (R, m, K)
is Cohen-Macaulay (respectively, a finitely generated module M over R is small
Cohen-Macaulay or maximal Cohen-Macaulay) if the following three equivalent
conditions hold:

(CM1) Some system of parameters for R is a regular sequence on R.
(CM2) Every system of parameters for R is a regular sequence on R.
(CM3) The depth of R (respectively, M) on m is equal to the Krull dimension of

R.

More generally, if R is Noetherian but not necessarily local the following con-
ditions are equivalent, and define the notion of Cohen-Macaulay for rings that are
not necessarily local:

(CM4) Every local ring of R at a maximal ideal is Cohen-Macaulay.
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(CM5) Every local ring of R at a prime ideal is Cohen-Macaulay.
(CM6) For every proper ideal I of R, the height of I is equal to the depth of R

on I (which is the length of any maximal regular sequence in I).

We also note the following properties:

(CM7) If R is Cohen-Macaulay, then so is the polynomial ring R[x1, . . . , xn].
(CM8) If R is Cohen-Macaulay, then so is the formal power series ring ring

R[[x1, . . . , xn]].
(CM9) Regular rings are Cohen-Macaulay.

(CM10) If a local ring R is Cohen-Macaulay, then the associated primes of (0)
are minimal, and the quotient by any minimal prime has the same Krull
dimension as R.

(CM11) A local ring is Cohen-Macaulay if and only if its completion is Cohen-
Macaulay.

(CM12) If R is module-finite over a subring A that is regular, then R is Cohen-
Macaulay if and only if R is projective as an A-module. If A is local or a
polynomial ring over a field, R is Cohen-Macaulay if and only if it is free
as an A-module.

(CM13) If R Cohen-Macaulay, then R is universally catenary (i.e., in any algebra
S essentially of finite type over R, if P ⊆ Q are primes of S, all saturated
chains of primes joining P to Q have the same length).

(CM14) If R is Cohen-Macaulay and either local or finitely generated and N-graded
over a field, for every minimal prime of P of R, the Krull dimension of
R/P is the same as the Krull dimension of R.

(CM15) If R is Cohen-Macaulay and f1, . . . , fh are elements of R generating an
ideal I of height h, then every associated prime of I is minimal, and has
height h. Moreover, R/I is again Cohen-Macaulay. In particular, these
statements hold when R is regular.

Note that even in the polynomial ring K[x, y, z] the fact that three elements
generate an ideal of height three does not imply that these elements form a regular
sequence: xy, xz, 1 − x gives a counterexample. These three elements are not aa
regular sequencek, although they are in the order 1 − x, xy, xz. Thus, in general,
regular sequences cannot be permuted.

However:

Proposition 16.3. Let (R,m) be a local ring with f1, . . . , fn ∈ m or sup-
pose that R is an N-graded Noetherian ring and that f1, . . . , fn are homogeneous
elements of positiver degree. If f1, . . . , fn is a regular sequence on the finitely gen-
erated module M (which is Z-graded in the homogeneous case) , then so is every
permutation of f1, . . . , fn.

Proof. . Since transpositions of consecutive elements of the set of integers
from 1 to n generate all permutations, it suffices to show that we still have aa regular
sequence when we interchange fi, fi+1. By working modulo (f1, . . . , fi−1)M , we
reduce to the case where n = 1. We change notation and let f := f1, g := f2.
Assume f, g is a regular sequence, We claim that g is not a zerodivisor on M . To
see this, let N := AnnMg. Note that if u ∈ N , gu = 0 ∈ fN . Hence, u = fv. Thus,
g(fv) = 0, and since f is not a zerodivisor on M , gv = 0. Thus, v ∈ N , which
shows that N = fN . By Nakayama’s lemma (or its homogeneous form), N = 0.
Finally, suppose f is a zerodivisor mod gM , say fu = gw. Then gw ∈ fM implies
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w ∈ fM , say w = fz. Then gw = gfz = fu and f(u − gz) = 0. Since f is not a
zerodivisor on M , u = gz ∈ gM , as required. �

Note that every zero-dimensional Noetherian ring is Cohen-Macaulay, as is
every one-dimensional reduced ring (this includes one-dimensional domains). Once
one localizes at a height one prime, a parameter is not in any associated prime of
(0), since these are all minimal primes in the reduced case, and so a parameter is
not a zerodivisor.

However, K[[x, y]]/(x2) is Cohen-Macaulay even though it is not reduced. Being
reduced is sufficient for the Cohen-Macaulay property in the reduced case, but not
necessary.

Note that K[[x, y]/(x2, xy) is not Cohen-Macaulay, since the image of x kills
the maximal ideal. This one-dimensional ring has depth 0 on its maximal ideal.

17. Lecture 17

17.1. More examples connected with the Cohen-Macaulay property.
We recall the following characterization of normal Noetherian domains:

Theorem 17.1. A Noetherian domain R is normal if and only if both of the
following two conditions hold:

(1) Every associated prime of a nonzero nonunit element f ∈ R has height
one.

(2) If P is a height one prime ideal of R, then RP is a Noetherian discrete
valuation domain.

One can also show that if a Noetherian domain R is normal, then R =
⋂
{RP :

P ∈ Spec (R) and height (P ) = 1}.
The relevance to the theory of Cohen-Macaulay rings is this:

Corollary 17.2. If I is a proper ideal of height at least two in a normal
Noetherian domain R, then the depth of R on I is at least two. Hence, a normal
ring of dimension at most two is Cohen-Macaulay.

Proof. Choose any nonzero element f ∈ I. The associated primes of f , say

P1, . . . , Pk, are all height one. Hence, I is not contained in
⋃k
i=1 Pi, or else it would

be contained in one of the Pi and could not have height two. Choose g ∈ I not in
any Pi. Then g is a nonzerodivisor in R/fR, and so f, g is a regular sequence in
I. The final statement is now clear. �

The ring K[x2, x3, y] is Cohen-Macaaulay (one may also complete and use
double brackets): K[x2, x3] is a one-dimensional domain, and so Cohen-Macaulay,
and adjoining an indeterminant preserves the Cohen-Macaulay property. Thus,
normality is not necessary for a ring to be Cohen-Macaulay in dimension 2, even
though it is sufficient. Another instructive example is to take any Artin local ring,
and adjoin variables, either to form polynomial rings or formal power series rings.
The rings obtained are all Cohen-Macaulay, can have any specified dimension, even
though they have nonzero nilpotents. E.g., K[x, y, z]/(x2) or K[[x, y, z]]/(x2) is
two-dimensional, is not reduced, and has nonzeronilpotents.

The ring R := K[x2, x3, xy, y], its localization at (x2, x3, xy, y)R, and the com-
pletion of this localization are not Cohen-Macaulay. In the local ring, x2, y is a
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system of parameters but not a regular sequence since x3y = (xy)(x2) ∈ x2R but
x3 /∈ x2R.

This is also true forR := K[x4, x3y, xy3, y4], its localization at (x4, x3y, xy3, y)3R,
and the completion of this localization: these rings are not Cohen-Macaulay. In
the local ring, x4, y4 is a system of parameters but not a regular sequence, since
(x3y)2y4 = (xy3)2(x4) ∈ x2R but (x3y)2 /∈ x4R.

The Segre product of the homgeneous coordinate ring R := K[X,Y, Z]/(X3 +
Y 3 + Z3] of an elliptic curve, where K is a field of characteristic not 3, and a
polynomial ring K[s, t] in two variables is normal of dimension 3 but not Cohen-
Macaulay: see Example 1.13. Segre product

17.2. Properties of regular sequences. In the sequel we shall need to make
use of certain standard facts about regular sequences on a module: for convenience,
we collect these facts here. Many of the proofs can be made simpler in the case of
a regular sequence that is permutable, i.e., whose terms form a regular sequence in
every order. This hypothesis holds automatically for regular sequences on a finitely
generated module over a local ring. However, we shall give complete proofs here
for the general case, without assuming permutability. The following fact will be
needed repeatedly.

Lemma 17.3. Let R be a ring, M an R-module, and let x1, . . . , xn be a possibly
improper regular sequence on M . If u1, . . . , un ∈M are such that

n∑
j=1

xjuj = 0,

then every uj ∈ (x1, . . . , xn)M .

Proof. We use induction on n. The case where n = 1 is obvious. We have from
the definition of possibly improper regular sequence that un =

∑n−1
j=1 xjvj , with

v1, . . . , vn−1 ∈ M , and so
∑n−1
j=1 xj(uj + xnvj) = 0. By the induction hypothesis,

every uj + xnvj ∈ (x1, . . . , xn−1)M , from which the desired conclusion follows at
once �

Proposition 17.4. Let 0 = M0 ⊆M1 ⊆ · · · ⊆Mh = M be a finite filtration of
M . If x1, . . . , xn is a possibly improper regular sequence on every factor Mk+1/Mk,
0 ≤ k ≤ h− 1, then it is a possibly improper regular sequence on M . If, moreover,
it is a regular sequence on M/Mh−1, then it is a regular sequence on M .

Proof. If we know the result in the possibly improper case, the final statement
follows, for if I = (x1, . . . , xn)R and IM = M , then the same hold for every
homomorphic image of M , contradicting the hypothesis on M/Mh−1.

It remains to prove the result when x1, . . . , xn is a possibly improper regular
sequence on every factor. The case where h = 1 is obvious. We use induction on
h. Suppose that h = 2, so that we have a short exact sequence

0→M1 →M → N → 0

and x1, . . . , xn is a possibly regular sequence on M1 and N . Then x1 is a nonze-
rodivisor on M , for if x1u = 0, then x1 kills the image of u in N . But this shows
that the image of u in N must be 0, which means that u ∈ M1. But x1 is not a
zerodivisor on M1. It follows that

0→ xM1 → xM → xN → 0
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is also exact, since it is isomorphic with the original short exact sequence. Therefore,
we have a short exact sequence of quotients

0→M1/x1M1 →M/x1N →M/x1N → 0.

We may now apply the induction hypothesis to conclude that x2, . . . , xn is a possi-
bly improper regular sequence on M/x1M , and hence that x1, . . . , xn is a possibly
improper regular sequence on M .

We now carry through the induction on h. Suppose we know the result for
filtrations of length h− 1. We can conclude that x1, . . . , xn is a possibly improper
regular sequence on Mh−1, and we also have this for M/Mh−1. The result for M
now follows from the case where h = 2. �

Theorem 17.5. Let x1, . . . , xn ∈ R and let M be an R-module. Let t1, . . . , tn
be integers ≥ 1. Then x1, . . . , xn is a regular sequence (respectively, a possibly
improper regular sequence) on M iff xt11 , . . . , x

tn
n is a regular sequence on M (re-

spectively, a possibly improper regular sequence on M).

Proof. If IM = M then IkM = M for all k. If each of I and J has a
power in the other, it follows that IM = M iff JM = M . Thus, we will have a
proper regular sequence in one case iff we do in the other, once we have established
that we have a possibly improper regular sequence. In the sequel we deal with
possibly improper regular sequences, but for the rest of this proof we omit the
words “possibly improper.”

Suppose that x1, . . . , xn is a regular sequence on M . By induction on n, it
will suffice to show that xt11 , x2, . . . , xn is a regular sequence on M : we may pass
to x2, . . . , xn and M/xt1nM and then apply the induction hypothesis. It is clear
that xt11 is a nonzerodivisor when x1 is. Moreover, M/xt11 M has a finite filtration

by submodules xj1M/xt11 M with factors xj1M/xj+1
1 M ∼= M/x1M , 1 ≤ j ≤ t1 − 1.

Since x2, . . . , xn is a regular sequence on each factor, it is a regular sequence on
M/xt11 M by the preceding Proposition.

For the other implication, it will suffice to show that if x1, . . . , xj−1, x
t
j , xj+1, . . . , xn

is a regular sequence on M , then x1, . . . , xn is: we may change the exponents to 1
one at a time. The issue may be considered mod (x1, . . . , xj−1)M . Therefore, it
suffices to consider the case j = 1, and we need only show that if xt1, x2, . . . , xn is a
regular sequence on M then so is x1, . . . , xn. It is clear that if xt1 is a nonzerodivisor
then so is x1.

By induction on n we may assume that x1, . . . , xn−1 is a regular sequence on
M . We need to show that if xnu ∈ (x1, . . . , xn−1)M , then u ∈ (x1, x2, . . . , xn−1)M .
If we multiply by xt−1

1 , we find that

xn(xt−1
1 u) ∈ (xt1, x2, . . . , xn−1)M,

and so

xt−1
1 u = xt1v1 + x2v2 + · · ·+ xn−1vn−1,

i.e.,

xt−1
1 (u− x1v1)− x2v2 − · · · − xn−1vn−1 = 0.

By the induction hypothesis, x1, . . . , xn−1 is a regular sequence on M , and by the
first part, xt−1

1 , x2, . . . , xn−1 is a regular sequence on M . By the Lemma 17.3, we
have that

u− x1v1 ∈ (xt−1
1 , x2, . . . , xn−1)M,
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and so u ∈ (x1, . . . , xn−1)M , as required. �

Theorem 17.6. Let x1, . . . , xn be a regular sequence on the R-module M , and
let I denote the ideal (x1, . . . , xn)R. Let a1, . . . , an be nonnegative integers, and
suppose that u, u1, . . . , un are elements of M such that

(#) xa11 · · ·xann u =

n∑
j=1

x
aj+1
j uj .

Then u ∈ IM .

Proof. We use induction on the number of nonzero aj : we are done if all are

0. If ai > 0, let y be Πj 6=ix
aj
j . Rewrite (#) as

∑
j 6=i x

aj+1
j uj − x

aj
i (yu− xiui) = 0.

Since powers of the xj are again regular, Lemma 17.3 yields that yu − xiui ∈
xaii M + (x

aj+1
j : j 6= i)M and so yu ∈ xiM + (x

aj+1
j : j 6= i)M . Now ai = 0 in

the monomial y, and there is one fewer nonzero aj . The desired result now follows
from the induction hypothesis. �

If I is an ideal of a ring R, we can form the associated graded ring

grI(R) = R/I ⊕ I/I2 ⊕ · · · ⊕ Ik/Ik+1 ⊕ · · · ,
an N-graded ring whose k th graded piece is Ik/Ik+1. If f ∈ Ih represents an
element a ∈ Ih/Ih+1 = [grIR]h and g ∈ Ik represents an element b ∈ Ik/Ik+1 =
[grI(R)]k, then ab is the class of fg in Ih+k/Ih+k+1. Likewise, if M is an R-module,
we can form

grIM = M/IM ⊕ IM/I2M ⊕ · · · ⊕ IkM/Ik+1M ⊕ · · · .
This is an N-graded module over grI(R) in an obvious way: with f and a as
above, if u ∈ IkM represents an element z ∈ IkM/Ik+1M , then the class of fu in
Ih+kM/Ih+k+1M represents az.

If x1, . . . , xn ∈ R generate I, the classes [xi] ∈ I/I2 generate grI(R) as an
(R/I)-algebra. Let θ : (R/I)[X1, . . . , Xn] � grI(R) be the (R/I)-algebra map
such that Xi 7→ [xi]. This is a surjection of graded (R/I)-algebras. By restriction
of scalars, grI(M) is also a module over (R/I)[X1, . . . , Xn]. The (R/I)-linear map
M/IM ↪→ grIM then gives a map

θM : (R/I)[X1, . . . , Xn]⊗R/I M/IM → grI(M).

Note that θR = θ. If u ∈M represents [u] in M/IM and t1, . . . , tn are nonnegative
integers whose sum is k, then

Xt1
1 · · ·Xtn

n ⊗ [u] 7→ [xt11 · · ·xtnn u],

where the right hand side is to be interpreted in IkM/Ik+1M . Note that θM is
surjective.

Theorem 17.7. Let x1, . . . , xn be a regular sequence on the R-module M , and
suppose that I = (x1, . . . , xn)R. Let X1, . . . , Xn be indeterminates over the ring
R/I. Then

grI(M) ∼= (R/I)[X1, . . . , Xn]⊗R/I (M/IM)

in such a way that the action of [xi] ∈ I/I2 = [grI(R)]1 on grI(M) is the same as
multiplication by the variable Xi. In particular, if x1, . . . , xn is a regular sequence

in R, then grI(R) ∼= (R/I)[X1, . . . , Xn] in such a way that [xi] corresponds to Xi.
In other words, if x1, . . . , xn is a regular sequence on M (respectively, R), then the
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map θM (respectively, θ) discussed in the paragraph above is an isomorphism.

Proof. The issue is whether θM is injective. If not, there is a nontrivial
relation on the monomials in the elements [xi] with coefficients in M/IM , and
then there must be such a relation that is homogeneous of, say, degree k. Lifting
to M , we see that this means that there is an (M − IM)-linear combination of
mutually distinct monomials of degree k in x1, . . . , xn which is in Ik+1M . Choose
one monomial term in this relation: it will have the form xa11 · · ·xann u, where the
sum of the aj is k and u ∈ M − IM . The other monomials of degree k in the
elements x1, . . . , xn and the monomial generators of Ik+1 all have as a factor at
least one of the terms xa1+1

1 , . . . , xan+1
n . This yields that

(#) (Πjx
aj
j )u =

n∑
j=1

x
aj+1
j uj .

By the preceding Theorem, u ∈ IM , contradicting that u ∈M − IM . �

17.3. Cohen-Macaulay rings and lifting while preserving height.

Proposition 17.8. A Noetherian ring R is Cohen-Macaulay if and only if for
every proper ideal I of R, depth IR = height (I).

Proof. Suppose that R is Cohen-Macaulay, and let I be any ideal of R. We
use induction on height (I). If height (I) = 0, then I is contained in a minimal
prime of R, and so depth IR = 0. Now suppose that height (I) > 0. Each prime in
Ass (R) must be minimal: otherwise, we may localize at such a prime, which yields a
Cohen-Macaulay ring of positive dimension such that every element of its maximal
ideal is a zerodivisor, a contradiction. Since I is not contained in the union of the
minimal primes, I is not contained in the union of the primes in Ass (R). Choose an
element x1 ∈ I not in any minimal prime of R and, hence, not a zerodivisor on R.
It follows that R/x1R is Cohen-Macaulay, and the height of I drops exactly by one.
The result now follows from the induction hypothesis applied to I/x1R ∈ R/x1R.

For the converse, we may apply the hypothesis with I a given maximal ideal m
of height d. Then m contains a regular sequence of length d, say x1, . . . , xd. This
is preserved when we pass to Rm. The regular sequence remains regular in Rm,
and so must be a system of parameters for Rm: killing a nonzerodivisor drops the
dimension of a local ring by exactly 1. Hence, Rm is Cohen-Macaulay. �

We also note:

Proposition 17.9. Let R be a Noetherian ring and let x1, . . . , xd generate a
proper ideal I of height d. Then there exist elements y1, . . . , yd ∈ R such that for
every i, 1 ≤ i ≤ d, yi ∈ xi + (xi+1, . . . , xd)R, and for all i, 1 ≤ i ≤ d, y1, . . . , yi
generate an ideal of height i in R. Moreover, (y1, . . . , yd) = I, and yd = xd. If R

is Cohen-Macaulay, then y1, . . . , yd is a regular sequence.

Proof. We use induction on d. Note that by the coset form of the Lemma on
prime avoidance, we cannot have that x1 + (x2, . . . , xd)R is contained in the union
of the minimal primes of R, or else (x1, . . . , xd)R has height 0. This enables us to
pick y1 = x1 + ∆1 with ∆1 ∈ (x2, . . . , xd)R such that y1 is not in any minimal
prime of R. In case R is Cohen-Macaulay, this implies that y1 is not a zerodivisor.
It is clear that (y1, x2, . . . , xd)R = I. The result now follows from the induction
hypothesis applied to the images of x2, . . . , xd in R/y1R. �
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Proposition 17.10. Let R be a Noetherian ring, let p be a minimal prime
of R, and let x1, . . . , xd be elements of R such that (x1, . . . , xi)(R/p) has height
i, 1 ≤ i ≤ d. Then there are elements δ1, . . . , δd ∈ p such that if yi = xi + δi,
1 ≤ i ≤ d, then (y1, . . . , yi)R has height i, 1 ≤ i ≤ d.

Proof. We construct the δi recursively. Suppose that δ1, . . . , δt have already
been chosen: t may be 0. If t < d, we cannot have that xt+1 + p is contained in
the union of the minimal primes of (y1, . . . , yt). If that were the case, by the coset
form of prime avoidance we would have that xt+1R + p ⊆ Q for one such minimal
prime Q. Then Q has height at most t, but modulo p all of x1, . . . , xt+1 are in Q,
so that height (Q/p) ≥ t+ 1, a contradiction. �

The following result will be useful in proving the colon-capturing property for
tight closure.

Lemma 17.11. Let P be a prime ideal of height h in a Cohen-Macaulay ring S.
Let x1, . . . , xk+1 be elements of R = S/P such that (x1, . . . , xk)R has height k in R
while (x1, . . . , xk+1)R has height k+1. Then we can choose elements y1, . . . , yh ∈ P
and z1, . . . , zk+1 ∈ S such that:

(1) y1, . . . , yh, z1, . . . , zk+1 is a regular sequence in S.
(2) The images of z1, . . . , zk in R generate the ideal (x1, . . . , xk)R.
(3) The image of zk+1 in R is xk+1.

Proof. By the first Proposition 17.9, we may assume without loss of gener-
ality that x1, . . . , xi generate an ideal of height i in R, 1 ≤ i ≤ k. We also know
this for i = k + 1. Choose zi arbitrarily such that zi maps to xi, 1 ≤ i ≤ k + 1.
Choose a regular sequence y1, . . . , yh of length h in P . Then P is a minimal
prime of (y1, . . . , yh)S. By Proposition 17.10 applied to the images of the of the
zi in S/(y1, . . . , yh)S with p = P/(y1, . . . , yh)S, we may alter the zi by adding
elements of P so that the height of the image of the ideal generated by the im-
ages of z1, . . . , zi in S/(y1, . . . , yh) is i, 1 ≤ i ≤ k + 1. Since S/(y1, . . . , yh)S
is again Cohen-Macaulay, it follows from Proposition 17.9 that the images of the
z1, . . . , zk+1 modulo (y1, . . . , yh)S form a regular sequence. But this means that
y1, . . . , yh, z1, . . . , zk+1 is a regular sequence. �

18. Lecture 18

18.1. Colon-capturing. We can now prove a result on the colon-capturing
property of tight closure.

Theorem 18.1 (colon-capturing). Let R be a reduced Noetherian ring of char-
acteristic p that is a homomorphic image of a Cohen-Macaulay ring. Let x1, . . . , xk+1

be elements of R. Let It denote the ideal (x1, . . . , xt)R, 0 ≤ t ≤ k + 1. Suppose
that the image of the ideal Ik has height k modulo every minimal prime of R, and
that the image of the ideal Ik+1R has height k + 1 modulo every minimal prime of
R. Then:

(a) Ik :R xk+1 ⊆ I∗k .
(b) If R has a test element, I∗k :R xk+1 ⊆ I∗k , i.e., xk+1 is not a zerodivisor

on R/I∗k .

Proof. To prove part (a), note that it suffices to prove the result working in
turn modulo each of the finitely many minimal primes of R. We may therefore
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assume that R is a domain. We can consequently write R = S/P , where S is
Cohen-Macaulay. Let h be the height of P . Then we can choose y1, . . . , yh ∈
P and z1, . . . , zk+1 in S as in the conclusion of the Lemma just above, i.e., so
y1, . . . , yh, z1, . . . , zk+1 is a regular sequence in S, and so that we may replace
x1, . . . , xk+1 by the images of the zi in R. Since P has height h, it is a minimal
prime of J = (y1, . . . , yh)S, and so if we localize at S − P , we have that P is
nilpotent modulo J . Hence, for each generator gi of P we can choose ci ∈ S − P
and an exponent of the form qi = pei such that cig

qi
i ∈ J . It follows that if c ∈ S−P

is the product of the ci and q0 is the maximum of the qi, then cP [q0] ⊆ J .
Now suppose that we have a relation

rxk+1 = r1x1 + · · ·+ rkxk

in R. Then we can lift r, r1, . . . , rk to elements s, s1, . . . , sk ∈ S such that

szk+1 = s1z1 + · · ·+ skzk + v,

where v ∈ P . Then for all q ≥ q0 we may raise both sides to the q th power and
multiply by c to obtain

csqzqk+1 = csq1z
q
1 + · · ·+ csqkz

q
k + cvq;

moreover, cvq ∈ (y1, . . . , yh). Therefore

csqzqk+1 ∈ (zq1 , . . . , z
q
k, y1, . . . , yh)S.

Since y1, . . . , yh, z
q
1 , . . . , z

q
k+1 is a regular sequence in S, we have that

csq ∈ (zq1 , . . . , z
q
k)S + (y1, . . . , yh)S.

Let c ∈ R ◦ be the image of c. Then, working modulo P ⊇ (y1, . . . , yh)R, we have

crq ∈ (x1, . . . , xk)[q]

for all q ≥ q0, and so r ∈ (x1, . . . , xk)∗ in R, as required. This completes the
argument for part (a).

It remains to prove part (b). Suppose that R has a test element d ∈ R ◦, that
r ∈ R, and that rxk+1 ∈ I∗k . Then there exists c ∈ R ◦ such that c(rxk+1)q ∈ (I∗k)[q]

for all q � 0. Note that (I∗k)[q] ⊆ (I
[q]
k )∗, so that crqxqk+1 ∈ (I

[q]
k )∗, and dcrqxqk+1 ∈

I
[q]
k . From part (a), it follows that dcrq ∈ (I

[q]
k )∗ for all q � 0, and so d2crq ∈ I [q]

k

for all q � 0. But then r ∈ I∗k , as required. �

Corollary 18.2. Let R be a Noetherian ring of characteristic p that is a
homomorphic image of a Cohen-Macaulay ring, and suppose that R is weakly F-
regular. Then R is Cohen-Macaulay.

Proof. Consider a local ring of R at a maximal ideal. Then this local ring
remains weakly F-regular, and is normal. Therefore, we may assume that R is a
local domain. Let x1, . . . , xn be a system of parameters. Then for every k < n,
(x1, . . . , xk) :R xk+1 ⊆ (x1, . . . , xk)∗ = (x1, . . . , xk), since (x1, . . . , xk) is tightly
closed. �
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18.2. Maps of quotients by regular sequences. Let x = x1, . . . , xn and
y = y1, . . . , yn be two regular sequences in R such that J = (y1, . . . , yn)R ⊆
(x1, . . . , xn)R = I. It is obvious that there is a surjection R/J � R/I. It is far
less obvious, but very useful, that there is an injection R/I → R/J .

Theorem 18.3. Let x1, . . . , xn and y1, . . . , yn be two regular sequences on a
Noetherian module M over a Noetherian ring R. Suppose that

J = (y1, . . . , yn)R ⊆ (x1, . . . , xn)R = I.

Choose elements aij ∈ R such that for all j, yj =
∑n
i=1 aijxi. Let A be the matrix(

aij
)
, so that we have a matrix equation

(y1 . . . yn) = (x1 . . . xn)A.

Let D = det(A). Then DI ⊆ J , and the map M/IM → M/JM induced by
multiplication by D on the numerators in injective.

Proof. Let B be the classical adjoint of A, so that BA = AB = DIn, where
In is the n× n identity matrix. Then

(y1 . . . yn)B = (x1 . . . xn)AB = (x1 . . . xn)D

shows that DI ⊆ J .
We now complete the proof in the case where x, y are regular sequences in R.

The surjection R/J � R/I lifts to a map of projective resolutions of these modules:
we can use any projective resolutions, but under our extra hypothesis, we can use
the two Koszul complexes K•(x; R) and K•(y; R). With these specific resolutions,
we can use the matrix A to give the lifting as far as degree 1:

K1(x; R)
(x1 ... xn)−−−−−−→ R −−−−→ R/(x1, . . . , xn) −−−−→ 0

A

x idR

x x
K1(y; R)

(y1 ... yn)−−−−−−→ R −−−−→ R/(y1, . . . , yn) −−−−→ 0

Here, we are using the usual bases for K1(x; R) and K1(y; R). It is easy to check
that if we use the maps

i∧
A : Ki(y; R)→ Ki(x; R)

for all i, we get a map of complexes. This means that the map

R ∼= Kn(y; R)→ Kn(x; R) ∼= R

is given by multiplication by D. It follows that the map induced by multiplication
by D gives the induced map

ExtnR(R/(x1, . . . , xd), M)→ Extn(R/(y1, . . . , yn), M).

We have already seen that these top Ext modules may be identified withM/(x1, . . . , x)M
and M/(y1, . . . , yn)M , respectively. This is a special case of the Theorem 16.1 in
the case where i = n. The results are the same as H0(x;M) ∼= M/(x)M and
H0(y;M) ∼= M/(y)M .

Consider the short exact sequence

0→ I/J → R/J → R/I → 0.
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The long exact sequence for Ext yields, in part,

Extn−1
R (I/J ;M)→ ExtnR(R/I; M)→ ExtnR(R/J ;M).

Since the depth of M on AnnR(I/J) ⊇ J is at least n, the leftmost term vanishes,
which proves the injectivity of the map on the right

It remains to prove the general case, when we do not know a priori that x,
y are regular sequences. The idea is to map a ring B to R containing elements

X := X1, . . . , Xn, Y := Y1, . . . , Yn. and n2 elements Uij , 1 ≤ i, j ≤ n such that

(1) X1, . . . , Xn and Y1, . . . , Yn are regular sequences in B.
(2) (Y1 . . . Yn) = (X1 . . . Xn)(Uij), so that (Y1, . . . , Yn)B ⊆ X1, . . . , Xn)B.
(3) Under the map B → R, X, Y and (Uij) map to x, y, and A, respectively.

There are many possible choices for the ring B, but we shall take B to be the
polynomial ring Z[X1, . . . , Xn, U11, . . . , Unn], where U := (Uij) is an n× n matrix
U of indeterminates, and define the Yj as the entries of (X1 . . . Xn)U . We then
map B to R so that every Xj 7→ xj and every Uij 7→ ai,j . It remains to show that
the Yj form a regular sequence in B. To see this, consider the n2 − n elements
Uij for i 6= j the elements Uii − Xi, and the Yi. By the permutability of regular
sequences in the positive homogeneous N-graded case, it suffices to show that these
are a regular sequence. This is clear for the first n2 − n elements, and the next n
elements (these n are indeterminates, up to linear automorphisms of the forms of
degree 1). But modulo these n2 elements, we obtain the ring Z[X1, . . . , Xn], and
the Yi map to the X2

i . �

Remark 18.4. We focus on the case where M = R: a similar comment
may be made in general. We simply want to emphasize that the identification
of ExtnR(R/I, R) with R/I is not canonical: it depends on the choice of generators
for I. But a different identification can only arise from multiplication by a unit of
R/I. A similar remark applies to the identification of ExtnR(R/J, R) with R/J .

Remark 18.5. The hypothesis that R and M be Noetherian is not really
needed. Even if the ring is not Noetherian, if the annihilator of a module N contains
a regular sequence x1, . . . , xd of length d on M , it is true that ExtiR(N, M) = 0
for i < d. If d ≥ 1, it is easy to see that any map N →M must be 0: any element
in the image of the map must be killed by x1, and AnnMx1 = 0. The inductive
step in the argument is then the same as in the Noetherian case: consider the long
exact sequence for Ext arising when HomR(N, ) is applied to

0 −−−−→ M
x1·−−−−→ M −−−−→ M/x1M −−−−→ 0.

18.3. The type of a Cohen-Macaulay module over a local ring. Let
(R, m, K) be local and let M be a finitely generated nonzero R-module that is
Cohen-Macaulay, i.e., every system of parameters for R/I, where I = AnnRM , is
a regular sequence on M . (It is equivalent to assume that depthmM = dim (M).)
Recall that the socle of an R-module M is AnnMm ∼= HomR(K, M). It turns
out that for any maximal regular sequence x1, . . . , xd on M , the dimension as a
K-vector space of the socle in M/(x1, . . . , xd)M is independent of the choice of the
system of parameters. One way to see this is as follows:

Theorem 18.6. Let (R, m, K) and M be as above with M Cohen-Macaulay
of dimension d over R. Then for every maximal regular sequence x1, . . . , xd on M
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and for every i, 1 ≤ i ≤ d,

ExtdR(K, M) ∼= Extd−iR

(
K, M/(x1, . . . , xi)M

)
.

In particular, for every maximal regular sequence on M , the socle in M/(x1, . . . , xd)M

is isomorphic to ExtdR(K, M), and so its K-vector space dimension is independent
of the choice maximal regular sequence.

Proof. The statement in the second paragraph follows from the result of the
first paragraph in the case where i = d. By induction, the proof that

ExtdR(K, M) ∼= Extd−iR

(
K, M/(x1, . . . , xi)M

)
reduces at once to the case where i = 1. To see this, apply the long exact sequence
for Ext arising from the application of HomR(K, ) to the short exact sequence

0→M →M →M/x1M → 0.

Note that Extj(K, M) = 0 for j < d, since the depth of M on AnnRK = m is d,
and that Extj(K, M/x1M) = 0 for j < d− 1, similarly. Hence, we obtain, in part,

0 −−−−→ Extd−1
R (K, M/x1M) −−−−→ ExtdR(K, M)

x1·−−−−→ ExtdR(K, M).

Since x1 ∈ m kills K, the map on the right is 0, which gives the required isomor-
phism. �

Proposition 18.7. Let M 6= 0 be a Cohen-Macaulay module over a local
ring R. Let x1, . . . , xn and y1, . . . , yn be two systems of parameters on M with
(y1, . . . , yn)R ⊆ (x1, . . . , xn)R and let A =

(
aij
)

be a matrix of elements of R such
that (y1 . . . yn) = (x1 . . . xn)A. Let D = det(A). Then the map M/(x1, . . . , xn)M →
M/(y1, . . . , yn)M induced by multiplication by D on the numerators carries the so-
cle of M/(x1, . . . , xn)M isomorphically onto the socle of M/(y1, . . . , yn)M . In par-

ticular, if yi = xti, 1 ≤ i ≤ n, then the map induced by multiplication by xt−1
1 · · ·xt−1

n

carries the socle of the quotient module M/(x1, . . . , xn)M isomorphically onto the
socle of M/(xt1, . . . , x

t
n)M .

Proof. By the Theorem 18.3 multiplication by D gives an injection

M/(x1, . . . , xn)M ↪→M/(y1, . . . , yn)M

which must map the socle in the left hand module injectively into the socle in the
right hand module. Since, by the preceding Proposition, the two socles have the
same finite dimension as vector spaces over K, the map yields an isomorphism of
the two socles. The final statement follows because in the case of this specific pair
of systems of parameters, we may take A to be the diagonal matrix with diagonal
entries xt−1

1 , . . . , xt−1
n . �

18.4. F-rational rings.

Definition 18.8. F-rational rings. We shall say that a local ring (R, m, K) is
F-rational if it is a homomorphic image of a Cohen-Macaulay ring and every ideal
generated by a system of parameters is tightly closed.

We first note:

Theorem 18.9. An F-rational local ring is Cohen-Macaulay, and every ideal
generated by part of a system parameters is tightly closed. Hence, an F -rational
local ring is a normal domain.
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Proof. Let x1, . . . , xk be part of a system of parameters (it may be the empty
sequence) and let I = (x1, . . . , xk). Let x1, . . . , xn be a system of parameters for R,
and for every t ≥ 1 let Jt = (x1, . . . , xk, x

t
k+1, . . . , x

t
n)R. Then for all t, I ⊆ Jt and

Jt is tightly closed, so that I∗ ⊆ Jt and I∗ ⊆
⋂
t Jt = I, as required. In particular,

(0) and principal ideals generated by nonzerodivisors are tightly closed, so that R
is a normal domain, by the Theorem 6.9. In particular, R is equidimensional, and
by part (a) of the Theorem 18.1, we have that for every k, 0 ≤ k ≤ n− 1,

(x1, . . . , xk) :R xk+1 ⊆ (x1, . . . , xk)∗ = (x1, . . . , xk),

so that R is Cohen-Macaulay. �

Theorem 18.10. Let (R, m, K) be a reduced local ring of characteristic p. If
R is Cohen-Macaulay and the ideal I = (x1, . . . , xn) generated by one system of
parameters is tightly closed, then R is F-rational, i.e., every ideal generated by part
of a system of parameters is tightly closed.

Proof. Let It = (xt1, . . . , x
t
n)R. We first show that all of the ideals It are

tightly closed. If not, suppose that u ∈ (It)
∗− It. Since (It)

∗/It has finite length, u
has a nonzero multiple v that represents an element of the socle of I∗t /It, which is
contained in the socle of R/It. Thus, we might as well assume that u = v represents
an element of the socle in R/It. By the last statement of the Proposition 18.7, we
can choose z representing an element of the socle in R/I such that the class of v
mod I has the form [xt−1

1 · · ·xt−1
n z]. Then xt−1

1 · · ·xt−1
n z also represents an element

of I∗ − I. Hence, we can choose c ∈ R ◦ such that for all q � 0,

c(xt−1
1 · · ·xt−1

n z)q ∈ I [q]
t = Itq,

i.e., cxtq−q1 · · ·xtq−qn zq ∈ Itq, which implies that

czq ∈
(
(xq1)t, . . . , (xqn)t

)
:R (xq1)t−1 · · · (xqn)t−1.

By the Theorem 17.6 applied to the regular sequence xq1, . . . , x
q
n, the right hand

side is (xq1, . . . , x
q
n) = I [q], and so

czq ∈ I [q]

for all q � 0. This shows that z ∈ I∗ = I, contradicting the fact that z represents
a nonzero socle element in R/I.

Now consider any system of parameters y1, . . . , yn. For t� 0, (xt1, . . . , x
t
n)R ⊆

(y1, . . . , yn)R. Then there is an injection R/y1, . . . , yn)R ↪→ R/(xt1, . . . , x
t
n)R by

the Theorem increg. Since 0 is tightly closed in the latter, it is tightly closed in
R/(y1, . . . , yn)R, and so (y1, . . . , yn)R is tightly closed in R. �

We shall see soon that under mild conditions, if (R, m, K) is a local ring of
characteristic p and a single ideal generated by a system of parameters is tightly
closed, then R is F-rational: we can prove that R is Cohen-Macaulay even though
we are not assuming it.

19. Lecture 19

We now want to make precise the assertion at the end of the preceding lecture
to the effect that, under mild conditions on the local ring R, if one system of
parameters of R generates a tightly closed ideal then R is F-rational. We already
know that this is true when R is Cohen-Macaulay. The new point is that we do
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not need to assume that R is Cohen-Macaulay — we can prove it. However, we
need the strong form of colon-capturing, and so we assume the existence of a test
element. The following result will enable us to prove the result that we want.

Theorem 19.1. Let (R, m, K) be a reduced local ring of characteristic p, and
let x1, . . . , xn be a sequence of elements of m such that Ik = (x1, . . . , xk) has
height k modulo every minimal prime of R, 1 ≤ k ≤ n. Suppose that R has a test
element. If (x1, . . . , xn)R is tightly closed, then Ik is tightly closed, 0 ≤ k ≤ n, and
x1, . . . , xn is a regular sequence in R.

Proof. We first prove that every Ik is tightly closed, 0 ≤ k ≤ n, by reverse
induction on k. We are given that In is tightly closed. Now suppose that we know
that Ik+1 is tightly closed, where 0 ≤ k ≤ n− 1. We prove that Ik is tightly closed.
Let u ∈ I∗k be given. Since Ik ⊆ Ik+1, we have that I∗k ⊆ I∗k+1 = Ik+1 by hypothesis,,
and Ik+1 = Ik + xk+1R. Thus, u = v + xk+1w, where v ∈ Ik and w ∈ R. But then
xk+1w = u−v ∈ I∗k , since u ∈ I∗k and v ∈ Ik. Consequently, v ∈ I∗k :R xk+1. By part
(b) of the Theorem 18.1, we have that I∗k :R xk+1 = I∗k . That is, u ∈ Ik + xk+1I

∗
k .

Since u ∈ I∗k was arbitrary, we have shown that I∗k ⊆ Ik +xk+1I
∗
k , and the opposite

inclusion is obvious. Let N = I∗k/Ik. Then we have that xk+1N = N , and so N = 0
by Nakayama’s Lemma. But this says that I∗k = Ik, as required. The fact that the
xi form a regular sequence is then obvious fromTheorem 18.1 �

We therefore have:

Theorem 19.2. Let (R, m, K) be a reduced, equidimensional local ring that
is a homomorphic image of a Cohen-Macaulay ring. Suppose that R has a test
element. If the ideal generated by one system of parameters of R is tightly closed,
then R is F-rational. That is, R is Cohen-Macaulay and every ideal generated by
part of a system of parameters is tightly closed.

|

Theorem 19.3. Let R be an F-rational local ring. Then for every prime ideal
P of R, RP is F-rational.

Proof. Let P have height d. Since R is Cohen-Macaulay, there is a maxima
regular sequence x = x1, . . . , xd in P . Let I = (x)R. We know that I = I∗. It will
suffice to show that IRP is tightly closed in RP , since RP is Cohen-Macaulay and
the image of x is a system of parameters in RP . Let W be the complement of the
union of the minimal primes P1, . . . , Pk of I. These are the same as the associated
primes of I, so W consists of nonzerodivisors on I. Note that P is one of these
primes. We now show that IW−1R is tightly closed in W−1R. (We know that R
is a domain, so that we may think of R as contained in W−1R.) If not IW−1R is
not tightly closed in W−1R, after multiplying by units that are image of elements
of W , we may assume that we have an element f ∈ R\ I that is in the tight closure
of W−1I, so that for some nonzero c ∈ R we have cfq ∈W−1Iq] for all q � 0, and
this means that for all q � 0, we have wq ∈ W such that wqcf

q ∈ I [q]. Since I [q]

is generated by parameters and it has the same associated primes as I. Therefore,
w is not a zerodivisor on I [q], and so cfq ∈ I [q] for all q � 0. Hence f ∈ I∗ = I, a
contradiction. nd Since P is now maximal in W−1R and IW−1R is primary to P ,
we have that IRP is tightly closed in RP , by Lemma 6.4. �
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It is therefore natural to define a Noetherian ring R of characteristic p to be
F-rational if its localization at every maximal ideal (equivalently, at every prime
ideal) is F-rational.

|

19.1. Supplementary Problems II.

In all problems, R, S are Noetherian rings of characteristic p.

1. Suppose that (R,m,K) has a test element. Show that for every proper ideal
I ⊆ R,

I∗ =
⋂
n

(I +mn)∗.

2. Suppose that c is a completely stable test element in (R, m, K). Let I be

an m-primary ideal. Show that u ∈ I∗ if and only if u ∈ (IR̂)∗ in R̂.

3. Let R be a Noetherian domain of characteristic p > 0, and suppose that the
integral closure S of R in its fraction field is weakly F-regular. Prove that for every
ideal I of R, I∗ = IS ∩R. (This is the case in subrings of polynomial rings over a
field K generated over K by finitely many monomials.)

4. If R is a ring of characteristic p, define the Frobenius closure IF of I to be
the set of elements r ∈ R such that for some q = pe, rq ∈ I [q]. Suppose that c ∈ R ◦
has the property that for every maximal ideal m of R, there exists an integer Nm
such that cNm is a test element for Rm. Prove that for every ideal I of R, cI∗ ⊆ IF.

5. Let R ⊆ S be integral domains such that S is module-finite over R, and
suppose that S has a test element. Prove that R has a test element.

6. Let (R, m, K) be a local Gorenstein ring, and let x1, . . . , xd be a system of
parameters for R. Let y ∈ R generate the socle modulo (x1, . . . , xd). Suppose that
for every integer t ≥ 1, the ideal

(
xt1, . . . , x

t
d, (x1 · · ·xd)t−1y

)
R is tightly closed.

Prove that either R is weakly F-regular, or else that τ(R) = m.

20. Lecture 20

20.1. Capturing the contracted expansion from an integral extension.
Recall that if M is a module over a domain D, the torsion-free rank of M is

dimK(K ⊗D M).

We first note a preliminary result that comes up frequently:

Lemma 20.1. Let D be a domain with fraction field K, and let M be a finitely
generated torsion-free module over D. Then M can be embedded in a finitely gener-
ated free D-module Dh, where h is the torsion-free rank of M over D. In particular,
given any nonzero element u ∈ M , there is a D-linear map θ : M → D such that
θ(u) 6= 0.
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Proof. We can choose h elements b1, . . . , bh of M that are linearly indepen-
dent over K and, hence, over D. This gives an inclusion map

Db1 + · · ·+Dbh = Dh ↪→M.

Let u1, . . . , un generate M . Then each un is a linear combination of b1, . . . , bh
over K, and we may multiply by a common denominator ci ∈ D − {0} to see that
ciui ∈ Dh ⊆ M for 1 ≤ i ≤ n. Let c = c1 · · · cn. Then cui ∈ Dh for all i, and so
cM ⊆ Dh. But M ∼= cM via the map u 7→ cu, and so we have that f : M ↪→ Dh,
as required.

If u 6= 0, then f(u) = (d1, . . . , dh) has some coordinate not 0, say dj . Let πj
denote the j th coordinate projection Dh → D. Then we may take θ = π ◦ f . �

We also note:

Theorem 20.2. If R is a Noetherian domain of characteristic p and R ⊆ S,
where S is a solid R-algebra, then IS ∩ R ⊆ I∗. More generally, if G is any free
R-module and we think of G as a submodule of S ⊗R G, so that we may write
GS = S ⊗R G. Then for every submodule H ⊆ G, HS ∩G ⊆ H∗G.

Proof. We prove the more general result for H ⊆ G. Suppose α : S → R and
α(t) = c 6= 0. Let β : S → R by β(s) = α(st). Then β(1) = c. Note that β induces
an R-linear map γ : S ⊗ G → G by applying β to the coefficient of every element
in a free basis for G. Note that for h ∈ H, s ∈ S, γ(sh) = β(s)h.

If g ∈ HS, say g =
∑n
j=1 hjsj , where G ∈ G and the hj ∈ H, then for

all q we have gq · · · 1 =
∑n
j=1 s

q
jh
q
j . Apply γ to obtain cgq = β(1)gq = γ(gq) =

γ(sumn
j=1h

q
js
q
j) = sumn

j=1β(sqj)h
q
j ∈ H [q] and so g ∈ H∗G. �

Theorem 20.3. Let R be a Noetherian ring of prime characteristic p > 0.
Suppose that R ⊆ S is an integral extension, and that I is an ideal of R. Then
IS ∩R ⊆ I∗. Likewise, if H ∈ G where G is free over R, HS ∩G ⊆ H∗G.

Proof. Let g ∈ HS ∩ G. It suffices to show that the image of g is in H∗G
working modulo every minimal prime p of R in turn. Let q be a prime ideal of S
lying over p: we can choose such a prime q by the Lying Over Theorem. Then we
have R/p ↪→ S/q, and the image of g in H⊗RR/p is in H(S/q). We have therefore
reduced to the case where R and S are domains.

Since g ∈ HS, there exist h1, . . . , hn in H such that

g = s1h1 + · · ·+ snhn,

where the sj ∈ S. Hence, we may replace S by R[s1, . . . , sn] ⊆ S, and so assume
that S is module-finite over R. By the Lemma 20.1 S is solid as an R-algebra, and
the result now follows from Theorem 20.2. �

20.2. Gorenstein rings.

Definition 20.4. Gorenstein local rings A local ring (R, m, K) is called Goren-
stein if it is Cohen-Macaulay of type 1.

Thus, if x1, . . . , xn is any system of parameters in R, the Artin local ring
R/(x1, . . . , xn)R has a one-dimensional socle, which is contained in every nonzero
ideal of R. Notice that if (R, m, K) is Gorenstein of dimension n, we know that
ExtiR(K, R) = 0 if i < n, while ExtnR(K, R) ∼= K.
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Note that killing part of a system of parameters in a Gorenstein local ring
does not change its type: hence such a quotient is again Gorenstein. Regular local
rings are Gorenstein, since the quotient of a regular local ring by a regular system
of parameters is K. The quotient of a regular local ring by part of a system of
parameters is therefore Gorenstein. In particular, the quotient R/fR of a regular
local ring R by a nonzero proper principal ideal fR is Gorenstein. Such a ring
R/fR is called a local hypersurface.

We are aiming to prove that for Gorenstein rings, F-rational, weakly F-regular,
and F-regular are equivalent condition. This is extremely useful. In the case of a
Gorenstein local ring R with system of parameters x = x1, . . . , xd, if u generates
the socle in R/(x), then R is F-regular if and only if u is not in the tight closure of
(x)!

20.3. Artin Gorenstein rings. Arbitrary products of injectives are injective
over any ring, and so finite direct sums of injective modules are injective. Over a
Noetherian ring, an arbitrary direct sum of injectives is injective: this is not true
in general. One can argue as follows. It suffices to show that a map of an ideal
I into the direct sum extends to the whole ring. Since I is finitely generated, the
map factors through a finite direct sum, and the map then extends working entirely
with this finite direct sum.

As a corollary, every injective module E over a Noetherian ring is a direct sum of
injective hulls ER(R/P ) of prime cyclic modules. To prove this, consider a maximal
family modules of the form E(R/P ) in E such that each is disjoint from the sum
of all of the oethers (which exists by Zorn’s lemma). Let E0 ⊆ E be the sum of all
these. We shall show that E0 = E. If not, the inclusion splits, and E = E0 ⊕ E1

with E1 6= 0. Choose an element u ∈ E1 that is not 0. Let P ∈ Ass (Ru). Then u
has a nonzero multiple ru with ruR ∼= R/P . The injection R/P → E1 extends to
ER(R/P ). This gives an injection E(R/P ) ↪→ E1 ⊆ E. But then we may enlarge
the family we started with by inclusing this copy of E(R/P ). �

We shall need the following very important result.

Theorem 20.5. If an Artin local ring is Gorenstein, it is injective as a module
over itself.

In the case where the Artin local ring (R,m,K) contains a field we can argue
as follows. By the structure theory of complete local rings, R contains a copy of K
and may be thought of as as a K-algebra. Let E := HomK(R,K), which has an
R-module structure because R does, HomR(M,E) ∼= HomK(M⊗R,K) by the ad-
jointness of tensor and Hom, and one obtains that HomR( , E) and HomK( ,K)
are isomorphic functors from R-modules to R-modules. Since HomK( ,K) is an
exact functor, so is HomR( , E). Thus, E is an injective R-module, and it has
the same length (in this case, dfimension as aa K-vector space) as R. We can map
the socle in R, a copy of K, isomorphically to a copy of K in the socle of E. This
give a map K ↪→ E that extends, since E is injective, to all of R. Morever, since
K → R is essential, this map is an injection of R → E. Since R and E have the
same length, we have that R ∼= E. Since R is an essential extension of K, R is the
injective hull of K over R.

For the general case, see, for example, [?, Theorems (3.1.17) and (3.2.10)].
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In consequence, we are able to prove the following most useful result. Notice
that it reduces to checking whether a given Gorenstein local ring is weakly F-
regular to determining whether one specific element is in the tight closure of the
ideal generated by one system of parameters.

Theorem 20.6. Let (R, m, K) be a reduced Gorenstein local ring of character-
istic p. Let x1, . . . , xn be a system of parameters for R, and let u in R represent
a generator of the socle in R/(x1, . . . , xn)R. Then the following conditions are
equivalent.

(1) 1 R is weakly F-regular.
(2) 2 R is F-rational
(3) 3 (x1, . . . , xn)R is tightly closed.
(4) 4 The element u is not in the tight closure of (x1, . . . , xn)R.

Proof. Let I = (x1, . . . , xn). It is clear that (1) ⇒ (2) ⇒ (3) ⇒ (4). But
(4)⇒ (3) because if I∗ is strictly larger than I, then I∗/I is a nonzero ideal of R/I
and must contain the socle element represented by u, from which it follows that
u ∈ I∗. The fact the (3) ⇒ (2) follows from Theorem 18.10. What remains to be
proved is the most interesting implication, that (2)⇒ (1).

Assume that R is F -rational, and let N ⊆M be finitely generated R-modules.
We must show that N is tightly closed. If not, choose u ∈ N∗−M . We may replace
N by a submodule N ′ of M with N ⊆ N ′ ⊆ M such that N ′ is maximal witth
respect to the property of not containing u. We will still have that u is in the tight
closure of N ′ in M , and u /∈ N ′. We may then replace M and N ′ by M/N ′ and 0,
respectively, and u by its image in M/N ′. The maximality of N ′ implies that u is
in every submodules of M/N ′. We change notation: we may assume that u ∈M is
in every nonzero submodule of M , and that u ∈ 0∗M .

By Lemma 6.1, we have that M has finite length and is killed by a power
of the maximal ideal of R. Moreover, u is in every nonzero submodule of M .
Let x1, . . . , xn be a system of parameters for R. For t � 0, we have that every
xti kills M . Thus, we may think of M as a module over the Artin local ring
A = R/(xt1, . . . , x

t
n)R, which is a Gorenstein Artin local ring. Let v be the socle

element in A. Then

Ru ∼= K ∼= Rv ⊆ A
gives an injective map of Ru ⊆ M to A. Since A is injective as an A-module
and M is an A-module, this map extends to a map θ : M → A that is A-linear
and, hence, R-linear. We claim that θ is injective: if the kernel were nonzero, it
would be a nonzero submodule of M , and so it would contain u, contradicting the
fact that u has nonzero image in A. Since M ↪→ AR, to show that 0 is tightly
closed in M over R, it suffices to show that 0 is tightly closed in A over R. Since
A = R/(xt1, . . . , x

t
n)R, this is simply equivalent to the statement that (xt1, . . . , x

t
n)R

is tightly closed in R. �

21. Lecture 21

21.1. Test elements for reduced algebras essentially of finite type over
excellent semilocal rings. Although we have test elements for F-finite rings, we
do not yet have a satisfactory theory for excellent local rings. In fact, as indicated
in the title of this section, we can do much better. In this section, we want to sketch
the method that will enable us to prove the following result:
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Theorem 21.1. Let R be a Noetherian ring of prime characteristic p > 0.
Suppose that R is reduced and essentially of finite type over an excellent semilocal
ring B. Then there are elements c ∈ R ◦ such that Rc is regular, and every such
element c has a power that is a completely stable big test element.

We shall, in fact, prove better results in which the hypotheses on Rc are weak-
ened, but we want to use the Theorem stated to motivate the constructions we
need.

The idea of the argument is as follows. We first replace the semilocal ring B

by its completion B̂ with respect to its Jacobson radical. Then R1 = B̂ ⊗B R is

essentially of finite type over B̂, is still reduced, and the map R → R1 is flat with
geometrically regular fibers. It follows that (R1)c is still regular. Thus, we have
reduced to the case where B is a complete semilocal ring. Such a ring is a finite
product of complete local rings, and so is the B-algebra R. The problem can be
treated for each factor separately. Therefore, we can assume that B is a complete
local ring. Then B is module-finite over a complete regular local ring A, and we
henceforth want to think about the case where R is essentially of finite type over a
regular local ring (A, m, K). We can choose a coefficient field K ⊆ A such that the
composite map K ↪→ A � A/m is an isomorphism. We know from the structure
theory of complete local rings that A has the form K[[x1, . . . , xn]], where x1, . . . , xn
are formal power series indeterminates over K.

We know that R has the form W−1R0 where R0 is finitely generated as an A-
algebra. It is not hard to see that if (W−1R0)c is regular, then there exists w ∈W
such that

(
(R0)w

)
c

is regular. If we show that cN is a completely stable big test

element for (R0)w, this is automatically true for every further localization as well,
and so we have it for W−1R0 = R. This enables us to reduce to the case where
R is finitely generated over A = K[[x1, . . . , xn]]. The key to proving the Theorem
above is then the following result.

Theorem 21.2. Let K be a field of characteristic p > 0, let (A, m, K) denote
the regular local ring K[[x1, . . . , xn]], and let R be a reduced finitely generated A-
algebra. Suppose that Rc is regular. Then A has an extension AΓ such that

(1) A→ AΓ is faithfully flat and local.
(2) AΓ is purely inseparable over A.
(3) The maximal ideal of AΓ is mAΓ.
(4) AΓ is F-finite.
(5) AΓ ⊗A R is reduced.
(6) (AΓ ⊗A R)c is regular.

It will take quite an effort to prove this. However, once we have this Theorem,
the rest of the argument for the proof of Theorem 21.1 is easy. The point is that
RΓ = AΓ ⊗A R is faithfully flat over R and is F-finite and reduced by (4) and (5)
above, Moreover, we still have that (RΓ)c is regular, by part (6). It follows that cN

is a completely stable big test element for RΓ by Theorem 11.8, and then we have
the corresponding result for R.

This motivates the task of proving the existence of extensions A → AΓ with
properties stated above. The construction depends heavily on the behavior of p-
bases for fields of characteristic p.
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21.2. Properties of p-bases. We begin by recalling the notion of a p-base
for a field K of characteristic p > 0. As usual, if q = pe we write

Kq = {cq : c ∈ K},

the subfield of K consisting of all elements that are q th powers. It will be convenient
to call a polynomial in several variables e-special, where e ≥ 1 is an integer, if every
variable occurs with exponent at most pe − 1 in every term. This terminology is
not standard.

Let K be a field of characteristic p > 0. Finitely many elements λ1, . . . , λn in
K (they will turn out to be, necessarily, in K −Kp) are called p-independent if the
following three equivalent conditions are satisfied:

(1) [Kp[λ1, . . . , λn] : Kp] = pn.
(2) Kp ⊆ K[λ1] ⊆ Kp[λ1, λ2] ⊆ · · · ⊆ Kp[λ1, λ2, . . . , λn] is a strictly increas-

ing tower of fields.
(3) The pn monomials λa11 · · ·λann such that 0 ≤ aj ≤ p − 1 for all j with

1 ≤ j ≤ n are a Kp-vecctor space basis for K over Kp.

Note that since every λj satisfies λpj ∈ Kp, in the tower considered in part (2)

at each stage there are only two possibilities: the degree of λj+1 over Kp[λ1, . . . , λj ]
is either 1, which means that

θj+1 ∈ Kp[λ1, . . . , λj ],

or p. Thus, K[λ1, . . . , λn] = pn occurs only when the degree is p at every stage,
and this is equivalent to the statement that the tower of fields is strictly increasing.
Condition (3) clearly implies condition (1). The fact that (2) ⇒ (3) follows by
mathematical induction from the observation that

1, λj+1, λ
2
j+1, . . . , λ

p−1
j+1

is a basis for Lj+1 = Kp[λ1, . . . , λj+1] over Lj = K[λ1, . . . , λj ] for every j, and the
fact that if one has a basis C for Lj+1 over Lj and a basis B for Lj over Kp then
all products of an element from C with an element from B form a basis for Lj+1

over Kp.
Every subset of a p-independent set is p-independent. An infinite subset of K

is called p-independent if every finite subset is p-independent.
A maximal p-independent subset of K, which will necessarily be a subset of

K − Kp, is called a p-base for K. Zorn’s Lemma guarantees the existence of a
p-base, since the union of a chain of p-independent sets is p-independent. If Λ is
a p-base, then K = Kp[Λ], for if there were an element θ′ of K −Kp[Θ], it could
be used to enlarge the p-base. The empty set is a p-base for K if and only if K
is perfect. If K is not perfect, a p-base for K is never unique: one can change an
element of it by adding an element of Kp.

From the condition above, it is easy to see that Λ is a p-base for K if and only
if every element of K is uniquely expressible as a polynomial in the elements of Λ
with coefficients in Kp such that the exponent on every λ ∈ Λ is at most p−1: this
is equivalent to the assertion that the monomials in the elements of Λ of degree at
most p−1 in each element are a basis for K over Kp. Another equivalent statement
is that every element of K is uniquely expressible as as 1-special polynomial in the
elements of Λ with coefficients in Kp.
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If q = pe, then the elements of Λq = {λq : λ ∈ Λ} are a p-base for Kq over Kpq:
in fact we have a commutative diagram:

K
F q−−−−→ Kqx x

Kp −−−−→
Fpq

Kpq

where the vertical arrows are inclusions and the horizontal arrows are isomorphisms:
here, F q(c) = cq. In particular, Λp = {λp : λ ∈ Λ} is a p-base for Kp, and it follows
by multiplying the two bases together that the monomials in the elements of Λ of

degree at most p2 − 1 are a basis for K over Kp2 . By a straightforward induction,
the monomials in the elements of Λ of degree at most pe − 1 in each element are a
basis for K over Kpe for every e ≥ 1. An equivalent statement is that every element
of K can be written uniquely as an e-special polynomial in the elements of Λ with
coefficients in Kpe .

By taking p th roots, we also have that K1/p = K[λ1/p : λ ∈ Λ]. It is
also true that for any h distinct elements λ1, . . . , λh of the p-base and for all q,
[Kq[λ1, . . . , λh] : Kq] = qh and that K1/q = K[λ1/q : λ ∈ Λ]. It follows that the
monomials of the form

(∗) λα1
i1
· · ·λαhih

where every α is a rational number in [0, 1) that can be written with denominator
dividing q is a basis for K1/q over K.

Hence, with K∞ =
⋂
qK

1/q, we have

Proposition 21.3. With K a field of characteristic p and Λ a p-base as above,
the monomials of the form displayed in (∗) with λ1, . . . , λh ∈ Λ and with the de-
nominators of the αi ∈ [0, 1) allowed to be arbitrary powers of p form a basis for
K∞ over K.

21.3. The gamma construction for complete regular local rings. Let
K be a fixed field of characteristic p > 0 and let Λ be a fixed p-base for K. Let
A = K[[x1, . . . , xn]] be a formal power series ring over K. We shall always use Γ
to indicate a subset of Λ that is cofinite, by which we mean that Λ − Γ is a finite
set. For every such Γ we define a ring AΓ as follows.

Let Ke (or KΓ
e if we need to be more precise) denote the field K[λ1/q : λ ∈ Γ],

where q = pe as usual. Then K ⊆ Ke ⊆ K1/q, and the q th power of every element
of Ke is in K. We define

AΓ =
⋃
e

Ke[[x1, . . . , xn]].

We refer to AΓ as being obtained from A by the gamma construction.
Our next objective is to prove the following:

Theorem 21.4. Consider the local ring (A,m,K) obtained from a field K of
characteristic p > 0 by adjoining n formal power series indeterminiates x1, . . . , xn.
That is, A = K[[x1, . . . , xn]] and m = (x1, . . . , xn)A. Fix a p-base Λ for K, let Γ
be a cofinite subset of Λ, and let AΓ be defined as above. Then A ↪→ AΓ is a flat
local homomorphism, and the ring AΓ is regular local ring of Krull dimension n.
Its maximal ideal is mAΓ and its residue class field is KΓ =

⋃
eK

Γ
e . Moreover, AΓ

is purely inseparable over A, and AΓ is F-finite.
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It will take some work to prove all of this.
We next want to prove Theorem 21.4. Recall that A = K[[x1, . . . , xn]] and

that Γ is cofinite in a fixed p-base Λ for K.
First note that it is clear that K[[x1, . . . , xn]] → Ke[[x1, . . . , xn]] is faithfully

flat: every system of parameters in the former maps to a system of parameters in
the extension ring, and since the extension is regular it is Cohen-Macaulay. Faithful
flatness follows from Theorem 5.2. Since a direct limit of flat extensions is flat, it
is clear that AΓ is flat over A.

Since (Ke)
q ⊆ K, we have that

(AΓ)q ∈ (Ke)
q[[xq1, . . . , x

q
n]] ∈ K[[x1, . . . , xn]] = A.

Thus, every Ae = Ke[[x1, . . . , xn]] is purely inseparable over A, and it follows that
the unionAΓ is as well. Hence, A→ AΓ is local. Note that the maximal ideal in each
Ae is mAe = (x1, . . . , xn)Ae. Every element of the maximal ideal of AΓ is in the
maximal ideal of some Ae, and so in mAe ⊆ mAΓ. Thus, mAΓ = (x1, . . . , xn)AΓ

is the maximal ideal of AΓ. The residue class field of AΓ is clearly the direct limit
of the residue class fields Ke, which is the union

⋃
eKe = KΓ: this is the gamma

construction applied to A = K.
We next want to check that AΓ is Noetherian. Note that AΓ is contained in the

regular ring KΓ[[x1, . . . , xn]] = B, and that each of the maps Ae → B is faithfully
flat. Hence, for every ideal I of Ae, IB ∩Ae = I. The Noetherian property for AΓ

now follows from:

Lemma 21.5. Let {Ai}i be a directed family of rings and injective homomor-
phisms whose direct limit A embeds in a ring B. Suppose that for all i and for
every ideal J of any Ai, JB ∩ Ai = I. Then for every ideal I of A, IB ∩ A = I.
Hence, if B is Noetherian, then A is Noetherian.

Proof. Suppose that u ∈ A, I ⊆ A and u ∈ IB − IA. Then u = f1b1 +
· · ·+ fnbn where f1, . . . , fn ∈ I and b1, . . . , bn ∈ B. We can choose i so large that
u, f1, . . . , fn ∈ Ai, and let J = (f1, . . . , fn)Ai. Evidently, u ∈ JB ∩ Ai = J , and,
clearly, J ⊆ IA, a contradiction.

For the final statement, let I be any ideal of A. Then a finite subset g1, . . . , gn ∈
I generates IB. Let I0 = (g1, . . . , gn)A. Then I ⊆ IB ∩A = I0B ∩A = I0 ⊆ I, so
that I = I0. �

SinceAΓ is Noetherian of Krull dimension n with maximal ideal (x1, . . . , xn)AΓ,
we have that AΓ is regular. To complete the proof of Theorem 21.4, it remains only
to prove:

Theorem 21.6. AΓ is F -finite.

Proof. Throughout this argument, we write Ke for KΓ
e = K[λ1/q : λ ∈ Γ],

and Ae for Ke[[x1, . . . , xn]]. Let θ1, . . . , θh be the finitely many elements that are

in the p-base Λ but not in Γ. Let M be the set of monomials in θ
1/p
1 , . . . , θ

1/p
h

of degree at most p − 1 in each element, and let N be the set of monomials in

x
1/p
1 , . . . , x

1/p
d of degree at most p− 1 in each element. Let

T =MN = {µν : µ ∈M, ν ∈ N}.
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We shall complete the proof by showing that T spans (AΓ)1/p as an AΓ-module.
First note that

(AΓ)1/p =
⋃
e

(Ae)
1/p,

and for every e,

(Ae)
1/p = K1/p

e [[x
1/p
1 , . . . , x

1/p
d ]].

This is spanned over K
1/p
e [[x1, . . . , xd]] by N . Also observe that K

1/p
e is spanned

over K by products of monomials in N and monomials in the elements λ1/qp for

λ ∈ Γ, and the latter are in Ke+1. Hence, K
1/p
e is spanned by N over Ke+1, and

it follows that K
1/p
e [[x1, . . . , xn]] is spanned by N over Ke+1[[x1, . . . , xn]] = Ae+1.

Hence, A
1/p
e is spanned by T =MN over Ae+1, as claimed. �

Note that AΓ ⊆ KΓ[[x1, . . . , xn]], but these are not, in general, the same. Any
single power series in AΓ has all coefficients in a single Ke. When the chain of fields
Ke is infinite, we can choose ce ∈ Ke+1 −Ke for every for every e ≥ 0, and then

∞∑
e=0

cex
e ∈ KΓ[[x]]−K[[x]]Γ.

21.4. Complete tensor products: and an alternative view of the
gamma construction. Let (R, m, K) be a complete local ring with coefficient
field K ⊆ R. When R = A = K[[x1, . . . , xn]], we may enlarge the residue class
field K of A to L by considering instead L[[x1, . . . , xn]]. This construction can be
done in a more functorial way, and one does not need the ring to be regular.

Consider first the ring RL = L ⊗K R. This ring need not be Noetherian, and
will not be complete except in special cases, e.g., if L is finite algebraic over K.
However, RL/mRL ∼= L, so that mRL is a maximal ideal of this ring, and we
may form the (mRL)-adic completion of RL. This ring is denoted L⊗̂KR, and is
called the complete tensor product of L with R over K. Of course, we have a map
R→ RL → L⊗̂KR.

Note that

L⊗̂KR = lim←−
t

L⊗K R

mt(L⊗K R)
∼= lim←−

t

(
L⊗K

R

mt

)
.

In case R = K[[x]], where x = x1, . . . , xn are formal power series indeterminates,
this yields

lim←−
t

L⊗K
(K[[x]]

(x)t
) ∼= lim←−

t

L⊗K
(K[x]

(x)t
) ∼= lim←−

t

L[x]

(x)t
∼= L[[x]],

which gives the result we wanted.
Now suppose that we have a local map (R, m, K) → (S, n, K) of complete

local rings such that S is module-finite over R, i.e., over the image of R: we are not
assuming that the map is injective. For every t, we have a map R/mtR→ S/mtS
and hence a map L⊗K R/mtR→ L⊗K S/mtS. This yields a map

(∗) lim←−
t

L⊗K R/mtR→ lim←−
t

L⊗K S/mtS.

The map R/mS → S/mS is module-finite, which shows that S/mS has Krull
dimension 0. It follows that mR is primary to n, so that the ideals mtR are cofinal
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with the power of n. Therefore the inverse limit on the right in (∗) is the same as
lim←−t L⊗K R/ntR, and we see that we have a map L⊗̂KR→ L⊗̂KS.

We next note that when R → S is surjective, so is the map L⊗̂KR → L⊗̂KS.
First note that RL → SL is surjective, and that mRL maps onto nSL. Second, each
element σ of the completion of SL with respect to n can be thought of as arising
from the classes modulo successive powers of n of the partial sums of a series

s0 + s1 + · · ·+ st + · · ·

such that st ∈ ntSL = mtSL for all t ∈ N. Since mtRL maps onto ntSL, we can left
this series to

r0 + r1 + · · ·+ rt + · · ·

where for every t ∈ N, rt ∈ mtRL and maps to st. The lifted series represents an
element of the completion of RL that maps to σ.

Since every complete local ring R with coefficient field K is a homomorphic
image of a ring of the form K[[x1, . . . , xn], it follows that L⊗̂KR is a homomorphic
image of a ring of the form L[[x1, . . . , xn]], and so L⊗̂KR is a complete local ring
with coefficient field L.

Next note that when R → S is a module-finite (not necessarily injective) K-
homomorphism of local rings with coefficient field K, we have a map

(L⊗̂KR)⊗R S → L⊗̂KS,

since both factors in the (ordinary) tensor product on the left map to L⊗̂KS. We
claim that this map is an isomorphism. Since, as noted above, mS is primary to
n, and both sides are complete in the m-adic topology, it suffices to show that the
map induces an isomorphism modulo the expansions of mt for every t ∈ N. But
the left hand side becomes(

L⊗K (R/mt)
)
⊗R S ∼= L⊗K (S/mtS),

which is exactly what we need.
It follows that L⊗̂KR is faithfully flat over R: we can represent R as a module-

finite extension of a complete regular local ring A with the same residue class field,
and then L⊗̂KR = (L⊗̂KA) ⊗A R, so that the result follows from the fact that
L⊗̂A is faithfully flat over A.

With this machinery available, we can construct RΓ, when R is complete local
with coefficient field K and Γ is cofinite in a p-base Λ for K, as

⋃
eKe⊗̂KR. If R

is regular this agrees with our previous construction.
If A, R are complete local both with coefficient field K, and A → R is a local

K-algebra homomorphism that is module-finite (not necessarily injective), then we
have

Ke⊗̂KR = (Ke⊗̂KA)⊗A R

for all e. Since tensor commutes with direct limit, it follows that

RΓ ∼= AΓ ⊗A R.

In particular, this holds when A is regular. It follows that RΓ is faithfully flat over
R.
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21.5. Properties preserved for small choices of Γ. Suppose that Λ is a
p-basse for a field K of characteristic p > 0. We shall say that a property holds for
all sufficiently small cofinite Γ ⊆ Λ or for all Γ� Λ if there exists Γ0 ⊆ Λ, cofinite
in Λ, such that the property holds for all Γ ⊆ Γ0 that are cofinite in Λ.

We are aiming to prove the following:

Theorem 21.7. Let B be a complete local ring of characteristic p with coeffi-
cient field K, let Λ be a p-base for K, and and let R an algebra essentially of finite
type over B. For Γ cofinite in Λ, let RΓ denote BΓ ⊗B R.

(a) If R is a domain, then RΓ is a domain for all Γ� Λ.
(b) If R is reduced, then RΓ is reduced for all Γ� Λ.
(c) If P ⊆ R is prime, then PRΓ is prime for all Γ� Λ.
(d) If I ⊆ R is radical, then IRΓ is radical for all Γ� Λ.

We shall also prove similar results about the behavior of the singular locus. We
first note:

Lemma 21.8. Let M be an R-module, let P1, . . . , Ph be submodules of M , and
let S be a flat R-module. Then the intersection of the submodules S ⊗R Pi for
1 ≤ i ≤ h is

(P1 ∩ · · · ∩ Ph)⊗RM.

Here, for P ⊆M , we are identifying S ⊗R P with its image in S ⊗RM : of course,
the map S ⊗R P → S ⊗RM is injective.

Proof. By a straightforward induction on h, this comes down to the intersec-
tion of two submodules P and Q of the R-module M . We have an exact sequence

0 −−−−→ P ∩Q −−−−→ M
f−−−−→ (M/P ⊕M/Q)

where the rightmost map f sends u ∈ M to (u + P ) ⊕ (u + Q). Since S is R-flat,
applying S ⊗R yields an exact sequence

0 −−−−→ S ⊗R (P ∩Q) −−−−→ S ⊗RM
idS⊗f−−−−→

(
S ⊗R (M/P )

)
⊕
(
S ⊗R (M/Q)

)
.

The rightmost term may be identified with

(S ⊗RM)/(S ⊗R P )⊕ (S ⊗RM)/(S ⊗R Q),

from which it follows that the kernel of idS ⊗ f is the intersection of S ⊗R P and
S ⊗R Q. Consequently, this intersection is given by S ⊗R (P ∩Q). �

We next want to show that part (a) of the Theorem stated above implies the
other parts.

Proof. We first show that part (a) implies the other parts of the Theorem.
Part (c) follows from part (a) applied to (R/P ), since

(R/P )Γ = BΓ ⊗B (R/P ) ∼= RΓ/PRΓ.

To prove that (a)⇒ (d), let I = P1 ∩ · · · ∩Pn be the primary decomposition of
the radical ideal I, where the Pi are prime. Since BΓ is flat over B, RΓ is flat over
R. Hence, IRΓ, which may be identified with RΓ ⊗R I, is the intersection of the
ideals RΓ ⊗R Pi, 1 ≤ i ≤ h, by Lemma 21.8. By part (a), we can choose Γ cofinite
in Λ such that every RΓ ⊗R Pi is prime, and for this Γ, IRΓ is radical.

Finally, (c) is part (d) in the case where I = (0). �
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It remains to prove part (a). Several preliminary results are needed. We begin
by replacing B by its image in the domain R, taking the image of K as a coefficient
ring. Thus, we may assume that B ↪→ R is injective. Then B is a module-
finite extension of a subring of the form K[[x1, . . . , xn]] with the same coefficient
field, by the structure theory of complete local rings. We still have that R is
essentially of finite type over A. Moreover, BΓ ∼= AΓ ⊗A B, from which it follows
that RΓ ∼= AΓ ⊗R A. Therefore, in proving part (a) of the Theorem, it suffices to
consider the case where B = A = K[[x1, . . . , xn]] and A ⊆ R. For each Γ cofinite
in Λ ⊆ K, let LΓ denote the fraction field of AΓ. Let L denote the fraction field of
A. Let Ω be any field finitely generated over R that contains the fraction field of
R. To prove part (a) of Theorem 21.7, it will suffice to prove the following:

Theorem 21.9. Let K be a field of characteristic p with p-base Λ. Let A =
K[[x1, . . . , xn]], and let L, AΓ and LΓ be defined as above for every cofinite subset
Γ of Λ. Let Ω be any field finitely generated over L. Then for all Γ� Λ, LΓ ⊗L Ω
is a field.

We postpone the proof of this result. We first want to see (just below) that
it implies part (a) of Theorem 21.7. Beyond that, we shall need to prove some
auxiliary results first.

To see why the preceding Theorem implies part (a) of Theorem 21.7, choose Ω
containing the fraction field of R (we can choose Ω = frac (R), for example). Since
AΓ is A-flat, we have an injection AΓ ⊗A R ↪→ AΓ ⊗A Ω. Thus, it suffices to show
that this ring is a domain. Since the elements of A−{0} are already invertible in Ω,
we have that Ω ∼= frac (A) ⊗A Ω. Since AΓ is purely inseparable over A, inverting
the nonzero elements of A inverts all nonzero elements of AΓ. Moreover, the tensor
product of two frac (A)-modules over frac (A) is the same as their tensor product
over A. Hence,

AΓ ⊗A Ω ∼= AΓ ⊗A frac (A)⊗A Ω ∼= frac (AΓ)⊗frac(A) Ω = LΓ ⊗L Ω.

It is now clear that Theorem 21.9 above implies part (a) of the Theorem 21.7.

21.6. Intersecting the fields KΓ. In order to prove the Theorem above, we
need several preliminary results. One of them is quite easy:

Lemma 21.10. Let K be a field of characteristic p > 0 and let Λ be a p-base
for K. The family of subfields KΓ as Γ runs through the cofinite subsets of Λ is
directed by ⊇, and the intersection of these fields is K.

Proof. K∞ has as a basis 1 and all monomials

(#) λα1
1 · · · λ

αt
t

where t is some positive integer, λ1, . . . , λt are mutually distinct elements of Λ, and
the αj are positive rational numbers in (0, 1) whose denominators are powers of p.
If u were in the intersection and not in K it would have a unique representation
as a K-linear combination of these elements, including at least one monomial µ as
above other than 1. Choose λ ∈ Λ that occurs in the monomial µ with positive
exponent. Choose Γ cofinite in Λ such that λ /∈ Γ. Then the monomial µ is not in
KΓ, which has a basis consisting of 1 and all monomials as in (#) such that the λj
occurring are in Γ. It follows that u /∈ KΓ. �
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22. Lecture 22

22.1. Results on intersecting fields. We shall also need the following re-
sult, as well as part (b) of the Theorem stated after it.

Theorem 22.1. Let L be a field of characteristic p > 0, and let L′ be a finite
purely inseparable extension of L. Let {Li}i be a family of fields directed by ⊇
whose intersection is L. Then there exists j such that for all i ≤ j, Li ⊗ L′ is a
field.

Proof. We prove the theorem on preserving the field property for a finite
purely inseparable extension. Recall that L′ is a finite purely inseparable extension
of L, and {Li}i is a family of fields directed by ⊇ whose intersection if L. Fix L0

in the family: we need only consider fields in the family contained in L0. Let L0 be
an algebraic closure of L0. Since L′ is purely inseparable over L, L′ may be viewed,
in a unique way, as a subfield of L0. Choose a basis b1, . . . , bh for L′ over L. For
every i we have a map

Li ⊗L L′ → Li[L′],

where the right hand side is the smallest subfield of L0 containing Li and L′. The
image of this map is evidently a field. Therefore, to prove the Theorem, we need
only prove that the map is an isomorphism whenever i is sufficiently small.

Note that the elements 1 ⊗ bj span the left hand side as a vector space over
Li. Hence, for every i, the left hand side is a vector space of dimension h over
Li. The image of the map is a ring containing Li and the bj . It therefore contains
Lb1 + · · ·+ Lbn = L′. It follows that the image of the map is Li[L′], i.e., the map
is onto. The image of the map is spanned by b1, . . . , bh as an Li-vector space.
Therefore, the map is an isomorphism whenever b1, . . . , bh are linearly indpendent
over Li. Choose i so as to make the dimension of the vector space span of b1, . . . , bh
over Li as large as possible. Since this dimension must be an integer in {0, . . . , h},
this is possible. Note that if a subset of the b1, . . . , bh has no nonzero linear relation
over Li, this remains true for all smaller fields in the family.

Call the maximum possible dimension d. By renumbering, if necessary, we
may assume that b1, . . . , bd are linearly independent over Li. We can conclude the
proof of the Theorem by showing that d = h. If not, bd+1 is linearly dependent on
b1, . . . , bd, so that there is a unique linear relation

(∗) bd+1 = c1b1 + · · ·+ cdbd,

where every cj ∈ Li. Since b1, . . . , bh are linearly independent over L, at least
one cj0 /∈ L. Choose Li′ ⊆ Li such that cj0 /∈ Li′ . Then b1, . . . , bd+1 are linearly
independent over Li′ : if there were a relation different from (∗), it would imply the
dependence of b1, . . . , bd. This contradictis that d is maximum. �

Theorem 22.2. Let {Ki}i be a nonempty family of subfields of an ambient field
K0 such that the family is directed by ⊇, and has intersection K. Let x1, . . . , xn be
formal power series indeterminates over these fields. Then

(a)
⋂
i

frac (Ki[x1, . . . , xn]) = frac (K[x1, . . . , xn]).

(b)
⋂
i

frac (Ki[[x1, . . . , xn]]) = frac (K[[x1, . . . , xn]]).
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We note that part (a) is easy. Choose an arbitrary total ordering of the mono-
mials in the variables x1, . . . , xn. Let f/g be an element of the intersection on the
left hand side written as the ratio of polynomials f, g 6= 0 in K0[x1, . . . , xn], where
f and g are chosen so that GCD(f, g) = 1. Also choose g so that the greatest mono-
mial occurring has coefficient 1. This representation is unique. If the same element
is also in frac (Ki[x1, . . . , xn]), it can be represented in the same way working over
Ki, and the two representations must be the same. Hence, all coefficients of f and
of g must be in all of the Ki, i.e., in K which shows that f/g ∈ frac (K[x1, . . . , xn]),
as required.

We shall have to work a great deal harder to prove part (b). We first introduce
some terminology. A module C over B (which in the applications here will be a
B-algebra) is called injectively free over B if for every u 6= 0 in C there is an element
f ∈ HomB(C, B) such that f(u) 6= 0. This is equivalent to the assumption that
C can be embedded in a (possibly infinite) product of copies of B: if fB = B for
every f ∈ HomB(C, B), then

C →
∏

f∈HomB(C,B)

fB

is an injection if and only if C is injectively free over B. It is also quite easy to see
that C is injectively free over B if and only if the natural map

C → HomB

(
Hom(C, B), B

)
from C to its double dual over B is injective.

Note that if C is injectively free over B then C[x1, . . . , xn] is injectively free
over B[x1, . . . , xn], and that C[[x1, . . . , xn]] in injectively free over B[[x1, . . . , xn]]:
choose a nonzero coefficient of u, choose a map C → B which is nonzero on that
coefficient, and then extend it by letting it act on coefficients.

We shall use the notation F((x1, . . . , xn)) for frac (F [[x1, . . . , xn]]) when F is
a field. Note that in case there is just one indeterminate F((x)) = F [[x]][x−1] is the
ring of Laurent power series in x with coefficients in the field F : any given series
contains at most finitely many terms in which the exponent on x is negative, but
the largest negative exponent depends on the series under consideration.

We next observe the following fact:

Lemma 22.3. If B ⊆ C are domains, F = frac (B), C is injectively free over
B, and x is a formal indeterminate over C, then(

frac (C[[x]])
)
∩ F((x)) = frac (B[[x]]).

Proof. It suffices to show ⊆: the other inclusion is obvious. Suppose that

u ∈ frac (C[[x]]) ∩ F((x))− {0}.

Then we can write

u = xh(

∞∑
j=0

βjx
j)

where h ∈ Z, the βj ∈ F , and β0 6= 0. All three fields contain the powers of x,
and so we may multiply by x−h without affecting the issue. Thus, we may assume
that h = 0. We want to show that u ∈ frac (B[[x]]). Since u ∈ frac (C[[x]]), there
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exists v 6= 0 and w in C[[x]] such that w = vu ∈ C[[x]]. Let v =
∑∞
j=0 cjx

j and

w =
∑∞
k=0 c

′
kx

k, where the cj , c
′
j ∈ C. Then for each m ≥ 0, we have that

(∗)
∑

j+k=m

cjβk = c′m.

Choose j0 such that cj0 6= 0 and choose f : C → B, B-linear, such that f(cj0) 6= 0
in B. Extend f to a map C[[x]] to B[[x]] by letting it act on coefficients. Then we
may multiply the equation (∗) by b to get∑

j+k=m

cj(bβk) = bc′m,

and now the B-linearity of f implies that∑
j+k=m

f(cj)bβk = bf(c′m).

Now we may use the fact that b is not a zerodivisor in B to conclude that∑
j+k=m

f(cj)βk = f(c′m),

as we wanted to show. These equations show that f(v)u = f(w), and f(v) 6= 0
because f(cj0) 6= 0. Since f(v), f(w) ∈ B[[x]], we have that u = f(w)/f(v) ∈
frac (B[[x]]), as required. �

We can now prove part (b) of the Theorem 22.2.

Proof. We prove the theorem by induction on n. If n = 1 it follows from the
uniqueness of coefficients in the Laurent expansion of an element of

frac (Kj([[x]]) = Kj [[x]][x−1].

Now assume the result for n− 1 variables. For every j, we have

Kj((x1, . . . , xn)) ⊆ Kj((x1, . . . , xn−1))((xn)).

It follows from the one variable case that⋂
j

Kj((x1, . . . , xn)) ⊆
(⋂
j

Kj((x1, . . . , xn−1))
)
((xn)),

and from the induction hypothesis that⋂
j

Kj((x1, . . . , xn−1)) = K((x1, . . . , xn−1)).

Hence, ⋂
j

Kj((x1, . . . , xn)) ⊆ K((x1, . . . , xn−1))((xn)).

Fix any element j0 in the index set. Then we have

(∗)
⋂
j

Kj((x1, . . . , xn)) ⊆ Kj0((x1, . . . , xn)) ∩ K((x1, . . . , xn−1))((xn)).
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We now want to apply Lemma 22.3. LetB = K[[x1, . . . , xn−1]] and C = Kj0 [[x1, . . . , xn−1]].
Since Kj0 is K-free, it embeds in a direct sum of copies of K and, hence, in a prod-
uct of copies of K. Thus, Kj0 is injectively free over K, and it follows that C is
injectively free over B. Lemma 22.3 applied with x = xn then asserts precisely that

(∗∗) Kj0((x1, . . . , xn)) ∩ K((x1, . . . , xn−1))((xn)) =

frac (C[[x]]) ∩
(
frac (B)

)
((xn)) = frac (B[[xn]]) = K((x1, . . . , xn)).

From (∗) and (∗∗), we have that⋂
i

Ki((x1, . . . , xn)) ⊆ K((x1, . . . , xn)).

The opposite inclusion is obvious. �

Corollary 22.4. Let K be a field of characteristic p > 0 and let Λ be a p-base
for K. Let A be the formal power series ring K[[x1, . . . , xn]]. Then⋂

Γ cofinite in Λ

frac (AΓ) = frac (A).

Proof. Since the completion of AΓ is KΓ[[x1, . . . , xn]], we have that

(∗)
⋂

Γ cofinite in Λ

frac (AΓ) ⊆
⋂

Γ cofinite in Λ

frac (KΓ[[x1, . . . , xn]]).

Since ⋂
Γ cofinite in Λ

KΓ = K

by Lemma 21.10 and part (b) of Theorem 22.2 we have that the right hand term
in (∗) is frac (K[[x1, . . . , xn]]). This proves one of the inclusions needed, while the
opposite inclusion is obvious. �

22.2. Structure of field extensions. We also want to observe the following:

Lemma 22.5. Let L be any field of characteristic p > 0, and let Ω be any field
finitely generated over L. Then there exists a field Ω′ ⊇ Ω finitely generated over
L such that Ω′ is a finite separable algebraic extension of a pure transcendental
extension L′(y1, . . . , yh) of a field L′ that is a finite purely inseparable algebraic
extension of L.

Proof. Let h be the transcendence degree of Ω over L. Then Ω is a finite
algebraic extension of a pure transcendental extension F = K(z1, . . . , zh), where
z1, . . . , zh is a transcendence basis for Ω over L. Suppose that Ω = F [θ1, . . . , θs]
where every θj is algebraic over F . Within the algebraic closure Ω of Ω, we may

form F∞[θ1, . . . , θs], where F∞ is the perfect closure of F in Ω. Since F∞ is
perfect, every θi is separable over F∞, and so every θi satsfies a separable equation
over F∞. Let α1, . . . , αN be all the coefficients of these equations. Then every θi
is separable over F [α1, . . . , αN ], and every αj has a qj th power in F . Hence, we
can choose a single q = pe such that αqj ∈ F = L(z1, . . . , zh) for every j. Every αqj
can be written in the form

fj(z1, . . . , zh)

gj(z1, . . . , zh)

where fj , gj ∈ L[z1, . . . , zh] and gj 6= 0. Hence, αj can be written as a rational

function in the elements z
1/q
1 , . . . , z

1/q
h in which the coefficients are the q th roots of
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the coefficients occurring in fj and gj . Let L′ be the field obtained by adjoining all

the q th roots of all coefficients of all of the fj and gj to L. Let yj = z
1/q
j , 1 ≤ j ≤ h.

Then all of the αj are in L′(y1, . . . , yh), and every θi satsifies a separable equation
over L′(y1, . . . , yh). But then we may take

Ω′ = L′(y1, . . . , yh)[θ1, . . . , θs],

which evdiently contains Ω. �

We are now read to prove Theorem 21.9.

Proof. We recall that, as usual, K is a field of characteristic p > 0, and Λ
is p-base for K. Let L = frac (A), and LΓ = frac (AΓ). Let Ω be a field finitely
generated over L. We want to show that for all Γ � Λ, LΓ ⊗L Ω is a field. Since
every element of LΓ has a q th power in L, it is equivalent to show that this ring
is reduced: it is purely inseparable over Ω. As in the preceding Lemma, we can
choose Ω′ ⊇ Ω such that Ω′ is separable over L′(y1, . . . , yh), where L′ is a finite
purely inseparable extension of L and y1, . . . , yh are indeterminates over L′. Since
LΓ is flat over the field L, we have that

LΓ ⊗L Ω ⊆ LΓ ⊗L Ω′,

and so it suffices to consider the problem for Ω′.
By Corollary 22.4 and Theorem 22.1, for all Γ � Λ, we have that LΓ ⊗L L′

is a field. The ring G = LΓ ⊗L L′(y1, . . . , yh) is a localization of the polynomial
ring (LΓ ⊗L L′)[y1, . . . , yh]. Hence, it is a domain, and therefore a field. Let
F = L′(y1, . . . , yn). Then Ω′ is a finite separable algebraic extension of F , and it
suffices to show that G ⊗F Ω′ is reduced. This follows from Corollary 7.13 but we
give a separate elementary argument. We can replace G by its algebraic closure:
assume it is algebraically closed. By the theorem on the primitive element, Ω′ ∼=
F [X]/

(
h(X)

)
, where h is a separable polynomial. Then

G ⊗F Ω′ ∼= G[X]/
(
h(X)

)
,

and since h is a separable polynomial, this ring is reduced. �

We have now completed the proof of Theorem 21.4

23. Lecture 23

23.1. Preserving the singular locus with the Γ construction. By the
singular locus Sing(R) in a Noetherian ring R we mean the set

{P ∈ Spec (R) : RP is not regular}.

We know that if R is excellent, then Sing(R) is a Zariski closed set, i.e., it has the
form V(I) for some ideal I of R. We say that I defines the singular locus in R. Such
an ideal I is not unique, but its radical is unique. It follows easily that c ∈ Rad (I)
if and only if Rc is regular.

We next want to prove:

Theorem 23.1. Let K be a field of characteristic p with p-base Λ. Let B be
a complete local ring with with coefficient field K. Let R be a ring essentially of
finite type over B, and for Γ cofinite in Λ let RΓ = BΓ ⊗B R.

(a) If R is regular, then RΓ is regular for all Γ� Λ.
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(b) If c ∈ R is such that Rc is regular, then (Rc)
Γ ∼= (RΓ)c is regular for all

Γ� Λ.
(c) If I defines the singular locus of R, then for all Γ � Λ, IRΓ defines the

singular locus in RΓ.

Proof. For every Γ cofinite in Λ, R → RΓ is purely inseparable, and so we
have a homeomorphism Spec (RΓ)Spec (R) = X, given by contraction of primes.
The unique prime ideal of RΓ lying over P in R is Rad (PRΓ). See Proposition 11.5.
We identify the spectrum of every RΓ with X. Let ZΓ denote the singular locus
in RΓ, and Z the singular locus in R. Since all of these rings are excellent, every
singular locus is closed in the Zariski topology. If R→ S is faithfully flat and S is
regular then R is regular, by the Theorem 7.10. Thus, a prime Q such that SQ is
regular lies over a prime P in R such that RP is regular. For Γ ⊆ Γ′ we have maps
R→ RΓ → RΓ′ : both maps are faithfully flat. It follows that Z ⊆ ZΓ ⊆ ZΓ′ for all
Γ ⊆ Γ′.

The closed sets in X have DCC, since ideals of R have ACC. It follows that
we can choose Γ cofinite in Λ such that ZΓ is minimal. Since the sets cofinite in Λ
are directed under ⊇, it follows that ZΓ is minimum, not just minimal. We have
Z ⊆ ZΓ. We want to prove that they are equal. If not, we can choose Q prime
in RΓ lying over P in R such that RΓ

Q is not regular but RP is regular. By part

(c) of Theorem 21.7, we can choose Γ0 ⊆ Γ cofinite in Λ such that PRΓ0 is prime.
This prime will be the contraction Q0 of Q to RΓ0 . Let RP have Krull dimension
d. In RP , P has d generators. Hence, Q0R

Γ0

P = PRΓ0

P also has d generators, and it

follows that Q0 itself has d generators. Consequently, we have that RΓ0

Q0
is regular,

and this means that ZΓ0 is strictly smaller than ZΓ: the point corresponding to P
is not in ZΓ0

. This contradiction shows that for all Γ� Λ, ZΓ = Z. It is immediate
that for such a choice of Γ, a prime Q of RΓ is such that RΓ

Q is not regular if and
only if RQ∩R is not regular. But this holds if and only if Q ∩ R contains I, i.e., if
and only if Q ⊇ I, which is equivalent to Q ⊇ IRΓ. This proves (c).

Part (a) is simply the case where Z is empty. Note that for any c ∈ R,

(Rc)
Γ = BΓ ⊗B Rc ∼= BΓ ⊗B (R⊗R Rc) ∼= (BΓ ⊗B R)⊗R Rc ∼= (RΓ)c.

Thus, (b) follows from (a) applied to Rc. �

23.2. Proof of the existence of completely stable big test elements.
We are now in a position to fill in the details of the proof of Theorem 21.1 on the
existence of completely stable big test elements. The proof was sketched earlier to
motivate our development of the gamma construction.

We need two preliminary results.

Lemma 23.2. If R is essentially of finite type over B and B → C is geometri-
cally regular, then C ⊗B R is geometrically regular over R.

Proof. This is a base change, so the map is evidently flat. Let P be a prime
ideal of R lying over p in B. Then

κP ⊗R (R⊗B C) ∼= κP ⊗B C ∼= κP ⊗κp
(κp ⊗B C).

Let T = κp ⊗B C, which is a geometrically regular κp-algebra by the hypothesis
on the fibers. Then all we need is that every finite algebraic purely inseparable
extension field extension L of κP , the ring L ⊗κp

T is regular. We may replace L
by a larger field finitely generated over κp. By Lemma 22.5, we may assume this
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larger field is a finite separable algebraic extension of K(y1, . . . , yh), where K is a
finite algebraic purely inseparable extension of κp and y1, . . . , yh are indeterminates.
Then K ⊗κp

T is regular by the hypothesis of geometric regularity of the fiber T
over κp. Therefore, K(y1, . . . , yh) ⊗κp

T is regular because it is a localization of
the polynomial ring (K ⊗κp

T )[y1, . . . , yh]. Since L is finite separable algebraic
over K(y1, . . . , yh), the result now follows from the second Corollary on p. 4 of the
Lecture Notes from September 19. �

Lemma 23.3. Let B be a semilocal ring with maximal ideals m1, . . . ,mk. Let
J =

⋂
i=1 mi be the Jacobson radical of B. Let Ai be the completion of Bmi with

respect to mi, which is the same as the completion of B with respect to mi. Then

B̂J ∼=
∏k
i=1Ai.

Proof. Note that the completion of Bmi with respect to mi is the same as the
completion of B with respect to mi because B/mni is already local (it has only one
prime ideal) and so B/mni

∼= Bmi/(miB
n
mi)

. Also since the mi as well as their n th

powers are pairwise comaximal,

(m1 ∩ · · · ∩mk)n = (

k∏
i=1

mi)
k =

k∏
i=1

mki ,

by the Chinese remainder theorem, which also yields

lim←−
n

B/Jn ∼= lim←−
n

B/(

k∏
i=1

mni ) ∼= lim←−
n

( k∏
i=1

(B/mni )
) ∼= k∏

i=1

(lim←−
n

B/mni ) ∼=
k∏
i=1

Ai.

�

24. Lecture 24

24.1. Proof of Theorem 21.1. . We now restate Theorem 21.1: we then
give the proof.

Theorem 24.1. Let R be a Noetherian ring of prime characteristic p > 0.
Suppose that R is reduced and essentially of finite type over an excellent semilocal
ring B. Then there are elements c ∈ R ◦ such that Rc is regular, and every such
element c has a power that is a completely stable big test element.

Proof. By Lemma 23.2, B̂ ⊗B R is geometrically regular over R. Moreover,
the localization at c may be viewed as has a regular base Rc, and the fibers of

Rc → B̂⊗RRc are still regular: they are a subset of the original fibers, corresponding

to primes of R that do not contain c. By Corollary , (B̂ ⊗B R)c is regular. Since
R is reduced and c ∈ R ◦, c is not a zerodivisor in R, i.e., R ⊆ Rc. It follows that

B̂ ⊗B R ⊆ B̂ ⊗B Rc, and so B̂ ⊗B R is reduced. Since R → B̂ ⊗B R is faithfully

flat, it suffices to prove the result for B̂ ⊗B R, by part (b) of Proposition testchar.
Thus, we may replace B by its completion. Henceforth, we assume that B is

complete. B is now a product of local rings. R is a product in a corresponding way,
and every R-module is a product of R-modules over the factors. The hypotheses
are preserved on each factor ring, and all of the issues under consideration reduce
to consideration of the factors separately. Therefore we need only consider the case
where B is a complete local ring.
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Choose a coefficient field K for B, and a p-base Λ for K, so that we may use
the gamma construction on B. For all Γ � Λ, we have that RΓ = BΓ ⊗B R is
reduced, and that

BΓ ⊗B Rc ∼= RΓ
c

is regular. Since RΓ is faithfully flat over R, it suffices to consider RΓ instead of R.
Since RΓ is F-finite, the result is now immediate from Theorem 11.8. �

24.2. Gorenstein rings and strong F-regularity revisited. We want to
improve the result above: it will turn out that it suffices to assume that Rc is
Gorenstein and weakly F-regular. We will need some further results about weak
F-regularity in the Gorenstein case. In particular, we want to prove that when the
ring is F-finite and Gorenstein, weak F-regularity implies strong F-regularity.

We first note the following fact:

Proposition 24.2. Let R be a Noetherian ring of prime characteristic p > 0.
Then the following conditions are equivalent:

(a) If N ⊆M are arbitrary modules (with no finiteness condition), then N is
tightly closed in M .

(b) For every maximal ideal m of R, 0 is tightly closed (over R) in ER(R/m).
(c) For every maximal ideal m of R, if u generates the socle in E(R/m), then

u is not in the tight closure (over R) of 0 in ER(R/m).

Proof. Evidently (a) ⇒ (b) ⇒ (c). But (c) ⇒ (b) is clear, because if if the
tight closure of 0 is not 0, it must contain the socle: R/m ↪→ ER(R/m) is essential,
and every nonzero submodule of ER(R/m) therefore contains u.

Now suppose that N ⊆ M and u ∈ M is such that u ∈ N∗M − N . We may
replace N by a submodule of M maximal with respect to containing N and not
containing u, by Zorn’s Lemma. Then we may replace u and N ⊆M by the image
of u in M/N and 0 ⊆M/N . Hence, we may assume that u ∈ 0∗M−{0} and that u is
in every nonzero submodule of M . We may now apply Lemma 6.1 to conclude that
for every finitely generated nonzero submodule of M , there is only one associated
prime, m, which is maximal, and that the socle is one-dimensional and generated
by u. But then the same conclusion applies to M itself, and so M is an essential
extension of Ru ∼= Ku, where K = R/m. Hence, M embeds in ER(R/m) = E so
that u generates the socle in E, and u ∈ 0∗M implies that u ∈ 0∗E . �

We next want to prove the following:

Theorem 24.3. Let (R, m, K) be a Gorenstein local ring of characteristic p.
Then the conditions of Proposition 24.2 hold if and only if R is weakly F-regular.

Moreover, if R is weakly F-regular and F-finite, then R is strongly F-regular.

It will be a while before we can give a complete proof of this result. Our proof
of the Theorem requires understanding ER(K) when R is a Gorenstein local ring.

25. Lecture 25

25.1. Injective hulls of the residue class fields of Artin local rings.
The following result is true for every Artin local ring (A,m,K). However, we only
give the proof when A contains a field, which is the only case we need. In this case,
A contains a copy of K (not necessarily unique) so that we may assume we have
K ⊆ A such that K maps isomorphically onto A/m ∼= K. We showed earlier that
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in this case E := EA(K) ∼= HomK(A,K) and that the functors HomR( , E) and
HomK( ,K) are isomorphic: see Subsection 20.3.

Theorem 25.1. Let (A,m,K) be an Artin local ring. Then:

(a) EA(K) has the same length as A.
(b) A is injective as an A-module iff A has type 1 iff A is an essential exteen-

sion of K.
(c) HomA( , E) preserves length when applied to a finite length A-module.
(d) For every finite length R-module M , the map M → HomR

(
HomR(M, E), E

)
is an isomorphism.

(e) The map A → HomA(E,E) given by sending a to multiplication by a is
an isomorphism.

Proof. (a), (b), (c), and (d) follow at once from the identificaation of the
functors HomR( , E) and HomK( ,K), and (e) follows from (d) when M = A.
Parts (a) and (b) were noted earlier. �

25.2. Calculation of the injective hull of a Gorenstein local ring.

Theorem 25.2. Let (R, m, K) be a Gorenstein local ring with system of param-
eters x1, . . . , xn. For every integer t ≥ 1, let It = (xt1, . . . , x

t
n)R. Let y = x1 · · · xn.

Then

ER(K) ∼= lim−→
t

R/It,

where the map R/It → R/It+1 is induced by multiplication by y on the numerators.
Moreover, if u ∈ R represents a socle generator in R/(x1, . . . , xn)R, then for every

t, yt−1u ∈ R/It represents the socle generator in R/It and in ER(K).

Proof. Let E = EK(R) be a choice of injective hull for K. Then Et = AnnEIt
is an injective hull for K over R/It, and so is isomorphic to R/It. Since every
element of E is killed by a power of m, each element of E is some Et. Then

E =
⋃
t

Et

shows that there is some choice of injective maps

θt : R/It → R/It+1

such that

E = lim−→
t

Et,

using the maps θt. One injection of R/It into R/It+1 is given by the map ηt
induced by multiplication by y on the numerators: see the Theorem 18.3 applied
to x1, . . . , xn and xt1, . . . , x

t
n, with the matrix A = diag(xt−1

1 , . . . , xt−1
n ). See also

the last statement of Proposition 18.7, which will prove the final statement of
this theorem. Since the modules have finite lengths, an injection of Et into Et+1

must have image Et = AnnEIt, since the image is clearly contained in Et, and
so there must be an automorphism αt of Et such that θt = αt ◦ ηt. In fact,
αt ∈ HomR/It(Et, Et)

∼= Rt must be multiplication by a unit of Rt. Thus, every
αt lifts to a unit at ∈ R. Let b1 = 1, and let bt = a1 · · · at−1.
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We can now construct a commutative diagram

E1
η1−−−−→ E2

η2−−−−→ · · · ηt−1−−−−→ Et
ηt−−−−→ Et+1

ηt+1−−−−→ · · ·

b1

y b2

y bt

y bt+1

y
E1

θ1−−−−→ E2
θ2−−−−→ · · · θt−1−−−−→ Et

θt−−−−→ Et+1
θt+1−−−−→ · · ·

Commutativity follows from the fact that on Et, bt+1ηt is induced by multiplication
by bt+1y = atbty = (aty)bt, and θt is induced by multiplication by aty on Et. Since
the vertical arrows are isomorphisms, the direct limits are isomorphic. The direct
limit of the top row is the module that we are trying to show is isomorphic to E,
while the direct limit of the bottom row is E. �

25.3. The injective hull of the residue class field of a local ring.

Proposition 25.3. Let R be a Noetherian ring, let P be a prime ideal, and let
κ = κP denote RP /PRP ∼= frac (R/P ).

(a) E = ER(R/P ) is indecomposable (not a direct sum of two nonzero mod-
ules).

(b) ER(R/P ) is an RPmodule and is isomorphic with ERP (κ)

Proof. (a) If E = E1 ⊕ E2 where both are nonzero, then E1 ∩ R/P and
E2 ∩ R/P are both nonempty. But any two nonzero ideals in a domain have
nonzero intersectioon, which implies that E1 ∩ E2 is nonzero, a contradiction.

(b) Let f ∈ R \ P . Multiplication by f yields a map ER(R/P )
f ·−→ ER(R/P ).

Since this map is injective on R/P , it is injective on E, i.e., f · yields an in injection
of E into E. Since the image is an injective module, it splits from E. By part (a),
this implies that the image is all of E, so that f · : E → E is an automorphism.
Thus, multiplication by any f ∈ R−P yields an automorphism of E, whose inverse
can serve as the action of 1/f on E. �

Proposition 25.4. Let (R,m,K) be local. Then ER(K) ∼= ER̂(K).

Proof. The category of modules such that every element is killed by a power

of the maximal ideal is the same over R and over R̂. All essential extensions of
K over either ring are in this category, and are essential over either ring. So the
maximal essential extensions are the same. �

Proposition 25.5. Let (R,m,K) be local, and let I ⊆ m be an ideal. Then
ER/I(K) ∼= AnnER(K)I ∼= HomR

(
R/I, ER(K)

)
.

Proof. E′ := ER/I is an essential extension of K over R/I and, hence, over R.
It is therefore contained in a maximal essential extension E. But then AnnEI ⊇ E′
is an essential extension of K over R/I contaain E′, and so must equal E′. �

Discussion 25.6. We can understand the injective hull of any R/P , P prime,
as follows. We have that ER(R/P ) ∼= ERP (κP ). This reduces the problem to
understanding the injective hull of residue class field of a local ring. We may then
complete, and write the ring as T := K[[x1, . . . , xn]]/I Hence, it is the annihilator
of I in EK(T ). But T is Gorenstein, and we can write the injective hull as

lim−→
t

K[[x1, . . . , xn]]/(xt1, . . . , x
t
n) ∼= lim−→

t

K[x1, . . . , xn]/(xt1, . . . , x
t
n) ∼=
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lim−→
t

(
K[x1]/(xt1)⊗R · · · ⊗R K[xn]/(xtn)

) ∼= n⊗
i=1

(
lim−→
t

K[xi]/(x
t
i)
)
.

We may identify

lim−→
t

K[xi](x
t
i)
∼= K[xi, x

−1
i ]/K[xi]

via the homomorphism such that the image of 1 in K[xi]/(x
t
i] maps to the image

of x−ti ∈ K[xi, x
−1
i ]/K[xi]. Let yj =

∏
i6=j xi, 1 ≤ j ≤ n, so that for each j,

xjyj = x1 · · ·xn. Then:

EK[[x1, ...,xn]](K) ∼=
n⊗
i=1

(
K[xi, x

−1
i ]/K[xi]

)
∼= K[x1, . . . , xn]x1···xn/

n∑
j=1

K[x1, . . . , xn]yj

which, as a K-vector space, has as a basis the images of the strictly negative
monomials x−a11 · · ·x−ann with all of the ai ≥ 1. The image of x−1

1 · · ·x−1
n generates

the socle. Multiplication by a nonnegative monomial µ times a strictly negative
monomial µ is the obvious one, in which one adds exponents, except that if any
exponent becomes nonnegative the result is interpreted as 0.

25.4. The action of Frobenius on ER(K) for (R,m,K) local Gorenstein.
Let (R, m, K) be a Gorenstein local ring of characteristic p, and let x1, . . . , xn be a
system of parameters. Let It = (xt1, . . . , x

t
n)R for all t ≥ 1, and let u ∈ R represent

a socle generator in R/I, where I = I1 = (x1, . . . , xn)R. Let y = x1 · · · xn. We
have seen that

E = lim−→
t

R/It

is an injective hull of K = R/m over R, where the map R/It → R/It+1 is induced
by multiplication by y acting on the numerators. Each of these maps is injective.
Note that the map from R/It → R/It+k in the direct limit system is induced by
multiplication by yk acting on the numerators.

Let e ∈ N be given. We want to understand the module Fe(E), and we also
want to understand the q th power map v 7→ vq from E to Fe(E). If r ∈ R, we shall
write 〈r; xt1, . . . , xtn〉 for the image of r under the composite map R� R/It ↪→ E,
where the first map is the quotient surjection and the second map comes from our
construction of E as the direct limit of the R/It. With this notation,

〈r; xt1, . . . , xtn〉 = 〈ykr; xt+k1 , . . . , xt+kn 〉
for every k ∈ N.

Since tensor products commute with direct limit, we have that

Fe(E) = lim−→
t

Fe(R/It) = lim−→
t

R/(It)
[q] = lim−→

t

R/Itq.

In the rightmost term, the map from R/Itq → R/I(t+1)q = Itq+q is induced by
multiplication by tq acting on the numerators. The rightmost direct limit system
consists of of a subset of the terms in the system lim−→t

R/It, and the maps are

the same. The indices that occur are cofinal in the positive integers, and so we
may idenitfy Fe(E) with E. Under this identification, if v = 〈r; xt1, . . . , xtn〉, then

vq = 〈rq; xqt1 , . . . , xqtn 〉.
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26. Lecture 26

We can now prove the assertions in the first paragraph of Theorem 24.3. We
begin with the argument to show that 0 is tightly closed in ER(K) for a weakly
F-regular Gorenstein local ring

Proof. Let (R, m, K) be a Gorenstein local ring of characteristic p. We want
to determine when v = 〈u; x1, . . . , xn〉 is in 0∗ in E. This happens precisely when
there is an element c ∈ R ◦ such that cvq = 0 in Fe(E) for all q � 0. But
cvq = 〈cuq; xq1, . . . , xqn〉, which is 0 if and only if cuq ∈ Iq = I [q] for all q � 0.
Thus, 0 is tightly closed in E if and only if I is tightly closed in R. This gives a
new proof of the result that in a Gorenstein local ring, if I is tightly closed then R
is weakly F-regular. But it also proves that if I is tightly closed, every submodule
of every module is tightly closed. In particular, if R is weakly F-regular then every
submodule over every module is tightly closed. �

It remains to show that when a Gorenstein local ring is F-finite and weakly
F-regular, it is strongly F-regular. We first want to discuss some issues related to
splitting a copy of local ring from a module to which it maps.

26.1. Splitting criteria and approximately Gorenstein local rings.
Many of the results of this section do not depend on the characteristic.

Theorem 26.1. Let (R, m, K) be a local ring and M an R-module. Let f :
R → M be an R-linear map. Suppose that R is complete or that M is finitely
generated. Let E denote an injective hull for the residue class field K = R/m of R.
Then R→M splits if and only if the map E = E ⊗R R→ E ⊗RM is injective.

Proof. Evidently, if the map splits the map obtained after tensoring with E
(or any other module) is injective: it is still split. This direction does not need
any hypothesis on R or M . For the converse, first consdider the case where R is
complete. Since the map E⊗RR→ E⊗RM is injective, if we apply HomR( , E),
we get a surjective map. We switch the order of the modules in each tensor product,
and have that

HomR(R⊗E E, E)→ HomR(M ⊗R E, E)

is surjective. By the adjointness of tensor and Hom, this is isomorphic to the map

HomR

(
M, HomR(E, E)

)
→ HomR(R, HomR(E, E).

By Matlis duality, we have that HomR(E, E) may be naturally identified with R,
since R is complete, and this yields that the map HomR(M, R) → HomR(R, R)
induced by composition with f : R→M is surjective. An R-linear homomorphism
g : M → R that maps to the identity in HomR(R, R) is a splitting for f .

Now suppose that R is not necessarily complete, but that M is finitely gener-
ated. By part (b) of Theorem splitcrit completing does not affect whether the map
splits. The result now follows from the complete case, because E is the same for

R and for R̂, and E ⊗R̂ (R̂ ⊗R ) is the same as E ⊗R by the associativity of
tensor. �

This result takes a particularly concrete form in the Gorenstein case.

Theorem 26.2 (splitting criterion for Gorenstein rings). Let (R, m, K) be a
Gorenstein local ring, and let x1, . . . , xn be a system of parameters for R. Let u ∈ R
represent a socle generator in R/I, where I = (x1, . . . , xn), let y = x1 · · · , yn,
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and let It = (xt1, . . . , x
t
n)R for I ≥ 1. Let f : R → M be an R-linear map with

f(1) = w ∈M , and assume either that R is complete or that M is finitely generated.
Then the following conditions are equivalent:

(1) f : R→M is split.
(2) For every ideal J of R, R/J → M/JM is injective, where the map is

induced by applying (R/J)⊗R .
(3) For all t ≥ 1, R/It →M/ItM is injective.
(4) For all t ≥ 1, yt−1uw /∈ ItM .

Moreover, if x1, . . . , xn is a regular sequence on M , then the following two condi-
tions are also equivalent:

(5) R/I → R/IM is injective.
(6) uw /∈ IM .

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (5) is clear. The map R/It → M/ItM has a
nonzero kernel if and only if the socle element, which is the image of yt−1u, is
killed, and this element maps to yt−1uw. Thus, the statements in (3) and (4) are
equivalent for every value of t, and the equivalence (5)⇔ (6) is the case t = 1. We
know from Theorem 26.1 that R→M is split if and only if E → E⊗RM is injective,
and this map is the direct limit of the maps R/It → (R/It)⊗RM by Theorem 25.2
This shows that (3)⇒ (1). Thus, (1), (2), (3), and (4) are all equivalent and imply
(5) and (6), while (5) and (6) are also equivalent. To complete the proof it suffices
to show that (6) ⇒ (4) when x1, . . . , xn is a regular sequence on M . Suppose
ytuw ∈ (xt1, . . . , x

t
n)M . Then uw ∈ (xt1, . . . , x

t
n)M :M yt = (x1, . . . , xn)M by

Theorem 17.6 �

Remark 26.3. If M = S is an R-algebra and the map R → S is the struc-
tural homomorphism, then the condition in part (2) is that every ideal J of R
is contracted from S. Similarly, the condition in (4) (respectively, (5)) is that It
(respectively, I) be contracted from S.

We define a local ring (R, m, K) to be approximately Gorenstein if there exists
a decreasing sequence of m-primary ideals I1 ⊇ I2 ⊇ · · · ⊇ It ⊇ · · · such that
every R/It is a Gorenstein ring (i.e., the socle of every R/It is a one-dimensional
K-vector space) and the It are cofinal with the powers of m. That is, for every
N > 0, It ⊆ mN for all t� 1. Evidently, a Gorenstein local ring is approximately
Gorenstein, since we may take It = (xt1, . . . , x

t
n)R, where x1, . . . , xn is a system of

parameters.

Remark 26.4. Note that the following conditions on an m-primary ideal I in
a local ring (R, m, K) are equivalent:

(1) R/I is a 0–dimensional Gorenstein.
(2) The socle in R/I is one-dimensional as a K-vector space.
(3) I is an irreducible ideal, i.e., I is not the intersection of two strictly larger

ideals.

Note that (2) ⇒ (3) because when (2) holds, any two larger ideals, considered
modulo I, must both contain the socle of R/I. Conversely, if the socle of R/I
has dimension 2 or more, it contains nonzero vector subspaces V and V ′ whose
intersection is 0. The inverse images of V and V ′ in R are ideals strictly larger
than I whose intersection is I. �
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If R itself has dimension 0, the chain It is eventually 0, and so in this case an
approximately Gorenstein ring is Gorenstein. In higher dimension, it turns out to
be a relatively weak condition on R.

Theorem 26.5. Let (R, m, K) be a local ring. Then R is approximately Goren-

stein if and only if R̂ is approximately Gorenstein. Moreover, R is approximately
Gorenstein provided that at least one of the following conditions holds:

(1) R̂ is reduced.
(2) R is excellent and reduced.
(3) R has depth at least 2.
(4) R is normal.

The fact that the condition holds for R if and only it holds for R̂ is obvious.
Moreover, (2)⇒ (1) and (4)⇒ (3). We shall say more about why Theorem given is
true in the sequel. For a detailed treatment see [M. Hochster, Cyclic purity versus
purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977) 463–
488.], which gives the following precise characterization: a local ring of dimension
at least one is approximately Gorenstein if and only if R has positive depth and

there is no associated prime P of the completion R̂ such that dim (R̂/P ) = 1 and

(R̂/P )⊕ (R̂/P ) embeds in R̂.
Before studying characterizations of the property of being approximately Goren-

stein further, we want to note the following.

Theorem 26.6. Let (R, m, K) be an approximately Gorenstein local ring and
let {It}t be a descending chain of m-primary irreducible ideals cofinal with the
powers of m. Then an injective hull E = ER(K) is an increasing union

⋃
t AnnItE,

and AnnEIt ∼= R/It, so that E is the direct limit of a system in which the modules
are the R/It and the maps are injective.

Proof. Since every element of E is killed by a power of m, every element of
E is in AnnEIt for some t. We know that AnnEIt is an injective hull for K over
R/It. Since R/It is 0-dimensional Gorenstein, this ring itself is an injective hull
over itself for K. �

This yields:

Theorem 26.7. Let (R, m, K) be an approximately Gorenstein local ring and
let {It}t be a descending chain of m-primary irreducible ideals cofinal with the
powers of m. Let ut ∈ R represent a socle generator in R/It. Let f : R→M be an
R-linear map with f(1) = w ∈M . Then the following conditions are equivalent:

(1) f : R→M splits over R.
(2) For all t ≥ 1, R/It →M/ItM is injective.
(3) For all t ≥ 1, utw /∈ ItM .

Proof. Since E = ER(K) is the direct limit of the R/It, we may argue exactly
as in the proof of the Theorem at the top of p 3. �

26.2. When is a ring approximately Gorenstein? To prove a sufficient
condition for a local ring to be approximately Gorenstein, we want to introduce a
corresponding notion for modules. Let (R,m,K) be local and let M be a finitely
generated R-module. We shall say that N ⊆ M is cofinite if M/N is killed by
power of m. (The reader should be aware that the term “cofinite module” is used
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by some authors for a module with DCC.) The following two conditions on a cofinite
submodule are then equivalent, just as in Remark 26.4.

(1) 1 The socle in M/N is one-dimensional as K-vector space.
(2) 2 N is in irreducible submodule of M , i.e., it is not the intersection of two

strictly larger submodules of M .

We shall say that M has small cofinite irreducibles if for every positive integer t
there is an irreducible cofinite submodule N of M such that N ⊆ mtM . Thus, a
local ring R is approximately Gorenstein if and only if R itself has small cofinite
irreducibles.

Note the the question of whether (R, m, K) is approximately Gorenstein or
whether M has small cofinite irreducibles is unaffected by completion: there is a

bijection between the cofinite submodules N of M and those of M̂ given by letting

N correspond to N̂ . The point is that if N ′ is cofinite in M̂ , M̂/N ′ is a finitely

generatedR-module (in fact, it has finite length) andM → M̂/N ′ is surjective, since

M/mtM ∼= M̂/mtM̂ for all t, so that N ′ is the completion of N ′ ∩M . Moreover,

when N and N ′ correspond, M/N ∼= M̂/N ′ since M/N is already a complete
R-module. In particular, irreducibility is preserved by the correspondence.

We have already observed that Gorenstein local rings are approximately Goren-
stein. We next note:

Theorem 26.8. Proposition Let (R, m, K) be a local ring. If M is a finitely
generated R-module that has small cofinite irreducibles, then every nonzero submod-
ule of M has small cofinite irreducibles.

Proof. Suppose that N ⊆ M is nonzero. By the Artin-Rees lemma there is
a constant c ∈ N such that mtM ∩N ⊆ mt−cN for all t ≥ c. If Mt+c is cofinite in
M and such that Mt+c ⊆ mt+cM and M/Mt+c has a one-dimensional socle, then
Nt = Mt+c ∩N is cofinite in N , contained in mtN (so that N/Nt is nonzero) and
has a one-dimensional socle, since N/Nt embeds into M/Mt+c. �

Before giving the main result of this section, we note the following fact, due to
Chevalley, that will be needed in the argument.

Theorem 26.9 (Chevalley’s Lemma). Let M be a finitely generated module
over a complete local ring (R,m,K) and let {Mt}t denote a nonincreasing sequence
of submodules. Then

⋂
tMt = 0 if and only if for every integer N > 0 there exists

t such that Mt ⊆ mNM .

Proof. The “if” part is clear. Suppose that the intersection is 0. Let Vt,N
denote the image of Mt in M/mNM . Then the Vt,N do not increase as t in-
creases, and so are stable for all large t. Call the stable image VN . Then the maps
M/mN+1M → M/mNM induce surjections VN+1 � VN . The inverse limit W of
the VN may be identified with a submodule of the inverse limit of the M/mNM ,
i.e. with a submodule of M , and any element of W is in⋂

t,N

(Mt +mNM) =
⋂
t

(⋂
N

(Mt +mNM)
)

=
⋂
t

Mt.

If any VN0
is not zero, then since the maps VN+1 � VN are surjective for all N , the

inverse limit W of the VN is not zero. But VN is zero if and only if Mt ⊆ mNM
for all t� 0. �
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The condition given in the Theorem immediately below for when a finitely
generated module of positive dimension over a complete local ring has small cofinite
irreducibles is necessary as well as sufficient: we leave the necessity as an exercise
for the reader. The proof of the equivalence is given in [M. Hochster, Cyclic purity
versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977)
463–488.]

Theorem 26.10. Theorem Suppose that M is a finitely generated module over
a complete local ring (R,m,K) such that dimM ≥ 1. Suppose that m is not
an associated prime of M and that if P is an associated prime of M such that
dimR/P = 1 then R/P ⊕R/P is not embeddable in M . Then M has small cofinite
irreducibles.

Proof. We use induction on dimM . First suppose that dimM = 1. We
represent the ring R as a homomorphic image of a complete regular local ring S of
dimension d. Because R is catenary and dimM = 1, the annihilator of M must have
height d−1. Choose part of a system of parameters x1, . . . , xd−1 in the annihilator.
Now view M as a module over R′ = S/(x1, . . . , xd−1). We change notation and
simply write R for this ring. Then R is a one-dimensional complete local ring,
and R is Gorenstein. It follows that R has small cofinite irreducibles, and we can
complete the argument, by the Proposition on the preceding page, by showing that
M can be embedded in R. Note that for any minimal prime p in R, Rp is a (zero-
dimensional) Gorenstein ring. (In fact, any localization of a Gorenstein local ring
at a prime is again Gorenstein: but we have not proved this here. However, in this
case, we may view Rp as the quotient of the regular ring Sq, where q is the inverse
image of p in S, by an ideal generated by a system of parameters for Sq, and the
result follows.)

To prove that we can embed M in R, it suffices to show that if W = R ◦, then
W−1M can be embedded in W−1R. One then has M ⊆W−1M ⊆W−1R, and the
values of the injective map M ↪→ W−1R on a finite set of generators of M involve
only finitely many elements of W . Hence, one can multiply by a single element of
W , and so arrange that M ↪→W−1R actually has values in R.

But W−1R is a finite product of local rings Rp as p runs through the minimal
primes of R, and so it suffices to show that if p is a minimal prime of R in the
support of M , then Mp embeds in Rp. Now, Mp has only pRp as an associated
prime, and since only one copy of R/p can be embedded in M , only one copy of
κp = Rp/pRp can be embedded in Mp. Thus, Mp is an essential extension of a
copy of κp. Thus, it embeds in the injective hull of the residue field of Rp, which,
since Rp is a zero-dimensional Gorenstein ring, is the ring Rp itself.

Now suppose that dimM = d > 1 and that the result holds for modules
of smaller dimension. Choose a maximal family of prime cyclic submodules of
M , say Ru1, . . . , Rus, such that AnnRui is a prime Qi for every i and the sum
N = Ru1⊕ · · ·⊕Rus is direct. Then M is an essential extension of N : if v ∈M , it
has a nonzero multiple rv that generates a prime cyclic module, and if this prime
cyclic module does not meet N we can enlarge the family. Since M is an essential
extension of N , M embeds in the injective hull of N , which we may identify with
the direct sum of the Ei = ER(Rui). Note that a prime ideal of R may occur more
than once among the Qi, but not if dim (R/Qi) = 1, and R/m does not occur.
Take a finite set of generators of M . The image of each generator only involves
finitely many elements from a given Ei. Let Mi be the submodule of Ei generated
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by these elements. Then Mi ⊆ Ei, so that Ass (Mi) = Qi, and Mi is an essential
extension of R/Qi. What is more M ⊆ ⊕si=1Mi.

By the Propositiion at the bottom of 5, it suffices to show that this direct sum,
which satisfies the same hypotheses as M , has small cofinite irreducibles. Thus, by
we need only consider the case where M =

⊕s
i=1Mi as described. We assume that,

for i ≤ h, AssMi = {Qi} with dim (R/Qi) = 1 and with the Qi mutually distinct,
while for i > h, dim (R/Qi) > 1, and these Qi need not all be distinct. Now choose
primes P1, . . . , Ps such that, for every i, dimR/Pi = 1, such that P1, . . . , Ps are
all distinct, and such that for all i, Pi ⊇ Qi. We can do this: for 1 ≤ i ≤ h, the
choice Pi = Qi is forced. For i > h we can solve the problem recursively: simply
pick Pi to be any prime different from the others alreaday selected and such that
Pi ⊇ Qi and dimR/Pi = 1. (We are using the fact that a local domain R/Q of
dimension two or more contains infinitely many primes P such that dimR/P = 1.
To see this, kill a prime to obtain a ring of dimension exactly two. We then need to
see that there are infinitely many height one primes. But if there are only finitely
many, their union cannot be the entire maximal ideal, and a minimal prime of an
element of the maximal ideal not in their union will be another height one prime.)

Fix a positive integer t. We shall construct a submodule N of M contained
in mtM and such that M/N is cofinite with a one-dimensional socle. We shall do
this by proving that for every i there is a submodule Ni of Mi with the following
properties:

(1) Ni ⊆ mtMi

(2) AssMi/Ni = {Pi} and Mi/Ni is an essential extension of R/Pi.

It then follows that M = M/(
⊕

iNi) is a one-dimensional module with small

cofinite irreducibles, and so we can choose N ⊆ mtM such that M/N has finite
length and a one-dimensional socle. We can take N to be the inverse image of N
in M . This shows that the problem reduces to the construction of the Ni with the
two properties listed.

If i ≤ h we simply take Ni = 0. Now suppose that i > h. To simplify notation
we write M , Q and P for Mi, Qi and Pi, respectively. Let Dk ⊆ M be the
contraction of P kMP to M ⊆ MP . Since

⋂
k P

kMP = 0 (thinking over RP ), we
have that

⋂
kDk = 0. Since M is complete, by Chevalley’s Lemma, we can choose

k so large that Dk ⊆ mtM .
We shall show that the completion of MP over the completion of RP satisfies the

hypothesis of the Theorem. But then, since MP and its completion have dimension
strictly smaller than M , it follows from the induction hypothesis that, working over
RP , MP has small cofinite irreducibles. Consequently, we may choose a cofinite
irreducible N ′ ⊆ P kMP , and the contraction of N ′ to M will have all of the
properties that we want, since it will be contained in Dk ⊆ mtM .

Thus, we need only show that the completion of MP over the completion of
RP satisfies the hypothesis of the Theorem. Since Ass (M) = {Q}, we have that
Ass (MP ) = {QRP }, and so PRP is not an associated prime of MP . Thus, the
depth of MP is at least one, and this is preserved when we complete. By Problem

2(b) of Problem Set #3, Ass (M̂P ) is the same as the set of associated primes of

the completion of RP /QRP , which we may identify with R̂P /QR̂P . Since this ring

is reduced, the primes q that occur are minimal primes of QR̂P . For such a prime
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q,

Ann
M̂P

q ⊆ Ann
M̂P

Q ∼= R̂P ⊗RP AnnMP
QRP ,

since R̂P is flat over RP . From the hypothesis, we know that AnnMP
QRP has

torsion free rank one over RP /QRP , and so it embeds in RP /QRP . It follows

that Ann
M̂P

q embeds in R̂P /QR̂P . Since this ring is reduced with q as one of

the minimal primes, its total quotient ring is a product of fields. Hence, it is not

possible to embed the direct sum of two copies of (R̂P /QR̂P )/q in R̂P /QR̂P . This
completes the proof of the Theorem. �

|

27. Lecture 27

27.1. The Auslander-Buchsbaum theorem on depth and projective
dimension. For the following basic result, we refer the reader to p. 67 of the
Lecture Notes from Math 615, Winter 2015.

Theorem 27.1 (Auslander-Buchsbaum). Let (R, m, K) be local and M 6= 0
a finitely generated R-module that has finite projective dimension, denoted pdRM .
Then

pdRM = depth mR− depth mM.

Corollary 27.2. Under the hypothesis of Theorem 27.1, pdM ≤ depth mR.
In particular, if depth mR = 0, then M is free.

If R is regular local of Krull dimension n, we have depth mR = n, and every
finitely generated module has finite projective dimension. Hence:

Corollary 27.3. Suppose that (R, m, K) is regular local of Krull dimension
n and M is a finitely generated nonzero module. Let I be the annihilator of M .
Then pdRM = n − depthRM , and M is Cohen-Macaulay if and only if pdRM =
n− dim(M) = n− dim(R/I) = height (I).

Corollary 27.4. If R is regular local then M 6= 0 is free if and only if
depth mM = n.

Remark 27.5. In working with these results, it is useful to know that a Cohen-
Macaulay module over a local ring has pure dimension, i.e., every nonzero submod-
ule has the same Krull dimension as M . This is equivalent to the statement that
if P ∈ Ass (M), then dim(R/P ) = dim(M). This follows from the more general
fact that if x1, . . . , xs is aa regular sequence on M , then every submodule of M
has dimension at least s. (Use induction on s. If s = 1, this is clear, since a zero-
dimensional module cannot have positive depth. In general, let N ⊆ M and let x
be a nonzerodivisor on M . Let N ′ =

⋃
tN :M xt. This is the same as N : xt for

all t� 0 since M has ACC. N ′ has the same dimension as N , since it contains N
but is isomorphic to xtN ′ ⊆ N for all t� 0. Then x is not a zerodivisor on M/N ′,
and it follows that N ′/xN ′ ⊆ M/xM . The result now follows from the induction
hypothesis.)
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27.2. Supplementary Problems III.

1. Let R be a domain in which the test ideal has height two, and let P be
a height one prime ideal of R. Suppose that u ∈ N∗M , where N ⊆ M are finitely
generated R-modules. Let R→ S be a homomorphism to a domain S with kernel
P . Show that 1⊗ u is in the tight closure of the image of S ⊗R N in S ⊗RM over
S, i.e., in 〈S ⊗R N〉∗S⊗RM .

2. Let R be a Noetherian ring of prime characteristic p > 0. (a) Let I ⊆ R be

an ideal, and let W ⊆ R be a multiplicative system disjoint from every associated
prime of every ideal of the form I [q]. Show that (IW−1R)∗ over W−1R may be
identified with W−1I∗.

(b) Let R be a reduced Cohen-Macaulay ring, and let x1, . . . , xn be a regular
sequence in R such that I = (x1, . . . , xn)R is tightly closed in R. Let P be a
minimal prime of I. Prove that RP is F-rational. (Suggestion: first localize at the
multiplicative system W consisting of the complement of the union of the minimal
primes of I. After this localization, P expands to a maximal ideal.)

(c) Let (R, m, K) be F-rational and P a prime ideal of R. Show that RP is
F-rational.

3. (a) If M is a finitely generated module over a Noetherian ring R, show that
M has a finite filtration such that every factor is a finitely generated torsion-free
(R/P )-module N for some prime P ∈ Ass (M), and each such module N embeds
in (R/P )⊕h for some h.

(b) Let R → S be flat, where R and S are Noetherian rings, and let M be an
R-module. Show that Ass S(S ⊗RM) =

⋃
P∈AssR(M) Ass S(S/PS).

4. Let (R, m, K) be a Gorenstein local ring of characteristic p, and let x1, . . . , xn
be a system of parameters for R. Suppose that every xi is a test element. Let
I = (x1, . . . , xn)R. Show that I :R I

∗ is the test ideal τ(R) for R.

5. (a) Let (R, m, K) be a Gorenstein local ring of characteristic p that is F-
finite or complete, and let x1, . . . , xn be a system of parameters for R. Let u ∈ R
represent a generator of the socle in R/(x1, . . . , xn). Show that R is F-split if and
only if up /∈ (xp1, . . . , x

p
n)R.

(b) Let K be a perfect field of characteristic p > 0, where p 6= 3. Determine
for which primes p the ring K[[x, y, z]]/(x3 + y3 + z3) is F-split.

6. (a) Let R be ring of characteristic p, and W be a multipllicative system in
R, and let S = W−1R. Let M be an S-module. Show that FeR(M) ∼= FeS(M).

(b) Let R be a Noetherian ring of prime characteristic p > 0. Show that if every
submodule of every R-module is tightly closed, then the same holds for W−1R for
every multiplicative system W in R. [Suggestion: it suffices to consider injective
hulls of quotients of the ring by prime ideals.]

27.3. Proof of equivalence of conditions for strong F-regularity for
F-finite rings. It still remains to prove the final assertion Theorem 24.3: that if
R is F-finite and weakly F-regular, then R is strongly F-regular. Before doing so,
we want to note some consequences of the theory of test elements, and also of the
theory of approximately Gorenstein rings.
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Theorem 27.6. Let (R, m, K) be a local ring of characteristic p.

(a) a If R has a completely stable test element, then R̂ is weakly F-regular if
and only if R is weakly F-regular.

(b) b If R has a completely stable big test element, then R̂ has the property
that every submodule of every module is tightly closed if and only if R
does.

Proof. We already know that if a faithfully flat extension has the relevant
property, then R does. For the converse, it suffices to check that 0 is tightly closed

in every finite length module over R̂ (respectively, in the injective hull E of the

residue class field over R̂, which is the same as the injective hull of the residue class

field over R). A finite length R̂-module is the same as a finite length R-module. We
can use the completely stable (big, for part (b)) test element c ∈ R in both tests,
which are then bound to have the same outcome for each element of the modules.
For a module M supported only at m,

Fe
R̂

(M) ∼= Fe
R̂

(R̂⊗RM) ∼= R̂⊗R FeR(M) ∼= FeR(M).

�

Theorem 27.7. Let R have a test element (respectively, a big test element) c
and let N ⊆M be finitely generated (respectively, arbitrary) R-modules. Let d ∈ R ◦
and suppose u ∈ M is such that cuq ∈ N [q] for infinitely many values of q. Then
u ∈ N∗M .

Proof. Suppose that duq ∈ N [q] and that pe1 = q1 < q, so that q = q1q2.
Then (duq1)q2 = dq2−1duq ∈ (N [q1])[q2] = N [q], and it follows that for all q3,
(duq1))q2q3 ∈ (N [q1])[q2q3]. Hence, duq1 ∈ (N [q1])∗ in Fe1(M) whenever q1 ≤ q.
Hence, if duq ∈ N [q] for arbitrarily large values of q, then duq ∈ (N [q])∗ in Fe(M)
for all q and it follows that cduq ∈ N [q] for all q, so that u ∈ N∗M . �

Theorem 27.8. Let R be a Noetherian ring of prime characteristic p > 0.

(a) If every ideal of R is tightly closed, then R is weakly F-regular.
(b) If R is local and {It}t is a descending sequence of irreducible m-primary

ideals cofinal with the powers of m, then R is weakly F-regular if and only
if It is tightly closed for all t ≥ 1.

Proof. (a) We already know that every ideal is tightly closed if and only if
every ideal primary to a maximal ideal is tightly closed, and this is not affected by
localization at a maximal ideal. Therefore, we may reduce to the case where R is
local. The condition that every ideal is tightly closed implies that R is normal and,
hence, approximately Gorenstein. Therefore, it suffices to prove (b). For (b), we
already know that R is weakly F-regular if and only if 0 is tightly closed in every
finitely generated R-module that is an essential extension of K. Such a module is
killed by It for some t � 0, and so embeds in ER/It(K) ∼= R/It for some t. Since
It is tightly closed in R, 0 is tightly closed in R/It, and the result follows. �

We next want to establish a result that will enable us to prove the final assertion
of Theorem 24.3.

Theorem 27.9. Let (R, m, K) be a complete local ring of characteristic p. If
R is reduced and c ∈ R ◦, let θe,c : R → R1/q denote the R-linear map such that

1 7→ c1/q. Then the following conditions are equivalent:
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(1) Every submodule of every module is tightly closed.
(2) 0 is tightly closed in the injective hull E := ER(K) of the residue class

field K = R/m of R.
(3) R is reduced, and for every c ∈ R ◦, there exists e such that the θe,c splits.
(4) R is reduced, and for some c ∈ R ◦ that has a power which is a big test

element for R, there exists q such that θq,c splits.
(5) R is reduced, and for some c ∈ R ◦ such that Rc is regular, there exists e

such that θe,c splits.
(6) R is reduced, and for some c ∈ R ◦ that is a big test element, there exists

e such that θe,c splits.

Proof. Note that all of the conditions imply that R is reduced.
We already know that conditions (1) and (2) are equivalent, and that (3)⇒ (2),

while (3) ⇒ (4) ⇒ (5) (the latter because of c ∈ R ◦ and Rc is regular, c has a
power that is a test element). Moreover, if there is a splitting for θe,c and ck is a

big test element, we also have that cp
e1

, where and pe1 ≥ k, is a test element. Since

(cp
e1 )1/pe+e1 = c1/p

e

, we have that θe+e1,cp
e1 = θe,c splits. Hence, (6) ⇒ (4), while

(4)⇒ (6) is obvious, so that (4), (5), and (6) are equivalent. It will therefore follow
that all six conditions are equivalent if prove that (2) is equivalent to both (3) and
(6).

The argument is as follows. Let v generate the socle, a copy of K = R/m, in E.
Every nonzerro submodule of E contains v. Thus, 0 is tightly closed in E iff v is
not in 0∗E . The latter is equivalent to the condition that for all c in R0 (respectively,
for a single big test element c) there exists e such that

(†) cvp
e

6= 0 ∈ Fe(E).

We think of the map F e : R → R1/pe as isomorphic to R ↪→ R1/pe . The (†) is
equivalent to the condition that c1/p

e

(1 ⊗ v) 6= 0 in R1/pe ⊗R E. This in turn is
equivalent to the condition thati if one tensors θe,c : R → R/p

e ⊗R E, the image
of v is not 0. But since K ∼= Rv ↪→ E is essential, this in turn is equivalent to
the condition that E → R1/pe ⊗R E is injective. This is turn is equivalent to the
condtion that the dual map HomR(R1/p⊗RE,E)→ HomR(E,E) is surjective. By
the adjointes of tensor and Hom and the isomorphism R ∼= HomR(E,E) when R
is complete, this becomes the condition that HomR(Rp, R)→ R is surjective. The
this is equivalent to giving an Rlinear map α : R1/pe → R such that α ◦ θe,c is the
identity map on R. Hence, for every c and for every e, (†) holds if and only if

(‡)θe,c : R→ R1/pe

is split. It follows that 0 is tightly closed in E if and only if for all c ∈ R ◦ there
exists e such that θe,c splits (respectively, for one big test element c ∈ R ◦ there
exists e such that θe,c splits.) This say precisely that (2) is equivalent to both (3)
and (6). �

Remark 27.10. It is not really necessary to assume that R is reduced in the
last three conditions. We can work with R(e) instead of R1/q, where R(e) denotes R
viewed as an R-algebra via the structural homomorphism Fe. We may then define
θe,c to be the R-linear map R → R(e) such that 1 7→ c. The fact that this map is
split for some some c ∈ R ◦ and some e implies that R is reduced: if r is a nonzero
nilpotent, we can replace it by a power which is nonzero but whose square is 0. But
then the image of r is rqc = 0, and the map is not even injective, a contradiction.
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Once we know that R is reduced, we can identify R(e) with R1/q and c is identified
with c1/q.

We want to apply the preceding Theorem to the F-finite case. We first observe:

Theorem 27.11. Let (R, m, K) be an F-finite reduced local ring. Then R̂1/q ∼=
R̂1/q ∼= R̂⊗R R1/q for all q = pe.

Proof. R1/q is a local ring module-finite over R. Hence, the maximal ideal
of R expands to an ideal primary to the maximal ideal of R1/q, and it follows

that R̂1/q is the mR1/q-adic completion of R1/q. Thus, we have an isomorphism

α : R̂1/q ∼= R̂ ⊗R R1/q. Since R is reduced, so is R1/q. Since R is F-finite, so is

R1/q, and R1/q is consequently excellent. Hence, the completion R̂1/q is reduced.

If we use the identification α to write a typical element of u ∈ R̂1/q as a sum of

terms of the form s⊗ r1/q, where s ∈ R̂ and r ∈ R, we see that uq ∈ R̂. This shows

that we have R̂1/q ⊆ R̂1/q. On the other hand, if r0, r1, . . . , rk, . . . is a Cauchy

sequence in R with limit s, then r
1/q
0 , r

1/q
1 , · · · , r1/q

k , · · · is a Cauchy sequence in

R1/q, and its limit is s1/q. This shows that R̂1/q ⊆ R̂1/q. �

From the preceding Theorem we then have:

Corollary 27.12. If R is F-finite, then R is strongly F-regular if and only if
every submodule of every module is tightly closed.

Proof. We need only show that if every submodule of every module is tightly
closed, then R is strongly F-regular. We know that both conditions are local on
the maximal ideals of R (cf. problem 6. of Problem Set #3). Thus, we may assume
that (R, m, K) is local. We know that R has a completely stable big test element

c. By part (b) of the Theorem on the first page, R̂ has the property that every
submodule of every module is tightly closed: in particular, 0 is tightly closed in
E = ER̂(K) ∼= ER(K). By the equivalence of (2) and (4) in the preceding Theorem,

we have that the R̂-linear map θ̂ : R̂ → R̂1/q that sends 1 7→ c1/q splits for some
q. This map arises from the R-linear map θ : R → R1/q that sends 1 7→ c1/q by

applying R̂ ⊗R . Since R̂ is faithfully flat over R, the map θ is split if and only

if θ̂ is split, and so θ is split as well. �

Finally, we can prove the final statement in Theorem 24.3.

Corollary 27.13. If R is Gorenstein and F-finite, then R is weakly F-regular
if and only if R is strongly F-regular.

Proof. The issue is local on the maximal ideals of R. We have already shown
that in the local Gorenstein case, (R, m, K) is weakly F-regular if and only if 0
is tightly closed in ER(K). By the Corollary just above, this implies that R is
strongly F-regular in the F-finite case. �

This justifies extending the notion of strongly F-regular ring as follows: the
definition agrees with the one given earlier if the ring is F-finite.

Definition 27.14. Let R be a Noetherian ring of prime characteristic p > 0.
We define R to be strongly F-regular if every submodule of every module (whether
finitely generated or not) is tightly closed.
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27.4. Examples of strongly F-regular rings. We note the following ex-
amples, with references to the literature. “Polynomial ring” means polynoomial
ring over a field of characteristic p > 0. Let 1 ≤ t ≤ r ≤ s and a1, . . . , an be
positive integers. Then all of the rings listed below are strongly F-regular. . Note
that examples (2) - (6) are finitely generated N-graded rings (in (6), the grading
is obtained by weighting the variables) over a field. The rings in (4) are direct
summands of polynomial rings ([Ho72]). The result in (6) can be proved using the
criteria in [HH94b, §7].

(1) Regular rings
(2) Generic determinantal rings: quotients of a polynomial ring over a field

by the ideal generated by size t minors of a an r × s matrix formed from
the indeterminates ([HH94b, §7])

(3) Toric rings: integrally closed rings generated by monomials in a polyno-
mial ring (including Veronese subrings of and iterated Segre products of
polynomial rings)

(4) Homogeneous coordinates rings of Grassmann varieties: these are gener-
ated by the r× r minors of an r× s matrix of indeterminates (and so are
subrings of polynomial rings) ([HH94b, §7])

(5) Generic Pfaffian rings: quotients of a polynomial ring by the ideal gener-
ated by the Pfaffians of a given size of an alternating matrix of indeter-
minates (if t = 2h is even, the symmetrically placed size t minors have
determinants that are perfect squares: these minors are the squares of the
Pffaffians) ([Ba01])

(6) For all sufficiently large primes p, the hypersurface defined by xa11 + · · ·+
xann over a field K of characteristic p when

∑
i

1
ai

> 1 (the condition

asserts that in a certain precise sense, the ai are small compared to n)
(7) Direct summands of any of the above.

28. Lecture 28

28.1. Local cohomology: a first look.

Definition 28.1. Let R be a Noetherian ring and let M be an arbitrary mod-
ule. Suppose that I ⊆ R is an ideal. Notice that if I ⊇ J the surjection R/J → R/I
induces map Exti(R/I,M)→ Exti(R/J,M). Thus, if I1 ⊇ I2 ⊇ · · · ⊇ It ⊇ · · · is a
decreasing sequence of ideals then we get a direct limit system

· · · → ExtiR(R/It,M)→ ExtiR(R/It+1,M)→ · · ·
and we may form the direct limit of these Ext ’s. We defineHi

I(M) = lim−→t
Exti(R/It,M),

and call this module the i th local cohomology module of M with support in I.

Discussion 28.2. Suppose that we replace the sequence {It}t by an infinite
subsequence. The direct limit is obviously unaffected. Likewise, if {Jt}t is another
decreasing sequence of ideals which is cofinal with It (i.e., for all t, there exists u
such that Ju ⊆ Tt and v such that Iv ⊆ Jt), then the direct limit computed using
the J ’s is the same. We can form a sequence Ia(1) ⊇ Jb(1) ⊇ Ia(2) ⊇ Jb(2) ⊇ · · · ⊇
Ia(t) ⊇ Jb(t) ⊇ · · · which yield the same result, on the one hand, as {Ia(t)}t and,
hence, as {It}t. Similarly, it yields the same result as {Jt}t.

In particular, if I = (x1, · · · , xn)R, then the sequence It = (xt1, · · · , xtn)R is
cofinal with the powers of I, and so may be used to compute the local cohomology.
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We also have:

Theorem 28.3. If I, J are ideals of the Noetherian ring R with the same
radical, then Hi

I(M) ∼= Hi
J(M) canonically for all i and for all R-modules M .

Proof. Each of the ideals I, J has a power contained in the other, and it
follows that the sequences {It}t, {J t}t are cofinal with one another. �

Discussion 28.4. If X ⊆ SpecR is closed, then X = V (I) where I is deter-
mined up to radicals: we may writeHi

X(M) forHi
I(M) and refer to local cohomology

with support in X.

Discussion 28.5. ExtiR(R/It,M) is a covariant additive functor of M , and
Ext has a long exact sequence. All this is preserved when we take a direct limit.
Thus, each Hi

I() is a covariant additive functor, and given a short exact sequence
of modules

0→ A→ B → C → 0

there is a long exact sequence

0→ H0
I (A)→ H0

I (B)→ H0
I (C)→ H1

I (A)→ H1
I (B)→ H1

I (C)→
· · · → Hi−1

I (A)→ Hi
I(A)→ Hi

I(B)→ Hi
I(C)→ Hi+1

I (A)→ · · ·
which is functorial in the given short exact sequence. Moreover, if M is injective,
Hi
I(M) = 0 for all i ≥ 1. It is also worth noting that if x ∈ R then the map

M
x−→M induces the map Hi

I(M)
x−→ Hi

I(M) on local cohomology.
Note, however, that even when M is finitely generated, the modules Hi

I(M)
need note be finitely generated, except under special hypotheses. However, we shall
see that when I is a maximal ideal of R, they do have DCC.

Discussion 28.6. H0
I . Note that HomR(R/I,M) may be identified with AnnMI

and that the map HomR(R/I,M) → HomR(R/J,M) when I ⊇ J may then be
identified with the obvious inclusion AnnMI ⊆ AnnMJ . This means that H0

I (M)
may be identified with the functor which assigns to M its submodule ∪tAnnMI

t,
the submodule of M consisting of all elements that are killed by a power of I.

Discussion 28.7. A minor variation on the definition of the local cohomology
functors is as follows: First defineH0

I (M) = {x ∈M : x is killed by some power of I}.
The define Hi

I(M) as the i th right derived functor of H0
I . Thus, to compute Hi

I

one would choose an injective resolution of M , say 0 → E0 → · · · → Ei → · · · ,
where M = Ker (E0 → E1), and then take the cohomology of 0 → H0

I (E0) →
· · · → H0

I (Ei) → · · · . In the original definition one first takes the cohomology of
the complex C•t :

0→ HomR(R/It, E0)→ · · · → HomR(R/It, Ei)→ · · ·
and then takes the direct limit of the cohomology. In the second definition, up
to isomorphism, one takes the direct limit of the complexes C•t and then takes
cohomology. Since calculation of homology or cohomology commutes with taking
direct limits, these two definitions are simply minor variations on one another.

Proposition 28.8. Let R be a Noetherian ring, I ⊆ R and let M be any
R-module. Then every element of Hi

I(M) is killed by a power of I.

Proof. Every element is in the image of some ExtiR(R/It,M) for some t, and
It kills that Ext. � �
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We now prove that local cohomology can be used to test depth.

Theorem 28.9. Let I be an ideal of a Noetherian ring R and let M be a finitely
generated R-module. Then Hi

I(M) = 0 for all i if and only if IM = M . If IM 6= M
then the least value d of i such that Hi

I(M) 6= 0 is the depth of M on I, i.e., the
length of any maximal M -sequence contained in I.

Proof. If IM = M then ItM = M for all t, and then It + AnnM = R for all
t. Since It + AnnM kills ExtiR(R/It,M), it follows that every one of these Ext ’s
is zero, and so all the local cohomology modules vanish.

Now suppose that IM 6= M and let x1, . . . , xd be a maximal M -sequence in I.
We shall show by induction on d that Hi

I(M) = 0 if i < d while Hd
I (M) 6= 0. If

d = 0 this is clear, since then some element of M−{0} will be killed by I and will be

nonzero in H0
I (M). If d > 0 the short exact sequence 0→M

x−→M →M/xM → 0
with x = x1 yields a long exact sequence for local cohomology:

· · · → Hi−1
I (M/xM)→ Hi

I(M)
x−→ Hi

I(M)→ Hi
I(M/xM) · · · .

For i < d the induction hypothesis shows that x is a nonzerodivisor on Hi
I(M),

which must vanish, since every element is killed by a power of x ∈ I. When i = d
the sequence also shows that Hd−1

I (M/xM), which we know from the induction

hypothesis is nonzero, injects into Hd
I (M) (we already have Hd−1

I (M) = 0). �

Our next objective is to give quite a different method of calculating local co-
homology: equivalently, we may use either a direct limit of Koszul cohomology
or a certain kind of Čechcohomology. In order to present this point of view, we
first discuss the tensor product of two or more complexes, and then define Koszul
homology and cohomology. We subsequently explain how to set up a direct limit
system and, after a while, prove that we can obtain local cohomology in this way.

One of the virtues of having this point of view is that it will enable us to
prove a very powerful theorem about change of rings. One of the virtues of local
cohomology is that it is “more invariant,” in some sense, than other theories that
measure some of the same qualities. Its disadvantage is that it usually produces
modules that are not finitely generated.

28.2. Tensor products of complexes and Koszul homology.

Discussion 28.10. We shall discuss Koszul cohomology, using the notion of
the tensor product of two complexes to define it. Let K• and L• be complexes of
R-modules with differentials d, d′, respectively. Then we let M• = K•⊗RL• denote
the complex such that:

(1) Mh =
⊕

i+j=hKi ⊗ Lj and

(2) d(ai ⊗ bj) = dai ⊗ bj + (−1)iai ⊗ d′bj when ai ∈ Ki and bj ∈ Lj
It is easy to check that this does, in fact, give a complex. If there are n

complexes then we may define the tensor product

K
(1)
• ⊗R . . .⊗R K(n)

•

recursively as (
K

(1)
• ⊗R · · · ⊗R K(n−1)

•

)
⊗R K(n)

• ,
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or we may take it to be the complex M• such that

Mh =
⊕

i(1)+···+i(n)=h

K
(1)
i(1) ⊗R · · · ⊗R K

(n)
i(n)

and such that if aji(j) ∈ K
(j)
i(j) for each j, then

d
(
a1
i(1) ⊗ · · · ⊗ a

n
i(n)

)
=

n∑
t=1

(−1)i(1)+···+i(t−1)a1
i(1) ⊗ · · · ⊗ d

tai(t) ⊗ · · · ⊗ ani(n),

where dt denotes the differential on K
(t)
• .

Given a sequence of n elements of a ring R, say x = x1, . . . , xn, we may define
the (homological) Koszul complex K•(x;R) as follows: If n = 1 and x1 = y, it

is the complex 0 → K1
y−→ K0 → 0 where K1 = K0 = R and the middle map is

multiplication by y. Then, in general, K•(x;R) = K•(x1;R)⊗R · · · ⊗R K•(xn;R).
For the cohomological version we proceed slightly differently: We let K•(y;R)

(with one element, y, in the sequence) be the complex

0→ K0 y−→ K1 → 0

in which K0 = K1 = R and the middle map is multiplication by y. We then let

K•(x;R) = K•(x1;R)⊗R · · · ⊗R K•(xn;R).

We may then define K•(x; M) = K•(x;R)⊗RM and K•(x; M) = K•(x;R)⊗RM ,
which is isomorphic with HomR(K•(x;R),M). We are mainly interested in the
cohomological version here.

Discussion 28.11. Let M be an R-module and let x ∈ R be any element. We
may form a direct limit system

M
x−→M

x−→M
x−→ · · ·M x−→ · · · .

Let N be the set of all elements in N killed by some power of x, i.e., N = Ker (M →
Mx). Let M ′ = M/N . The copy of N (notice, by the way, that N = H0

xR(M))
inside each copy of M is killed in the direct limit. Thus, the system above has the
same direct limit as

M ′
x−→M ′

x−→M ′
x−→ · · ·M ′ x−→ · · · .

This system is isomorphic with an increasing union, as indicated in the commutative
diagram below:

M ′ ↪→ M ′ · 1
x ↪→ M ′ · 1

x2 ↪→ · · · ↪→ M ′ · 1
xt ↪→ · · ·

↑ ↑ ↑ ↑
M ′

x−→ M ′
x−→ M ′

x−→ · · · x−→ M ′
x−→ · · ·

where M ′ · 1
xt denotes {m′/xt : m′ ∈ M ′} ⊆ M ′x, and the map M ′ → M ′ · 1

xt is
the R-isomorphism sending m′ to m′/xt for every m′ ∈ M ′. Since the union of
the modules in the top row is M ′x

∼= Mx, it follows that the direct limit of the
system in the bottom row is also Mx, and so the direct limit of the original system

M
x−→M

x−→M
x−→ · · ·M x−→ · · · is Mx as well (where the map from the t th copy of

M into Mx sends m to m/xt). The case where M = R is of particular interest.
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Discussion 28.12. If x = x1, . . . , xn is a sequence of elements of R, we let xt

denote the sequence xt1, . . . , x
t
n. We next want to describe how to form a direct

limit system, indexed by t, from the Koszul complexes K•(x
t;M), where M is an

R-module.
We begin with the case where n = 1, x1 = x, and M = R. Then the map from

K•(xt;R) → K•(xt+1;R) is as indicated by the vertical arrows in the diagram
below:

K0 K1

0 −−−−→ R
xt−−−−→ R −−−−→ 0

idR

y yx
0 −−−−→ R

xt+1

−−−−→ R −−−−→ 0

When we have maps of complexes K•1
f−→ L•1, K

•
2

g−→ L•2 there is an induced map

K•1 ⊗ K•2 → L•1 ⊗ L•2 (such that the element x ⊗ y is sent to f(x) ⊗ g(y)), and
a similar observation applies to the tensor product of several complexes. Thus,
the maps K•(xti;R) → K•(xt+1

i ;R) that we constructed above may be tensored
together over R to produce a map K•(xt;R) → K•(xt+1;R), and we may tensor
over R with an R-module M to obtain a map K•(xt; M)→ K•(xt+1; M).

This leads to two equivalent cohomology theories. On the one hand, we may
use the induced maps H•(xt;M)→ H•(xt+1M) and take the direct limit.

On the other hand, we may form the complex lim−→t
K•(xt;M), which we shall de-

note K•(x∞;M), and then take its cohomology, which we shall denote H•(x∞;M).
This gives the same result as taking the direct limit of Koszul cohomology, since
the calculation of cohomology commutes with direct limits.

Our main result along these lines, whose proof we defer for a while, is this:

Theorem 28.13. Let R be a Noetherian ring and let x1, . . . , xn be elements of
R. Let I = (x1, . . . , xn)R. Then Hj

I (M) ∼= H•(x∞;M) canonically as functors of
M .

The idea of our proof is this: we establish the result when j = 0 by an easy
calculation, we note that both H•I ( ) and H•(x∞; ) give rise to functorial long
exact sequences given short exact sequences of modules, and also that both vanish
in higher degree when the module M is injective. The result will then follow from
very general considerations concerning cohomological functors. Before giving the
details of the argument, we want to analyze further the complexes K•(x∞;M).

When the x’s form a regular sequence there is quite a different explanation of
why this complex ought to give the local cohomology. In that case K•(xt;R) is a
projective resolution of R/(xt)R. Applying HomR( , M) yields the same result as
forming K•(xt;R) ⊗R M = K•(xt;M), and so H•(xt; M) is Ext•R(R/(xt), M) in
this case, and the direct limit system of complexes K•(xt;M) is the correct one for
calculating the direct limit of these Ext’s. What is somewhat remarkable is that
the direct limit of Koszul cohomology gives the local cohomology whether the xi
form a regular sequence or not.
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28.3. Description of the direct limit of cohomological Koszul com-
plexes. We first consider the case where there is only one x and M = R. We refer
to the diagrams (#t) above that were used to define the direct limit system. The
direct limit of the K0 ’s, each of which is a copy of R, and where each map is the
identity map on R, is R. Thus, K0(x∞; R) = R. The direct limit of the K1 ’s is

lim−→
t

(R
x−→ R

x−→ R
x−→ · · ·R x−→ · · · ) ∼= Rx.

Moreover, the limit of the maps is the standard map R → Rx (which sends 1R to
1Rx and is injective when x is not a zerodivisor in R). Since ⊗R commutes with
direct limits, it is easy to see that K•(x∞; R) ∼= →

R

⊗
n
i=1 (0 → R → Rxi → 0).

The term in degree 0 is simply the tensor product of n copies of R, and may be
identified with R. The term in degree 1 is the direct sum of n terms, each of which
is tensor product of i − 1 copies of R, Rxi , and then n − i copies of R. Thus,
the term in degree 1 is Rx1 ⊕ · · · ⊕ Rxn . The term in degree j, 0 ≤ j ≤ n, is
the sum of

(
n
j

)
terms, one for each j element subset S = {i(1), . . . , i(j)} of the

integers from 1 to n, where the term corresponding to {i(1), . . . , i(j)} consists of
the tensor product of n terms, such that the h th term is a copy of R if h /∈ S
and is a copy of Rxi(ν) if h = i(ν) ∈ S. Since Rx ⊗R Ry ∼= Rxy (with the obvious

generalization to tensor products of several such terms), we may use the following
description: For each set S ⊆ {1, . . . , n}, let x(S) =

∏
i∈S xi (note that x(∅) = 1).

Then Kj(x∞;R) ∼=
⊕

S⊆{1, ..., n}, |S|=j Rx(S).

When there are just two elements x, y the direct limit complex looks like:

0→ R→ Rx ⊕Ry → Rxy → 0

while in the case where there are three elements x, y, z the direct limit complex
looks like:

0→ R→ Rx ⊕Ry ⊕Rz → Ryz ⊕Rxz ⊕Rxy → Rxyz → 0.

Moreover, the map from each term to the next is easy to describe: it suffices
to explain how Rx(S) maps to

⊕
|T |=|S|+1Rx(T ): we then take the direct sum of

all these maps. If we think of the sum
⊕
|T |=|S|+1Rx(T ) as a product, we see that

this map will be given by component maps Rx(S) → Rx(T ), where T has one more
element in it than S does. The map is zero unless S ⊆ T . If S ⊆ T then Rx(T ) is,
up to isomorphism, the localization of Rx(S) at the single element corresponding to
the index that is in T and not in S. The map Rx(S) → Rx(T ) is, except for sign, the
obvious map of the ring Rx(S) into its localization at the additional element. The
only issue is what sign to attach, and the definition for tensor products of complexes
tells us that is done with the same pattern as in the cohomological Koszul complex.
To be completely explicit, the sign attached is (−1)a, where a is the number of
elements of S that precede the element of T that is not in S.

It is worth noting that the first map R → Rx1
⊕ · · · ⊕ Rxn simply sends the

element r ∈ R to r/1⊕ · · · ⊕ r/1, where the i th copy of r/1 is to be interpreted as
an element of Rxi .

We next want to discuss K•(x∞;M). The key point is that every K•(xt;M) ∼=
K•(xt;R) ⊗R M , and it readily follows that K•(x∞;M) ∼= K•(x∞;R) ⊗R M .
Thus, Kj(x∞;M) ∼= ⊕|S|=jMx(S) and the maps are constructed from the ones in
the case where M = R by applying ⊗RM : thus, they are direct sums of maps
whose components are maps induced by “localizing further,” but with suitable signs
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attached. For example, in case the sequence of elements is x, y, z, the direct limit
complex is

0→M →Mx ⊕My ⊕Mz →Myz ⊕Mxz ⊕Mxy →Mxyz → 0.

We should also note that, in complete generality, the first map in the complex

M →Mx1 ⊕ · · · ⊕Mxn

simply sends m to m/1⊕ . . .⊕m/1, where the i th copy of m/1 is to be interpreted
as an element of Mxi

We shall write Hj(x∞;M) for Hj(K•(x∞;M)). We note the following facts

Proposition 28.14. Let x = x1, . . . , xn be a sequence of elements in any ring
R. Let I = (x1, . . . , xn)R. Let M, M ′, M ′′, Mλ, etc., be arbitrary R-modules.

(a) a K•(x∞;R) is a complex of flat R-modules.
(b) b H0(x∞;M) is the submodule of M consisting of all elements killed by a

power of I. Thus, if R is Noetherian, it coincides with H0
I (M).

(c) c Given a short exact sequence 0 → M ′ → M → M ′′ → 0 of R-modules
there is a functorial long exact sequence of cohomology

0→ H0(x∞;M ′)→ H0(x∞;M)→ H0(x∞;M ′′)

→ H1(x∞;M ′)→ H1(x∞;M)→ H1(x∞;M ′′)→ . . .

→ Hi(x∞;M ′)→ Hi(x∞;M)→ Hi(x∞;M ′′)→ . . .

→ Hn(x∞;M ′)→ Hn(x∞;M)→ Hn(x∞;M ′′)→ 0.

(d) If {Mλ}λ is any direct limit system of R-modules then

Hj(x; lim−→
λ

Mλ) ∼= lim−→
λ

Hj(x∞;Mλ).

In particular, Hj(x∞; ) commutes with arbitrary direct sums.
(e) For every value of j, every element of Hj(x∞;M) is killed by Ann M .
(f) Let R→ S be a homomorphism, let x1, . . . , xn ∈ R, and let y = y1, . . . , yn

denote their images in S. Let M be an S-module viewed as an R-module
by restriction of scalars. Then Hj(x∞;M) ∼= Hj(y∞;M) as S-modules.
(The first is an S-module because multiplication by any element of S gives
an R-endomorphism of M which induces an R-endomorphism of the mod-
ule Hj(x∞;M).)

Proof. (a) is obvious, since each module in the complex is a direct sum of
localizations of R. Now H0(x∞;M) is the kernel of the map M →Mx1⊕· · ·⊕Mxn

sending m to m/1⊕ · · · ⊕m/1, and m will be in the kernel if and only if it is killed
by a power of xi for each i : this is equivalent to the assertion that m is killed
by a power of I, since I is finitely generated by the xi. The short exact sequence
0 → M ′ → M → M ′′ → 0 may be tensored with the flat complex K•(x∞;R).
Because of that flatness, we get a short exact sequence of complexes:

0→ K•(x∞;M ′)→ K•(x∞;M)→ K•(x∞;M ′′)→ 0

which, by the snake lemma, yields the long exact sequence of cohomology we want.
(d) is clear from the fact that both ⊗ and calculation of (co)homology commute
with formation of direct limits. (e) is immediate from the fact Hj(x∞;M) is a direct
limit of Koszul cohomology Hj(x∞;M) (and this is the same as Koszul homology
numbered backwards).



28. LECTURE 28 153

Finally, (f) follows from the fact that the action of any xi or any product x
of the xi on M is the same as the action of the corresponding yi or product y of
yi. This means that we may identify each Mx with the corresponding My, and
so the complex K•(x∞;M) may be identified with the complex K•(y∞;M). The
cohomology is then evidently the same. � �

We next observe:

Lemma 28.15. Let x = x1, . . . , xn be a sequence of elements of the ring R and
let M be an R-module of finite length. Then Hj(x∞;M) = 0 for all j ≥ 1.

Proof. Since M has finite length, it has a finite filtration in which all the
factors have the form R/m = K, where m is a maximal ideal of R. By induction
on the length of the filtration and the long exact sequence provided by (7.6c), it
suffices to handle the case where M = K. But then, by (f), we may replace R by
S = R/AnnM = R/m = K. I.e., we may assume that R = K is a field and that
M = K. Here, the xi are replaced by their images in K. If any xi is nonzero, the
xi generate the unit ideal and the result follows from the fact that every element
of every Hj is killed by a power of the unit ideal of K. If every xi is 0 the result
follows from the fact that the complex is zero in all positive degrees, since in each
summand one is localizing at 0 and, for any module N over any ring, Nx = 0 when
x = 0. � �

Theorem 28.16. Let R be a Noetherian ring and let E be an injective module.
Let x1, . . . , xn ∈ R. Then Hj(x∞;E) = 0 for all j ≥ 1

Proof. Since E is a direct sum of modules E = E(R/P ), where P is prime, we
assume by (7.6d) that E = E(R/P ) = ERP (RP /RRP ). By (7.6f) we may replace
R by RP . Thus, we may assume that (R,P,K) is local. Then every element of E
is killed by a power of P . Since E is the directed union of its finitely generated
submodules, each of which has finite length, the result follows at once from (7.7)
and (7.6d). � �

We are now ready to go back and give the proof of (7.4).

Discussion 28.17. We now give the proof of Theorem 7.4. Fix a Noetherian
ring R and a sequence of elements x = x1, . . . , xn in R. Let I = (x1, . . . , xn)R.
We already know that the sequences of functors Hi

I( ) and Hi(x∞; ) from R-
modules to R-modules behave similarly in three respects:
(1) H0

I ( ) and H0(x∞; ) are canonically isomorphic functors: in both cases their
values on M may be identified with the submodule of M consisting of all elements
that are killed by a power of I.
(2) Both Hi

I( ) and Hi(x∞; ) vanish on injective R-modules for i ≥ 1.
(3) Both the sequence of functors Hi

I( ) and the sequence of functors Hi(x∞; )
have functorial long exact sequences induced by a given short exact sequence of
modules.

These three properties are sufficient to enable us to give a canonical isomor-
phism between these two cohomology theories. The argument is very general: it
makes no use of any properties of these functors other than (1), (2), (3) above.
Both for typographical convenience and to illustrate the degree of generality of the
proof, we change notation and write, simply, Hi for Hi

I and Hi for Hi(x∞; ) .
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Now, given any R-module M we can embed M in an injective module E and
so construct a short exact sequence 0→ M → E → C → 0. This gives rise to two
long exact sequences, one for H and one for H. Since both vanish on injectives,
we obtain exactness of the top and bottom rows in the diagram below, while the
vertical arrows are provided by the identification of H0 and H0 :

0 −−−−→ H0(M) −−−−→ H0(E) −−−−→ H0(C) −−−−→ H1(M) −−−−→ 0x∼= x∼= x∼=
0 −−−−→ H0(M) −−−−→ H0(E) −−−−→ H0(C) −−−−→ H1(M) −−−−→ 0

Thus, we get an induced isomorphism H1(M) ∼= H1(M), since cokernels of
isomorphic maps are isomorphic. This identification is independent of the choice
of the embedding of M into E. To see this, it suffices to compare what happens
when E is an injective hull of M with what happens with an embedding into some
other injective. The second embedding may then be taken into E ⊕ E′ (where
M ⊆ E), and E′ is injective. C is then replaced by C ⊕ E′. We leave the details
to the reader. It is also not hard to check that the identification of H1 with H1

is an isomorphism of functors. The long exact sequences that yield the rows of
(#) also give isomorphisms of Hi+1(M) ∼= Hi(C) for i ≥ 1, and similarly for H.
Thus, once we have established the isomorphisms Hi ∼= Hi for some i ≥ 1, we may
use the isomorphisms coming from the long exact sequences to get Hi+1(M) ∼=
Hi(C) ∼= Hi(C) ∼= Hi+1(M). Again, one can check easily that the isomorphism
Hi+1(M) ∼= Hi+1(M) that one obtains in this way is independent of the choice
of the embedding 0 → M → E. It is also not difficult to check that it is an
isomorphism of functors.

Finally, one can also check that our identification of H• with H• is compati-
ble with the connecting homomorphisms in long exact sequences, so that, in each
instance, one gets an isomorphism of long exact sequences. The details are not
difficult, and we omit them here.

This completes our discussion of the proof of Theorem 7.4. �

When we speak of the number of generators of an ideal I up to radicals we
mean the least integer n such that Rad I is also the radical of an ideal generated
by n elements. By taking powers, we may always arrange for the n elements to be
in I. We note:/medskip

Corollary 28.18. Let I be an ideal of a Noetherian ring R. If I is generated
by n elements up to radicals, then Hi

I(M) = 0 for i > n.

Proof. Suppose that Rad I = Rad J , where J = (x1, . . . , xn)R. ThenHi
I(M) =

Hi
J(M) = Hi(x∞;M), and the last is obviously zero when i > n, since the complex

K•(x∞;M) is zero in degree bigger than n. �

Corollary 28.19. Let R → S be a homomorphism of Noetherian rings, let
I ⊆ R be an ideal and let M be an S-module. Then Hi

I(M) ∼= Hi
IS(M) as S-

modules.
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Proof. Let I = (x1, . . . , xn)R and let y1, . . . , yn be the images of the x ’s in
S. Then Hi

I(M) may be identified with Hi(x∞;M), and since IS = (y1, . . . , yn)S,
Hi
IS(M) may be identified with Hi(y∞;M), and Hi(x∞;M) ∼= Hi(y∞;M), as

noted earlier, because each xj acts on M in the same way that yj does. � �

Moreover, since we already know the corresponding fact for Hi(x∞; ) we
have:

Corollary 28.20. Let R be Noetherian, I ⊆ R, and let {Mλ}λ∈Λ be a direct
limit system of R-modules. Then Hi

I(lim−→λ
Mλ) ∼= lim−→λ

Hi
I(Mλ). �

We leave the following as an exercise.

Proposition 28.21. Let S be a flat Noetherian R-algebra, where R is Noe-
therian, and let I be an ideal of R and M an R-module. Then S ⊗R Hi

I(M) ∼=
Hi
I(S ⊗RM) ∼= Hi

IS(S ⊗RM). In particular, this holds when S is a localization of
R or when S is the m-adic completion of the local ring (R,m,K).

Note: Further revisions of these notes are in progress. In the meantime, see
§§1.–19. of the Local Cohomology notes on the course Web site, §7. of the paper
Tight closure of parameter ideals and splitting in module-finite extensions, and the
expository manuscript Tight closure and strongly F-regular rings: the links are just
below the link for the revised lecture notes.





Bibliography

[Ab08] I. M. Aberbach, The existence of the F-signature for rings with large Q-Gorenstein

locus. J. Algebra 319(7), 2994?3005 (2008).
[AbEn06] I. M. Aberbach and F. Enescu, When does the F-signature exist, Ann. Fac. Sci.

Toulouse Math. (6) 15 (2006) 195–201.

[AbL03] I. M. Aberbach and G. J. Leuschke, The F-signature and strong F-regularity, Math.
Res. Lett. 10 (2003) 51–56.
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Skoda about integral closures of ideals, Michigan Math. J. 28 (1981) 97–116.

[LySm99] G. Lyubeznick and K. E. Smith, Strong and weak F-regularity are equivalent for

graded rings, Amer. J. Math. 121 (1999), 1279–1290.
[LySm01] G. Lyubeznick and K. E. Smith, On the commutation of the test ideal with local-

ization and completion, Trans. Amer. Math. Soc. 353 (2001) 3149–3180.
[Mac96] B. MacCrimmon, Strong F-regularity and boundedness questions in tight closure,

Thesis, University of Michigan, 1996.

[MaSch18] L. Ma and K. Schwede, Perfectoid multiplier/test ideals in regular rings and bounds
on symbolic powers Invent. Math. 214 (2018) 913–955.

[Mo83] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983) 43–49.

[Mat70] H. Matsumura, Commutative algebra, Benjamin, 1970.
[Mur22] T. Murayama, Uniform bounds on symbolic powers in regular rings, preprint,

arXiv:2111.06049v2 [math.AC].

[Nag] M. Nagata, Local rings, Interscience, New York, 1962.
[PS73] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale, Publ.

Math. I.H.E.S. (Paris) 42 (1973) 323–395.

[PS74] C. Peskine and L. Szpiro,Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278
(1974) 1421–1424.
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