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Abstract. We describe several aspects of the theory of strongly F-regular

rings, including how they should be defined without the hypothesis of F-
finiteness, and its relationship to tight closure theory, to F-signature, and

to cluster algebras. As a necessary prerequisite we give a quick introduc-

tion to tight closure theory, without proofs, but with discussion of underlying
ideas. This treatment includes characterizations, important applications, and

material concerning the existence of various kinds of test elements, since test

elements play a considerable role in the theory of strongly F-regular rings.
We introduce both weakly F-regular and strongly F-regular rings. We give

a number of characterizations of strong F-regularity. We discuss techniques

for proving strong F-regularity, including Glassbrenner’s criterion and several
methods that have been used in the literature. Many open questions are raised.

This paper is dedicated to Jürgen Herzog on the
occasion of his 80th birthday, in celebration of his
fundamental contributions to commutative algebra.

1. Introduction

Unless otherwise specified, all given rings are commutative, associative and have
a multiplicative identity. By a local ring we always mean a Noetherian quasilocal
ring. Let N, N`, Z, and Q denote, respectively, the nonnegative integers, the
positive integers, the integers, and the field of rational numbers.

Our focus will be on Noetherian rings R of positive prime characterisic p. In
fact, we are primarily concerned with what is true in the excellent case, but we will
not make a blanket assumption of excellence for a while. General references for
material not made explicit here are [BruHer93], and [Mat70].

The theory of strongly F-regular rings grew out of the positive characteristic
theory of tight closure. After giving some general background and an introduction
to tight closure theory, we discuss the notions of weak F-regularity, F-regularity,
and strong F-regularity. It is annoying to have three notions when, at least for
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locally excellent rings, it is an open question whether all three are equivalent. Weak
and strong F-regularity are known to be equivalent for finitely generated N-graded
algebras over a field and in the Gorenstein case. Note that in the locally excellent
case, all of these conditions imply that the ring is Cohen-Macaulay and normal.

We shall give many characterizations of strongly F-regular rings. The notion was
originally defined only for F-finite rings, i.e, for rings R such that the Frobenius
endomorphism FR (or, simply, F ) of R, where F prq “ rp for all r P R, makes R into
a finite module over itself. We will discuss issues that arise when one generalizes
the notion to the case where the ring is not necessarily F-finite. We present large
classes of rings that are strongly F-regular. We also discuss a great many open
questions.

This paper is intended to be accessible to researchers who are, relatively, new-
comers to the study of characteristic p phenomena in commutative algebra.

Before embarking on a detailed study, we want to mention some down-to-earth
examples of strongly F-regular rings. Let 1 ď r ď s and a1, . . . , an be positive
integers. Examples include the following rings. Note that examples (2) - (7) are
finitely generated N-graded rings (in (6), the grading is obtained by weighting the
variables) over a field.

(1) Regular rings
(2) Generic determinantal rings: quotients of a polynomial ring by the ideal

generated by size t minors of a an rˆ s matrix formed from the indetermi-
nates ([HH94b, §7])

(3) Toric rings: integrally closed rings generated by monomials in a polyno-
mial ring (including Veronese subrings of and iterated Segre products of
polynomial rings)

(4) Homogeneous coordinates rings of Grassmann varieties: these are generated
by the rˆr minors of an rˆs matrix of indeterminates (and so are subrings
of polynomial rings) ([HH94b, §7])

(5) Generic Pfaffian rings: quotients of a polynomial ring by the ideal generated
by the Pfaffians of a given size of an alternating matrix of indeterminates (if
t “ 2h is even, the symmetrically placed size t minors have determinants
that are perfect squares: these minors are the squares of the Pffaffians)
([Ba01])

(6) For all sufficiently large primes p, the hypersurface defined by xa11 `¨ ¨ ¨`x
an
n

over a field K of characteristic p when
ř

i
1
ai
ą 1 (the condition asserts that

in a certain precise sense, the ai are small compared to n)
(7) Rings of invariants of certain actions of linear algebraic groups on polyno-

mial rings (cf. Theorem 10.4)
(8) Locally acyclic cluster algebras (cf. Theorem 10.5)
(9) Direct summands (or pure subrings) of any of the above.

This is just a brief sampling of results we discuss in more detail later. But we
will mention here that if R ãÑ S is a homomorphism of Noetherian rings of prime
characteristic p ą 0 such that R is a direct summand of S as an R-module (or a
pure R-submodule of S: cf. Theorem 9.7) and S is strongly F-regular, then so is
R, which explains part (9) above.

The next section provides a very brief exposition of background material on
integral closure of ideals, Cohen-Macaulay rings, and excellent rings.
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2. Background

2.1. Integral closure of ideals. A reference for material in this subsection is
[SwHu]. We define an element f P R to be in the integral closure I of I if, equiva-
lently

(IC1) With t an indeterminate over R, the element ft P Rrts is in the integral
closure of the Rees ring RrIts Ď Rrts (which is generated over R by the set
It :“ tgt : g P Iu; it suffices to let g run through a set of generators of I as
an ideal of R to get algebra generators for RrIts over R).

(IC2) There exist n P N` and a monic polynomial Hpzq “ zn `
řn
i“1 riz

n´i in
the polynomial ring Rrzs such that for 1 ď i ď n, ri P I

i.
(IC3) For every homomorphism RÑ V , where V is a valuation domain, f P IV .

It turns out that I is an ideal of R. Given a ring homomorphism R Ñ S,
IS Ď IS. Moreover, f P I if and only if the image of f in R{P is in the integral
closure of IpR{P q for all minimal primes P of R.

For simplicity, we assume now that R is a Noetherian domain, which is the main
case. For f P R and an ideal I Ď R we also have that the following are equivalent
to the statement that f P I:

(IC4) For every discrete valuation ring V between R and its fraction field, f P IV .
(IC5) There is a nonzero element c P R such that cfn P In for infinitely many

n P N`.
(IC6) There is a nonzero element c P R such that cfn P I for all n " 1.
(IC7) There is a nonzero element c P R such that cfn P I for all n ě 1.

Later, we later study the relationship between integral closure and tight clo-
sure and we shall use tight closure to generalize the Briançon-Skoda theorem. See
Theorem 4.6.

2.2. Cohen-Macaulay rings and modules. We simultaneously treat Cohen-
Macaulay rings and small Cohen-Macaulay modules, which are also called maxi-
mal Cohen-Macaulay modules. We shall not deal with finitely generated Cohen-
Macaulay modules that are not maximal, although we do define them.

A Noetherian local ring pR, m, Kq is Cohen-Macaulay (respectively, a finitely
generated module M over R is small Cohen-Macaulay or maximal Cohen-Macaulay)
if the following three equivalent conditions hold:

(CM1) Some system of parameters for R is a regular sequence on R (respectively,
M)

(CM2) Every system of parameters for R is a regular sequence on R (respectively,
M) .

(CM3) The depth of R (respectively, M) on m is equal to the Krull dimension of
R.

A maximal Cohen-Macaulay module M automatically has dimension equal to
that of R. We remark that a finitely generated module M over R is called Cohen-
Macaulay if it is maximal Cohen-Macaulay over R{AnnRM . This is equivalent to
requiring that the depth of M on m is equal to the Krull dimension of M .

More generally, if R is Noetherian but not necessarily local the following con-
ditions are equivalent, and define the notion of Cohen-Macaulay for rings that are
not necessarily local:

(CM4) Every local ring of R at a maximal ideal is Cohen-Macaulay.
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(CM5) Every local ring of R at a prime ideal is Cohen-Macaulay.
(CM6) For every proper ideal I of R, the height of I is equal to the depth of R on

I (which is the length of any maximal regular sequence in I).

We also note the following properties:

(CM7) Regular rings are Cohen-Macaulay.
(CM8) If R is module-finite over a subring A that is regular, then R is Cohen-

Macaulay if and only if R is projective as an A-module. If A is local or a
polynomial ring over a field, R is Cohen-Macaulay if and only if it is free
as an A-module.

(CM9) If R is Cohen-Macaulay, so is every polynomial ring or formal power series
ring in finitely many variables over R.

(CM10) If R Cohen-Macaulay, then R is universally catenary (i.e., in any algebra
S essentially of finite type over R, if P Ď Q are primes of S, all saturated
chains of primes joining P to Q have the same length).

(CM11) If R is Cohen-Macaulay and either local or finitely generated and N-graded
over a field, for every minimal prime of P of R, the Krull dimension of R{P
is the same as the Krull dimension of R.

(CM12) If R is Cohen-Macaulay and f1, . . . , fh are elements of R generating an
ideal I of height h, then every associated prime of I is minimal, and has
height h. Moreover, R{I is again Cohen-Macaulay. In particular, these
statements hold when R is regular.

Cohen-Macaulay rings are useful for many purposes. Various duality theories in
commutative algebra and algebraic geometry are simpler in the Cohen-Macaulay
case, and Serre intersection multiplicities become lengths of tensor products (instead
of alternating sums of lengths of Tor modules) in the Cohen-Macaulay case. See
[BruHer93] and the review of that book in [Ho95].

The type of a Cohen-Macaulay local ring pR, m, Kq of Krull dimension d is the
K-vector space dimension of the socle in R{px1, . . . , xdqR for some (equivalently,
every) system of parameters x1, . . . , xd for R, and may also be characterized the

K-vector space dimension of ExtdRpK,Rq. A local ring R is called Gorenstein if,
equivalently:

(Gor1) R has type 1.
(Gor2) R has finite injective dimension as a module over itself, in which case its

injective dimension is d.

If R of dimension d is Cohen-Macaulay local and a homomorphic image of a Goren-
stein local ring S of dimension d ` h, the module ωR :“ ExthSpR,Sq is, up to
isomorphism, independent of the choice of S, and is called a canonical module for
R. The type of R is also the minimum number of generators of ωR in this case.

Discussion 2.1. Big Cohen-Macaulay modules and algebras. A module M
over a local ring pR, m, Kq that is not necessarily finitely generated is called a
balanced big Cohen-Macaulay module for R if every system of parameters is a
regular sequence onM (which implies mM ­“M). It is not necessarily the case if one
system of parameters is a regular sequence on M , then every system of parameters
is a regular sequence on M , but this is true for the m-adic completion of M . Thus,
if R has a big Cohen-Macaulay module, it has a balanced big Cohen-Macaulay
module. In the rest of this manuscript we typically omit the word “balanced.” An
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R-algebra that is a big Cohen-Macaulay module is called a big Cohen-Macaulay
algebra over R.

2.3. Colon ideals. We shall have many occasions to talk about the colon ideals
I :R J where I, J, J 1 Ď R are ideals. This ideal is simply tr P R : rJ Ď Iu. When
J “ uR we often write I :R u for I :R J . We note the following:

(Col1) R{I Ě pI :R Jq{I – AnnR{IJ . Hence, AnnRRx “ p0q :R x.
(Col2) x1, . . . , xn is a regular sequence in R if and only if px1, . . . , xnq is a proper

ideal and px1, . . . , xiq :R xi`1 “ px1, . . . , xiq for 1 ď i ď n ´ 1. (If i “ 0,
px1, . . . , xiq “ p0q.)

(Col3) I :R pJ ` J
1q “ pI :R Jq X pI :R J

1q.
(Col4) I :R pJJ

1q “ pI :R Jq :R J
1.

2.4. Excellent rings. We recall that a Noetherian ring R is excellent if and only
if it satisfies the following conditions:

(E1) R is universally catenary,
(E2) the singular locus in any finitely generated R-algebra is closed, and

(E3) for every local ring S of R, the fibers of the map S Ñ pS are geometrically
regular.

Conditions that are, on the face of it, much weaker, suffice to characterize excellence.
See [Mat70] for a very readable treatment.

All fields as well as Z are regular rings. AnR-algebra essentially of finite type over
an excellent ring R is excellent, and complete local rings are excellent. Convergent
power series rings over R and C are also excellent. In an excellent ring R, the set
of primes P such that RP is Cohen-Macaulay (respectively, Gorenstein) is Zariski
open.

The normalization of an excellent domain R is module-finite over R, and com-
pletion for excellent local rings preserves the properties of being reduced and of
being normal.

A Noetherian ring is called locally excellent if all of its localizations at maximal
(equivalently, prime) ideals are excellent.

2.5. Purity. A map of R-modules A Ñ B is called pure if it is injective and for
every R-module M , the map AbM Ñ BbM is injective. This holds when AÑ B
splits, i.e. when B – A ‘ A1 and the map is A Ñ B is the associated injection of
A into B. When B{A is finitely presented, A Ñ B is pure if and only if the map
splits. See [HR74, HR76] for treatments of purity. We note that a direct limit of
pure maps of R-modules is pure, and that if R is Noetherian, A Ď B is pure if
and only if for every submodule B0 of B containing A such that B0{A is finitely
generated, A is a direct summand of B0.

3. Some positive characteristic phenomena

3.1. Functors related to the Frobenius endomorphism. If θ : R Ñ S is a
ring homomophism, we have a base change functor S bR from R-modules to S-
modules, and a restriction of scalars functor θ˚ from S-modules to R-modules. In
base change, if elements mi generate M , the elements 1bmi generate SbM . The
base change functor sends R to S, commutes with direct sums and direct limits,
preserves finite generation, and preserves the module properties of being free, or
projective, or flat. Base change is right exact: it commutes with taking cokernels.
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Matrices act on the left. Thus, if an R-module M is the cokernel of the m ˆ n
matrix

`

rij
˘

thought of as a map from Rn Ñ Rm, then S bRM is the cokernel of

the matrix
`

θprijq
˘

.
On the other hand, restriction of scalars is an exact functor: it does not change

the underlying abelian groups nor their maps. It does not ordinarily preserve finite
generation. If M is an S-module and m P M , the R-module structure is given by
r ¨m “ θprqm.

We shall use e to represent a varying integer in N, the set of nonnegative integers.
We shall write F (or, if more precision is needed, FR) for the Frobenius endomor-
phism of R, so that F prq “ rp for all r P R. We write F e for the e-fold iterate of
F with itself under composition, so that F eprq “ rp

e

. We shall be working with
the base change and restriction of scalars functors when θ is F e. This is a powerful
tool, but the situation can be confusing.

When θ “ F e, we shall denote the corresponding base change functor as Fe (or
Fe
Rq). We refer to these functors as Frobenius functors or Peskine-Szpiro functors.

C. Peskine and L. Szpiro obtained beautiful results using these functors systemat-
ically in [PS73, PS74]. Thus,

Fe
´

Coker
`

prijq
˘

¯

“ Coker
`

prp
e

ij q
˘

.

When M is the cyclic module R{I, FepMq may be identified with R{Irp
e
s, where

Irp
e
s is the ideal of R generated by all rp

e

for r P I. The ideal Irp
e
s is the same as

the extension of I Ď R to R where the map R Ñ R being used is F e. If one has

generators fj of I, the elements fp
e

j generate Irp
e
s. The ideals Irp

e
s are called the

bracket powers of I.
Note that the ideal Irp

e
s contains all R-linear combinations of the elements fp

e

for f P I, not just the elements fp
e

. E.g., in the polynomial ring R “ Krw, x, y, zs,
if I “ px, yqR, Irp

e
s contains wxpe ` zype. Notice also that, typically, Irp

e
s is much

smaller than the ordinary power Ip
e

. For example, in characteristic 3, px, yqr9s is
px9, y9q while px, yq9 is generated by the ten monomials xiy9´i, 0 ď i ď 9.

When θ “ F e, we denote the restriction of scalars functor by using the exponent
e on the right, so that F e˚pMq “

eM . We note that when R is reduced, the algebra
map R Ñ eR may be identified either wiith the inclusion map F epRq Ď R, where
F epRq “ trp

e

: r P Ru or with the inclusion map R Ď R1{pe , where R1{pe “ tr1{q :
r P Ru. We write er for the element of eR corresponding to r. If we identify eR
with R1{pe , then er is r1{p

e

.

3.2. F-finite rings. We have already defined the notion of F-finiteness in §1. We
note here that a field K is F-finite if and only if rK : Kps is finite, where Kp “ tcp :
c P Ku. The class of F-finite rings is closed under taking quotients and localizations,
as well as under adjoining finitely many polynomial or power series indeterminates.
A complete local ring is F-finite if and only if its residue class field is. A very useful
fact due to E. Kunz [Ku76] is that every F-finite ring is excellent.

4. Tight closure in positive characteristic

4.1. Tight closure for ideals. Let R be a Noetherian ring of prime characteristic
p ą 0. Suppose f P R and I Ď R is an ideal. Let R˝ denote the multiplicative
system of elements of R not in any minimal prime. If R is reduced, then R˝ is the
set of nonzerodivisors, while if R is a domain , R˝ is the set of nonzero elements of



TIGHT CLOSURE AND STRONGLY F-REGULAR RINGS 7

R. We use e to denote a varying element of N. We define f P R to be in the tight
closure of I in R if there exists c in R˝ such that fp

e

P Irp
e
s for all e " 0. The tight

closure of I turns out to be an ideal, and we use I˚ to denote this ideal. We shall
make a considerable effort to make this definition, which seems rather technical at
first sight, more transparent. The notion was first defined by Craig Huneke and the
author after a conference held at the University of Illinois at Urbana-Champaign in
late October, 1986. Making this definition led quickly to surprisingly simple proofs
of a number of theorems, and led to substantial generalizations of them. We discuss
a number of these below. See Proposition 4.1, and Theoems 4.2, 4.4, 4.5, and 4.6.

The word “tight” was chosen because this closure is much smaller than other
closures, such as integral closure, that had been considered earlier. It turns out to be
a “tight fit” for the ideal. Many basic properties of tight closure are given in [HH90].
Other introductory references for the theory include [HH88, HH89a, HH89b, HH93,
HH94a, HH94b], and [Hu96], as well as [HH99] for the equal characteristic zero
theory. In this manuscript, we focus in positive characteristic.

We begin with some very basic facts. Let R be a Noetherian ring of prime
characteristic p ą 0, with f P R and I, J Ď R ideals.

(TC1) If I Ď J , then I˚ Ď J˚.
(TC2) f P I˚ if and only if for every minimal prime P of R, the image of f is in

the tight closure of IpR{P q in the domain R{P .
(TC3) pI˚q˚ “ I˚.

From (TC2) one easily sees:

(TC4) For all I Ď R, I˚ is the inverse image in R of pIRredq
˚ calculated in Rred.

That is, in a certain sense, nilpotent elements are “irrelevant” when working
with tight closure.

Note that if R is a domain, then:

(TC5) f P I˚ if and only if there exists a nonzero c P R such that cfp
e

P Irp
e
s for

all e " 0.
(TC6) f P I˚ if and only if there exists a nonzero c P R such that cfp

e

P Irp
e
s for

all e ě 0.

As mentioned earlier, we want to give immediately some more substantial results
that help to explain why tight closure is so useful. We give very few proofs here.
However, the following statement is immediate from our discussion of integral clo-
sure of ideals, from (TC2), (IC4), (TC4), and from the fact that Irp

e
s Ď Ip

e

for all
e P N:

Proposition 4.1. Let R be a Noetherian ring of prime characteristic p ą 0. For
every ideal I of R, we have that I˚ Ď I. Hence, for any integrally closed ideal I, we
have that I˚ “ I. In particular, this holds for radical (and, hence, prime) ideals.

The next result is of very great importance:

Theorem 4.2. Let R be a Noetherian ring of prime characteristic p ą 0. If R is
regular, then every ideal of R is tightly closed.

Although tight closure is a trivial operation for regular rings, it gives an ex-
tremely useful criterion for membership in ideal that, on the face of it, is a bit
weaker than membership. The proof of this result depends heavily on the following
result of Ernst Kunz [Ku69]
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Theorem 4.3. Let R be a Noetherian ring of prime characteristic p ą 0. Then R
is regular if and only if the Frobenius endomorphism is flat.

A critical consequence of the flatness of the Frobenius endomorphism for regular
rings is that for all ideals I, J Ď R, Irp

e
s :R J rp

e
s “ pI :R Jqrp

e
s, and this plays

a key role in the proof of Theorem 4.2. We also note that there is are “flatness”
results for Frobenius acting on modules of finite projective dimension [PS73], and
a converse due to Jürgen Herzog in [Her74].

Rings that are not Cohen-Macaulay are significantly harder to work with than
rings that do have this property. It is therefore that a “small” closure like tight
closure can be used control the failure of the Cohen-Macaulay property under mild
hypotheses. Here is the key fact:

Theorem 4.4 (Colon-capturing). Let pR, m, Kq be an excellent local ring and
let x1, . . . , xk`1 be part of a system of parameters. Let Ik “ px1, . . . , xkq. Then
Ik :R xk`1 Ď I˚k .

We have stated this version to avoid technicalities. One does not need that the
ring be a domain, and there are also generalizations to the case where the ring
is not local. In the excellent local case, the elements must form part a system
of parameters modulo every minimal prime. We shall see in §6 that under mild
conditions on R, if every ideal is tightly closed, then R is Cohen-Macaulay: cf.
Theorem 6.5.

Tight closure also captures contracted extensions of ideals to integral extension
rings:

Theorem 4.5. Let R Ď S be Noetherian rings of prime characteristic p ą 0 such
that S is integral over R. Then for every ideal I of R, we have that IS XR Ď I˚.

This result has important implications for understanding rings that are splinters:
see 7.2.

The Briançon-Skoda theorem was first proved for regular rings of equal charac-
teristic 0 using an analytic criterion for membership in an ideal (expressed in terms
of the finiteness of an integral) due to H. Skoda. See [BrSk74] and [Sk72]. Later,
Lipman and Sathaye [LS81] gave an algebraic proof valid for all regular rings. Tight
closure theory [HH90, §5] gives a quite simple proof of a stronger result:

Theorem 4.6 (generalized Briançon-Skoda theorem). Let R be a Noetherian ring
of prime characteristic p ą 0. Let I be an ideal of R with at most n generators.
Then In P I˚. Hence, if R is regular, In Ď I.

More generally, for every k P N, In`k Ď pIk`1q˚.

The result is also valid in equal characteristic 0: one can prove this by introducing
tight closure theory for rings containing a field of characteristic 0 as in [HH99].

In [ELS01] the authors obtain a surprising comparison theorem for ordinary and
symbolic powers of ideals in regular rings of equal characteristic 0 using the theory
of (asymptotic) multiplier ideals and results that rest on analytic techniques. Tight
closure [HH02] yields comparable results in characteristic 0 that are, in some ways,
stronger, and gives new proofs in equal characteristic 0 by the method of reduction
to characteristic p. These results are refined in [HH07]. The following results using
tight closure for the proof in characteristic p ą 0 and reduction to characteristic
p for the proof in equal characteristic 0 are contained in [HH02, Theorem 2.6,
Theorem 4.4].
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Theorem 4.7. Let I be ideal of a Noetherian ring containing a field . Let h be the
largest height of any associated prime of I (or let h be the largest analytic spread
of IRP for an associated prime P of I). Then, if R is regular, Iphnq Ď In for all
n P N` (and, more generally, Iphn`knq Ď Ipk`1qn for all k P N and n P N`). If R
need not be regular but I has finite projective dimension, then Iphnq Ď pInq˚ for all
n P N`.

Results like this for regular rings of mixed characteristic are proved in [MaSch18].

4.2. Tight closure and localization. It was an open question for many years
whether tight closure commutes with localization. In [BreMo10] it is proved even
for algebras over a field K that it does not when K contains an element that is
transcendental over the prime field. We mention only briefly here that there are
many instances when it either commutes with localization or has some other form
of compatibility with localization. See, for example, [AHH93, HH00]. We later
discuss the notion of plus closure, and theorems about when plus closure and tight
closure are the same: see subsection 7.3. One point of interest is that plus closure
does commute with localization.

4.3. Tight closure for submodules. Let R be a Noetherian ring of prime char-
acteristic p ą 0 We next want to define tight closure for submodules N of arbitrary
modules M . We do not need to assume that these are finitely generated, but that
will be the main case in the sequel. We first give a rather abstract definition using
the Frobenius or Peskine-Szpiro functors introduced in §3. We then explain why
this definition is really the same, in the case of N :“ I Ď R “: M as the definition
that we have already given.

Discussion 4.8. Let R be a Noetherian ring of prime characteristic p ą 0. Let

N ĎM be R-modules, and let N rp
e
s or, more precisely, N

rpes
M , denote the image of

FepNq Ñ FepMq. In general, for any base change from R to an R-algebra S, there
is a map M Ñ S bR M such that u ÞÑ 1 b u. This gives a map M Ñ FepMq for
each R-module M , and we denote the image of u under this map as up

e

. We can
now define the tight closure N˚M of N in M as the set of elements u PM for which

there exists c P R˝ such that cup
e

P N
rpes
M for all e " 1.

The tight closure of N in M is a submodule of M containing N .

Proposition 4.9. Let R be a Noetherian ring of prime characteristic p ą 0. If
u PM , then u P N˚M if and only if the image of u in M{N is in 0˚M{N . Hence, if G

is a free module that maps onto M , H Ď G is the inverse image of N , and v P G
is a pre-image of u, then u P N˚M if and only if v P H˚G.

Thus, for many purposes, understanding tight closure comes down to under-
standing tight closure in free modules. Because FepRq “ R, if we fix a basis for the
free module G, we may identify F epGq with G, since F e commutes with direct sum:
for each basis element b, we identify F epRbq with Rb. When we do this, up

e

P G
is simply the element obtained from u by raising all of the coefficients in its rep-
resentation in terms of the specified free basis to the pe power. When G “ R, rp

e

as defined in the third sentence of Discussion 4.8 therefore has its usual meaning.
Note that Hrp

e
s is then identified in G with the submodule generated over R by all

the elements hp
e

for h P H. We note:
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Proposition 4.10. If R is regular, then every submodule of every module is tightly
closed.

In the remainder of this manuscript we shall often assume that M is finitely
generated, although many statements are valid in greater generality. We do want
to include several remarks about what happens when the finite generation condition
is relaxed, particularly because considering this situation gives a characterization
of strongly F-regular rings. Of particular importance is the case where M is the
injective hull of the residue class field of a local ring.

5. Test elements and persistence

One difficulty in studying tight closure is that the definition gives no indication
of what element c P R˝ one should use in testing for tight closure. The theory of
test elements and test ideals addresses this particular problem.

Throughout this section, unless otherwise specified, R is a reduced Noetherian
ring of prime characteristic p ą 0. The assumption that R is reduced simplifies the
theory, and is reasonable because of property (TC4).

The following three conditions on element c P R˝ are equivalent:

(TE1) For every ideal I and element r P R, c P I˚ if and only if for all e P N,
crp

e

P Irp
e
s.

(TE2) c P
Ş

IĎRpI :R I
˚q.

(TE3) For every pair of finitely generated modules N Ď M and element u P M ,

u P N˚M if and only if for all e P N , cup
e

P N
rpes
M .

We call elements of R˝ satisfying these equivalent conditions test elements. It
is highly non-trivial that test elements exist, but this is known to be true in many
cases. It is natural to study the ideal τpRq “

Ş

IĎR I :R I
˚, which is called the test

ideal of R. Typically, in the cases where test elements are known to exist, τpRq is
generated by τpRq XR˝: the latter is the set of test elements. We refer the reader
to [HH89b, HH90, HH94a, HH99, LySm01], and [Jia21] for more information.

We also note that a test element is called locally stable (respectively, completely
stable if it is a test element in every local ring of R (respectively, and in the com-
pletion of every local ring of R). We also define c P R˝ to be a big test element if
condition (TE3) holds for all pairs of modules N Ď M without the condition that
either module by finitely generated.

Test elements play a considerable role in the theory of strongly F-regular rings,
and conversely. We shall discuss this point further once we have introduced the
notion of a strongly F-regular ring.

The following result gives several important instances in which test elements are
known to exist.

Theorem 5.1. Let R be a Noetherian ring of prime characteristic p ą 0, and
assume that R is reduced.

(a) Suppose that R is reduced, that R is module-finite over a regular domain A
with fraction field L, and that LbA R is a finite product of separable field
extensions of L, i.e., is generically étale over A. Then R has a completely
stable test element. Hence, every localization of R has a test element.

(b) Suppose that R is essentially of finite type over an excellent local ring.
Suppose that c P R˝ is such that Rc is regular. Then c has a power that is
a completely stable element.
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(c) Let K be a field with algebraic closure K. If R is a finitely generated algebra
over a field K (respectively, a complete local K-algebra with coefficient field
K) such that KbKR (respectively, K pbKR) is reduced and equidimensional,
then the Jacobian ideal JR{K of R over K (which defines the singular locus)
intersected with R˝ consists of completely stable test elements.

For the proofs of parts (a), (b), and (c), we refer the reader to [HH90, Theorem
6.13], [HH94a, Theorem 6.20], [HH99, Corollary 1.5.5] and [Jia21] (for the complete
case) respectively. Note that part (c) of the result above is related to but does not
follow from part (b), which only yields that every element of J X R˝ has a power
that is a completely stable test element. Note that [Jia21] also obtains results in
equal characteristic 0.

5.1. Persistence. Let R Ñ S be a homomorphism of Noetherian rings of char-
acteristic p ą 0 and let N Ď M be finitely generated R-modules. Suppose that
u P N˚M . One often wants to know that 1b u is in the tight closure of the image of
SbRN in SbRM . There are many cases where this is obvious, e.g., for R Ď S and
R˝ Ď S˝. This happens whenever R and S are domains. However, the situation
becomes delicate when RÑ S has a kernel. The issue may be considered mod the
minimal primes of S, and so one needs to focus on the situation where R Ñ S is
replaced by the map RÑ R{P where P is the inverse image of a minimal prime of
S. The problem is that the element one used in testing tight closure over R may
map to 0 in R{P . It turns out that if one has a sufficient supply of test elements in
the rings one is working with, there is a way around the problem. One gets from R
to R{P by taking successive quotients by height one primes. In the process, it turns
out one can replace R by a normal domain. Then, in many cases, the test ideal
has height at least two, and so not all test elements are killed when one takes the
quotient by a height one prime. There is a detailed study of persistence [HH94a].
We record only one result here, which is part of [HH94a, Theorem 6.24].

Theorem 5.2. Let RÑ S be a homomorphism of Noetherian rings of characteris-
tic p ą 0. Let N ĎM be finitely generated R-modules and let w PM be an element
of M in N˚M Assume that at least one of the following conditions holds:

(1) R is locally excellent and S has a locally stable test element (or S is local),
or

(2) S has a completely stable test element (or S is a complete local ring).

Then 1b w is in the tight closure of the image of S bR N in S bRM .

6. Weakly F-regular rings

Let R be a Noetherian ring of prime characteristic p ą 0. We say that R is weakly
F-regular if every ideal is tightly closed. Some properties of weakly F-regular rings
are given in the results below, which provide a summary of a substantial number
of non-trivial theorems.

Theorem 6.1. Let R be a Noetherian ring of prime characteristic p ą 0 The
following conditions are equivalent.

(1) R is weakly F-regular.
(2) Every submodule of every finitely generated module is tightly closed.
(3) The localization of R at every maximal ideal is weakly F-regular.
(4) Every ideal primary to a maximal ideal is tightly closed.
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We note:

Theorem 6.2. Every regular ring is weakly F-regular.

Theorem 6.3. A weakly F-regular ring is normal.

In fact, one shows very generally that the tight closure of a principal ideal gen-
erated by a nonzerodivisor is the same as its integral closure, which turns out to
imply the result just above. However, in general, the tight closure of an ideal is
much smaller than the integral closure.

Theorem 6.4. if R Ď S is pure as a map of R-modules, e.g., if it splits as a map
of R-modules, and S is weakly F-regular, then R is weakly F-regular.

Theorem 6.5. If R is weakly F-regular and locally excellent, then R is Cohen-
Macaulay.

It is not known whether the property of being weakly F-regular passes to lo-
calizations in the locally excellent case. It does pass to localizations at maximal
ideals. Thus, the problem is whether, given a weakly F-regular local ring, its local-
ization at every prime ideal is weakly F-regular. We note a proposition about weak
F-regualarity, and then raise this question formally.

Proposition 6.6. . Let R be a Noetherian ring of prime characteristic p ą 0. The
following conditions on R are equivalent.

(a) The localization of R at every prime ideal is weakly F-regular, i.e., R is
F-regular.

(b) The localization of R at every multiplicative system is weakly F-regular.

A weakly F-regular ring satisfying these conditions is called F-regular.

Open question 6.7. Let R be a Noetherian ring of prime characteristic p ą 0.
Suppose that R is locally excellent ring and weakly F-regular. Is R F-regular?

It would suffice to prove this in the case where R is complete and F-finite, and
it would suffice to show that if such a ring is weakly F-regular, then so is its
localization at a prime ideal Q such that the Krull dimension of R{Q is 1. The idea
of the reduction to this case is to replace the local ring by its completion and then
by an F-finite ring using the Γ construction in [HH94a, §6]. One can localize at any
prime by repeatedly localizing at primes whose quotient has dimension one.

6.1. Invariant theory. For simplicity, we consider here only the case of an al-
gebraically closed field K. A Zariski closed subgroup G of GLpn,Kq is called a
linear algebraic group. In the case of a finite-dimensional vector space V over K we
consider only actions of G on V such that the map homomorphism GÑ GLpn,Kq
is regular. We then refer to V as G-module: K is understood. In the case of
infinite-dimensional vector space V , we consider only actions of G such that V is
a directed union of finite-dimensional G-stable subspaces that are G-modules. A
G-module is simple if it V has no proper nonzero G-stable subspace. The group G
is called linearly reductive if every G-module is a direct sum of simple G-modules
(which will be finite-dimensional over K. In characteristic p ą 0 there are very few
linearly reductive groups (finite groups with order not divisible by p and products
of copies of the multiplicative group of the field are included).
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Over a field of characteristic 0, additionally, all of the semisimple groups are
linearly reductive, including the general and special linear groups, the orthogonal
and special orthogonal group, and the symplectic group.

When one has a linearly reductive group, there is a covariant functor on G-
modules V ÞÑ V G, where V G :“ tv P V : forall g P G, gpvq “ vu. This functor
turns out to be invariant. In fact, V splits functorially and uniquely as a direct sum
V G‘VG, where VG contains no invariant elements other than 0. One therefore has a
canonical retraction ρ : V Ñ V G in the category of G-modules, called the Reynolds
operator. WhenG is finite and |G| is invertible inK, then ρ : v ÞÑ p1{|G|q

ř

gPG gpvq.
When G is linearly reductive and acts by K-algebra automorphisms on a K-

algebra R, RG Ď R is a K-subalgebra, and ρ : R Ñ RG is RG-linear. That is, RG

is a direct summand of R as a module over itself. By Theorem 6.4, we know that
if R is regular of characteristic p (or weakly F-regular) then so is RG. Hence, RG

is Cohen-Macaulay under mild conditions. By generalizing tight closure theory to
equal characteristic 0 (or by reducing to characteristic p in another way) one can
show:

Theorem 6.8. If R is a direct sum of a regular ring containing a field, then R is
Cohen-Macaulay. In particular, if G is a linearly reductive algebraic group over K
acting on a regular K-algebra R, then RG is Cohen-Macaulay.

We refer the reader to [HH90, HH99] for more details. Major results in this
direction were obtained in [HR74]. A proof not using tight closure for the equal
characteristic 0 case is given in [Bou87], where it is proved that if R is regular
and affine over K, RG has rational singularities (the argument uses resolution of
singularities and the Grauert-Riemenschnieder vanishing theorem [GraR70]). It
is now known that direct summands of regular rings are Cohen-Macaulay even
when the ring does not contain a field, using techniques of almost mathematics and
perfectoid geometry. See, for example, [HeitMa18].

7. Further applications of tight closure

7.1. Phantom acyclicity and the vanishing theorem for maps of Tor. There
is a tight closure analogue of the Buchsbaum-Eisenbud acyclicity criterion [BE73].

Discussion and Notation 7.1. In the discussion here, we first assume that the ring
is Noetherian but do not impose any restrictions on the characteristic. Consider a
left complex G‚ of finitely generated free R-modules:

0 Ñ Rbn Ñ ¨ ¨ ¨ Ñ Rbi
Ai
ÝÝÑ Rbi´1 Ñ ¨ ¨ ¨ Ñ Ab0 Ñ 0.

Here, Ai is the bi´1 ˆ bi matrix of the map Rbi
Ai
ÝÝÑÑ Rbi´1 . We consider three

functions on ideals J of R: the height of J , the depth of R on J , and the minheight
of J , which we define to be the smallest height of any of the ideals JpR{pq when p
is a minimal prime of R. We make the convention that all three of these functions
have the value `8 when J “ R is the unit ideal.

Note that when R is a domain, minheight coincides with height. For simplicity,
the reader may wish to consider the results we are about to state only in the domain
case. Let ri denote the determinantal rank of Ai. We also make the convention
that rn`1 “ 0. We shall say the complex G‚ satisfies the standard conditions on
rank and minheight (or depth, or height) if

(1) For all i, 1 ď i ď n, bi “ ri`1 ` ri.
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(2) For all i, 1 ď i ď n, the minheight of IripAiq (or the depth of R on IripAiq,
or the height of IripAiqq is at least i.

We say that a complex ¨ ¨ ¨ Ñ Mi`1
di`1
ÝÝÝÑÑ Mi

di
ÝÑ Mi´1 ¨ ¨ ¨ has phantom

homology at Mi if the kernel Zi of di is in the tight closure of the image B of di`1

is Mi. When this condition holds and R is weakly F-regular, the homology at Mi is
zero. More generally, when one tensors with a weakly F-regular ring S, the image
of the homology over R in the homology of S bRM‚ is 0.

One of the main results of [BE73] is that G‚ is acyclic if and only if it satisfies
the standard conditions on rank and depth. An analogous result for tight closure
is this:

Theorem 7.2 (Phantom acyclicty criterion). Let R be a Noetherian ring of prime
characteristic p ą 0. Assume that R is reduced, locally equidimensional, and is a
homomorphic image of Cohen-Macaulay ring. Let G‚ be as in 7.1. Then FepG‚q is
phantom acyclic for all e ě 0 (meaning that all of the homology modules with index
at least 1 are phantom) if and only if G‚ satisifies the standard conditions on rank
and height.

We refer the reader to [HH90, §9] and [HH93] for a much more detailed discussion.
The result above can be extended to many other cases. But if R is not locally
equidimensional, one needs to work modulo every minimal prime, and one needs the
standard conditions on rank and minheight rather than rank and height. Assuming
the existence of sufficiently many completely stable test elements, one can reduce
to the case where the base ring is complete local. In particular:

Theorem 7.3 (Phantom acyclicty criterion, second version). Let R be a Noetherian
ring of prime characteristic p ą 0. Assume that R is reduced, and is essentially
of finite type over an excellent local ring. Let G‚ be as in 7.1. Then FepG‚q is
phantom acyclic for all e ě 0 (meaning that all of the homology modules with index
at least 1 are phantom) if and only if G‚ satisifies the standard conditions on rank
and minheight.

The phantom acyclicity criterion can be used to prove the following result [HH90].
The argument can givem first in characteristic p ą 0 and then in equal characteristic
zero by reduction to characteristic p.

Theorem 7.4 (Vanishing theorem for maps of Tor). Let R be module-finite and
torsion-free over a regular domain A, and let R Ñ S be any homomorphism to a
regular ring. Let M be any M -module. Then for all i ě 1, the map TorAi pM, Rq Ñ

TorAi pM, Sq is 0.

Remark 7.5. This reduces to the case where M is finitely generated, by a direct
limit argument. If one has a counterexample, it remains one after one localizes S
at maximal ideal and completes. One may also replace A by a suitable localized
completion. Take a finite free resolution of M over A. It satisfies the standard
conditions on rank and depth. When one tensors with R, the resulting complex G‚
it will satisfy the standard conditions on rank and height. Hence, it has phantom
homology. From this, one deduces that the image the homology RbAG‚ is SbAG‚
is 0.

Remark 7.6. This result is non-trivial even when the map R Ñ S is simply the
map from a local ring pR, m, Kq to its residue class field! In fact, this special case
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implies the direct summand conjecture (that regular rings are direct summands of
their module finite extensions) in characteristic p, and also in mixed characteristic.

Remark 7.7. Theorem 7.4 has many generalizations. For example, the argument
sketched in Remark 7.5 is valid if we assume that S is weakly F-regular and locally
excellent. See also the discussion in [HH95, §4] and [Ho17].

7.2. Phantom extensions and splinters.

Discussion and Notation 7.8. Let R be a Noetherian ring of prime characteristic
p ą 0. Suppose also that R is reduced. Consider a short exact sequence

p:q 0
α
ÝÑ RÑM

β
ÝÑ N Ñ 0

of finitely generated R-modules. Choose a projective resolution of N by finitely
generated projective modules, say

¨ ¨ ¨ Ñ G2
d2
ÝÑ G1

d1
ÝÑ G0 Ñ 0,

so thatN “ Cokerpd1q. Note that one may use this projective resolution to calculate
Ext1pN,Rq, which may be calculated as

Ker
`

HomRpG1, Rq Ñ HomRpG2, Rq
˘

{Image
`

HomRpG0, Rq Ñ HompG1, Rq
˘

.

Hence, Ext1pN,Rq may be identified with a submodule of

HomRpG1, Rq{ImagepHomRpG0, Rq Ñ HompG1, Rq
˘

.

We use this identification in the statement of (Ph1) below.

The short exact sequence p:q or the map R ãÑ M is said to be a phantom
extension if the following equivalent conditions hold:

(Ph1) For some (equivalently, every) choice of G‚ as above, the element of the
module Ext1RpM{N,Rq represented by p:q is in the tight closure of of
Image

`

HomRpG0, Rq Ñ HompG1, Rq
˘

in HomRpG1, Rq.
(Ph2) There exist c P R˝ such that for all e " 0 there is a map γe : FepMq Ñ

FepRq such that γeFepαq “ c idFepRq.

We refer the reader to [HH94b, §5] for a detailed treatment that is somewhat
more general. The following results should give ample motivation for making this
definition.

First, from (Ph1) we obviously have:

Proposition 7.9. . Let R be a Noetherian ring of prime characteristic p ą 0. If
R is weakly F-regular and RÑM is a phantom extension, then RÑM splits over
R,. i.e., R is a direct summand of M .

Theorem 7.10. Let R be a Noetherian ring of prime characteristic p ą 0. If R
is reduced and S is any module-finite extension ring, then R Ñ S is a phantom
extension.

This immediately yields:

Theorem 7.11. Let R be a Noetherian ring of prime characteristic p ą 0. If R is
weakly F-regular, then R is a direct summand of every module-finite extension.
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A domain R that is a direct summand of every module-finite extension S is
called a splinter. Because one may consider the issue after forming the quotient
by a minimal prime of S disjoint from Rzt0u, it is equivalent to make the splitting
requirement for module-finite extension domains S.

Every splinter is normal. This notion is more interesting in equal characterisic
p ą 0 (and in mixed characteristic) than in equal characteristic 0: if a ring contains
the rationals, it is a direct summand of every module-finite extension if and only if
it is normal. We refer the reader to [Ho73, Ho77] for further discussion. We note
the following:

Theorem 7.12. Let R be a normal Noetherian domain R of arbitrary character-
istic. The following conditions are equivalent:

(1) R is a splinter.
(2) Every local ring of R at a maximal ideal is a splinter.
(3) Every localization of R at any multiplicative system is a splinter.
(4) For every module-finite extension S of R and every ideal I of R, ISXR “ I.
(5) For every integral extension S of R and every ideal I of R, IS XR “ I.

Remark 7.13. In conditions (4) and (5), one also gets an equivalence if one restricts
S to be a domain extension of R.

We can restate Theorem 7.11 as follows.

Theorem 7.14. A weakly F-regular domain is a splinter.

7.3. Plus closure. The absolute integral closure R+ of a domain in its integral
closure in an algebraic closure of its fraction field, and is a maximal domain that
is an integral extension of R. The plus closure I` of an ideal I of a Noetherian
domain R is IR+XR, and it is easy to see that I` “

Ť

S ISXR as S runs through
all module-finite extension domains of R. Hence, we have already seen in 4.5:

Theorem 7.15. Let R be a Noetherian ring of prime characteristic p ą 0. Let
I Ď R be an ideal. Then I` Ď I˚.

A deep result of Karen Smith [Sm94] gives a partial converse. Call an ideal I of
a Noetherian domain a parameter ideal if mRm is generated by part of a system of
parameters for every maximal ideal containing I.

Theorem 7.16 (K. E. Smith). Let R be a Noetherian ring of prime characteristic
p ą 0. Suppose that R is a locally excellent ring, and that I is a parameter ideal.
Then I˚ “ I`.

A Noetherian ring of characteristic p in which every parameter ideal is tightly
closed is called F-rational. This is a characteristic p ą 0 analogue of the notion of
rational singularities1 We restrict further discussion to the case where the ring is
locally excellent.

A locally excellent splinter is F-rational by Theorem 7.16. This property passes
to all localizations. Because parameter ideals are tightly closed, the colon-capturing
property for tight closure implies that F-rational rings are Cohen-Macaulay, and

1An affine algebra over a field of characteristic 0 is said to have rational singularities if it is
normal and the higher direct images of the structure sheaf of a desingularization are 0. This

implies the Cohen-Macaulay property.
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they are also normal. Moreover, in the Gorenstein case, the fact that ideals gen-
erated by a system of parameters are tightly closed gives a family of irreducible
m-primary ideals cofinal with the powers of the maximal ideal, and this enables
one to show that every ideal is tightly closed. Hence, F-rational is equivalent to
F-regular in the Gorenstein case. Putting all this together, we have:

Theorem 7.17. Let R be a Noetherian ring of prime characteristic p ą 0. Suppose
that R is locally excellent. If R is splinter, then R is F-rational and, in particular,
Cohen-Macaulay. If, moreover, R is Gorenstein, then R is F-regular if and only if
R is F-rational.

For a more detailed treatment, we refer the reader to [HH94a, HH94b]
The papers [Ha98b, Sm97] make a quite explicit connection between the notions

of having rational singularity and of being F-rational. Consider a finitely generated
algebra R over a field of characteristic K 0. Then R can be written as K bA RA,
where A is a finitely generated Z-subalgebra of K. The quotients fields A{µ of A
by maximal ideals µ are finite fields. One has:

Theorem 7.18 (Hara, Smith). With notation as in the paragraph just above, R
has rational singularities if and only if for all maximal ideals µ in a dense open
subset of MaxSpecpAq, the positive characteristic ring pA{µq bA RA is F-rational.

7.4. Phantom extensions and big Cohen-Macaulay modules and algebras.
The notion of a phantom extension can be used to prove the existence of big Cohen-
Macaulay modules and algebras in equal characteristic p. We give here just the
barest sketch of the idea, but we also discuss briefly its extension to mixed charac-
teristic.

Big Cohen-Macaulay modules may be constructed by forming a direct limit sys-
tem of extensions of a ring R. These extensions are the result of a sequence of
extensions each of which is called a modification. There are different kinds, de-
pending on whether one is constructing a big Cohen-Macaulay module of a big
Cohen-Macaulay algebra: there are module modifications and there are partial al-
gebra modifications. In making one modification, one trivializes a relation on part
of system of parameters for R in an essentially universal way. The problem with
the construction is to show that when one takes the direct limit B of all these finite
sequences of modifications, the element 1 P R is not in mRB. One proves this as fol-
lows. If it happens, it happens from some specific finite sequence of modifications.
To prove that it does not happen with the sequence RÑ M1 Ñ M2 Ñ ¨ ¨ ¨ Ñ Mh,
one proves by induction on h that R Ñ Mh is a phantom extension. It is then
not difficult to prove that 1 R mRMh. The crucial fact need for the induction is
that if RÑM is phantom and one makes a modification M ÑM 1, then RÑM 1

is phantom. The details for the case of big Cohen-Macaulay modules are given in
[Ho94b, §5].

Closure operations that resemble but may be different from tight closure can be
used to construct big Cohen-Macaulay modules and algebras. We refer the reader
to [Di07, Di10, Di18, Jia21, RG16, RG18] for more detailed discussion of these
ideas, especially [Di18, Jia21, RG18].

8. Alternative characterizations of tight closure

Under assumptions like the existence of a completely stable test element, tight
closure is determined by what happens after base change to the completions of the
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local rings at a maximal ideal of R, and then to the local rings obtained by taking
the quotient by a minimal prime. Under the same hypotheses, it is determined by
the tight closures of ideals, or submodules N of a finitely generated module M , such
that the quotient M{N is supported at one maximal ideal and has finite length,
because NM˚ “

Ş

IpN ` IMq, where I runs through ideals primary to a maximal
ideal. The results in this section therefore give alternative characterizations of tight
closure in good cases. For simplicity, we have only stated these results for ideals,
and we have assumed the ring is a complete local domain. There are counterparts
for modules of all of the stated results. For a detailed discussion we refer the reader
to [HH90, §8] and [Ho94a]. Before stating the characterizations, we give some
prerequisites.

8.1. Hilbert-Kunz multiplicity. In order to state part one of our characteriza-
tions, we need the notion of the Hilbert-Kunz multiplicity of a primary ideal in a
local ring pR, m, Kq of prime characteristic p ą 0 and Krull dimension d. The
notion was introduced by Paul Monsky [Mo83, HaMo93].

If I is such a primary ideal, a theorem of Monsky asserts that

`pR{Irqsq “ γqd `Opqd´1q

as q Ñ 8 for a positive real constant γ. Here q is running through the values
pe for e P N. We define the Hilbert-Kunz multiplicity eHKpIq of I in R to be the
constant γ. Thus |`pR{Irqsq ´ γqd| is bounded by positive real constant times qd´1

as d varies, and eHKpIq “ lim
qÑ8

`pR{Irqsq

qd
.

8.2. Solid algebras. We define a module M over a domain R to be solid if
HomRpM,Rq ­“ 0. If an R-algebra S is called solid if it is solid as an R-module.
In this case, there is always an R-linear map β : S Ñ R such that βp1q ­“ 0, for
if α is a map such that αps0q ­“ 0 we may define βpsq “ αpss0q. A module-finite
extension of a domain is always solid, bu, in general, it may be difficult to decide
with a finitely generated extension algebra of R is solid.

For those familiar with local cohomology, we note the following fact from [Ho94a]:

Theorem 8.1. A module M over a complete local domain pR, m, Kq of Krull
dimension d is solid if and only if Hd

mpMq ­“ 0

We note that one can deduce easily from this that a big Cohen-Macaulay algebra
over a complete local domain is solid.

Although we are generally omitting proofs, the following result has a very short
demonstration.

Proposition 8.2. Let R be a Noetherian domain of prime characteristic p ą 0,
and suppose I Ď R and f P R. If S is a solid R-algebra and f P IS, then f P I˚.

Proof. We have p˚q f ¨ 1 “
řh
t“1 itst for some h, with it P I and st P S. If

β : S Ñ R with βp1q “ c ­“ 0, raise both sides of p˚q to the q “ pe power and apply

β to get p˚˚q fqβp1q “
řh
t“1 i

q
tβps

q
t q. Since the elements βpsqt q P R, this shows

that cfq P Irqs for all q “ pe, and so f P I˚. �

We can now state the following result characterizing tight closure in important
instances.
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Theorem 8.3. Let pR, m, Kq be a complete local domain of prime characteristic
p ą 0. Let I be an ideal of R and f P I. The following conditions are equivalent:

(a) f P I˚

(b) There exists a big Cohen-Macaulay algebra B over R such that f P IB.
(c) There exists a solid R-algebra S such that f P IS.

Moreover, if I is m-primary the following condition is also equivalent:

(d) The Hilbert-Kunz multiplicities of I ` fR and IR are equal.

We refer the reader [HZ18] and, for example, [Bre03, Bre04] for further charac-
terizations of tight closure. The work of Brenner starts with the local cohomology
criterion for solidity and gives beautiful geometric criteria based on it.

9. Strong F-regularity

In this section we discuss several notions all of which imply weak F-regularity.
Since all of the definitions that one might give imply that the ring is normal Noe-
therian and, hence, a product of finitely many Noetherian domains, we shall, for
simplicity, assume throughout that the ring is a domain.

The notion of strong F-regularity was first defined in the F-finite case. The
notion has been extended in various ways to the situation where the ring is not
necessarily F-finite. For detailed treatments of the F-finite case we refer the reader
to [HH89b] and [HH94a].

Since the variant definitions of strong F-regularity all imply that R is reduced,
and, in fact normal, we may assume that R is a finite product of domains, and
then each variant definition holds if and only if it holds for all factors. Thus, in
the sequel we shall simply assume that R is a domain. When R is F-finite, all the
notions agree. When it is not, there are two notions: one we shall call very strongly
F-regularity, following M .Hashimoto [Hash10] (the same property is called F-pure
regularity in [DaSm17]), and we shall call the second notion strong F-regularity.
For a more detailed treatment see the two papers mentioned and [HY22, §2].

Definition 9.1. Let R be a domain of characteristic p ą 0. If R is F-finite, we
define R to be strongly F-regular if for every c P R0 there exists q “ pe, e ě 1 such
that the R-linear map α : RÑ R1{q with 1 ÞÑ c1{q splits over R. Let β be the map
R1{q Ñ R sneding c1{q Ñ 1. When this happens for a choice c P R˝, one also gets
that R is F-split and that the same condition holds for all q1 “ pe

1

with e1 ě e.

We note at once:

Theorem 9.2. If R is strongly F-regular, then every submodule of every module is
tightly closed (finite generation is not required).

Proof. In the case of an ideal I Ď R cuq P Irqs for all q " 0 implies c1{qu P IR1{q.
Applying the splitting β that exists for q " 1 yields u P I. We may give exactly
the same argument when R is replaced by an arbitrary direct sum of copies of R
and I by an submodule of that free module. �

Thus, strongly F-regular rings are weakly F-regular, and, hence, normal. The
converse has been known in some cases for a considerable time, e.g. when the ring is
Gorenstein2 is a finitely generated graaded algebra over a field [LySm99]. Whether

2More generally, if there are only isolated non-Q-Gorenstein point [Wil95, Mac96].



20 MELVIN HOCHSTER

the notions are equivalent in the locally excellent case is an open question. We have
the following (cf., [Ho07, Hash10, HY22]:

Theorem 9.3. Let R be a Noetherian ring of prime characteristic p ą 0. Suppose
that R is F-finite. Then the following conditions are equivalent.

(1) R is strongly F-regular.
(2) Rm is strongly F-regular for every maximal ideal m.
(3) Every submodule of every module (even if the modules are not finitely gen-

erated) is tightly closed.
(4) 0 is tightly closed in the injective hull of R{m over R for every maximal

ideal m.

When R is not necessarily F -finite, one cannot expect a splitting for α, as in the
definition of strongly F-regular in the F-finite case, but one can hope for a pure
map. Therefore one can extend the notion of strongly F-regular to the general case
in two ways: they turn out to be distinct.

We shall say that an arbitrary Noetherian domain of positive characteristic
is strongly F-regular if every submodule of every module is tightly closed, as in
condition (3) of the theorem: we are not assuming finite generation of the mod-
ules. This definition follows [Ho07]. We follow here the terminology of [Hash10]:
a domain R is very strongly F-regular if for every c P R0 there exists q “ pe,
e ě 1 such that the R-linear map α : R Ñ R1{q with 1 ÞÑ c1{q is pure over
R. This condition is called F-pure regular in [DaSm17]. We refer the reader to
[HH89b, HH94a, Ho07, Hash10, DaSm17, HY22] for detailed discussion and proofs
of statements given here. With these conditions we have:

Theorem 9.4. A very strongly F-regular ring is strongly F-regular. Both properties
are inherited by arbitrary localizations. If R is local, the notions are equivalent. A
Noetherian ring is strongly F-regular if and only if its localization at every maximal
(equivalently, every prime) is very strongly F-regular.

Remark 9.5. The notions of very strongly F-regular and strongly F-regular are
different, even if the ring is regular. In fact, every regular ring is strongly F-regular,
but not necessarily very strongly F-regular: see, for example, [HY22, §6].

Remark 9.6. It is proved in [Hash10] that a strongly F-regular local ring essentially
of finite type over an excellent local ring B is very strongly F-regular. In [?, Remark
3.2.2(2)] it is proved that the result holds if B is only assumed to be a local G-ring,
while in [HY22, Theorem 2.23] it is observed that the result holds if B is only
assumed to be a semilocal excellent ring.

Yongwei Yao and the author conjecture that every excellent strongly F-regular
ring is very strongly F-regular.

From this point on, we focus on the property of strong F-regularity. Occasionally,
for simplicity, we restrict to the F-finite case.

A very useful fact is the following (see, for example, [HY22, Corollary 2.13].

Theorem 9.7. Let R, S be Noetherian domains of positive characteristic and RÑ
S a ring homomorphism that is pure as a map of R-modules. If S is strongly F-
regular, then so is R. In particular, this holds when R is a direct summand of S as
an R-module (and, hence, if R is an algebra retract of S), and also when RÑ S is
faithfully flat.
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For affine algebras R over K, this implies that if LbK R is a strongly F-regular
domain for a field extension L of K, then R is strongly F-regular.

9.1. Strong F-regularity and test elements in the F-finite case. There is a
strong interaction of the notion of strong F-regularity and the existence of test ele-
ments. For simplicity, we assume that all rings in this section are F-finite, although
there are also results that hold more general (see, for example, [HY22]. We give
two important theorems. The first is [HH89b, Theorem 3.3].

Theorem 9.8. Let R be an F-finite Noetherian domain of characteristic p;ą 0.

(a) If c P R˝ is such that R Rc is strongly F-regular3 then R is strongly F-
regular if and only if there exists q “ pe such that the map R Ñ R1{q with
1 ÞÑ c1{q splits.

(b) The set of primes P in SpecpRq such that RP is strongly F-regular is open.

Thus, one can check that R is strongly F-regular by establishing the condition
in the definition for just one value of c instead of for every nonzero c.

The second is a source of test elements [HH89b, Theorem 3.4] as improved in
[Ho07].

Theorem 9.9. Let R be an F-finite Noetherian domain of characteristic p;ą 0.
Then every element c of R˝ such that Rc is strongly F-regular has a power that is
a big completely stable test element.

10. Tools for proving strong F-regularity

10.1. The graded case. A striking result4 of Gennady Lyubeznik and Karen
Smith [LySm99] asserts:

Theorem 10.1. Let R be a finitely generated N-graded algebra over an F-finite
field K with R0 “ K of characteristic p ą 0. Let m be the homogeneous maaximal
ideal of R. Let L be the perfect closure of K. Then the following conditions are
equivalent:

(1) Rm is weakly F-regular.
(2) R is weakly F-regular.
(3) R is strongly F-regular.
(4) LbK R is strongly F-regular.

The equivalence of parts (1), (2), and (4) is [LySm99, Corollary 4.4], while it is
clear that (3) implies (2), and (4) implies (3) by Theorem 9.7.

Knowing that a standard graded ring R is strongly F-regular has substantial
consequences for the geometry of ProjpRq, which is termed globally F-regular by
Karen Smith in [Sm00]. See also [SchSm10].

10.2. A criterion for Gorenstein rings. Let pR,mq be a standard graded K-
algebra over a field K. We recall that the a-invariant apRq is the largest integer a
such that Hd

mpRqsa ­“ 0. We note that the following criterion is essentially [HH94b,
Corollary 7.13], combined with Theorem 10.1.

3Since R is F-finite it is excellent, and one may even choose c P R˝ such that Rc is regular.

Thus, such choices of c always exist.
4Related results are given in [Stu08].
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Theorem 10.2. Let pR,mq be a standard graded Gorenstein K-algebra over a field
K of characteristic p ą 0. Then R is strongly F-regular if and only if the following
conditions hold:

(1) RP is weakly F-regular for all primes P ­“ m.
(2) Some homogeneous system of parameters for R generates an ideal I that is

Frobeniusly closed (i.e., if r P R and rp
e

P Irp
e
s then r P I.

(3) apRq ă 0.

10.3. The Glassbrenner criterion. The following result of Glassbrenner [Gla96]
is reminiscent of the Fedder criterion [Fe83] for a quotient of an F-finite regular
ring to be F-split.

Theorem 10.3 (Glassbrenner). Let S be an F-finite regular local ring of prime
characteristic p with maximal ideal m. Let R denote S{I for some proper radical
ideal I. Let s be an element of S not in any minimal prime of I such that Rs is
regular (or even just strongly F-regular: such elements always exist). The following
are equivalent.

(1) R is strongly F-regular.
(2) For each element c of S not in any minimal prime of I, cpIrp

e
s : Iq Ę mrp

e
s

for all sufficiently large positive integers e.
(3) I is prime and I “

Ş

eě1pm
rpes : pIrp

e
s : Iqq.

(4) There exists a positive integer e such that spIrp
e
s : Iq Ę mrp

e
s.

10.4. Results of Hashimoto on rings of invariants. The following contains
quite useful results of Hashimoto from [Hash01, Hash12]. The result from [Hash01]
can be deduced from the result of [Hash12].

Theorem 10.4 (Hashimoto). Let G be a reductive linear algebraic group over an
algebraically closed field K of characteristic p ą 0. Let V be a finite-dimensional G-
module, let P be a parabolic subgroup of G, and UP the unipotent radical of P . Let
S by the polynomial ring over K which is the symmetric algebra of V . Assume that
S is good5 as a G-module. Then the ring of invariants SUP is a finitely generated
strongly F-regular Gorenstein UFD. Moreover, SG is a direct summand of SUP and
so is strongly F-regular.

10.5. Cluster algebras. There has been a recent explosion of interest in cluster
algebras. it would take us far afield to survey this area or even to give basic
definitions. However, we do want to mention the following result from [BMRS15],
to which we refer the reader for definitions.

Theorem 10.5. A locally acyclic cluster algebra over a field of positive character-
istic is strongly F-regular.

11. F-signature of local rings

We give a very brief introduction to the theory of F-signature, a characteristic
p ą 0 invariant that can be used to characterize strongly F-regular rings. The
notion was introduced in [HuL02] in the F-finite case, and a definition valid in
general in was given in [Yao06]. After a series of partial results, it was proved that
the defining limit involved exists in general in [Tuc12]. Many authors have made

5For the somewhat technical explanation of what it means for a representation to be good, we
refer the reader to [Hash12].
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contributions, and the reader is referred to [HuL02, AbL03, Yao06, AbEn06, WY04,
Ab08, Tuc12, Pol18, PT18] for further background.

Definition 11.1. Let pR,m,Kq be an F-finite local ring with d “ dimR and M a
finitely generated R-module. For each e P N, write eM – Rae ‘Me as R-modules,
where Me has no nonzero free direct summand. We let #peM,Rq :“ ae and let
αpRq be such that rK : Kps “ pαpRq: this degree is finite when R and, hence, K, is
F-finite. We then define

spMq :“ lim
eÑ8

#peM,Rq

qαpRq`d

. The limit always exists by [Tuc12]. We define spRq to be the F-signature of R.

As mentioned above, in [Yao06], a definition of F-signature is given for all Noe-
therian local rings of prime characteristic p and it is equivalent to Definition 11.1
whenever R is F-finite. However, we shall not give details here. But we note that
Theorem 11.2 is valid for all excellent local rings of positive characteristic.

Thus, in the F-finite case the F-signature gives a normalized measure of the size
of the largest R-free direct summand of eR when e is large. Like Hilbert-Kunz
multiplicity, it is very hard to calculate. It is at most 1, and is 1 if and only if the
local ring R is regular.

Theorem 11.2 ([HuL02], [AbL03]). If R is an excellent local ring, then R is
strongly F-regular if and only if spRq ą 0.

Thus, strongly F-regular local rings are characterized by the fact that eR splits
off a relatively large direct summand in the F-finite case.

We also note that [PT18] proves that

spRq “ infteHKpI1q ´ eHKpI2q | I1 Ă I2,
a

I1 “ m, I2{I1 – ku

(this was conjectured in [WY04]) for approximately Gorenstein rings (these include
all normal rings [Ho77]), and, in particular, all weakly (or strongly) F-regular rings.
This was a starting point for the results of [HY21].

12. Another splitting characterization of strongly F-regular rings

This section gives another characterization of strongly F-regular rings: [HY22,
Corollary 4.3]. For simplicity, we have limited the statement to the F-finite case
and omitted some other equivalences.

Theorem 12.1 (Hochster-Yao). Let R be an F-finite ring. The following state-
ments are equivalent.

(1) R is strongly F-regular.
(2) For every finitely generated R-module M supported on all of SpecpRq, eM

has R as a direct summand for all e " 0.
(3) For every finitely generated faithful R-module M , there exists e ą 0 such

that eM has R as aa direct summand.
(4) R is normal, and for every P P SpecpRq such that dimpRP q ě 2, there

exists e ą 0 such that ePP has RP as a direct summand.
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Société Mathématique de France, numéro 38, 1989,119–133.
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