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1. Introduction

Throughout this paper, unless otherwise specified, rings are assumed to
be commutative, associative, with identity, and modules are assumed to be -
unital. For the most part we shall work with Noetherian rings of positive
prime characteristic p. Suppose that R is such a ring. We recall that
an element x € R is said to be the tight closure of an ideal I of R if
there exists an element ¢ in R but not in any minimal prime ideal of
R such that for all sufficiently large integers ¢ = p°, where e € N, the
nonnegative integers, we have cx? € I'? (the ideal generated by the gth
powers of the elements of I). R is called weakly F-regular if every ideal
is tightly closed, and F-regular if it and all of its localizations are weakly
F-regular. ‘

We use the theory of tight closure to develop the notion of when an
extension of finitely generated modules over R is a phantom extension.
Using these ideas, we prove a number of splitting theorems. For example,
we are able to show that if a ring is weakly F-regular then it is a direct
summand, as a module over itself, of every module-finite extension ring.
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This result generalizes the fact that a regular ring of characteristic p is
a direct summand of every module-finite extension ring. We also show
that a locally excellent Gorenstein ring is weakly F-regular if and only if
it is a direct summand of every module-finite extension ring. The results
developed toward proving this can be used to study the problem of when
an N-graded Noetherian ring is weakly F-regular.

We also use the notion of phantom extension to give a proof of the
existence of big Cohen-Macaulay modules. This proof is closely related
to the original proof, but we feel that it is worth giving the argument as
formulated here because doing so shows that a “sufficiently good” notion
of tight closure in mixed characteristic would also yield a proof of the
existence of big Cohen-Macaulay modules in mixed characteristic.

The authors introduced, in [HH4], the notion of the tight closure of an
ideal or submodule, both for Noetherian rings of positive prime charac-
teristic p and for finitely generated algebras over a field of characteris-
tic 0. Accounts that are at least partly expository are given in [HH1-3],
[Hu2], and [Ho10]. The theory is developed further in [HH6], [HHS],
[HH9], [HH10], and [HH11], as well as in [Ab1-3], [AHH], [Gla], and
[Ho9] (where a theory of so-called solid closure is developed, defined in all
characteristics, even mixed characteristic, and coinciding with tight clo-
sure in good cases in characteristic p), [Sm1-3], [Vel], and [Wil]. In
particular, [HH8] contains a detailed study of the notion of phantom ho-
mology (homology is phantom when the cycles are in the tight closure of
the boundaries in the module of chains), which leads to the theory of mod-
ules of finite phantom projective dimension developed in [Ab1-2]. Some
results on the commutativity of localization with tight closure for modules
N C M when M/N has finite phantom projective dimension are obtained
in [AHH]. We shall make strong use here of the results of [HH9], which
deals both with the extension of test elements (see (3.5), (3.6), and (3. )
and with the behavior of tight closure under smooth base change.

Tight closure techniques have produced new proofs that rings of in-
variants of linearly reductive groups acting on regular rings are Cohen-
Macaulay (cf. [HR1-2], [Ke], [Bou], [HoE], and [HH4]), of the Briangon-
Skoda theorem on integral closures of ideals in regular rings in a greatly
strengthened form in the equicharacteristic case (cf. [BRS; HH4, §5; LS;
LT; Sk] for background), and of various local homological theorems
(known in the equicharacteristic case and conjectured in mixed charac-
teristic: cf. [PS1-2], [Ro1-5], [Ho1-3}, [Ho5-7], [EvG1-3], and [Du] for
further information) in much improved forms: see [HH4, §10; HHS, §64—
6]. In every instance, the new methods have also yielded new insight.
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Tight closure enables one to control the results of performing operations
on ideals generated by monomials in a system of parameters, even repeated
operations, when the parameters are not necessarily a regular sequence.
One can often show that the operations produce an ideal that is in the
tight closure of the “formal” answer one would get if the parameters did
form an R-sequence. See §7 of [HH4] for details.

In [Hu3] tight closure is a crucial ingredient in establishing unexpectedly
strong uniform Artin-Rees theorems. It is also worth mentioning that the
study of tight closure led to the discovery of the Cohen-Macaulay prop-
erty for absolute integral closures R* of excellent local domains R in
characteristic p (see [HH7] and the final paragraph of this introduction).

The paper is organized as follows: §2 contains some basic notation and
conventions, particularly concerning rings of characteristic p. In §3 we
discuss briefly some definitions and results on tight closure mainly from
[HH3-4], [HH9] that are needed throughout. The graded case is dealt with
in §4.

In §5 we introduce the notion of a phantom extension and use it both
to prove the existence of big Cohen-Macaulay modules in characteristic p
and to establish splitting theorems for module-finite extensions of weakly
F-regular rings. We also study a closely related question: when is it true
that for a ring extension R — S that ISNR C I" for every ideal I of
R, or, even better, that (IS)* N R C I" for every ideal I of R. There
is also a corresponding question for modules. It turns out that there are
very good results for module-finite extensions, and, more generally, for
extensions that “preserve” height sufficiently well. See Theorem (5.22),
Corollary (5.23), Theorem (5.31), and Theorem (5.32).

In §6 we discuss some results on forcing the elements of the tight closure
I" of anideal I of aring R into IS for a suitable integral extension ring
S 2 R, and we use these results to prove that if R is locally excellent and
Gorenstein, then R is F-regular if and only if R is a direct summand, as
a module over itself, of every module-finite extension. (This problem was
also studied in [Ho2] and [Ma].)

In §7 some of the results of §6 are used to develop criteria for F-
regularity, which are then applied to the study of a number of examples.
Some of the results obtained overlap results of [FeW].

In §8 we study integral closures of ideals by tight closure techniques. We
develop a new generalization of the Briangon-Skoda theorem for Cohen-
Macaulay rings with isolated singularities and related results. We inves-
tigate a theorem of Itoh and Huneke using tight closure techniques, and
we prove a tight closure analogue of this result. We also use a result of
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Lipman and Sathaye to give a useful method for finding test elements.

This paper deals exclusively with tight closure theory in characteristic
p . The characteristic 0 theory will be developed in [HH10].

Finally, we mention one more result that gives a very useful perspective
on tight closure. The authors have recently proved (see [HH7]; [HHS5] and
[Hud] are expositions) that if R is an excellent local domain of charac-
teristic p, then the integral closure Rt of R in an algebraic closure of
the fraction field of R (which is called the absolute integral closure of R)
is a big Cohen-Macaulay algebra for R. Our results here imply that if 1
is an ideal of R then IR* N R C I". So far as the authors know, it is
possible that I* = IR" N R in very great generality. This is proved for n
generator parameter ideals when R is locally excellent for n < 3 in §6 of
[HH11] and for all # in [Sm1-2].

It is worth mentioning that one of the crucial techniques used in the
proof that R* is a big Cohen-Macaulay algebra (which involves giving a
criterion for when an ideal J O I can be forced into the expansion of
I in a suitable integral extension ring: see Theorem (6.3) and Theorem
(6.6)) was, in fact, first developed for application in §6 of this paper.

There is a fascinating interaction between the study of the properties
of tight closure and the study of the behavior of the rings R" : we expect
this interaction to be a persistent phenomenon.

2. Notation and conventions

(2.1) Notation. In any commutative ring R, R° denotes the comple-
ment of the union of the set of minimal primes. Thus, if R is a domain,
R° =R -{0}.

(2.2) Convention. By a local ring (R, m, K) we mean a Noetherian
ring R with a unique maximal ideal m such that K = R/m is the residue
field.

(2.3) Definition. A parameter in a Noetherian ring R is an element of
R°. A sequence of elements X, -+ , X, iscalled a sequence of parameters
if their images form part of a system of parameters in every local ring R,
of R at a prime ideal P containing the ideal I = (x,, --- , x,)R. In this
case we refer to I as an ideal generated by parameters or as a parameter
ideal.

(2.4) Discussion. Throughout, p always denotes a positive prime in-
teger.

We make the following conventions for discussing rings of positive
prime characteristic p. We shall use e to denote a variable element of the
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set N of nonnegative integers and ¢ for a variable element of the set {p°:
e € N}. Thus, “for all e” is synonymous with “for all e € N” while “for
some ¢~ is synonymous with “for some g of the form p° with e € N”.

" Throughout the rest of this section all rings are assumed to be of char-
acteristic p. ’

(2.5) Notation. We denote by F or F, 'z the Frobenius endomorphism
of a ring R of characteristic p, and we denote by F° the eth iteration
of F, so that F°(r) = r? where ¢ = p°. If R is a reduced ring of
characteristic p we write RY? for the ring obtained by adjoining ¢th
roots of all elements of R. The inclusion map R C RV s isomorphic
with F*: R— R.

(2.6) Definition. If I C R and ¢ = p°, then I'? denotes the ideal
(i?: i € IR, which is also the expansion F(I)R of I under the Frobenius
map F: R — R. Note that if T denotes a set of generators for I, then
{t: t e T} generates '

(2.7) Discussion and definition. We shall make considerable use of the
Peskine-Szpiro functors Fj; =F°, where R has characteristic p and e €
N. For any R-algebra S, S®,_ gives a functor from R-modules to S-
modules which takes finitely generated R-modules to finitely generated
S-modules. When S is R itself viewed as an R-algebra via F°, the eth
iteration of the Frobenius endomorphism, we refer to this functor as the
Peskine-Szpiro or Frobenius functor: see [PS1]. Thus, F° is a covariant
functor from R-modules to R-modules that preserves finite generation.
Note that F°(R) = R, that F*(R") = R" (not canonically), and that if we
apply F* toamap R” — R™ with matrix (a;;) weobtainamap R" — R"™
with matrix (af;), where g = p°. The R-module structure on F*(M) is
such that r'(r®@m) = (r'r)\®m. On the other hand, ¥ @ (rm) = (r'r!)om.
Observe also that F°(R/I) 2 R/I', where ¢ = p°.

(2.8) Discussion and notation. There is a canonical map M — F°(M)
that sends m to 1®m. If ¢ = p° and w € M, we write w? for the
image of w in F°(M). With this notation, (x + »)? = x? + y? and
(rx)? = r'x?. Moreover, F°(R") may be identified with R" in such
a way that if w = (a,,---,a,) then w? = (af,--- , a¥). Thus, this
notation for modules is consistent with our notation for the Frobenius
endomorphism of R.

If N C M, we shall write N (or, more precisely, N}Jl) for
Im(F°(N) —» F(M)) (= Ker(F'(M) — F°(M/N)) by the right exact-
ness of ®). We may also characterize N9 as the R-span in M of the
elements w? for w € N. Of course, N9 depends heavily on what M
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is (or, more precisely, on what N — M is). Note that M}[“}] = F (M),
and we sometimes write M'¥ for F°(M) . The context should make clear
what is meant.

Note that if M =R and N =1 C R, then I};” in this notation is the
same as what was earlier described as 7'

3. Tight closure and test elements

This section gives some basic definitions and results, primarily from
[HH4] and [HH9], that are needed throughout. All rings are assumed to
be Noetherian of characteristic p .

(3.1) Definition. Let N C M be finitely generated R-modules. We
say that w € M is in the tight closure N* (or, more precisely, N, ;{) of
N in M if there exists an element ¢ € R° (see (2.1a)) such that for all
sufficiently large ¢ = p°, cw? € Ngl . In particular, when N =1 C R,
w € I* means that cw? € I'Y for all sufficiently large q.

(3.2) Discussion. It is easy to check that the image of N,,/N in M/N
is the same as the tight closure of the submodule 0 in M/N . This enables
one to reduce many problems to the study of the tight closure of the zero
submodule. On the other hand, one can map a finitely generated free mod-
ule G onto M, letting H be the inverse image of N in G, and studying
H" in G: H*/H = N” /N under the obvious identification G/H = M/N .

Theorem 3.3 contains some basic information about tight closure that
is used repeatedly, often tacitly, throughout the paper.

(3.3) Theorem. Let R be a Noetherian ring of characteristic p and let
N C M be R-modules.

(a) N* is a submodule of M containing N and (N*)' = N*. If
N,CN,C M, then N; CN, .

(b) (Irrelevance of nilpotents) If J is the nilradical of R, then JM C
N* . Moreover, if N' denotes the inverse image (N + JM)/JM of N in
M/|JM, then N* is the inverse image in M of the tight closure N'* of
N' in M{JM, where N may be computed over either R or R_,.

(¢) If R is reduced or if Anny(M/N) has positive height, then x € M
is in N* if and only if there exists ¢ € R° such that cx? ¢ N}[“’{] for all

e
q=D .

(d) An element x of M is in the tight closure of N if and only if, for
every minimal prime P of R, the image of x in M/PM is in the tight
closure, over R/P, of Im(N/PN — M/PM).

Proof For parts (a), (b), (c) see [HH4, Proposition 8.5(a), (b), (c), (e),
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and (j)]. Part (d) is proved for the case of ideals in Proposition (6.25a) of
[HH4]. In studying the module case one may assume, as usual, that M is
free, and the argument is then the same as for the case of ideals. [
We recall the notions of test element and weak test element.
3 4) Deﬁmtlon Let R be a Noetherian ring of characteristic p and

let ¢' = p® for some integer ¢ € N. Wesaythat c € R’ isagq '.weak test
element if for every finitely generated R-module M and every submodule
NC M an element x € M isin NM if and only if cx? € N["] for all
a>q .

We say that c is a locally (respectively, completely) stable q'-weak test
element if its image in (respectively, in the completion of) every local ring
of R is a gq’-weak test element.

If ¢ isa ¢'-weak test element for g =1 then c is called a test element.
Corresponding terminology is used in the locally stable and completely
stable cases.

(3.5) Remark. By Proposition 8. 13(c) of [HH4], if R is a local ring
with an element ¢ such that ¢ is a ¢'-weak test element for R, then ¢
is a ¢'-weak test element for R. This 1mp11es that a completely stable

¢q'-weak test element for R is a locally stable ¢ '_weak test element for R.

The next result gives several circumstances in which various kinds of
test elements are known to exist. .

(3.6) Theorem (existence of test elements). Let R bea Noetherian ring
of characteristic p .

(a) Let R be module-finite A-torsion-free and generically smooth over
a regular domain A. Then every element d € A° such that A; — R, is
smooth has a power that is a completely stable test element.

(b) Let R be such that R° — R is module-finite or let R be an algebra
essentially of finite type over an excellent local ring. So longas R # 0 there
always exist elements ¢ € R° such that (R,), is regular, and every such
element has a power that is a completely stable weak test element. If R is
reduced, then every such element ¢ has a power that is a completely stable
test element.

Proof. Part (a) is contained in Theorem 6.13 of [HH4] as generalized
in the discussion immediately following Theorem 8.14 of [HH4]. Part (b)
for the case where R’ — R is module-finite follows from Theorem 3.4
of [HH3] as generalized in Theorem 5.10 of [HHY], while part (b) for the
case where R is essentially of finite type over an excellent local ring is a
consequence of Theorem (6.1b) of [HHY9]. O

In §6 we shall need the following result, which is a rephrasing of Corol-
lary 7.34 of [HHO].
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(3.7) Lemma. Let (R, m, K) be a reduced local ring such that, for
every x € m, R, is Gorenstein and F-regular. Suppose that the map
R — R has regular fibers, which holds, in particular, if R is excellent.
Then R possesses an m-primary ideal q such that the elements of ¢N R°
are test elements. In particular, q is generated by test elements. O

We also recall the following basic facts about weak F-regularity and
F-regularity from [HH4] and [HH9].

(3.8) Proposition. Let R be a Noetherian, of characteristic p .

(a) If R is weakly F-regular then every submodule of every module is
tightly closed (the definition only imposes this condition on ideals).

(b) R is weakly F-regular if and only if its localization at every maximal
ideal is weakly F-regular.

(c) If R is regular then it is F-regular. If R is weakly F-regular then R
is normal.

(d) If R is weakly F-regular and R is either a locally excellent ring
or a homomorphic image of a Cohen-Macaulay ring, then R is Cohen-
Macaulay.

(e) If R is a Gorenstein ring and R is weakly F-regular then it is F-
regular.

(f) If R is a Gorenstein local ring then in order that R be F-regular
it is necessary and sufficient that the ideal generated by a single system of
parameters be tightly closed in R.

Proof. (a), (b), and (c) are Proposition 8.7, Corollary 4.15, and The-
orem 4.6 together with Corollary 5.11 of [HH4]. (d), (e), and (f) are
Proposition 6.27(b) together with Theorem 3.4(c), and Corollary 4.7(a),
(b) of [HH9]. O

4, Tight closure in graded and multigraded rings

Our objective in this section is to study tight closure and F-regularity
for multigraded Noetherian rings R = @”e H Rn (where H = Z") and
pairs of multigraded modules N = @"EH N,, CM= ®n€H Mn' The
multigrading hypothesis tells us that R,,MT - M', 4o forall n, 7€ H. In
the most important case, » = 1 and R,, = 0 if 7 < 0: this is what we
mean by the graded case. Note that in the graded case, finitely generated
modules may have nonzero negative pieces, but only finitely many.

(4.1) Discussion. (a) If a = (a,, --* , @,) where the a; are units of

J
R, then o induces a multigraded (this always means degree-preserving
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rather than degree-shifting) automorphism 6, that sends each form r €
R, to o'r, where if n = (n;,---,n,) then a" = H:f:l a;?" . Each 6,
induces a K-linear map (which we also denote by ¢ ) from every graded
R-module M to itself that sends m, € Mﬂ to a"m" . Every multigraded
submodule of M is stabilized by all the 6,. If K is infinite then the
converse is true: a submodule N of M that is stable under all the 6,
is multigraded. It is easy to show this by induction: one reduces to the
case where h = 1. Then, if m= "% m, isin N sois Y24 o'm, for
every a = a, , and hence so is Z:.Lo aimi +a- BY choosing d + 1 distinct
values o(j) for a and using the invertibility of the Vandermonde matrix
(a(j)"), we see that every m; isin N . All we are using about the a ; is
that they are units such that the difference of any two distinct a ; is a unit.
Notice that for any given element m € N we only need to use a specific
finite number of «. to prove that all the multigraded pieces of m are in
N . Cf. the discussion in (7.30) of [HH9].

This idea will go a long way towards proving that grading is compatible
with tight closure operations. When R, contains only a finite field we
can nonetheless remedy the situation by using the fact that finite separable
field extensions are “innocuous” from the point of view of tight closure,
and we can make arbitrarily large such extensions.

(b) Let I be a homogeneous ideal in an N-graded ring such that all of
its homogeneous elements have positive degree. If the set & of forms
of I is contained in a finite union of homogeneous prime ideals, then I
itself must be contained in one of them. (If & C |J; P; irredundantly,
for all i pick f, e (FNnP)-U igi P - Taking powers, we may assume
degf, = degf; forall i, j. If & ={i: fi+f, ¢ P;} has r elements
then h = (f,+ f,) + ey f; €F —U; P;, a contradiction.  [J)

(c) We recall from the discussion preceding the statement of Theorem
7.29 of [HH9] that if R is a Noetherian ring of characteristic p, we let
t(R)={ceR:if xe€ 0" in some finitely generated R-module M
then cx? = 0 in F°(M) for all ¢ > ¢}, and we let 7,(R) denote
the intersection of the contractions to R of the ideals 7. (B) for all R-
algebras B that are completions of local rings of R. R has a q'-weak
test element (respectively, a completely stable q'-weak test element) if and
only if at least one element of R° isin 7 4 (R) (respectively, %, (R)), in
which case the g'-weak test elements of R (respectively, the completely
stable ¢'-weak test elements of R) are precisely the elements of 7 7 (R)NR°

(respectively, of ,.(R) N R°). When g'=1, 7,(R) becomes 7(R), the
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ideal of test elements introduced in §8 of [HH4].

(4.2) Theorem. Let R be a multigraded Noetherian ring of character-
istic p.

(a) For all ¢, 7,(R) and T, (R) are multihomogeneous.

(b) If N C M are finitely generated multigraded modules such that the
inclusion preserves degree then N;l is multigraded.

(c) Suppose that {P € SpecR : R, is weakly F-regular} is closed in
SpecR or that {Q € MaxSpecR : R, is weakly F-regular} is closed in
Max Spec R, and let J be the radical ideal defining this set. Then J is
multihomogeneous.

(d) If R is N-graded and R, is a field, then R contains a homoge-
neous completely stable weak test element. If R is reduced, it contains a
homogeneous completely stable test element.

(e) If R is a multigraded domain which has either a q'-weak test el-
ement or a completely stable q'-weak test element then there is such an
element that is also multihomogeneous. In particular, if R has either a
test element or a completely stable test element then it also has one that is
multihomogeneous.

Proof. The results in (a), (b), and (c) are immediate in case R contains
an infinite field: the module or ideal in question is stable under the maps
6, for all choices of a. In case R only contains a finite field K, consider
a given element w in the module or ideal in question. After tensoring
with a sufficiently large (automatically separable) finite field extension L
of K we shall be able to choose sufficiently many distinct a to prove that
all the graded pieces of w are in the corresponding ideal or module after
tensoring with L, and it then follows that they were originally in it, since,
by part a°) of Theorem 7.29 of [HH9], this ideal or module is simply
obtained by applying L®, .

(e) is now immediate: if there is a nonzero element of a given sort, each
of its nonzero graded pieces will serve. Because the ring is a domain, there
is no issue about whether these pieces are in R°. The argument for (d)
is similar. First note that an algebra of finite type over K always has a
completely stable g’-weak test element, with ¢’ = 1 if the ring is reduced.
In the N-graded case with R, = K, we simply note that if the set of forms
in a homogeneous ideal I (which may be 1 q,(R) or 7, (R)) is covered by
the minimal primes of R (which are homogeneous) then 7 is contained
in one of them, by (4.1)(b). O

(4.3) Example. Let R=K[X, Y]/(XY) =K][x, y], NZ-graded so that
the degree of x°y’ is (s,t). Let z=x+y. Then R, is regular, so that
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z' = x'+y' is a test element for sufficiently large ¢. However, the only
multihomogeneous elements have the form x", y° and, of these, only 1
isin R°. Thus, there is no multihomogeneous test element. There is also
a problem if we N-grade R so that elements of K[x] have degree 0 and
degy = 1. While the test ideal must be primary to (x, y) and so have
the form (x”, y*), it does not contain any homogeneous element of R°.
Here the problem is that R, = K[x] is not a field.

Let R be a Noetherian N-graded ring with R, =K, afield, andlet m =
®;.o R, , the unique homogeneous maximal ideal of R. We conjecture
that the following four conditions are equivalent:

(1) R is weakly F-regular.

(2) Every homogeneous ideal of R is tightly closed.

(3) Every graded submodule of a finitely generated graded R-module is
tightly closed.

(4) R,, is weakly F-regular.

However, we cannot prove that they are all equivalent. We know that
the last three are equivalent, but the first might be stronger. One problem is
that we do not know that the weakly F-regular locus (even in the maximal
spectrum) is open. When it is, all four conditions are equivalent, and this
happens in the Gorenstein case. A second problem is that we do not know
that tightly closed ideals remain tightly closed upon localization, even if
the ideal is homogeneous and the multiplicative system consists of forms.
(An even weaker version of localization would suffice: see Theorem 4.6
below.) Before proving what we do know to be true, we want to show that
the weakly F-regular Gorenstein locus (which is the same as the F-regular
Gorenstein locus) is open for a large class of rings. The proof depends on
a thorough familiarity with the results of §§6 and 7 of [HH9], as well as
knowledge of the notion of strong F-regularity introduced in [HH3] and
also studied in §5 of [HH9].

(4.4) Theorem. Let R be a local ring such that R — R has geomet-
rically regular fibers (e.g., an excellent local ring). Let S be essentially
of finite type over R. Then {P € SpecS : Sp is weakly F-regular and
Gorenstein} is open in SpecS.

We first note:

(4.5) Lemma. If S — T is a faithfully flat smooth map of Noetherian
rings of characteristic p such that T is locally excellent and the weakly
F-regular Gorenstein locus is open in SpecT, then the weakly F-regular
Gorenstein locus is open in SpecsS .

Proof. In this argument we abbreviate “weakly F-regular Gorenstein”
to WFRG. Let Q,, --- , @, be the minimal elements of the non-WFRG
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locus in SpecT, so that |J, V(Q;) is the set of all primes Q in 7T such
that T, 0 is not WFRG. Let P, be the contraction of Q, to S'. It will suffice
to show that |J, V'(P,) is the set of all primes P in S such that S, is not
WFRG. Note that when Q lies over P then S, — T, is local, faithfully
flat, and smooth. Since the closed fiber is Gorenstein, TQ is Gorenstein
iff S, is. Since the map is faithfully flat, S, is weakly F-regular if TQ is,
and since it is smooth as well, and TQ is excellent, by Theorem 7.24 of
[HH9] if S, is weakly F-regular then T, is weakly F-regular. It follows
that S, fails to be WFRG iff TQ fails to be WFRG. Thus, each of the
primes P, has the property of being in the complement of the WFRG
locus for S. Let P be any prime in this complement. Since S — T is
faithfully flat, we can choose Q € SpecT lying over P. Then Q is in
the complement of the WFRG locus in Spec T, and so @ contains one
of the Q,. It follows that P contains the corresponding P;. O

Proof of Theorem 4.4. Since S — Re g3 is faithfully flat and smooth
and since the second ring is essentially of finite type over R and, conse-
quently, excellent, it suffices, by (4.5), to prove the result for R. Hence-
forth, we assume that R is complete. Let P be a prime of S such that S,
is F-regular Gorenstein. Let K be a coefficient field for R, let A be a p-
base for K, and for cofinite subsets I' C A let R" be defined as in (6.11)
of [HH9] with ST=R"® g S - By Lemma (6.13) of [HH9] we can choose
T so that P' = PST is prime. It follows that Sg, is weakly F-regular
(and Gorenstein, since the fibers of R — R' are Gorenstein, by (6.6¢) of
[HH9]). Thus, it will suffice to prove that we can choose a Zariski neigh-
borhood of P’ consisting of primes P” such that Sk is weakly F-regular
and Gorenstein: the contractions of the P” will share this property, since
the map from the localization of S at one of these contractions to S;u is
faithfully flat, and this will give the required neighborhood in S. Now R
is module-finite over a complete regular ring 4, and s is essentially of
finite type over RF and, hence, over A" . It follows that the Gorenstein
locus in S is open. Since ST is module-finite over (Sr)p , we know that
the strongly F-regular locus in St is open (cf. Theorem (5.9b) of [HH9]
and Theorem (3.3) of [HH3]). Thus, the strongly F-regular Gorenstein
locus in ST is Zariski open. However, this coincides with the weakly F-
regular Gorenstein locus (cf. Theorem (5.5f) of [HH9] and Proposition
(3.1) of [HH3]). O

(4.6) Theorem. Let R be a Noetherian N-graded ring with Ry =K, a
field of characteristic p. Consider the following conditions:
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(1) R is weakly F-regular.

(2) Every graded submodule of a finitely generated graded module is
tightly closed.

(3) Every homogeneous ideal of R is tightly closed.

(4) Every m-primary homogeneous ideal of R is tightly closed.

(5) R is Cohen-Macaulay, normal, and every irreducible m-primary ho-
mogeneous ideal is tightly closed.

(6) R, is weakly F-regular.

Then condltzons (2)—(6) are equivalent, and condition (1) implies them.
Moreover, the equivalent conditions (2)-(6) imply that R is a normal do-
main.

If R is Gorenstein, then conditions (1)-(6) are equivalent.

If for every homogeneous prime ideal P with dim R/P = 1 and for every
homogeneous P-primary ideal Q, S_IQ is tightly closed in S~'R, where
S is the multiplicative system of all forms not in P, then (1)-(6) are also
equivalent.

Proof. (1) = (2) = (3) & (4) is clear (that (4) = (3) follows from
the fact that every proper homogeneous ideal is an intersection of homo-
geneous ideals primary to the maximal ideal).

We next want to show that the equivalent conditions (3) and (4) imply
that R is normal. The fact that (0) is tightly closed in R implies that
R is reduced. Let W denote the multiplicative system consisting of all
homogeneous elements of R that are not in any minimal prime of R. Let
J denote the radical ideal defining the singular locus in R. Then J is
homogeneous, and is not contained in any minimal prime of R. It follows
that the forms in J cannot all be contained in the union of the minimal
primes of R, by (3.1)(b). Thus, there is a form F in R® such that R is
regular, and it follows that the normalization of R is a graded subring of
Ry . Thus, if R is not normal there is a homogeneous element G/F ! of
the normalization, where G is a form of R. But then the fact that G/ F!
is integral over R implies that G € (F'R)" = = F'R, and the fact G € F'R
implies that G/F ! € R. This shows that R is normal. Since R is graded
with R, = K, this in turn implies that R isa domain.

(4) implies that the ideal generated by a homogeneous system of param-
eters is tightly closed, and this remains true in R, by Proposition 8.9 of
[HH4]. Thus, by Theorem (4.3) of [HHY], R, w111 be Cohen-Macaulay
(since it is a domain, it is equidimensional). But since R, is Cohen-
Macaulay, R is Cohen-Macaulay (cf. [MRo] or [HoRa}). We therefore
have that (4) = (5). ' '
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Since the fact that R is weakly F-regular implies that R, and, hence,
R are Cohen-Macaulay, and since conditions (5) and (6) both imply that
R, is normal, to show that (5) and (6) are equivalent it will suffice to
show that when R is Cohen-Macaulay there are m-primary irreducible
homogeneous ideals cofinal with the powers of m: an m-primary ideal
I is tightly closed in R iff IR, is tightly closed in R, by Proposition
(8.9) of [HH4], and R,, is weakly F-regular iff there is a sequence {J,},
of tightly closed mR, -primary irreducible ideals cofinal with the pow-
ers of mR, , by Proposition (8.8) of [HH4]. (There exist sequences of
mR, -primary irreducible ideals cofinal with the powers of mR,, because
R,, is normal: this follows because normal local rings are approximately
Gorenstein in the terminology of [Ho4]. See also the discussion in (8.6)
of [HH4].)

Let x,, --- , x; be a homogeneous system of parameters for R, and let
o be a graded canonical module for R. Let ¥ € @ be a homogeneous ele-
ment representing a socle generator in @/(x,, --- , X;)@ . Then, for every
t, (x, ---xd)'_lu represents a socle generator in @, = @/ (x: s, x,'l)w R
and the image of u in w, spans a cyclic submodule of the form R/I,,
where I, = (xf RN x:,)w :g . Then I, is an irreducible homogeneous
m-primary ideal such that (x, ---xa,)"l represents a socle generator in
R/I,. Moreover, Lu = (x:, sy x;)w N Ru, and it follows from the
Artin-Rees lemma applied to Ru C w that the ideals I, are cofinal with
the powers of (x,,---, x;) and, hence, with the powers of m. This
completes the proof that (5) and (6) are equivalent.

We next want to show that (5) (or (6)) = (2). First note that R is
weakly F-regular and, hence, is a domain. Let N be a graded submodule
of a finitely generated graded module M . As usual we may assume that
N =0, replacing M by M/N . If 0 is not tightly closed, we can choose a
homogeneous element x € M in 0*. Then x ¢ m'M for t> 0, and so
there will be a graded module killed by ' in which 0 is not tightly closed.
Let I be an m-primary homogeneous ideal contained in m’ (we know
these exist when (5) holds). Then M can be embedded in a finite direct
sum of copies of (R/I)(s), where (s) indicates a grading shift. (Map
a finite direct sum of copies of (R/I)(s) onto the graded (R/I)-module
Homg (M, R/I) and then apply Homg(_, R/I) again.) This completes
the proof that (5) = (2).

We have shown that (2)-(6) are equivalent, and that (1) implies them.
We have also shown that when the equivalent conditions (2)-(6) hold then
R is a normal domain.
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Now assume that the equivalent conditions (2)-(6) hold. We want to
prove that R is weakly F-regular under a supplementary hypothesis.

First, suppose that R is Gorenstein. By Theorem 4.4, we know that
the weakly F-regular Gorenstein locus is open. By Theorem 4.2, we know
that the radical ideal J defining its complement (either in SpecR or in
Max Spec R) is homogeneous. Thus, if R is not weakly F-regular, J is
not the unit ideal, and we must have J C m. But this contradicts the
hypothesis (6) that R, is weakly F-regular.

Now suppose instead that, in addition to the equivalent conditions
(2)-(6), we also assume that for every homogeneous prime P such that
dim R/P =1 and for every homogeneous P-primary ideal Q, S'IQ is
tightly closed in S~'R , where S is the multiplicative system consisting
of all forms in the complement of P. Again, we want to show that R is
weakly F-regular. Notice that since R, is weakly F-regular we know that
R is a Cohen-Macaulay domain. (We also know that R is normal.)

Let n be any maximal ideal of R different from m. We shall prove
that R, is weakly F-regular. Let P be the prime ideal of R generated by
all the homogeneous elements of n. Then dimR/P = 1. Let S be the
multiplicative system consisting of all forms in R not in P. No element
of S isin n. Thus, n corresponds to a maximal ideal N = nT of the
Z-graded ring T = S™!'R. Then R, = T, , and it will suffice to show that
T, is weakly F-regular.

Now, T/PT = S_'(R/ P). Let h be the least positive integer in the
group generated by the degrees of the nonzero forms in R/P. Let z be
an element of S"I(R/P) of degree h. It is easy to check that the Z-
graded ring S_l(R/P) is L[z, z_l] , where L is the degree 0 piece and
is a field. It will suffice to show by Proposition (8.8) of [HH4] that there
is a tightly closed irreducible N-primary ideal I in N’ for every fixed
positive integer s.

We next observe that we can choose Q@ C R homogeneous and P-
primary such that QR is irreducible and contained in an arbitrarily high

power of PR, . First choose a system of parameters x,,--- , x,_, for
R, consisting of forms in P. Let w be a graded canonical module for
R, so that @, is a canonical module for R, . Let (x*) = (x}, -+, x;_,),

and y = 1'[7;11 x; . Since Hom(R/P, w/(x)w) is graded, there will be a
form u in w/(x)w that represents the socle in w,/(x)w,. Nowlet Q, be
the expansion of (x‘)e :, ¥~ 'u with respect to the multiplicative system
S. Since Q, is homogeneous and contracted with respect to S, it is also
contracted with respect to R — P and, hence, P-primary: if there were a
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zero divisor on @, outside of P, there would have to be a homogeneous
one, since the associated primes of Q, are homogeneous. If we localize
at P we have that Q R, = (x")w, ‘», ¥ "'u and it follows that Q R,
is irreducible, PR,-primary, and contained in arbitrarily high powers of
PR, as we let ¢ become arbitrarily large.

Thus, given r, Q, C P for t > 0. Our next observation is that
P(')Rn C n’R, for given s and r > 0. (By Chevalley’s theorem, it
suffices to prove that (), P”)B = 0, where B = (R,)” . Choose a minimal
prime B of PB lying over PR, . Then P(')Rn = (PRn)(') c p” . Now
N, ‘B(')Bm =0, and so N, P" is killed by an element of B — 9. Since
R is normal (and excellent) B is a domain, and so (), ‘B(') = (0). This
shows that (), P""B = (0).)

We have now shown that one can construct a homogeneous P-primary
ideal Q C n’ for a given s such that QR, is irreducible. Now, nT/PT
is a maximal ideal of T/PT & L[z, z7']. Choose B € T representing
a generator of nT/PT . Note that the image of 8 in L[z, z_l] must
be an inhomogeneous polynomial in z (since the nonzero homogeneous
elements are all units). In fact, we can assume that each nonzero homoge-
neous piece of f is outside P and, hence, invertible in 7.

Since QR, is irreducible, Hom(T/PT, T/QT) = Anng P is a
rank one (torsion-free, since @ is P-primary) module over T/PT &
Liz, z-'] . Thus, Ann, /QTP is graded and free on one generator over

Liz, z_l] . Let F € T be a form that represents this generator.

We claim that QT+ 8" T is an irreducible N-primary ideal for all values
of r > 1, and that the socle generator is represented by ﬂ'_lF . (Once Q
is chosen so that QT C N° we can take r =s and get QT + B'T C N°.)
In fact, since Q is P-primary, T,/QT, is a one-dimensional Cohen-
Macaulay ring, and since N = PT + 8T, B is a parameter. It will suffice
to show that T, /QT, is Gorenstein and that the image of F generates
the socle modulo S . For the first we note that 7/QT is Gorenstein: if
it were not, the non-Gorenstein locus would be defined by a proper ho-
mogeneous radical ideal. Since every form not in PT/QT is invertible,
such an ideal must be contained in PT/QT, and it would follow that
(T/QT)pr = (R/Q)p is not Gorenstein, a contradiction (since this ring is
zero-dimensional and Qg is irreducible in R,). Thus, T/QT is Goren-
stein. Since B is not a zerodivisor in T/QT , it is not a zerodivisor on
Amng,. P =F (T/QT) = T/PT. Thus, we have a short exact sequence
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0—- F(T/QT)—»T/QT - T/(Q+ FT)— 0. Since B is not a zerodivi-
sor on the rightmost module, the sequence remains exact when we apply
®,;T/BT . We can then localize at N . The leftmost term is then isomor-
phic with T, /(PTy+BTy) = T /NT, andinjectsinto T, /(QTy+BTy).
This shows that the image of F generates a copy of the residue field in
(T/Q)n/B(T/Q)y > and this must be the socle.

It remains to prove that each of the ideals QT + BT is tightly closed
(localizing at the maximal ideal N will not affect the issue). Since T is a
Z-graded domain finitely generated over K, there is a homogeneous test
element ¢, which we may assume is in R. Since ﬂ'_lF represents the
socle, we need only show that it cannot be in the tight closure of QT +8'T
in T.

Suppose that c(8""'F)? € QYIT+BY T forall g. This yields ¢ VIF?
= v+ B70 where v € Q¥ and 6 € T. Then Y0 € QT + ¢FT.
Now, B cannot be a zerodivisor on any homogeneous ideal of T, since
it would then be contained in an associated prime of it, which would be
homogeneous, and the nonzero graded pieces of S are units. It follows
that 6 € Q9 4+ cFIT, say § = w +cF'0' where w € QT and 6' € T.
But then we obtain that 8" V9¢F? = v'+ 8% cF?0’ where v' = v+B%w €
QYT . We then have that B ~"9(1-826')(cF?) = v' € Q"IT and, again,
since B cannot be a zerodivisor on the homogeneous ideal Qm T, we have
that (1— B?0")cF? € QT orthat 1 - 76’ € Q'T ;. cF.

This implies that £ is invertible modulo Q["] T:rcF ? forall q, and so
Q[q] : cF? cannot be contained in PT, since f is not invertible modulo
PT. But the homogeneous ideal QT : ¢F? cannot contain a form
outside P unless it contains a unit, since all forms of 7 not in PT are
invertible. Thus, ¢cF? € Q"IT for all ¢, and this means that F is in the
tight closure of QT , contradicting the hypothesis. O

We can prove a better result for F-rationality: recall that a Noetherian
ring R of characteristic p is F-rational if every ideal generated by param-
eters is tightly closed. We refer the reader to §4 of [HH9] and to [FeW] for
more information. If R is a homomorphic image of a Cohen-Macaulay
ring then this condition implies that R is Cohen-Macaulay and normal.
Since we shall only be discussing finitely generated algebras over a field
here, all F-rational rings here will be Cohen-Macaulay and normal.

The condition of F-rationality is local on the maximal ideals of R.
Moreover, if a local ring R is equidimensional, then it is F-rational if (and,
of course, only if ) the ideal generated by a single system of parameters is
tightly closed. In the Gorenstein case, F-rationality, weak F-regularity and
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F-regularity are equivalent. All of these results may be found in §4 of
[HH9].

Remark. It has recently been shown [Vel] that the F-rational locus is
open in a ring of characteristic p finitely generated over an excellent ring,
and that if A: R — § is a flat homomorphism with geometrically regular
fibers, R, S are locally excellent, and R is F-rational of characteristic p,
then § is F-rational. Using these facts it is possible to prove that the con- -
ditions (1)-(4) given in (4.7) below are equivalent without the hypotheses
(a) and (b). The point is that, after enlarging the field if necessary, one sees
as usual that the radical ideal defining the complement of the F-rational
locus must be homogeneous, from which (4) = (1) follows at once. How-
ever, we thought it worthwhile to record an argument that does not need
the machinery introduced in [Vel].

We want to thank the referee for pointing out an error in an earlier
treatment of (4.7).

(4.7) Theorem. Let R be a Noetherian N-graded ring of characteristic
p such that Ry =K is a field Let m =@ R; be the unique homoge-
neous maximal ideal.

Suppose also that

(a) K is perfect and that

(b) R is generated over K by its forms of degree one.

Then the following conditions are equivalent:

(1) R is F-rational.

(2) Every ideal generated by part of a homogeneous system of parameters
is tightly closed. ,

(3) R is equidimensional and the ideal generated by a single homoge-
neous system of parameters is tightly closed.

(4) R, is F-rational.

Moreover, the implications (1) = (2) < (3) & (4) hold without the
hypotheses (a), (b).

Proof. The implications (1) = (2) = (3) < (4) follow the same lines
as in the proof of Theorem 4.6 and are omitted. We next observe that
(4) = (2). Assume (4), and suppose that I is an ideal generated by part
of a homogeneous system of parameters. Then I"/I must be graded and,
hence, supported at m . But for R-sequences tight closure commutes with
localization, by Theorem 4.5 of [HH9), and so (I"/I),, = (IR,)"/IR, =
0, for IR, is tightly closed. Thus, I =1I".

Now assume that the equivalent conditions (3) and (4) hold and also
assume that K is perfect and that R is K[R,]. We must prove (1). We
want to replace R by L®, R, where L is an algebraic closure of R. The

i>0
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ideal generated by a homogeneous system of parameters in R is tightly
closed, and this remains true in L ®, R by part (ii) of Theorem (7.29a)
of [HH9]. If we can show that L ®, R is F-rational, then the same will
follow for R. (For every maximal ideal n of R containing a system of
parameters z; for R, , there is a maximal ideal ~ of S lying over n,
and the z ; are also a system of parameters in S, . From the fact that the
ideal (z ;) is tightly closed in S, we can conclude that it is tightly closed
in R, , since the map R, — §, is faithfully flat.) We henceforth assume
that K is algebraically closed.

Now let n be any maximal ideal of R. As in the proof of (4.6) let P
be the prime ideal generated by all the homogeneous elements of 7, so
that htP =dimR -1 =d — 1, let S be the multiplicative system of R
generated by all forms not in P, and let T be the Z-graded ring S7'R.
However, now we have that L = K, and R/n is also K. As in the proof
of (4.6) we can choose B € T such that N =nT is generated by 8 over
PT . However, because K is algebraically closed we may now assume that
B has the form z— A, where A € K and z is a form of S™'R that maps
to a form of smallest positive degree, namely, to a form of degree one
(because of assumption (b)) in S_I(R/P) > K[¢, C_l] (where we have
also written { for the image of z modulo PS™'R). Then R, =T, and
it will suffice to show that some system of parameters for NT, generates
a tightly closed ideal. Choose forms x,,---,x, , € P which give a
system of parameters for R, and generate an ideal of height d—1 in R.
Let (x) =(x,, -+, x;_,). (x)R may have some associated primes other
than P, but they will contain forms not in P. Thus, Rad(x)T = PT
and (x)T is primary to PT . It follows that N = Rad((x)T + BT) and
that x,, -+, x;_,, B is asystem of parameters for T, . To complete the
proof, it will suffice to show that (x)T + 8T is tightly closed in T.

Now Hom (T/PT, T/(x)T) = AnnT/(x)TP is a torsion-free graded

module of rank, say, r, over T/PT = K[{, { "1] , and so has a free basis
over T/PT generated by elements represented by forms F,,--- , F, of
T. Since degz = 1, we can multiply each FJ by a suitable power of
z and so assume that degF; = 0 for all j. Here, r is the type of the
zero-dimensional ring Tp./(X)Tpr = Rp/(Xx)R,p. Since the locus where
the type is strictly bigger than r is closed and defined by a homogeneous
ideal of T, this locus is empty, for the ideal cannot be contained in P. It
follows that the type of T, isat most 7. On the other hand, as in the proof
of (4.6) we see that B is not a zerodivisor on (T'/(x)T)/Anny, ., P, and
it follows that the (T/N)-vector space (T/BT) ® AnnT/(x)TP, which
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has dimension r, injects into T/((x)T + BT). Thus, we may identify
the socle in T/((x)T + BT) with the r-dimensional (7°/N)-vector space
generated by the images of the F;. Since f = z—4, we see that no element
of 3, KF; maps to 0 when we kill B(Anng, . P). Tt follows that if
there is an element in the tight closure of x(7T")+ ST notin (x)T + BT,
then there is such an element in the socle (T/8T) ®, Ann, /(x)TP , and
it is represented by a nonzero form F € ) i KF].. As before, there is a
homogeneous test element ¢, and we must have cF? € (x))T + BT.
As in the earlier argument, # is not a zerodivisor on (cF?) + (x!)T,
and it follows that the coefficient of g7 isin cF?T + (x?)T . This yields
cF? = v+ B%cF?0 where v € (x?)T and 0 € T. This yields (1 —
BY6) € (x")T :;. cF? as in the earlier argument, and we conclude that the
homogeneous ideal (x?)T :,. cF? is not contained in P, as before. This
shows that cF? € (xY)T, and so F € ((x)T)*. But (x)R is a tightly
closed ideal generated by an R-sequence, and so remains tightly closed
when we localize, by Theorem (4.5) of [HH4]. It follows that F € (x)T,
and this a contradiction. O

(4.8) Theorem. Let K be a field, let x,,--- , x, be indeterminates

over K, and give T =K [x;, xj'l] a Z"-grading such that
deng;f =(a,, - ,a,).
J

Let R be a subring of T generated by finitely many monomials in the
x’s and let 1 be a multihomogeneous ideal of R, generated by monomials
By> - s By- Then I' is the sum of the ideals (u;R)", and (w;R)" is
identical with the integral closure of u ;R in R.

Proof We already know that there is a multihomogeneous test ele-
ment ¢ # 0 and that I" is multihomogeneous, from (4.2¢) and (4.2b),
respectively. Let u be a form in I*. Then for all ¢ we have that
cu! e ' = (Ui, ,uH)T. Butin T, a form is in an ideal gener-
ated by forms if and only if it is a multiple of one of the generators. (The
key point is that each multigraded piece of T is a vector space over K of
dimension at most one.) Since there are only finitely many u j it follows
that there exist j and infinitely many values of ¢ such that cu? € u?T .
But this implies that u € (u; T)" by Lemma (8.16) of [HH4]. Since T is
a domain, (u g T)* is the same as the integral closure of u ;T by Corollary
(5.8) of [HH4). O

Note that §7 contains results giving criteria for F-rationality of graded
rings that are useful for establishing F-rationality in specific examples.
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5. Phantom extensions, big Cohen-Macaulay modules
and splitting in module-finite extensions

In this section we introduce the notion of a phantom extension of mod-
ules. We use it both to give a recasting of the proof of the existence of big
Cohen-Macaulay modules in characteristic p and as a starting point for
an investigation of when the contraction of an expanded ideal is within
the tight closure of the original ideal (in many cases, one has a result of
this type even for the contraction of the tight closure of the expansion of
the ideal). Results of this type lead to splitting theorems when the original
ring is weakly F-regular under various hypotheses on the ring extension.

Phantom extensions are extensions that are “almost zero” in a tight clo-
sure sense. Their relevance to the existence of big Cohen-Macaulay mod-
ules is simply this: given a phantom extension of a local ring R (viewing
R as an R-module), say R — M, one can show in many cases that the
image of the generator of R is a basic element in M (see Proposition
(5.14)). But one can also show that when one makes a “modification” of
M of the type needed in the proof of the existence of big Cohen-Macaulay
modules, say M — M’ , the composite map R — M — M’ is still a phan-
tom extension. This enables one to give a complete proof of the existence
of big Cohen-Macaulay modules easily. The details are given in (5.15) and
(5.16).

(5.1) Notation and preliminaries. Throughout this section (excepting
(5.5) and (5.6)) let R be a Noetherian ring of characteristic p and let
M, N, Q denote finitely generated R-modules. Let a: N — M be a map
with cokernel Q,andlet f: M — Q be the induced surjection. Eventually
we shall specialize our hypotheses to the case where a is injective, N = R,
and R is reduced, but for the present we retain greater generality. In this
section we shall study a weakening, given in Definition 5.2 below, of the
condition that the map a split (i.e. that there exist a': M — N such that
adoa=id ») . when this condition holds, we shall say that the sequence
N — M — Q — 0 is a phantom extension of Q by N.

By abuse of terminology we shall also say that a is a phantom exten-
sion or that M is a phantom extension of N : the context should make
clear what is meant. We shall use the theory of phantom extensions to
prove that if R is weakly F-regular, then R is a direct summand of its
module-finite extensions, as well as related generalizations. We shall also
use this notion to sketch a proof of the existence of big Cohen-Macaulay
modules in characteristic p. This argument is, in essence, a recasting of
the original argument of [Ho3] in the framework of tight closure. In fact,
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one might argue that the theory of tight closure really began with that
particular argument. However, we want to make the connection explicit,
because the new version of the proof shows that a sufficiently good the-
ory of tight closure in mixed characteristic would yield the existence of
big Cohen-Macaulay modules: this is a long-standing open question. We
note that the direct treatment of each of the local homological conjectures
given in §10 of [HH4] and §§4 and 6 of [HHS] (e.g., the phantom inter-
section theorem) via tight closure techniques turned out to be eminently
worthwhile.

(5.2) Definition. With notation as in (5.1) above, we shall say that

N3 M2E Q — 0 is a phantom extension if there exists an element
¢ € R® such that for all e > 0, there is a map v,: F(M) — F°(N) such
that y, o F°(a) = c(idgeyy) -

(5.3) Remark. When « is injective, the sequence

O—)NLMLQ%O

represents an element ¢ of Ext}{(Q » N). This Ext may be viewed as part
of the cohomology of the complex Hom r(P., N),where P, isa projective
resolution of Q by finitely generated projectives (with the augmentation
Q dropped). We shall show that under certain conditions (see (5.8) and
(5.13) below) the extension is phantom in the sense of Definition 5.2 if
and only if ¢, viewed as an element in the homology of Hom r(P., N),
is a phantom element.

(5.4) Remark. Suppose that R is reduced. Then the algebra map R F,
R may be identified with the inclusion map R — R where ¢ = p°,
as usual. The condition that N % M % Q — 0 be phantom may then
be rephrased as follows: there is an element ¢ € R° such that, for all
e > 0, there is an R'/?-linear map y,: R4 ®, M — R ®yz N such that
Ve o (R ®p ) = ¥ (idguag y) -
(5.5) Discussion. For the moment (in (5.5) and (5.6)) we suspend all

finiteness conditions and characteristic conditions on rings and modules.
First note that if 0 —» N & M 2, Q@ — 0 is an exact sequence and

PP AP 5050

is the beginning of a projective resolution of Q, then we may fill in vertical
arrows to obtain:
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0 — N=2MmM2E o —o0

(#) T T¢ T Tid
—)PZ——-»P]LPO—)Q—)O

In the Yoneda correspondence, the exact sequence (*) 0 - N - M —
Q — 0 corresponds to the element of H ! (Homy(P, , N)) represented by
¢. On the other hand, given a cocycle ¢ (the cocycle condition simply
means that ¢ vanishes on the image of P,), an exact sequence can be
constructed by letting M be the pushout ¥ HPIP = (NoPFy)/{d(u)—d(u):
u € P/}, and using the canonical injection N — M and the fact that
M/ImN = P /¢(P))=Q.

Note that if we tensor with an R-algebra S, we still have a projective
resolution G, for S®, Q that begins

o — G, — S® P, 2, 50, P, —S®Q —0,

although we will not have, in general, that § ®, P, maps onto the ker-
nel of S ®d; i.e. we cannot necessarily take G, = S ® P,. Note that
an element in Homgy(S ®, P,, S ®, N) is a cocycle iff it vanishes on
Im(G, - S ®z P,) = KerS ® d, while an element is a cobound-
ary iff it is in the image of the map Homg(S ®; P,, S ®, N) —
Homg(S ®; P,, S®, N) induced by S®d.

Note also that if ¢ € Homg(P,, N) is the map obtained from
the sequence (x), S ®, ¢ will not necessarily be a cocycle in
Homg(S ®¢ P,, S ®; N). It turns out to be a cocycle iff tensoring (x)
with S produces an exact sequence, in which case it represents the exten-
sion given by the new sequence.

(5.6) Lemma. Let notation be as in (5.5).

(a) For each c € R, c¢ is a coboundary in H I(HomR(P, , N)) ifand
only if there is a map y: M — N such that ya = c(idy,).

(b) An arbitrary R-linear map y: P, — N yields a sequence

0—>N—>NHPlP0—>Q—>0

which is exact except possibly at N, and is exact at N ifand only if y is
a cocycle.

(c) Suppose that (x) 0 - N — M — Q — 0 is exact and corresponds to
the element of H l(HomR(P, , N)) = Ext;(Q, N) represented by ¢: P, —
N . The sequence remains exact upon tensoring with the R-algebra S if
and only if S ®, ¢ € Homy(S ®, P,, S ® N) is a l-cocycle in
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Homy(G., S ®y N), in which case S ®p ¢ represents the extension over
S given by the sequence 0 - S@, N - S®, M - S®,0Q0 — 0.

Proof. (a) Togiveamap y: M = (N&Fy)/{cd(u)—d(u):ue P} - N
such that y o o = ¢(idy) is equivalent to giving a map i: F, — N such
that the map (c(idy)®A): (N Py) — N kills {¢(u)—d(u):u€ P}, ie.
such that c¢(u) = (Aod)(u) for all u € P, . But A satisfies this condition
iff c¢ is its coboundary.

(b) 1t is straightforward to verify that there is always an exact sequence
N - NI, P — Q — 0, where NII, P =~ (NeP))/{p(u)—d(u): u € P,}.
The mJect1v1ty is equivalent to the assertion that {$p(u) —d(u) : u € P}
meets N0 in 080, i.e. that d(u) = 0= ¢(u) = 0. Since Kerd = Isz,
this simply says that ¢ is a cocycle.

(¢) Upon tensoring the diagram (#) above (used to construct a repre-
sentative ¢ for the element of Ext corresponding to the sequence 0 —

N2 M2E Q. 0) with S we get the diagram:

— L S®N 3%, seM ¥, 500 — 0

(##) Tsw T Tid
— S®P, —— S®F, —»S®Q—»0

which shows that if S®a is injective, then the element of Ext correspond-
ing to the first row is represented by S®¢, and then S®¢ must be a cocycle
by part (b) just above (applied over .S). On the other hand, if S® ¢ isa
cocycle it will represent the element of Ext_lg (§®Q, S®N) determined by
the canonical injection of S® N into the pushout S® NIig P, S®F,, and

the right exactness of tensor (apply S® to P, 5 N x F,— NI P, Py —0,
where n = (¢, —d)) implies that this extension is isomorphic with the re-
sult of applying S® to the extension 0 - N = M LA Q — 0 with which
we started. 0O

We now restore our characteristic p and finiteness assumptions. We
next observe:

(5.7) Proposition. Let N 5> M LA Q — 0 be a phantom extension.

(a) The result of tensoring with any Noetherian R-algebra S such that
R° maps into S° is a phantom extension. In particular, we may choose S
to be any localization of R or, more generally, any flat R-algebra.

(b) Fé(N) - F*(M) — F(Q) — 0 is a phantom extension for all e.

(c) If I is an ideal of R, then o N(IM) C (IN)y . In particular, if
N=R, o 'UM)cCI".
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(d) The kernel of the map ¥°(N) — F*(M) is in the tight closure of 0
in F¢(N) forall e.

(¢) If o(N) S My C M, then N — My — M,/a(N) — 0 is a phantom
extension. ,

() If M L - T — 0 is also a phantom extension, then N °>* L —
Coker(a’ o a) — 0 is a phantom extension.

Proof. (a) We use a subscript on the Frobenius functor F to indicate
when we are applying it over S; i.e. we write Fg. Suppose we have a map
B,: F°(M) — F°(N) such that B,oF(a) = c(idg(y,) - By the associativity
of tensor, the functors sending the R-module W to F;(S ®g W) and to
S @z F°(W) are canonically isomorphic. Let ¢’ be the image of ¢ in S.
With this identification, we see that (S®g8,)o(Fg(S®za)) = c'(idrs (soN)) -

(b) This now follows from (a) with S = R and the structural homo-
morphism F*: R - R.

(c) Suppose that u € N and a(u) € IM . Then F(a)(u’) € ¥ (M)
for all e, and for large ¢ we may apply 7, as in the definition of phantom
extension to both sides to obtain cu? € I''F°(N) for all e > 0 with
¢ € R°. Since I''F°(N) is the image of F°(IN) in F°(N), the result
follows.

(d) By part (b), F*(N) — F*(M) — F°(Q) — 0 is a phantom extension:
now apply part (c) with 1 =0.

(e) For each e > 0, replace y, by its composition with F"(MO) —
F(M).

(f) That a (respectively, o') is phantom yields the existence of a fixed
c € R° (respectively, ¢’ € R°) and, for all ¢ > 0, a map y,: F(M) —
F°(N) (respectively, 8,: F°(L) — F*(M)) such that y,0F(a) = c(idgy))
(respectively, 8, o F*(a) = ¢(idge(y,))) - But then (7,05,)0 (F’(d' o)) =
7,0(3,0F (o)) o (@) = 7,0(¢’ idge(y))oF (@) = €' (7,0F (@) = ¢'clidpe(yy)
forallex»0. 0O

Parts (e) and (f) are both analogues of facts that are obvious for direct
summands: e.g., (f) is an analogue of the fact that a direct summand
of a direct summand is a direct summand. One must be quite careful
however: there are obvious properties of split maps that do not carry over
to the phantom case. We note particularly that if N LZM-Q—0isa
phantom extension over R and one restricts scalars to A, where 4 — R
is a module-finite extension, the same sequence need not be a phantom
extension when considered over 4! See Example 5.37, where N =R, 4
is regular, and the map F°(a) is injective for all e.
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(5.8) Proposition. Let (x) 0> NS5 M LA Q — 0 be an exact sequence
such that F¢(a) is injective for all e. Then the following two statements
are equivalent:

(a) (x) is a phantom extension.

(b) If P, is a resolution of Q by finitely generated projective modules,

then the element & corresponding to the sequence (x) in Ext;(Q, N) cor-

responds to a phantom element in H I(HomR(P, , N)) (i.e. a cocycle that
is in the tight closure of the coboundaries in Homy(P,, N)).

Proof. Let ¢ € Homg(P,, N) be constructed as in the diagram la-
beled (#) in (5.5), so that it represents the element of Ext;(Q, N) cor-
responding to the given sequence. Fix ¢ and let S denote R viewed
as an R-algebra via the structural homomorphism F°. Since P isa
finitely generated projective module, there is a canonical identification
of S ®, Homg(P,, N) with Homy(S ®, P,, S ®; N). When we think
of the Hom as an S-module and remember that § = R, we obtain
F'(Homg(P,, N)). But then F°(¢) = idg®z¢ may be thought of as
¢?, where g = p°, and so by part (c) of (5.6), ¢’ corresponds to the
sequence obtained by applying S®, to (*). By part (a), there exists a
map y, such that y, o F(a) = c(idgey,) iff c¢? is a coboundary, i.e.
is in the image of the map S ®, Homg(F,, N) — S ®, Homy(P,, N).
Let B be the image of Homy(F,, N) - Homg(P,, N). By the right ex-
actness of tensor product, the module of coboundaries is the same as the
image of S®, B in S®;Homy(P,, N). Thus, the defining condition for
(*) to be a phantom extension holds for fixed ¢ € R° and all e > 0 iff
c¢? € Im(F°(B) — F°(Homg(P,, N))) for all e > 0, which is precisely
the condition for ¢ to be in the tight closure of B in Homg(P,, N), i.e.
to be a phantom element in H l(Hom r(P,,N)). O

(5.9) Corollary. Let 0 - N S M LA Q — 0 be an exact sequence
such that ¥°(a) is injective for all e. Suppose also that the extension is
phantom. If R is weakly F-regular and, in particular, if R is regular, then
the sequence splits.

Proof. We may apply (5.8). Since the element in Ext;(Q , N) is phan-
tom and R is weakly F-regular, the element is 0, and the extension is
therefore trivial. 0O

(5.10) Remark. Of course, any short exact sequence that is split, i.e.,
that represents a trivial extension, is a phantom extension.

(5.11) Remark. For each of the variant notions of tight closure dis-
cussed in §10 of [HH4], there is a corresponding variant notion of phan-
tom extension. One simply varies the quantification in Definition (5.2)
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(concerning which ¢ and e must work in the tests) in the obvious way.
One obtains an analogue of (5.8) for each variant notion. We have decided
to avoid technicalities and treat only the main case here. However, there
is definite motivation for considering the variant notions. For example,
suppose we consider the variant notion for Cohen-Macaulay tight closure.
Then every element ¢ such that R, is C-M will have a power that must
work in phantom extension tests. If one tensors with a weakly F-regular
R-algebra S which merely satisfies the condition that the image of ¢ is
not zero, then one can conclude that the sequence obtained after tensoring
still gives a phantom extension. One may then be able to bring Corollary
(5.9) to bear and conclude that the sequence splits after tensoring.

(5.12) Proposition. Let R be reduced and o: R — M injective. Then
F’(a) is injective for all e .

Proof. Localization at R° does not kill any element of R (or F*(R) &
R) and commutes with F°. But after localization R becomes a product
of fields and o splits. O

Our primary objective in the remainder of this section is to study the
case where N = R, R is reduced, and a: R — M is injective. In this
case O = M/a(R). Putting (5.8), (5.9), and (5.12) together we have:

(5.13) Theorem. Let R be reduced. An exact sequence 0 — R = M —
Q — 0 is a phantom extension if and only if the corresponding element
€€ Ext;(Q, R) is phantom in the sense described in (5.8b). If it is a
phantom extension and R is weakly F-regular, then the sequence splits, i.e.
a(R) is a direct summand of M .

In the sequel we shall use (5.13) to show that a weakly F-regular ring
of characteristic p is a direct summand of its module-finite extensions—
this is a substantial generalization of the result of [Ho2], which does the
case where the ring is regular. Before exploring in this direction, however,
we want to show these ideas can be used to prove the existence of big
Cohen-Macaulay modules. We first note:

(5.14) Proposition. Suppose that R S M — Q — 0 is a phantom
extension. Then a(1) is a basic element in M ; i.e. it is part of a minimal
basis for M, over R, for every prime ideal P of R.

Proof. By (5.7a) the extension remains phantom when we localize, and
so it suffices to prove that if (R, m) is local then a(1) ¢ mM . But if
a(l) € mM then (5.7¢) implies that 1 € m”, a contradiction. [

(5.15) Discussion. We now give the details of the proof of the existence
of big Cohen-Macaulay modules in characteristic p sketched in the intro-
ductory paragraphs for this section. Let (R, m) be a local ring with system
of parameters Xx,,--- , x, . Our objective is to show that there exists an
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R-module M_, not necessarily finitely generated, such that x,,--- , x,
is a regular sequence on M__ . Part of the definition of “regular sequence”
here is that (x,,---, x,)M_, # M__, which is readily seen to be equiv-
alent to the condition mM_ # M_ . The idea of the proof is to start
with M, = R, w, = 1, and construct a sequence of modules M, with
distinguished elements w, € M, together with maps u,: M, - M, ; (so
that the M, become a direct limit system) such that

1) u(w)=w,, forall t>0,

(2) forevery k, 0<k<n-1,if

) Xpgym=xm;+---+x,m,

holds in M, then for some T > ¢, the image of m in M,
isin (x,,--- , x )M, and

(3) w, ¢ mM, forall ¢.

If one can construct such a sequence one takes M = th . Con-
dition (2) guarantees that the x; form a “possibly improper” regular se-
quence on M , while (3) implies that the element w_, € M_ correspond-
ing to the sequence of w, is not in mM . One easily constructs such
a sequence by taking each map u, to be a “modification” of M, in the
following sense: One has a relation () with m, m;, € M,, and one
takes M, , = (M, ® G)/Rh, where G is the free module on generators
fi>++ , f, and where h = -m®x, f,®---®x, f, . The map y, is the com-
position of the canonical inclusion of M, in M, ® G with the canonical
quotient surjection, and w, , = u,(w,).

After each M, is constructed, for each k one chooses a finite set of
generators for the relationson x,, -+, X, , X, +1 with coefficients in M, .
One “gets rid of” these relations one at a time by successive modifications
of the type described above. When one is ready to consider a certain one
of these relations one takes its image in the furthest modification M. yet
constructed and then again makes the modification construction exhibited
just above. After trivializing all the chosen generating relations coming
from M, one does the same for those coming from M, , and so forth.
In this way, one obtains a sequence in which (1) and (2) are satisfied. The
hardest part is to show that after one has made many modifications, one
still has w, ¢ mM,.

The key point from our present perspective is that one can prove that,
under mild conditions on R, the map R — M, is a phantom extension for
all ¢. It is then immediate from (5.14b) that every w, ¢ mM,, and this
is all that is needed. In the proof of the existence of big Cohen-Macaulay
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modules one is free to replace R by its completion and kill a minimal
prime in such a way as to keep the dimension equal to n. Therefore, there
is no loss of generality in assuming that R is a complete local domain.
Under these conditions (and much more generally) one knows that for part
of a system of parameters x,, --- , X;,, one has

q d\p. 4 q 4\ pr*
(x1 [ ) xk)R ‘R xk+1R c ((Xl > xk)R) .
If ¢ is a test element then one has
q q . q q q
c((x) - » X )R g X [ B) C(xp5 -, x; )R

for all ¢. The existence of big Cohen-Macaulay modules in characteristic
p is now immediate from the following easy lemma.

(5.16) Lemma. Let R > M be a phantom extension and let x,, --- ,
X, be elements of R such that for some ¢ € R°, and all ¢ > 0,
e((xf, -, xR g xR C (x{, -, x)R. Suppose that we have a
relation () x, ,m= Ei.;l x;m;. Let M' = (M ®G)/Rh, where G is the
free module on generators f,,--- , f,, and where h = —-m & xfi®---
X f»and let u: M — M’ be the canonical map. Then poa: R— M is
a phantom extension.

Proof. Let w = a(l). Let ¢’ € R, be such that for all e > 0 we
have 7,: F*(M) — F°(R) = R such that y,(w’) = ¢’ . From (t) we have
xl. m? = f.‘:lem? and applying y, yields x.,7,(m") € 1" where
I=(x,,,x)R. But then y,(m%) € 1" :; x{ R, and so cy,(m") €
1", say (i) cy,(m?) = % xIr,. We now define T,: F(M') —» R
by defining it on the numerator F*(M) ® Rf & --- @ Rf{ by letting it
be cy, on F°(M) and by letting its value on ffber for 1<i<k.
The equation (it) says precisely that the resulting map kills h?, and so
gives a well-defined map T,: F(M') — R (think of F(M') as
(F*(M) ® Rf! ® --- ® Rf{)/Rh") whose value on u(w)? is cc’ . Since
c and ¢ are both independent of e, the existence of the maps I', for
e > 0 shows that g oa is phantom. 0O

We next turn our attention to splitting in module-finite extensions and
related issues. The following result, which seems rather surprising at first,
shows that phantom extensions are abundant in nature.

(5.17) Theorem. Let R be reduced and S a module-finite overring.
Then the inclusion map R = S is a phantom extension. Hence, if R is
weakly F-regular, o splits.
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Proof. If we localize at the multiplicative system R° we have that
(R°)™'R is a product of fields, and so (R°) 'a splits. By restricting
the splitting to S and clearing denominators we obtain an R-linear map
n: S — R whose value on 1 € S is an element ¢ € R°. There is an
R-linear map 6,: Fy(S) — Fg(S) = S which sends r®s to rs?. Then
we may take y, = 06, , for n(0,(F(a)(1))) = n(6,(1® 1)) = n(1) = c.
Since this holds for every e, « is a phantom extension. [

(5.18) Remark. This argument may be less confusing if we adopt the
point of view of the discussion in Remark 5.4, which we can do if § is
also reduced. From that perspective we are trying to give an RY4_jinear
map of R4 ®pS to RY%_ Both R'? and S map R-linearly into S/,
and we obtain an R'/?-linear map R'? ®r S — S'4 . Since the map
RY? _, §'4 s isomorphic with the map R — S, there is an R'?-linear
map 7'/7: SY7 — RY9 that sends 1 to ¢'/?, and we take y, to be the
composite.

The idea underlying the proof of (5.17) can also be used to prove for
many ring extensions R C S in characteristic p that ISNR C I* for
every ideal I of S. This is true when R is reduced and S is module-
finite over R. More generally, one can weaken these hypotheses to the
existence of an R-linear map 7: S — R such that (1) =c € R°. Let us
isolate the following fact, which was established in the proof of (5.17).

(5.19) Proposition. If S is a module-finite extension ring of a reduced
ring R, then there is an R-linear map n: S — R such that n(1) =c € R°.

(5.20) Discussion and definitions. In the sequel, we want to consider
not only contractions of expanded ideals, but contractions of expanded
modules as well. More specifically, we shall be trying to find conditions on
aring homomorphism R — S such that for every pair of finitely generated
R-modules N C M , the inverse image of Ny y=Im(S®y N - S®, M)
(or of its tight closure N.;, » 10 S®p M) in M under the obvious map
M — S® M sending m to 1 ® m is contained in N*. We refer to the
inverse image of a submodule of S®, M in M as its contraction to M .
Of course, when M = R and N = I is an ideal of R, this simply asks
whether the contraction of IS (or (IS)") to R is contained in I*.

We want to point out that in this situation it suffices to consider the
case where M is a finitely generated free module. In the general case
one may map a finitely generated free module G onto M, let H be the
inverse image of N in G, and then ask instead whether the inverse image
of Hg ; or Hg . in G iscontainedin H". If g € G and ¥ is its image
in M, thenitiseasytoseethat 1@ g isin In(SH - S®G) = Hg
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(respectively, in H; g) ifandonlyif 1®F isin N (respectively, in
Ng ) while g isin H" if and only if  isin N*. See (3.2). In the case
where M is free, we use the less cumbersome notation NS for Ns m»
by analogy with the case where N is an ideal of R. Moreover, M injects
into S®, M when RC S and M is free, and we write NSNM for the
contraction of NS to M.

(5.21) Proposition. Let R — S be a homomorphism of Noetherian
rings of characteristic p, and let N C M be finitely generated R-modules.
Let R', S’ denote R 4, S, respectively. Let M' = R'®, M andlet N'
be the image of N in M'.

(a) If the contraction of Ng ,» to M’ is contained in N™ then the
contraction of Ng a is contained in N

(b) The contraction of (Ng ,.)" to M' is contained in N if and only
if the contraction of Ng ,, is contained in N*.

Proof. Let u be an element of M and ' its image in M’ . We know
that u®1 isin N5, ifand onlyif &' ®1 isin Ny . by (3.3b), and

that, likewise, u is in N* if and only if ¥ isin N™. These assertions
immediately prove (b). Part (a) then follows at once from the additional
remark that if ¥ ® 1 is in Ng 5 then u isin N - O

By virtue of this result, the questions that we are pursuing can be re-
duced to the case where the rings are reduced. In the sequel we frequently
assume, at least, that R is reduced.

We next observe

(5.22) Theorem. Suppose that R C S are Noetherian rings of char-
acteristic p and that there is an R-linear map n: S — R such that
n(1)=ceR°.

(a) For every finitely generated R-module M with N C M, the contrac-
tion of Ng ,, to M is contained in N*.

In particular, if I is an ideal of R, then ISNRCI".

(b) If, moreover, every element of S° has a multiple in R°, or if S has
a weak test element d that has a multiple in R°, then with N C M as in
(a) the contraction of Ng ,, to M is contained in N”.

In particular, if I C R, then (IS)'NRCI".

Proof. Throughout the proof we may assume that M is free. We iden-
tify M with R'. We may then identify F*(S ®, M) with S'. Applying
n coordinatewise gives a retraction from F*(S® r M) to F*(M) for every
e.

(a) Let u € NSNM . Then for every ¢, u? € NISNF°(M). Applying
n coordinatewise to both sides yields that cu? € N9,
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(b) Observe that if u € (NS)" then we can choose d in S° having a
multiple in R° such that du? € NYS for all ¢ > 0. By replacing d by
a suitable multiple in R° we may assume that d € R°. We now apply 1
coordinatewise to both sides as above to conclude that cdul? € N9 for
all ¢ > 0, and the result follows. O

(5.23) Corollary. Let R be a Noetherian ring of characteristic p. If S
is a module-finite overring of R, then the contraction of N;, y 0o M is
contained in N* for every pair of finitely generated R-modules N C M .
In particular, for every ideal I of R, (IS)*NRCI".

Proof. The hypotheses are preserved if we replace R C S by the in-
duced inclusion R, C S,,. Thus, we may assume that the rings are
reduced, by Proposition (5.21).

It will suffice to see that every element of S° has a multiple in R°.
Note that 4 = (R°)"'R C B = (R°)™'S is a module-finite extension, and
so dimB = dimA4 = 0. The image s/1 of any element s of S° in B
will be a unit, since it will not be in any minimal prime of B. This is
easily seen to imply that s has a multiple inR°. O

(5.24) Remark. Theorem (5.22) is quite close in spirit and proof to
the theorem that a module-finite extension of a reduced ring is a phantom
extension. We can use it to give an alternate proof of the last statement
in (5.17), which, for emphasis, we restate as a theorem in its own right.

(5.25) Theorem. A weakly F-regular ring R is a direct summand of
every module-finite extension S .

Proof. The result is local on the maximal ideals of R. Since weakly
F-regular rings are normal, they are approximately Gorenstein (cf. [HH4],
and (8.6); and [Ho4]), and by the results of [Ho4], it suffices to show
that every ideal of R is contracted from S. But this is immediate from
(5.22) and the fact that every ideal of S is tightly closed. (Alternatively,
it suffices to prove that R — S is pure, for which it suffices to show that
M - M ®S is injective for every finitely generated R-module M . (Cf.
[HR1] and [HR2].) The kernel is the contracted expansion of 0 in M,
and so is contained in the expanded contraction of 0, which we know is
contained in 03, =0.) O

A key point about module-finite extensions is that if R — .S is a module-
finite extension and m is any maximal ideal of R, then big ht mS = htm,
where the big height of an ideal is the supremum of the heights of the
minimal primes of . (Every minimal prime Q of mS lies over m; it
is trivial that height Q < htm. We can obtain equality for at least one
choice of Q by applying the going up theorem to a chain of primes of
maximum length such that m is its largest element.)
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Our next objective is to generalize (5.22) from the case of module-
finite extensions to the case of arbitrary homomorphisms that “preserve” a
suitable notion of height sufficiently well. As the homomorphism becomes
very arbitrary we need to impose some additional conditions on R. The
culmination of these results is given in Theorems (5.31) and (5.32) below.

We begin by proving the following two preliminary results.

(5.26) Lemma. If (4, m) is a complete regular local ring containing
a field with A C S and big htmS = htm (= dim A), then the inclusion
A — S splits.

Proof. By an argument of M. Auslander (see the second paragraph of
the proof of Corollary 6.24 of [HHA4]), it suffices to show that the map
A — S is pure, and by the technique of [Ho2] it suffices to show for a
regular system of parameters x,,--- , X, in 4 that for every positive
integer ¢ one has (x, ---xn)' ¢ (xi“-, ey, xf,“)S . But if this held in
S, it would continue to hold after localization at a minimal prime of
(%;, -+, x,)S whose height is big height mS = n. But then the images
of the x’s in the local ring of S will be a system of parameters, and this
would violate the monomial conjecture [Ho2] for the equicharacteristic
ring S. O

(5.27) Lemma. If (R, m) is a complete local domain containing a field,
and R C S with bightmS =htm (= dimR), then there is an R-linear
map n: S — R such that n(1) € R°, i.e, n(1) #0.

Proof. R is module-finite over a regular local ring 4 C R. By Lemma
5.26 there is an A-linear splitting p: S — A of the inclusion 4 — S. This
gives an R-linear map A: S — Hom (R, 4) defined by A(s)(r) = p(rs)
whose value on 1 is the map p|,, which is nonzero, since p(1) = 1.
Since Hom (R, A4) is a rank one torsion-free module over R, it has an
embedding x: Hom (R, 4) — R, and we may take n=puoiA. 0O

In the reduced case we need to consider preservation of height modulo
every minimal prime. Note first that when R is Noetherian and RC S,
every minimal prime of R (and every associated prime) is contracted from
S : the point is that if P = Ann,u with u € R,then P=AnngunR.

(5.28) Lemma. If (R, m) is a reduced complete local ring containing a
field, and we have an injection homomorphism R C S with big ht m(S/ PS)
=htm/P (= dimR/P) for every minimal prime P of R, then there is
an R-linear map n: S — R such that n(1) € R°.

Proof. Let P, ---, P, be the minimal primes of R. For every P;
Lemma (5.27) guarantees a map S/P;S — R/P; whose value on 1 is
nonzero, and hence a map S — R/ Pj with the same property. Together,
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these give amap A: S — [] ;R / P, such that the value on 1 is nonzero in
each component. The obvious map R — [] ; R/P; becomes an isomor-
phism if we localize at R°: the inverse, restricted to [I; R/P;, gives an
injection []; R/P; — (R°)™'R, and if we multiply by a suitable element
of R° to clear denominators, we obtain an injection u: [] ; R/Pj — R
which becomes an isomorphism when we localize at R°. The elements in
the product all of whose components are nonzero map to R° under the
homomorphism u: thus, we may take n = uoid. 0O

(5.29) Definition. A ring homomorphism R — § is called formally
height preserving if for every maximal ideal m of R and every minimal
prime P of B = (Rm)A ,if T denotes the mS-adic completion of S then
big ht m(T/PT) > htm(B/P) = dimB/P. (We may view B as simply
the m-adic completion of R, so that B does, in fact, map to 7.) The
following result contains some basic facts about formally height preserving
homomorphisms.

(5.30) Proposition. Let R — S be a homomorphism of Noetherian
rings.

(a) Fix a maximal ideal m of R and a minimal prime Q of the
completion B of R,,. Let T be the mS-adic completion of S. Then
big ht m(T/QT) > dim B/Q if and only if there exists a minimal prime
ideal 7 of mS in S such that, with C =(S_)”, dimC/QC > dimB/Q,
in which case equality holds.

(b) R — S is formally height preserving if and only if R 4 — S, is
Jormally height preserving.

(¢) If R — S is a module-finite extension then it is formally height
preserving.

(d) If R — S is faithfully flat then it is formally height preserving.

(e) If R — S is formally height preserving then for every local ring B
that is the completion of R at a maximal ideal m if T denotes the (mS-
adic) completion of S then there is B_4-linear map from T, — B, such
that the value on 1 isin (B,,)°.

Proof. (a) Fix a minimal prime Q of B. Then big htm(7/QT) >
dim B/Q if and only if there exists a minimal prime 2 of mT in T
such that htg/QT > dimB/Q. Since T/mT = S/mS, every minimal
prime g of mT corresponds to a minimal prime » of mS. Next
observe that the completion of Ty is isomorphic with the completion
of §_: we have that £ contracts to », which yields an induced map
S, - T? and, hence, a map of the completions. On the other hand, the
map S — S yields an induced map of the mS-adic completion T of S



TIGHT CLOSURE OF PARAMETER IDEALS 633

to (S_,)”. The maximal ideal of this last completion lies over gzin T,
and this yields induced maps T — (S,)” and, finally, (T )T = (S,)".

It is easy to see that the two maps (S,)" — (T )~ and (T )T = (S,)”
that we have constructed are mutual inverses. Now, big ht mT/QT >
htz/QT = dimT /QT = dlm(T )" /Q(T )" =dim(S)"/Q(S,,)", with
equality for at least one ch01ce of # and correspondmg » . It follows that
big ht mT/QT > dim B/Q if and only if there exists a minimal prime .
of mS in § such that, with C = (S”)A, dim C/QC > dim B/Q. Since
the maximal ideal ~2C/QC of C/QC is a minimal prime of the expan-
sion mC/QC of the maximal ideal mB/Q of B/Q, this inequality holds
if and only if dimC/QC =dim B/Q.

(b) This is an easy consequence of the fact that killing the nilpotents
in a ring does not affect the dimension, and of the fact that big htJ =
big ht JT,, for any ideal J of any Noetherian ring T .

(c) Since S is module-finite over R, the mS-adic completion of S is
the same as B ®, S, where B is the m-adic completion of R, and since
B is flat over R, applying B®, preserves the injectivity of R — S.
Thus, we need only study the case where R is a complete local ring and
S is module-finite over R. Then every minimal prime of R is contracted
from §, and so when we replace R, S by R/P, S/PS with P a minimal
prime of R we still have a module-finite extension. But it has already been
observed that, for a module-finite extension S of a local ring (R, m, K),
big ht mS = htm , which completes the proof of (a).

(d) Choose any minimal prime » of mS. Then, with notation as in
part (a), R,, — S is faithfully flat and so the induced map of completions
B — C is faithfully flat. Likewise, B/PB — C/PC is faithfully flat, and
so dimC/PC > dimB/PB.

() This is immediate from the definition of formally height preserving,
the fact that killing nilpotents affects neither dimension nor big height, and
Lemma (5.28). O

We are now ready to prove one of our main results.

(5.31) Theorem. Let R — S be a formally height preserving homomor-
phism of Noetherian rings of characteristic p, and suppose also that R has
a completely stable weak test element.

Then for every inclusion of finitely generated R-modules N C M, the
contraction of Ns, u 0 M is contained in N*. In particular, for every
ideal I of R, ISNRCI".

Suppose, in addition, that either

(1) S is essentially of finite type over R, or, more generally, that for
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every maximal ideal m of R and every prime ideal » of S minimal over
msS, the fields S_[/»S  is finitely generated as a field over R/m or

(ii) the residue fields of R modulo its maximal ideals are perfect.

Then for every inclusion of finitely generated R-modules N C M the
contraction of Ng ,, to M is contained in N*. In particular, for every
ideal I of R, (IS)'NRCT".

Proof. Suppose that we have an element of the contraction of Ng ,,
(or Ng ,) to M thatisnotin N”. Then the situation is preserved when
we replace R by its completion B at a suitable maximal ideal m (because
R has a completely stable test element) and S by its mS-adic completion
T . We can then pass to B, and T, , without affecting the condition on
the heights. The result for the case where the element is in the contraction
of Ng ,, is now immediate from (5.30e) and (5.22).

Now assume that either (i) or (ii) holds and that we have an element
in the contraction of Ns » to M thatis not in N*. As we have already
observed in the first paragraph we may assume without loss of generality
that (R, m, K) is a complete local ring. We may also replace S by its
localized completion at the union of the minimal primes of ~.S, which is
the same as the product of its localized completions at the minimal primes
of ~S . Note that the Jacobson radical of the new S will be the radical of
mS . Thus, we may assume that § is complete semilocal and that either
(i) every residue class field at a maximal ideal is finitely generated as a
field over K or (ii) K is perfect.

Now, the fact that an element is outside the tight closure of N in M
will be preserved when we kill a suitable minimal prime P of R, by
(3.3d). We can then replace S by S_/PS_ for a suitable maximal ideal
~ (chosen so that dimS_/PS_ = dimR/P). Note that the fact that a
certain element is in a tight closure in an S-module is preserved both by
localizing at ~ and then by killing PS_ in the complete local ring S,
(by Theorem 6.24 of [HH9]).

In this way we obtain a counterexample in which (R, m,K) is a
complete local domain, (S, ., L) is a complete local extension ring,
dim S = dim R, ~ is minimal over mS (so that any system of parame-
ters for R is a system of parameters for S) and either (i) L is finitely
generated as a field over K or (ii) K is perfect: Choose a minimal prime
~ of S such that dim S/~ = dimS (= dimR). Then ~ cannot meet R:
if it did, we could choose fewer than dim R elements in m whose im-
ages in R/~ generate an (m/~)-primary ideal, and these same elements
would then generate an (»2/~S)-primary ideal in S/~S (since mS is
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m-primary), a contradiction, since dimS/~S = dimR. It follows that we
may replace S by S/~S without affecting any of our hypothesis. Thus, we
henceforth assume that R — S is an injection of complete local domains.

Let S be the normalization of S, which is a complete local ring
module-finite over S. Then we may replace S by S’ as well, and we
henceforth assume that S is normal. Now let R’ be the normalization
of R, which may be identified with a subring of S. Suppose we know
the theorem for the map R’ — S, and apply it to the pair of modules
M =R ®;M and N' =Im(R' ®; N - R ®g M) = Ny ,,. Then we
may think of Ng ,, as (Np p)g ar = (N,)S,M’ and so we find that the
contraction of Ny ,, = (N')g »)" to M’ is contained in N™*. But the
contraction of N to M is contained in N* since we already know the
module-finite case. Thus, we may replace R by R’ and we henceforth
assume that R is normal as well.

Choose a coefficient field KX C R for R.

In case (i) let 5,,--- , s, denote elements of S whose images in L
form a transcendence basis for L over K. Map the polynomial ring
Ry1=Rly,, -~ , y,] R-linearlyto S by sending y; to s, for 1<i<h.
Any polynomial outside mR[y] maps to a unit of S. Thus, there is an
R-homomorphism of the localization R(y) of R[y] at mR[y] to S that
sends the y; to the s;. Let R{y) denote the completion of R(y) with
respect to the maximal ideal. Then R(y) also maps to S. Since the
maximal ideal of R(y) expands to an ideal primary to the maximal ideal
of S and since the extension of residue fields K(y) C L will also be finite
algebraic, it follows from the completeness that S is module-finite over
the image of R(y).

Now dimS = dimR = dimR(y) = dimR(y) here. Since R and,
hence, R(y) are normal local (and excellent), we have that R(y) is a
domain, and it follows that R(y) — S is injective as well. Since R(y) — S
is module-finite, we may apply Corollary (5.23) to conclude that every
element of the contraction of N;, u 0o M isin N;(y) Mo and hence in
the contraction of N;(y) _u » and hence in the contraction of N ;(y) u o
M . Thus, we have reduced to studying the case where S = R(y). By
Theorem (7.36) of [HH9], a completely stable test element for R (these
exist, by Theorem (6.2) of [HH9]) will also be a test element for R(y).
The result when S = R(y) is now immediate from this remark, Theorem
(5.22b), Proposition (5.30d) (which guarantees that R — R(y) is formally
height preserving), and Lemma (5.28).
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It remains to consider case (ii), where K is perfect. Then R is module-
finite over 4 = K[[x,, --- , x,;]] where x,, --- , x, is a system of param-
eters for R. Since the coefficient field K for R is perfect, its image in
S can be expanded to a coefficient field L for S. The x’s can also be
viewed as a system of parameters for S. Thus, S is module-finite over
B = L[[xl , -+ »X4]]. The ring R, = B®, R is faithfully flat over R
(since B is faithfully flat over A) and module-finite over B (since R is
module-finite over 4). We have A-homomorphisms R — S and B — S,
yielding an A-homomorphism R, — S, and since S is module finite
over B, it is module-finite over the image, S,, of R, — §. Since R,
is complete and semilocal, S, is complete and semllocal But since S is
a domain, so is S;,. Thus, S, must be local. It follows that S, must
be the quotient of R be a mmlmal prime . Since S is module-ﬁmte
over S,, we can replace S by S§,. We change notation, and henceforth
assume that § = R, /., where . is a minimal prime of R; disjoint
from R — {0} such that dimR, /.~ = dimR.

To complete the argument we want to apply Theorem (5.22b) in this
situation. Lemma (5.27) yields one part of the needed hypothesis. To
obtain the other part, it will suffice to show that there is an element ¢ €
R — {0} which is a test element for S. By Theorem (6.2) of [HHY], it
suffices to show that there exists an element ¢ € R — {0} such that S, is
regular, and this will follow if (R—{0})"'S=F® g3 is regular, where F
denotes the fraction field of R. Since S =R,/ , where , is a minimal
prime of R, , it will suffice to show that F ®, R, is regular: F®,S will
then be one of the factors when F®, R, is written as a product of regular
domains.

Now, F ®; R, is the same as F ®, (R ®,B) = F ® , B, where from
here on we simply regard F as some finite field extension of the fraction
field G of A. For the purpose of seeing that this ring is regular, we
may replace F by a larger field. We may therefore view F as a purely
inseparable extension of G followed by a separable extension. But the
separable part is harmless, while the purely inseparable part is contained
in the fractlon field of K[[x”", . ‘;/ 9] = A7 for any sufficiently
large g = p°, since K is perfect. We have therefore reduced to the case
where F is the fraction field of 4%, and then F ® 4 B is a localization
of A'"e B L[x/"?, -, x}/?]], which is regular. O

We next observe:

(5.32) Theorem. Let R be a weakly F-regular ring of characteristic p
and suppose either that

(a) R is complete local or
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(b) R has a completely stable test element.

Suppose also that R C S Noetherian and that big ht mS = htm for every
maximal ideal m of R. Then ISNR =1 for every ideal I of R, and so
R ispurein S. In case (a) R is a direct summand of S.

Proof As mentioned in the proof of (5.26), by an argument of
M. Auslander (again, see the second paragraph of the proof of Corollary
6.24 of [HH4]), a map from a complete local ring R is split if and only
if it is pure, and, by the results of [Ho4] on approximately Gorenstein
rings, a map from a normal ring R is pure if every ideal is contracted.
Thus, all of the results will follow if we can show in cases (a) and (b) that
ISNR =1 for all ideals I of R. Case (a) is now immediate from (5.28)
coupled with (5.22).

We focus on case (b). To show that IS N R = I for every ideal I
of R it suffices to consider the case where I is primary to a maximal
ideal m of R, since, in a Noetherian ring, every ideal is an intersection
of ideals primary to maximal ideals. Suppose that I is primary to m,
where htm = n, and that Q is a minimal prime in S of mS of height
n. It will suffice to consider the map R, — S,, and we shall be able
to conclude that the induced map remains injective when both rings are
completed provided that we can show that the completion of R, is a
domain. This follows from the fact that R, and its completion have
a common test element: the tight closure of an ideal primary to m in

n then corresponds to the tight closure of its expans1on to R (under
the obvious bijective correspondence between mR n-primary 1deals of R
and mR,-primary ideals of R, given by contract1on and expansion) by
[HH4, (5.1¢)], and it follows that every mR -prlmary ideal and, hence,
every ideal of R are tightly closed. Thus, R, is a weakly F-regular
ring and, consequently, a domain. It follows from part (a) that I R
contracted from S for every m-primary ideal I of R. We then have
that I is contracted from R, , that IR, is contracted from R , and
that 7 Rm is contracted from S It follows that I is contracted from S
and, hence, from S. O

(5.33) Remarks and questions. We know that for module-finite exten-
sions S of a Noetherian ring R of characteristic p we have ISNRC *.
It is natural to ask whether, under mild conditions on R, every element of
I" must be in IS in some module-finite extension S of R. See [Sm1-2]
for the case of parameter ideals. We do not know the answer in general. It
is also natural to ask for a weaker result: under mild conditions on R, if
I C R, can every element of I" be forced into IS in an extension algebra
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S for which there exists an R-linear map n: S — R such that n(1) € R°.
See [Ho9-10].

In §6 we shall show that, under mild conditions on a Gorenstein ring R
(e.g., locally excellent suffices), R is F-regular iff it is a direct summand
of every module-finite extension. The main point is that there is a tech-
nique for showing that under certain special conditions (roughly, that I be
generated by an R-sequence consisting of test clements), elements of 7 *
can be forced into IS for some module-finite extension algebra R. This
technique is based on results from [HH7], which were used there to show
that the integral closure of an excellent local domain of characteristic p in
an algebraic closure of its fraction field is a big Cohen-Macaulay algebra .
over the local domain. It is noteworthy that the main result of [HH7] and
the techniques used there originated in studying the problem of forcing
elements of I* into I.

In [HH7] it is also shown that, under mild conditions on a ring R of
characteristic p, if R is a direct summand of every module-finite exten-
sion algebra then R is Cohen-Macaulay. Note that nothing like this is
true in characteristic zero: if R contains the rationals and is normal, a
trace argument shows that it is a direct summand of every module-finite
extension. Thus, while the condition that R be a direct summand of
every module-finite extension is very strong in characteristic p, imply-
ing the Cohen-Macaulay property as well as normality and perhaps even
F-regularity, it is merely equivalent to normality in characteristic 0.

(5.34) Discussion. In Definition 5.2 we required that M be a finitely
generated R-module. In this discussion we relax that condition, and as-
sume instead that M is a finitely generated S-module over a Noetherian
R-algebra S. The definition still gives a notion of phantom extension in
this case. We are interested for the moment in discussing phantom exten-
sions which are algebra maps R — S. A key point is that for an element
u € R and an ideal I C R, if u € ISN R for some R-algebra S such
that R — S is phantom, then u € I": this follows, in essence, from
(5.7¢), for the proof does not use the fact that M is finitely generated as
an R-module. This raises the question whether every element of I™ can
be forced into IS for some algebra extension R — S which is phantom.

(5.35) Remarks and questions. In a different direction, we ask whether,
if R is a domain of characteristic p (perhaps satisfying some additional
“good” conditions, e.g. that R'? be module-finite over R) and d is an
arbitrary fixed nonzero element of R, there must exist an integer g = r’
such that the map R — R'? sending 1 to d Y4 isa phantom extension.
An affirmative answer in the case where R'” is module-finite over R
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would show that weak F-regularity implies strong F-regularity when R'/?
is module-finite over R (see [HH3] and §5 of [HH9] for treatments of the
notion of strong F-regularity). This is true when R is Gorenstein but is
an open question in general.

A natural way to attack the question raised in the preceding paragraph
is to first assume that R is complete local and represent it as a finitely
generated module over a regular local subring A such that the given ele-
ment d € A. To study the easiest case, we assume as well that the fraction
field of R is separlable over the fracti(lm field of 4. It is easy to see that
the map 4 — AY7 sending 1to d la splits for sufficiently large q : fix
one such value of ¢’ . If we tensor with R over A we get a split R-linear
map R - R®, Al , and by virtue of the separability assumption we may
identify S = R®, A'/? with its image R[4'/%] in T = RY% _ This leads
to the following question:

(5.36) If R C S C T are module-finite extension domains of R and
s € S is an element such that the map R — S sending 1 to s splits, is the
map R — T sending 1 to s a phantom extension?

An affirmative answer would show, in very good cases, that the map
sending 1 € R to d" ¢ in RV is phantom for sufficiently large ¢ .
However, we do not know whether (5.36) is true, and the naive intuition
which suggests that it ought to be true is flawed. This intuition is based on
what happens in the case where maps are split: we are composing the map
R — S which sends 1 to s with the inclusion S — T, which is a phantom
extension over S . If it were actually split over S, it would be split over
R and the composition would be split over R. Instead, we know only that
it is a phantom extension over S. If it were phantom over R we could
apply (5.7f) and we would be done. However, as we show in the example
below, the fact that S — T is phantom over S does not imply that it is
phantom over R, and so there is no apparent reason for (5.36) to have an
affirmative answer. _

(5.37) Example. Let T be a complete Cohen-Macaulay domain, let
S be a subring of T over which it is module-finite such that S is not
Cohen-Macaulay, and represent S as a finitely generated module over a
complete regular local ring R contained in S . (For definiteness, we could
take T = K[[x, y]I, S = K[[x*, x’, xy*, »*], and R = K[[x*,¥1l)
Then S — T is phantom over S, since it is module-finite, but it is not
phantom over R. If it were, then since F: R — R is flat, Fg(S) — Fo(T)
is injective for all e, and it follows from Proposition (5.8) that the element
in Ext}z(T/S , S) corresponding to the exact sequence of R-modules 0 —
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S - T — T/S — 0 is in the tight closure of 0 in a certain module
containing Ext}((T/S, S). But, since R is regular, this means that the
element is zero, i.e., that S — T splits over R. That is impossible, since
S has smaller depth than T as an R-module.

6. Forcing elements into expanded ideals
in integral extensions and a characterization
of F-regular Gorenstein rings

(6.1) Discussion. One of our main objectives in this section is to prove
that under a mild condition on a Gorenstein ring R of characteristic p
(that R contain a completely stable test element and have smooth formal
fibers), R is F-regular iff for every module-finite extension S of R, R is
a direct summand of S. See Theorem (6.7). Note that by (5.17), a weakly
F-regular ring is a direct summand of every module-finite extension. Thus,
what remains to be done is to show that if a Gorenstein ring is a direct
summand of every module-finite extension, then it is F-regular.

The key point is to show that, under special conditions, an element in
the tight closure of an ideal generated by parameters can be forced into the
expansion of the ideal in a suitable module-finite extension. Then, because
the ring is a direct summand of every module-finite extension, the element
must have been in the ideal originally. The equations used to define the
extensions we used are reminiscent of those defining the standard Artin-
Schreier extensions of fields. However, in degenerate cases, they may yield,
for example, purely inseparable field extensions.

We note that there cannot be a corresponding theory in characteris-
tic 0, since a normal ring containing the rationals is a direct summand
of every module-finite extension, while the ring need not even be Cohen-
Macaulay much less F-regular. We do not know whether a ring of charac-
teristic p that is a direct summand of every module-finite extension must
be F-regular without the Gorenstein hypothesis. However, it is shown in
[HH7] that, under mild conditions on the ring, such a ring must be Cohen-
Macaulay. Closely related ideas are used in [HH7] to show that if one has
an excellent local domain R then the integral closure of R in an algebraic
closure of its fraction field is a big Cohen-Macaulay algebra for R.

In the latter parts of this section, all given rings are Noetherian, of
characteristic p. However, we do not impose this restriction generally
until (6.6).

A critical tool in all of this is the following:
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(6.2) Theorem. Let R be a Noetherian domain of characteristic p and
let x,,---,x, be an R-sequence consisting of test elements. Let I =
(x;, -+, X, )R. Then there exists a module-finite extension domain S of
R such that I" CISNR.

Before proving this result, which is contained in Theorem (6.6) below,
we need some preliminary facts. One of the crucial results is Theorem
(6.3) below, which generalizes a result of [Ma]. Theorem (6.3) is Theorem
(2.2) of [HHT].

(6.3) Theorem (equational lemma). Let R be a ring of characteristic p
andlet x,, - , X%, 2,,* ,Z,€R. Let X =%+ X denote the product
of the x;, and assume that none of the x; is a zerodivisor. Suppose that
forevery i, 1 <i<s, we have elements r;, and rl'.j € R such that

k s
() DI AT DI
h=1 j=1
Then there is a module-finite extension ring S of R suchthat (z,,--- , z,)
S C(x, - ,x)S. If R is a domain, then S can be chosen to be a
domain.
If R is graded by a semigroup H C Q" and the elements x,, -+ , X,
z,, -+ , z, are homogeneous, then the ring S may be chosen so that it is

graded by H — H , and every nonnilpotent homogeneous element of S will
have a degree that has a positive multiplein H. 0O

(6.4) Remark. (a) We can rephrase this as follows. Let R be a ring
of characteristic p, let I = (x,,--- , x; )R, where none of the x; is a
zerodivisor in R, and let x = x,---x, . Let J be a finitely generated
ideal of R (corresponding to the ideal generated by the z’s) such that
JP g Pl L x?~!1J. Then there exists a module-finite extension ring S
of R such that JS C IS, and S can be taken to be a domain if R isa
domain.

(b) When, moreover, x,,---, X, is an R-sequence, then 1! : 1 =
j L (xl---xk)p_lR. If we let J = (z,,---, z,)R, we see that, since
14 (1% 1yg = 1" 4 (x,---x,)P~'J, Theorem (6.3) for the domain
case can be restated as follows:

(6.3°) Theorem. If R is a domain of characteristic p, I is an ideal
generated by an R-sequence x,,--- ,x,, and J is a finitely generated
ideal such that JP' c IP! + (I"' . 1)J , then J CIRNS for some module-
finite extension domain S of R.

(6.5) Remark. I. Aberbach, in his thesis [Ab1], showed that this state-
ment remains true without the hypothesis that I be generated by an
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R-sequence: the argument is much more subtle, however. The statement
is also true, without the hypothesis that I be generated by an R-sequence,
if one knows that J'9 ¢ 19 4 (11 . 1)J for some power ¢ of p. The
obvious possibility of trying to define some sort of closure for I in terms
of conditions of this type is obstructed by the fact that J may satisfy such
a condition for a subideal I, of I without satisfying such a condition for
I itself: the problem is that 'Y : I is not a monotone function of I
(consider the chain (0) C (x) C (x, ¥) € R =K][x, y]). While various ad
hoc measures to get around this difficulty suggest themselves, we have not
yet found one that seems natural or optimal.

In any case, it is certainly important to understand precisely what kinds
of systems of equations can be used to force elements of R into ISNR for
module-finite extension domain § of R when R is a normal domain of
characteristic p. Such understanding might enable one to show that every
element of I* is in ISN R for some such S, and then one could show
that tight closure commutes with localization. A related problem is to find
equational conditions that force elements of aring R tobein I*. Ina
way, the definition of tight closure is equational, but there are infinitely
many equations (one for every large ¢). A characterization in terms of
finitely many equations would, again, very likely enable one to prove that
tight closure commutes with localization. The next result moves in this
direction, but needs a stringent restriction on 1.

(6.6) Theorem. Let x,, - - , X; be a regular sequence in a Noetherian
domain R of characteristic p such that every x; is a test element. Let
I=(x;, ,%)R and J =1 . Then JPl c Py (). g, and so

there is a module-finite extension domain S 2 R such that I"' CISNR.

Proof. Since every x; is a test element, x,J bl ¢ il ,and so J o) ¢
.1 =1" 4 x»"'R, where x = x,---x, . Suppose we have j € Jir
and we write j = i+x”"1r, where i € I”! and r € R. To complete
the proof, it will suffice to show that r € J. Since j—ie€ J lp] , we have
that r € JP!: Rx?"!. Since J = I*, J¥) c (I"")* (since cj? € I'V for
g > 0 implies ()7 € I"™ for ¢ >> 0), and so rxP!isin (IPY)*.
Let I”! = H and x~' = y. Since ry € H*, for some ¢ € R° and
for all ¢ > 0, c(ry)? € H'Y, which implies that cr? € H9 ;IR =
(H: yR)[q] (since we are dealing with monomials in an R-sequence), and
sore (H:y" = (x, - ,x)R" = J. This completes the proof
that J¥! cI ), xP~1y , and the last statement is now immediate from
Theorem 6.3°. 0O
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(6.7) Theorem. Let R be a Gorenstein domain of characteristic p that
is a direct summand of every module-finite extension ring, and suppose that
Jor every local ring A of R themap A — A has regular fibers, which holds,
in particular, if R is locally excellent. Then R is F-regular.

Thus, a locally excellent Gorenstein ring is F-regular if and only if it is
a direct summand of every module-finite extension.

Proof. First note that the splitting hypothesis passes to localizations of
R: if W is a multiplicative system and 7 is a module-finite extension
of W™ !R, then we can choose finitely many w~! R-module generators
of T, and after multiplying each by an element of ¥ we may assume
that each is integral over R. These elements then generate a module-finite
extension algebra T, of R contained in 7 such that W_ITO =T . Since
R — T, splits, so does wR - W'lT0 =T.

Thus, if R is not F-regular we may choose a prime P minimal in
SpecR such that R, is not F-regular. Henceforth, we replace R by R,
and assume that (R, m, K) is local. If x € m then R_ is F-regular and
Gorenstein (it suffices to see that each of its local rings is weakly F-regular,
and this follows from the minimality of P). It follows from Lemma (3.7)
that there exists an m-primary ideal £ whose nonzero elements are all
test elements for R, and so there is a system of parameters x,,--- , X,
for R such that every x; is a test element. Since R is Gorenstein, by
Proposition (3.8(f)) to prove that R is F-regular it suffices to prove that
theideal I = (x,, --- , x,)R is tightly closed. Let u# be an element of I *.
By Theorem (6.6) we can choose a module-finite extension domain S 2 R
such that u € IS. Applying an R-module retraction p: S — R, we find
that ueI. Thus, I=I". O

7. Criteria for F-rationality and F-regularity

In this section we give some criteria for F-rationality. In the Goren-
stein case these are, of course, criteria for F-regularity. In particular, we
develop criteria in Theorems (7.7), (7.12) and Corollary (7.13) that suffice
for most of the applications that we have in mind. In the case of isolated
singularities the result of (7.13) can be deduced from the main results of
[FeW]. The arguments of [FeW] can be adapted to the generality needed
here: in a number of places in [FeW] where it is assumed that one has an
isolated singularity, all that is actually needed to make the proofs work is
that every element in R° Nnm, where (R, m, K) is the local ring of the
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point, has a power that is a test element. This is known in a number of
situations where the singularity need not be isolated: see (7.9), (7.10), and
(7.11).

However, we have given a self-contained proof of Theorem (7.12) and
Corollary (7.13) using instead Theorem (7.7) below, whose demonstration
is based on an idea very similar to the underlying idea of the proof of
Theorem (6.6).

We then apply our criterion to prove that Grassmannians are F-regular
in characteristic p, as are the rings defined by the vanishing of the minors
of fixed size of a matrix of indeterminates. More general results of this
kind are obtained in [Gla).

We also treat two examples of Watanabe [W2] and [W3] from the per-
spective developed in this section: these are F-rational surfaces that are
not weakly F-regular (one is F-pure and the other is not).

(7.1) Definitions. If I is an ideal in a ring of characteristic p, we
denote by I” the Frobenius closure of I in R (the set of all elements
g € R such that g% € I' for some ¢ = p°). When I =I” we say that
I 1is contracted with respect to Frobenius. If F: R — R is pure, i.e., if R
is F-pure in the terminology of [HR2], then every ideal of R is contracted
with respect to Frobenius. (The converse is also true under mild conditions
on R.)

In (7.2) and (7.3) we do not assume that the ring has characteristic p
except where specified.

(7.2) Definition. Let R denote a finitely generated N-graded K-algebra
of Krull dimension d, where K is a field and R, = K. Let m be the
homogeneous maximal ideal of R. Recall that the a-invariant, a(R), is
the largest integer a such that [H,‘:(R)] . # 0, where [], indicates the ath
graded piece. Cf. [W1] (the notion is also implicit in [Fle]). Our general
reference for local cohomology theory is [GrHa].

(7.3) Discussion. Let R be as in (7.2). Let X = ProjR. Then for
all i > 2 we have that [H' (R)], & H''(X, 8,(t)). It follows that if
dim R > 2 we have that a(R) < 0 if and only if H* _I(X , Ox(t)) vanishes
forall t>0.

(7.4) Discussion. Now suppose in addition that R is Cohen-Macaulay
and that F, --- , F, form a homogeneous system of parameters for R.
Let 6 = Eil deg F;. Let I be the ideal generated by the F;.

We note the following facts:

(a) a(R) < 0 if and only if every form of R of degree at least J is in
the ideal generated by the F;. If R is generated by its one-forms over X,
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this is equivalent to the condition that m® CI.If G is a form of largest
degree not in I, then a(R) =degG -4 .

(b) Suppose that Hilbg(z) denotes the Hilbert-Poincaré series
E:‘;o(dimK[R]n)z” and that A(z) denotes a rational function whose ex-
pansion is this series; then a(R) = degh(z) (i.e., if h(z) is written as
P(z)/Q(z) where P, (Q are nonzero polynomials in z, then a(R) =
deg P(z) — deg Q(z)). Thus, a(R) is determined by the Hilbert function
Hy(n) = dimg[R], (although not by the Hilbert polynomial of R, which
agrees with Hp(n) for large n but carries less information).

(c) If R, denotes an A-free finitely generated N-graded A-algebra over
abase ring 4 with Ry =4, and 4 —» K, 4 - L are two homomor-
phisms from A to fields K, L such that both the fibers R, = K®, R
and R, = L®, R, are Cohen-Macaulay, then a(Ry) = a(R L) -

(d) If R has charactenstlc p then I = IF if and only if the Frobe-
nius endomorphism acts injectively on H? ' (R) (recall that I is an ideal

generated by a homogeneous system of parameters here). Thus, if I = el
for one ideal I generated by a homogeneous system of parameters, then
the same holds for every ideal generated by a homogeneous system of
parameters.

Moreover, in case [ =1 F  then a(R) < 0. In this case, if d =dimR >
2, then a(R) < 0 if and only if Hd_l(X, @y) =0, with (X, &) = ProjR
as in (7.3).

To understand why (a) holds first note that we may view H? (B =
Hd (R) as the cokernel of the map EB,.=1 RG,. — Ry, where F =F,---F,

and G, denotes []; jzi Fj - Thus, H:,(R) =R/ E?=1 RGi . The grading is
the obv1ous one. We may also 1dent1fy this highest local cohomology mod-
ule with hm R/I where I, = (F!, - F;) and the map from R/I, to
R/1,,, is mduced by multlphcatlon by F . Because the F’s form a regular
sequence the maps R/I, — R/I,,, are all injective. Under this identifica-

tion the element represented by r/F’ in H,‘:(R) is sent to the class of r in
R/I,, and is zero if and only if r € I,. When r is homogeneous the degree
of the element represented by the class of r modulo I, is degr—J.
Consider a homogeneous element u of H,‘:(R) of largest degree, i.e., of
degree equal to a(R) . Since multiplying by any positive degree form of R
will kill %, u is in the socle of H,‘:(R) . Because R is Cohen-Macaulay, all
the modules R/I, have isomorphic socles, with the isomorphism induced
by multiplication by F. Thus, u is represented by a form of highest
degree in R/I = R/I, itself, and the degree of the element represented
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by G is degG — J. This establishes the final statement in part (a). The
first statement is immediate from the final statement, while the second
statement follows from the first.

To establish (b), let d(i) = degF;, and let P(z) denote the Hilbert-
Poincaré series of the ring R/(F,, --- , F;). P(z) is actually a polynomial
and deg P(z) is the highest degree of a nonzero form of R/I. The Hilbert-
Poincaré series of R is then P(z)/Q(z) where Q(z) = 1'[?=1(1 - zd(')) ,
and so deg Q(z) = 6. The assertion is then immediate from part (a).

(c) is immediate from (b), since R, and R, will have the same Hilbert
function: dim,[R,], = dim;[R,],, since both are the same as the rank
over A of the free A-module [R ], .

To establish (d) we first want to observe thatif I =1 ' then the Frobe-
nius endomorphism acts injectively on H,‘:,(R) = H:'(Rm) . This follows
from the theory of F-injective rings developed in [Fe], but we give a brief
explanation. We may view H:,(R) as the directed union of the modules
R/I,, as in the discussion of (a). The action of the eth iteration of Frobe-
nius sends the element 7+, to the element rf+I ot If some element r+1,
is killed then a nonzero element in the socle modulo 7, must be killed.

This element will have the form F'~'s+ I, where s represents a nonzero
element of the socle modulo I and F =[], F,. But then F¥ Vs? eI ot

and it follows that s? € I, FI=D 1= ' and so s € I', a contra-
diction. On the other hand, if r? € I'! with ¢ = p° and r € R — I then
the nonzero element r+171 in R/I C H,‘f,(R) is killed by the eth iteration
of the action of F.

The action of F° on H:,(R) multiplies degrees by p®, and so an ele-
ment of positive degree will eventually be mapped into a graded piece of
the local cohomology that is zero (the local cohomology has DCC, and so
only finitely many positive graded pieces are not zero). Since the action of
F is injective, we see at once that a(R) < 0. Thus, a(R) < 0 if and only
if [H,'f,(R)]0 =0, i.e., by (7.3), if and only if Hd_l(X, Oy) = 0, where
X =Proj(R) and d-1=dimX. 0O

(7.5) Discussion. We write (I)” for the integral closure of the ideal
I.

For any ideal I in a Noetherian ring R of characteristic p, I C Ifc
I'" . Moreover, when ht/ > 1 and I is generated by at most d elements,
the generalized Briangon-Skoda theorem of [HH4, §5] shows that (I d)— C
I" andso IF + (I cr.

We next record two observations of K. E. Smith.
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(7.6) Discussion. Let R be a finitely generated N-graded algebra of
Krull dimension d > 1 overa field K of characteristic p andlet F,, -,
F; be a homogeneous system of parameters for R. Let 6 = Z;i:l degF;.
Let I =(F,, -, F)R.

(a) (K. E. Smith) If the F; all have the same degree, then every form
of R of degree J isin (1), and hence is in I".

(b) (K. E. Smith) If R is Cohen-Macaulay, then every homogeneous
element of R of degree strictly larger than ¢ is in IF , and hence is in
I".

To see why (a) is true, note that R is module-finite over K[F,, --- , Fy],
and choose an equation of integral dependence for a form G of de-
gree & over K[F,,--- , F;], say G’+PS_IGS—1 + .-+ + Py = 0, where
Pj € K[F,, -, F;]. Let degF;, = u for all' i, so that d = du. Then
the equation still holds when P,_ j is replaced by its homogeneous piece
of degree s(degG) — (s — j)(deg G) = j(degG) = jo = jdu, and so we
may assume that P; is homogeneous of degree jdu in the F’s, which
have degree u. But this implies that P,_; € ((Fyse s Fd)d)j , and this

in turn implies that G satisfies an equatison of integral dependence on the
ideal I° , where I = (F,,--- , F;). But the generalized Briangon-Skoda
theorem of §5 of [HH4] implies that (Id)_ C I" when I is an ideal of
height one with at most d generators. [

To see why (b) is true, note that if G is an element of R of degree
larger than & then G/(F,--- F,) represents an element of H:,(R) of pos-

itive degree, say n > 0. Since the positive graded pieces of H,‘f,(R) are
all eventually zero, for large g the element G? /qu - F dq represents an
element of degree gn and so must be zero. But the fact that this element
is zero says precisely that G? € (F{,--- , Fj). O

The situation in (a) is somewhat simpler if the ring R is reduced and
generated by its one-forms. In that case one sees, just as in the proof of

(a) above, that if G, --- , G, are a homogeneous system of parameters
of degree v then the integral closure of (G,, -, G,) contains m” and,
using the fact that R is reduced, is equal to m” . If F,,.-- , F, form a
system of parameters of degree x then any form of degree ud will be in -
the integral closure of (F, d ,oor L F ; ), which is the same as the integral
closure of (F, -, Fd)d , and, hence, in (F,, -, Fd)* by the Briangon-
Skoda theorem.

We also want to mention the following related fact (implicit in the proof
of (4.9) of [Hul]).
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(c) Let I be an arbitrary ideal of a ring of characteristic p such that 7
has at most d generators. Then (Id“)' crI’.

To see why this is true, let x € J~, where J = I°"!. As follows,
for example, from equation (#) in (5.1) of [HH4, p. 44], we have that
Xkt - J* for some constant positive integer k and all # € N. Taking
h = ab with a, b € N we have that x**** € J*® forall a,b e N. If
a > k this yields x**% ¢ J% = [@+1ab op yab+D) o pa@+d qe p 5 g
then (d+1)b =db+b >db+b=(b+1)d and x*®*) ¢ r*+H4
If I'=(u, - ,u,;) and I, = (utl, cee u:,) then it is easy to see that
"“c I,. Applying this with ¢ = a(b + 1) we have that x'e I, whenever
t=a(b+1) with a > k and b > d. The desired result now follows if
we choose a =¢q, b=q' -1, where ¢, q' are any two sufficiently large
powersof p. O

We are now ready to establish a very useful tool.

(7.7) Theorem. Let R be a finitely generated N-graded algebra of Krull
dimension d over a field K of characteristic p such that Ry = K. Let
F,, --- , F; be forms of positive degree in R constituting a homogeneous
system of parameters, and suppose that R is Cohen-Macaulay (equivalently,
that the F; form a regular sequence in R). Suppose also that each of the
elements F,, --- , F; is a test element. Let I = (F,--- ,F,)R. Let ¢
be the sum of the degrees of the F;.

@) I' =1 + Ry,
where R; is the K-vector space of forms of R of degree ¢ .

(b) If the F, all have equal degree then I" = I+ (Id)' .

(c) Moreover, I is tightly closed in R if and only if both of the following
two conditions hold:

n 1=1".

(2) a(R) < 0.

Proof. (a) By Theorem (4.2b), I" is homogeneous. It is obvious that
I ¢ 1. If the F; all have equal degree then it follows from (7.6a)
that R; C I *. To see this more generally, choose nonnegative integers

n(l), --- , n(d) such that the elements Ff“m all have equal degree, and
let &' be the sum of the degrees of these elements. Let G be an element
of R;. Then (F/"V...F;)G has degree ¢', and it follows that this
element is in (F*', ... FF@*1)* 5o that for fixed ¢ € R° we have

that cFV7... F1PaGe ¢ (FI"V*T ... pIMARGY for all g > 0. Since

the F; are a regular sequence in R, we find that ¢G? € (F{, --- , FJ) for
all ¢ > 0, so that G € I", as required.
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To complete the argument it will suffice to show that if G is a form in
I* such that degG # d then G € I” . If degG > & then G isin I¥ by
(7.6b). Thus, we may assume that degG < d.

Since every F, is a test element, the condition that G € [ * yields
that for every ¢ and every i, 1 < i < d, we have F,.G" e I , and so
IG* € I'" and G? € I :, I. Since the generators of I form a regular
sequence in R, we have that I% I = 14 F? 'R, where F = F,---F,.
Thus, (#) G = Z']Ll Hij + HF" ', and by equating homogeneous
components we may assume that all of the terms occurring in the sum are
homogeneous of the same degree. We claim that for sufficiently large ¢
we must have that H = 0. Forif H # 0 then deg(HF?™') = deg G’ and
so, if H+#0, degH = q(degG) — (q — 1)(deg F) = q(degG) — (¢ — 1)d,
which is negative as soon as ¢ is so large that (g—1)/g = 1—1/q is larger
than (degG)/d (note that degG <  here). But if the HF -1 term is
absent from the equation (#) we obtain that G? € I 91 as required.

(b) We know from the generalized Briancon-Skoda theorem that (I d)_
C I", so that I+ (Id)_ C I'', and the other inclusion follows from what
we have just established together with the fact that R; C (Id)_ when the
F’s all have equal degree, which was proved in (7.6a).

(c) I is tightly closed, from part (a), if and only if I and R s are both
contained in I. The first condition is equivalent to the condition (1) and
implies that a(R) < 0, by (7.4d), i.e., that all elements of R of degree
strictly larger than § are in I. By (7.4a), a(R) will then be negative if
andonlyif R;CI. O

(7.8) Remarks. (a) Conditions (1) and (2) are independent of which
homogeneous system of parameters we consider. (This is true for condi-
tion (1) by (7.4d).) It may be convenient to use one homogeneous system
of parameters to test (1) and a different homogeneous system of parame-
ters to calculate a(R).

(b) The conclusion of (7.7a) is valid under a somewhat weaker hypoth-
esis than that the F; be test elements for tight closure. For example,
if for every ideal J generated by a homogeneous system of parameters,
FJ * C J. (There may well be an analogue of test element theory for tight
closures of parameter ideals. The advantage of restricting attention to
parameter ideals is that one expects an increased supply of test elements.)

(7.9) Discussion. Before proceeding further, we want to recall some
results on the existence of test elements from [HH3] and [HH9]. Let R
be a Noetherian ring of characteristic p. When R = F(R) C R is a
module-finite extension, one can define the notion of strong F-regularity
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for R. We will not give details here, but we want to recall:

(7.10) Theorem. Let R be a Noetherian ring of characteristic p such
that R’ C R is module-finite.

(a) If R is regular then R is strongly F-regular.

(b) If R is strongly F-regular then R and all of its localizations are
weakly F-regular, i.e., R is F-regular. Moreover, R is normal and Cohen-
Macaulay.

(c¢) If R is Gorenstein then R is weakly F-regular if and only if R is
strongly F-regular.

(d) If R is reduced and ¢ € R°® is an element such that R, is strongly
F-regular, then ¢ has a power that is a completely stable test element for
R. In particular, if R is reduced and c € R° is an element such that R,
is regular, then ¢ has a power that is a completely stable test element for
R.

Proof. We refer the reader to [HH3, pp. 127-132], especially Theorems
(3.1), (3.3), and (3.4), and to §5 of [HH9), especially Theorems (5.5), (5.9),
and (5.10), which contain these results. [

The following is part of Theorem (7.32) of [HH9]:

(7.11) Theorem. Let R be a reduced algebra of finite type over an ex-
cellent local ring of characteristic p. If c € R° is such that R . is F-regular
and Gorenstein (this is equivalent to weakly F-regular and Gorenstein) then
¢ has a power which is a completely stable test element for R. O

We are now ready to prove

(7.12) Theorem. Let R be a finitely generated N-graded Cohen-
Macaulay K-algebra with homogeneous maximal ideal m such that R, =
K . Suppose that every element of mNR° has a power that is a test element.
Let d =dimR and let X = Proj(R).

Consider the following conditions:

(1) There is an ideal generated by a homogeneous system of parameters
that is tightly closed.

(2) Every ideal generated by part of a homogeneous system of parameters
is tightly closed.

(3) R, is F-rational.

(4) a(R) < 0 and there is an ideal I generated by a homogeneous system
of parameters such that I = I .

(5) H? _I(X , Oy) =0 and there is an ideal I generated by a homoge-
neous system of parameters such that I = I .

(6) R is F-rational.

(7) R is weakly F-regular.
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Then conditions (1)-(4) and (6) are equivalent, and (5) is equivalent as
well if dimR > 2. What is more, (7) = (6) and, hence, (1)-(4) (and (5),
if dimR > 2).

If R is Gorenstein then (1)-(4), (6), and (7) are all equivalent, and (5)
as well if dimR > 2.

Proof. The equivalence of (1), (2), (3), and (6) was shown in §4 (as the
equivalence of (2), (3), (4), and (1) in Theorem (4.7), as strengthened in
the remark preceding Theorem (4.7)). Consider a homogeneous system of
parameters consisting of test elements (which exists, since every nonzero
element of mNR° has a power that is a test element). By (7.7c), the ideal
I generated by this system of parameters is tightly closed if and only if
a(R) <0 and I = I” . Since the condition J = J© holds for one ideal
generated by a system of parameters if and only if it holds for every such
ideal, it follows that (1) and (4) are also equivalent. The equivalence of
(4) and (5) when dim R > 2 follows from (7.4d). The fact that (7) = (6)
in general is obvious.

The statement for the case where R is Gorenstein follows because we
know from the equivalence of (1) and (6) in the Gorenstein case in Theo-
rem (4.6) that R is weakly F-regular if and only if R,, is weakly F-regular,
and, by Corollary (4.7a) of [HH9], a Gorenstein local ring is weakly F-
regular if and only if it is F-rational. O

The following is immediate:

(7.13) Corollary. Let R be a finitely generated N-graded Gorenstein
K-algebra with homogeneous maximal ideal m such that Ry = K. Let
d =dimR and let X = Proj(R). Assume that d > 2.

Then the following are equivalent:

(a) R is F-regular.

(b) The localization of R at any prime ideal except m is F-regular, there
exists an ideal I generated by a homogeneous system of parameters such
that I =1, and Hd'l(X , Oy) =0 (equivalently, a(R) <0).

Proof. The first hypothesis in (b) coupled with Theorem (7.11) yields
that every element of m N R° has a power that is a test element. We may
now apply the equivalence of (7) and (5) or (4) in the Gorenstein case
established in Theorem (7.12). O

As an illustration of the usefulness of this result we shall prove:

(7.14) Theorem. Let K be a field of characteristic p and let R denote
either (1) the homogeneous coordinate ring of a Grassmann variety or (2)
the ring obtained by adjoining the entries of a matrix of indeterminates to a
field K and then killing the ideal of size t minors for some fixed t. Then
R is F-regular.
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Proof. In case (2) enlarge the matrix to a square matrix of indetermi-
nates by using some additional rows (or columns, whichever are needed)
of indeterminates. Call the ring obtained by killing the size ¢ minors of
the large matrix S. We have an obvious map R — S, and killing the ad-
ditional indeterminates in S yields an obvious algebra retraction S — R.
Thus, R is a direct summand, as an R-module, of S'. Thus, it suffices to
prove the result for . Hence, we may assume that the matrix is square,
and we shall assume this from this point on.

Thus, in both cases, the ring is then known to be Gorenstein. (The ho-
mogeneous coordinate ring of a Grassmann variety is known to be Cohen-
Macaulay in all characteristics: cf. [Ho8, Lak, Mu], as well as the later
treatments in [DEP] and [BrV]. It is also known to be a UFD in all char-
acteristics: see [Sam], and therefore Gorenstein [Mur]. See also Corollary
1.9 on p. 124 of [HR1] and the surrounding discussion in §1.(e). Generic
determinantal varieties are known to be Cohen-Macaulay: see [HoE] or
[BrV], for example. They are also known to be Gorenstein when the ma-
trix is square: see, for example, Corollary (8.9) on p. 98 of [BrV]).) Since we
are in the Gorenstein case, F-regularity will follow from weak F-regularity.

In either case it suffices to prove the result when K is algebraically
closed, since, if K denotes an algebraic closure of K and K ®, R is
weakly F-regular then R is weakly F-regular. (If S is faithfully flat over
R and weakly F-regularsois R: for ICR, I" C (IS)'"NR=ISNR=1.)

In the case of the Grassmannian, the localization of the ring at any
prime ideal other than the homogeneous maximal ideal m is nonsingular.
In the case of the minors, if we localize at any entry of the matrix the
resulting ring can be rewritten as a localization of a polynomial ring over
the ring obtained by killing ¢ —1 size minors of a square matrix of smaller
size. Thus, in the second case we may assume by induction that every
localization at any prime ideal except the homogeneous maximal ideal m
is weakly F-regular.

To complete the proof it will suffice to see in both cases that these
rings satisfy a(R) < 0. There are many ways to deduce this, since a(R)
depends only on the Hilbert function, and explicit calculations can be
made. Instead, we argue as follows: since the Hilbert function does not
depend on the characteristic, for the purpose of computing a(R) we may
assume that the base field has characteristic zero (cf. (7.4c): one may take
the base ring 4 to be Z). In this case, both rings may be obtained as rings
of invariants of reductive algebraic groups acting on polynomial rings (cf.
[HoE, HR1, We}), and so have rational singularities by virtue of the main
result of [Bou]. But then, since there rings are N-graded, the main result
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of [W1] or [Fle] implies that a(R) is negative.

It remains to see that in each case there is a homogeneous system of pa-
rameters generating an ideal that is contracted with respect to Frobenius.
Here we follow a line taken in [FeW]: the key point is that if an-associated
graded ring of R with respect to a homogeneous ideal is Cohen-Macaulay
and has the required property, then so does R (roughly speaking, the prop-
erty of F-injectivity deforms: cf. the discussion of F-injectivity in [Fel},
or of F-contractedness in [Fe2]). Now each of the rings we are studying is
an ordinal Hodge algebra (or algebra with straightening law) with the fol-
lowing property: the associated discrete algebra T is a Cohen-Macaulay
ring obtained from a polynomial ring by killing square-free monomials.
Such a ring T is automatically F-pure, and by virtue of the sequences
of deformations one has that, in both cases, R also has the required
property. O

We next want to discuss two examples, both due to Watanabe [W2] and
[W3], of F-rational surfaces that are not weakly F-regular. The first is not
F-pure. The second is F-pure but is still not weakly F-regular.

(7.15) Example: an F-rational surface that is not F-pure. In [W2]
Watanabe discusses surfaces that have rational singularities but are not
F-pure. We want to examine a simple example, a quite special case of
a family of examples in [W2], and establish its properties using only the
techniques of this section. Throughout this example K denotes an alge-
braically closed field of positive prime characteristic p .

One of the results of [W2] implies that

R=K[t,xt*, x ', x+ ) ' F1C K(x, ¢)

is not F-pure if a, b, ¢ are positive integers such that 1/a+1/b+1/c< 1.
We want to discuss this ring when a = b = ¢ = 4. We want to see, using
the results of this section, that R = K¢, xt* , x~ 1 , (x + 1)"'14] is F-
rational but not F-pure.

Map the polynomial ring T = K[¢, u, v, w] onto R asa K-algebra by
sending the indeterminates ¢, u, v, w to ¢, xt* , x7 ' ,and (x+ 1)_lt4 .
respectively. Let P denote the prime ideal which is the kernel of this map.
It is easy to see that P contains the size 2 minors of the matrix

A u ow
v & v-wl|’

ie, f—uv, t4(v —w)—vw, and u(v-w)-— wt*. Let J denote the ideal
generated by these three minors. Since any two of the minors are relatively
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prime, this ideal has depth two and so J is a perfect determinantal ideal:
it has height (and depth) two and its minimal free resolution is the same as
though the entries of the matrix were indeterminates. It follows that R/J
is a Cohen-Macaulay ring of dimension two. It is not difficult to verify
that J = P. The details are left to the reader.

Notice that we can grade R by assigning the variables ¢, u, v, w de-
grees 1, 4, 4, 4 respectively.

If we invert u, v, or v—w we can eliminate one variable (v using the
first equation, u using the first equation, or # using the third equation,
respectively), and R localized is a localized hypersurface that is easily
checked to be nonsingular using the Jacobian criterion in each of the three
cases. Since (u,v,v —w)R = (u, v, w)R contains £ , it is primary to
the homogeneous maximal ideal of R. It follows that the Cohen-Macaulay
ring R has an isolated singularity at the origin and, so, is normal.

It is trivial to check that if R is a ring of characteristic p and I, C 1
are ideals of R such that I/l is contracted with respect to Frobenius in
R/I,, then I is contracted with respect to Frobeniusin R. Since R/tR =
K[u,v, w}/(uv, uw, vw) is a ring in which every ideal is contracted
with respect to Frobenius (since the ideal that we are killing is generated
by square-free monomials in the indeterminates: cf. [HR2, Proposition
5.38, p. 171}), every ideal of R that contains ¢ is contracted with respect
to Frobenius. Thus, if I is the ideal of R generated by the parameters
t,u+v+w, I=1F. Since

R/I=K[u,v, w)/(wv, uw,vw, u+v+w) = Klu, v]/(uz, uv, vz),

and there are no nonzero elements in degree > 5 =4+ 1 = deg(u + v +
w) + deg?, we see that a(R) < 0. Thus, R is F-rational by Proposition
(7.12). ,

To finish our discussion of this example, we shall show that in all cases
¢’ is in the Frobenius closure of (u, v)R, although it is clear from our
presentation of R that 7’ ¢ (u,v)R. What we want to show is that
when the characteristic is p, then ¢ € (&, v*)R. In fact, we shall show
something much stronger: in every characteristic (or even if we worked
over Z as a base ring), t'" € (1", v™)R for every positive integer n > 2.
(Calculations with the program Macaulay helped to convince us that this
was true.)

To prove this, we must show that t™ is a K-linear combination of
monomials *u**"v"w’ or ufv"*"w® where, in each term occurring,
a+4B+y+0+n)=7Tn and a, B,y € N. Thus, 4(f+y+3J) < 3n
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and a = 3n— 4(B + 7y + J). We recall our original description of R,
as K[t, xt*, x! & , (x + 1)_l 1*]. After taking out the factor of ™ that
occurs in every term, we see that an equivalent problem is to show that 1
is in the K-span of the elements in the set {x", x™"}-{x*x P (x + 1)
a+ B+ y < k} where k is the integer part of 3n/4, and 4-B denotes
{ab:a € A and b € B}. After multiplying all terms by (x + l)k , We see
that it suffices to show that (x + l)k is in the K-span V of the elements
of {x", x "} {x*Fx+ 1)\ 0+ B+y<k}.

Taking a= =0, y=k,k—1,---, 0 successively, and multiplying
each time by x~ ", we see that x™" € V, then that x " Vey, ... and
so forth, until we obtain that x ™0 c V. Thentaking f=7=0, a=

, k , and multiplying each time by x™", we find successively that
_(" e l) coo ,x%" arein V. Inpartlcular, 1,x,- ,x*"evV.

On the other hand, taking a =g =0, y =k, k—1, --- , 0 successively,
and multiplying each time by x", we find that x",--- , "l ey,
Taking a =y =0, B =1,2,---, k successively, and multiplying each
time by x" , we find that x"! y e, "kev. Thus, so long as 2k—n >
n—k—1,ie.,solongas (#) 3k >2n— 1, we see that all of the powers
of x from 1 to x"™*! arein ¥, and so (x + l)k isin V. Since
k > 3n/4 - 3/4, we see at once that the required inequality (#) holds
provided that n > 5. However, if n =2,3,0r4 (sothat k=1,2, or
3, respectively) the required inequality (#) also holds. This completes the
proof that (x+1)¥ € ¥ in all cases when n > 2, so that (/)" € (u", v")R
for all n > 2, and also completes the proof that R is not F-pure. O

(7.16) An F-rational, F-pure surface that is not weakly F-regular. In
[W3] Watanabe gives an example of an F-rational, F-pure ring that is not
F-regular. We want to explore the nature of this example without using
the machinery of [W3]. Let S = K[X, Y, Z}/(F) where K is an al-
gebraically closed (for simplicity) field of characteristic p with p = 1
modulo 3,and F = X" — 3 YZ(Y+ Z). Let @ be a primitive cube root of
unityin K. Let G={l, 0, @ } act K-linearly on S so as to send the
images x,y,z of X,Y,Z to x,wy,wz. Let R = S betheﬁxed
ring of this actlon, Wthh is generated over K by x, y y z, and 2
(note that yz =x -y z).

We first observe that S is F-pure. Because of the grading, it suf-
fices to check this at the origin, and because the ring is Gorenstein it
suffices to check that (y, z)S is contracted with respect to Frobenius,
ie. that (x*)’ is not in (y°, z°)S. Butif p = 3k + 1 then x¥ =

(x )ka2 y2k 2k(y + z)2kx2 , and since 1, x, x2 is a free basis for S
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over B = K[y, z] it follows that this element is in (3, z”)S if and only
it y*z*@y +2)* isin (0, 2°)B = (v**', 2**')B. The key point is

that the “center” term (z,f) ykzk in the expansion of (y + z)2k yields a

nonzero monomial term (%) z** that is not in (x**!, y**)B.

On the other hand, by repeating this calculation with ¢ = p® replacing
p, we see that y(x%)? (or z(x*)?) isin (¥7, z%)S forall ¢ = p° > p,
andso x* € ((y, 2)S)".

Because R — S splits over R and S is F-pure, R is F-pure.

It is easy to check that S has an isolated singularity at the origin, and so
is normal, and it follows that R is normal with an isolated singularity at
the origin as well. Therefore, every homogeneous element of R of positive
degree has a power that is a test element. It follows from Proposition
(7.12) that R will be F-rational provided that a(R) < 0. Since R is
F-pure, it is clear that a(R) < 0. Since y3 , 2 isa system of parameters
for R, it will suffice to see that no nonzero elements of degree 6 = 3 + 3
survive in R/ (y3 R z3) . But in degree 3h, where k is an integer, every
element of R can be expressed as polynomial over k in degree 3 elements
of K[y, z] and powers of x that must have degree divisible by 3. The
defining relation of S can be used to rewrite these powers of x in terms
of y, z. Thus, the degree 6 part of R is spanned by the monomials y'z’
where i+ j = 6, and these are all in (y3 , z3)R.

On the other hand, since x? isin the tight closure of (y, 2)S, it follows
that y3z3x2 is in the tight closure of (y“z3 , y3 z4)S in S, and hence in
the tight closure of the larger ideal (y4z2 , y2 z")S . But then y3 22x% isin
the tight closure of (y4z2 , y224)R in R: since § is module-finite over
R we may apply Corollary 5.23. But y323x2 is not in (y"z2 , y224)R
(nor in its expansion to §: we have that 1, x, x? is a free basis for S
over B = K[y, z] and y3z3 ¢ (y422, y224)B). Thus, R is not weakly
F-regular, although it is F-rational and F-pure. O

8. Integral closures of ideals and test elements

In this section we discuss again the theory of integral closures of ideals
from the point of view of §5 of [HH4], where a new proof (in characteris-
tic p) of the Briancon-Skoda theorem, in a generalized form, was given.
(The equal characteristic 0 case will be treated in [HH10].) In particular,
we obtain a new generalization of the Briangon-Skoda theorem for Cohen-
Macaulay rings with isolated singularities. (See Theorem (8.10) and the
discussion in (8.12).) Our results depend heavily on the theory of test ele-
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ments developed in §6 of [HH4] and pushed much further in §6 of [HH9].
In consequence, we shall need to impose some restrictions on the rings
to guarantee the existence of sufficiently many test elements. A number
of results depend on the size of the test ideal 7(R) (or a modification of
it, 7,,.(R), discussed in (8.7)). We conclude this section with a theorem,
based on a result of Lipman and Sathaye [LS] and the theory of §6 of
[HH4], that allows one to calculate easily a large number of elements of
R that are in 7(R).

We also prove a theorem of Itoh and Huneke using tight closure tech-
niques (cf. [It1, It2, Hul]). To wit, we show that if the local rings of
a Noetherian ring R have equidimensional completions and I is a pa-
rameter ideal of R then I"n (I"*")™ = (I")(I") for all n > 1, where
J~ denotes the integral closure of the ideal J. Moreover, we obtain an
analogue of the above statement with integral closure replaced by tight
closure.

In [Hu3] a “uniform” Briancon-Skoda theorem (Theorem 4.13) is ob-
tained for a large class of rings (not necessarily of characteristic p). Sev-
eral of the results we obtain here are closely related: they show that in
proving results concerning when (I**%*T)™ c I* for all k (where d is
the dimension of the ring and 7 is independent of I) the size of T can
be bounded from data about the test ideal.

Other related results may be found in [Sw1] and [Sw2].

We begin by recalling a version of the Briangon-Skoda theorem (Theo-
rem (5.4)) proved in §5 of [HH4], with some improvement:

(8.1) Theorem (generalized Briangon-Skoda theorem). Let R be a
Noetherian ring of characteristic p, and let I be an ideal of R generated
by d elements. Then for all k € N, (I°™%)™ c (I*)".

Proof. If I has positive height this is precisely the result of Theorem
(5.4) of [HH1). In the general case, suppose that x € (Id+k }~ . To show
that x € (I*)*, it suffices to verify this modulo every minimal prime ,
of R, by Proposition (6.25a) of [HH4]. When we pass to R/, , the
hypothesis that x is in the integral closure of Id+k(R/ ) is preserved.
Thus, we are in the domain case, where I is either (0) (in which case the
result is trivial) or has positive height. O

(8.2) Discussion. Let I be an ideal of a Noetherian ring R (not nec-
essarily of characteristic p). Let S = gr; R so that §; = I’/I’+1 . We
observe that the following two conditions are equivalent:

(1) I'*:I' =T forall 5s,t€N.

(2) The ideal S, = €7, S; has positive depth (i.e., contains a nonze-
rodivisor) in S.
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To see this, first assume (2). Evidently, r.ror. fue
I’ :I' - I’ choose h € N so that u € I" — I"*' | and note that & < s.
Then if # # 0 is the image of u in S, we see that u(S,)=0 in S, and
S, generates (S, ) in S, so that @ kills a power of S, in S. It follows

that depth S, = 0 a contradiction.

On the other hand, if depth S, = 0 we can choose a nonzero form % of
degree h which kills it, where u € I" — I"*! | But then u(S,) = 0 implies
that ul C I"*?, and so u € I"*? : I which is contained in I**! if (1)
holds. Thus, (1) = (2) holds as well.

The equivalent conditions (1) and (2) hold, in particular, whenever I
is generated locally by a regular sequence or when gr,R is a domain and
I#1%.

(8.3) Discussion. Let R be a Noetherian ring of positive characteris-
tic p. Recall that 7(R) denotes the ideal ,, Anng(0,,), where M runs
through (representatives of the isomorphism classes of) all finitely gener-
ated R-modules. The ring R has a test element if and only if 7(R) meets
R®, in which case 7(R) is the ideal generated by the test elements of R.
See Definition (8.22) and Proposition (8.23) of [HH4].

We can now prove:

(8.4) Theorem. Let R be a Noetherian ring of characteristic p and
let I be an ideal of R generated by at most d elements such that the
equivalent conditions (1) and (2) of (8.2) hold.

Suppose that t is a nonnegative integer such that I' C ©(R). Then for
all k>0, (I~ c r*.

Proof. (I“*"**)~ ¢ (I**")* by Theorem (8.1), and since It C 7(R) we
have that I'(I*"**)™ ¢ [**' and (I"*"*%)~ c (I**") ., I'=1%. O

(8.5) Remark. The conclusion of (8.4) is evidently vahd (w1th the same
proof) if one replaces T(R) by a (possibly larger) ideal J of R with the
property that J((I")*)C I" forall neN.

In the sequel we shall study the situation where one has a local ring
with an m-primary ideal of test elements. We first want to note several
situations where this occurs.

(8.6) Proposition. Let (R, m, K) be a reduced Noetherian local ring.
Then t(R) is m-primary in each of the following situations:

(@) R is excellent, and for all primes P # m, R, is F-regular and
Gorenstein.

(b) R is excellent, with an isolated singularity.

(¢) F: R — R is module-finite, and for all primes P # m, R, is
strongly F-regular.
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Proof. Part (b) follows from part (a), while (a) and (c) are immediate
from [HH9, Corollary (7.34); HH9, Theorem (5.10)], respectively. [0

(8.7) Definition. Let R be an equidimensional local ring of charac-
teristic p. We define 7,,(R) to be ,(I :x 1 *), where I runs through
all ideals generated by a system of parameters Roughly speaking, the el-
ements in 7, (R) that are in R° are test elements for parameter tight
closure. We are mainly interested here in the case where R is Cohen-
Macaulay.

(8.8) Theorem. Let (R, m, K) be an excellent equidimensional local
ring of characteristic p .

(a) If c € R, then c € 7,,(R) if and only if for every ideal I generated
by part (or all) of a system of parameters forall x € R wehavethat x € I'"
implies ¢x® € ' for all q = p°.

(b) If R is Cohen-Macaulay, x,, --- , X, is a system of parameters, and
IL=(xj,-,x3)R, then Toar(R) =N, 1, g I

()IfR is Cohen-Macaulay and I is any ideal generated by monomials
in a system of parameters, then tpar(R)(I ) C I. Moreover, if R is Cohen-
Macaulay, c € 7, (R), I isan ideal generated by monomials in a system

of parameters and z € I', then ¢z € I'! forall q = p°.

Proof. (a) The “if” part is immediate: the condition applies for ¢ =0
when I is generated by a full system of parameters, and then asserts, in
particular, that ¢I* C I. Now suppose that ¢J* C J whenever J is gen-
erated by a full system of parameters, and that 7 = (x,, --- , Xx;)R is gen-
erated by part of a system of parameters. Let x,, --- , x,; be a full system
of parameters. It suffices to show that if z € I" then cz? € (x7, -, xj)
for all ¢ . But the hypothesis implies that z? € (x, --- , x/)" and hence
to (xf,---,xf, x,ﬁl e, x},v)* for all positive integers N. But then
cz? isin (x],---, x7, x,ﬁl TR xﬁ' ) for all positive integers N (this
ideal is generated by a full system of parameters) and if we intersect these
ideals for fixed ¢ as N varies we obtain that cz? € (xf o XR).

(b) It is clear that 7, (R) is contained in (), I, :5 I, . Now suppose that
¢ is in the intersection of the I, : I and let J be any ideal generated
by a system of parameters. The highest local cohomology module of R
with support in the maximal ideal may be represented as an increasing
union of submodules of the form R/I,, and a similar construction may
be performed with J replacing 7. Thus, for all ¢ > O, there is an
injection R/J — R/I,. Then J*/J (the tight closure of 0 in R/J) is
contained in I: /1, (the tight closure of 0 in R/I,) for large ¢, and so
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I g I] = Anng(I7 /1) C Anng(J*/J) = J :p J* for t > 0. It follows
that ¢J* C J, as required.

(c) The second assertion follows from the first, because every I'9 is
generated by monomials in a system of parameters. Thus, it suffices to
prove the first assertion.

Let Q be any ideal generated by monomials in a system of parameters.
Since R is C-M local, a system of parameters is a permutable R-sequence,
and so the results of [EH] imply that we may write Q as a finite intersec-
tion @, N---N Q, where every Q is generated by powers of the elements
in a certain subset of the parameters Thus, every Q is generated by part
of a system of parameters. Now suppose that z € Q*. Then z is in every
Q and so cz is in every Q and, hence,in Q. 0O

(8 9) Remarks. (a) It is des1rable to define T,ar(R) whether R is local
or not and whether R is equidimensional or not One natural candidate
is to take the intersection of all the ideals I : R I" where I is an ideal
generated by /1 elements for some integer 4 and such that mnht7 = 4.
The reader is referred to [Sm] and [Vel] where the ideal of test elements
for parameter tight closure and other related ideas are explored in greater
detail.

(b) Let J be any ideal of R that is an intersection (possibly infinite)
of ideals generated by subsets of a system of parameters. The argument
in the proof of (8.7¢c) shows that if c € 1 par(R) then c¢J* C J. Thus, it is
natural to ask which ideals of R are mtersectlons of ideals generated by
subsets of systems of parameters. The issue is considered in [Gla].

(8.10) Theorem. Let (R, m, K) be a Cohen-Macaulay local ring of
dimension d such that t(R) is m-primary (or such that Tpar(R) is m-
primary). Assume either that K is infinite or that R is excellent

If I C m isan ideal and t € N is such that I' C ©(R) (or Tpar(R)),
then (It"*%)~ c I* for all k>0.

In particular, if m" T,u:(R) then for every ideal I of R, (I°*T**)~ ¢
I* forall k>0.

Proof. Since 1(R)C 1 par(R) , it suffices to work with Tpar(R) . Suppose
we have shown the theorem when I is m-primary. Choose h so large that
m" ¢ rpar(R) Then (I***%)™ C N2, (T+m™* )~ c 2, (T+m")* €
ﬂn=h(I +m") = It , where the second inclusion is obtained by applying
the result for m-primary ideals to I + m" . Thus, we may assume that |
is m-primary.

We next explain how to complete the argument when K is infinite.
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In this case I is integral over an ideal I, C I generated by a system
of parameters for R (cf. [NR]), a so-called minimal reduction of I. It
suffices to prove the result for I, since (I**'*%)~ = I3+~ ¢ cr
(note that since I’ C Tpar(R) , We also have that Ié C 7, (R)).

Thus, we may assume without loss of generality that I is generated by
a system of parameters for R. Since R is Cohen-Macaulay, the system
of parameters is an R-sequence and we may apply Theorem (8.4).

If K is finite and R is excellent we modify the argument as
follows: replace R by R(z), where z is an indeterminate (this is the
localization of R[z] at mR[z]). We may calculate Tar(R(2)) as
N, JR(z) : R(z) (J.R(z))", where J, is generated by the sth powers of a
fixed system of parameters for R. By Theorem (7.16a) of [HH9] applied
with § = R(z), we have that (J,R(z))" = (J))R(z), so that Toar(R(2)) =
Ns(J; :g J;)R(2). Since R/J, embeds in R/J,,, , the sequence J_ :, J
is a decreasing sequence of ideals. Since the intersection tw(R) is m-
primary, it follows from the fact that R/Tpar(R) has DCC that the se-
quence J :, Js' is eventually constant, and the constant value must
be 7, (R). But this shows that Toar(R(2)) = (Tpar(R))R(2z) . We may
therefore apply the result for R(z) (which has an infinite residue field)
to conclude that ((IR(2))**"**)~ C (IR(z))* = I*R(z). It follows that
I8~ c I'RGz)nR=1". O

(8.11) Remark. Instead of assuming that R is Cohen-Macaulay, we
may assume that for every ideal I generated by a system of parameters,
the ideal generated by /1 2 in gr; R has positive depth. The result is then
valid for 7(R), but T ar(R) should be replaced by NI :I" for all powers
I of ideals generated by systems of parameters.

(8.12) The case of an isolated excellent Cohen-Macaulay singularity.
Theorem (8.10) applies to the case of an excellent Cohen-Macaulay ring
(R, m, K) of dimension g with an isolated singularity: we then know
that 7(R) is m-primary. Theorem (8.10) shows that there is a positive in-
teger T independent of I such that for all ideals I of R, (I**7T)~ c [*
for every integer k € N. Theorem (4.13) of [Hu3] is quite similar and in
many ways more general, but does not offer explicit control of T .

We note that D. Rees has shown [Re] that if R is analytically unramified
then there is a positive integer T depending on I such that (I**+7)~ ¢
I* forall keN.

Observe that when I C m’ , Theorem (8.10) shows that (I‘”Hk)— c1rI k
for all k € N, so that for ideals “deep” enough inside R we have a
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statement that is only a slight weakening of the original Briangon-Skoda
theorem.

Finally, we also note that Theorem (8.10) gives very explicit bounds
if we can compute 7(R), Tpa:(R) , or any sufficiently large ideal inside
7. (R). A method of showing that elements of R are in 7(R) is given in
Theorem (8.23).

The next result, while quite easy, is suffi¢iently useful to be worth record-
ing. Recall that the Frobenius closure N F of N in M consists of all
elements # € M such that ¢ € N'¥ for some ¢ =p°.

(8.13) Proposition. Let R be a Noetherian ring such that T(R) contains
a power of an ideal 1. Let N C M be finitely generated R-modules and
N*=N;,, N' =N,

(a) Then N* /NF is killed by I. (Note that if I is maximal so that
R/I =K, a field, then it is a K-vector space.)

(b) If, moreover, R is F-pure, then t(R) is radical and so contains I,
and N*|N is killed by I.

Proof (a)Let ue N* and c € I. Then ¢? € ©(R) for some choice of
g, and so cu? € N9 (for ue N* = u? € (N¥!) forall q). But then
cue NF , as required.

(b) Under the additional hypothesis of F-purity we have that N =N
for every N C M, and so every N°/N is killed by I. This shows also
that 7(R) 2 I, and we may choose I to be the radical of 7(R). O

(8.14) Corollary. Let (R, m,K) be Cohen-Macaulay with an m-
primary test ideal such that K is infinite or R is excellent.

Suppose either that R is F-pure, that T(R) 2 m, or even that 7, (R) 2
m.
Then (I°*™**)~ c I* forall ICR andall ke N.

Proof. By (8.13) F-purity guarantees that 7(R) 2 m, and we may then
apply Theorem (8.10) with T'=1. O

We note that a special case of (8.14) was done in (4.9) of [Hul].

(8.15) Theorem. Let (R, m, K) be a Cohen-Macaulay local ring with
dimR = d, let J = t,(R) be m-primary, let h = I(R/J), where |

denotes length, and let 0 be the type of R. Let I = (x;,--- , x;)R be
an ideal generated by a system of parameters for R. If t € N, let I, =
f e X I t=(ty, -, 1) € (@Y (where Z" = N—{0}), let
I, = (x:I s, x:f ). If te N? let x* denote the product x;‘ ---x;" . Note

that if s, te (Z*)d with t > s (iie, t—s € Nd) then multiplication by
x*™* induces an injection of R/I, into R/I, that takes I, into I; .
(a) I(I"/T) < Oh.
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(b) There exists s € N such that Jor all w > t > s multiplication by
x""* induces an isomorphism of I} [I, with I} /I, .

Proof. (a) I"/I is contained in R/I, which has a socle of dimension
(as a K-vector space) 6, and is killed by J so that it may be viewed as
an R/J-module. It embeds in its injective hull E as an (R/J)-module,
which will be the direct sum of at most & copies of the injective hull E,
of K over R/J. Thus, I(I"/I) < I(E]) = 61(E,) = 01(R/J) = 6h.

(b) Multiplication by x"~* embeds I;/I, in I'/I, when u>t. Hence,
I(I7/1,) is a nondecreasing function of t € (Z+)d bounded by 6h. It
follows that it is eventually constant for all t > s for some s € (Z+)d ,
and hence that the injections I;'/I, — I, /I, are isomorphisms for u > t
>s. 0O

We next give a tight closure proof of a theorem of Itoh and, indepen-
dently, Huneke (cf. [It1], [I1t2], [Hul]). We note that Itoh’s proof gives the
result even in mixed characteristic.

(8.16) Theorem. Let R be a Noetherian ring of characteristic p such
that the completion of R at every maximal ideal is equidimensional. Let
I be an ideal of R such that for every prime P of R with PC I, IR, is
generated by part of a system of parameters. Then for every n € N,

rond™hY - =ra).

Note that the left-hand side obviously contains the right-hand side. If
the other inclusion fails, this is preserved upon localization at a suitable
maximal ideal. Thus, there is no loss of generality in assuming that 7 is
generated by elements x,, --- , x; € R whose images in R, form part of
a system of parameters for every prime ideal P of R containing I. The
following result is then sharper.

(8.17) Theorem. Let R be a Noetherian ring of characteristic p such
that the completion of R at every maximal ideal is equidimensional. Let
Xy, ,x,; beelementsof R, let I = (x,, --- , x;)R, and suppose that the
images of the x; form part of a system of parameters in R, for every prime
ideal P containing I. Let F be a homogeneous polynomial of degree n
in d variables with coefficients in R. Then if F(x,,--- , x;) € ah-,
every coefficient of F isin I .

Hence, I"n(I"*"y™ = (I"I".

Proof. Since every element of I" can be represented as F(x,, -+ , X;)
for some choice of homogeneous polynomial F of degree n, the final
statement (hence, also, (8.16)) is immediate from the statement of the
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first paragraph. If the result fails we can choose a monomial x of de-
gree n such that its coefficient ry in F isnotin I~ . We may replace
R by its localization at a suitable maximal ideal without affecting the
situation, and by Lemma (8.18) below we may replace R by its comple-
tion (the image of Ty will still not be in " ). Thus, we may assume
that the ring is complete local and equidimensional, and that x,, --- , X,
is part of a system of parameters. Let J be the ideal of R generated
by all of the monomials in the x’s of degree n other than x. Since
y=F(x;, - ,x;) € (I"“)_ , there exists a positive integer /4 such that
"™+ Ry = (YN (" £ Ry)"! for all N. (See, for example,
condition (#) in (5.1) of [HHA4].) In particular, y"*" e (I"*")™*' for all
h. Choose ¢, e.g., a monomial of degree at least (n+1)(h—1) in the x’s,
such that ¢ € R® and ¢ € (I"*")*V | Then cy**V € (I"*")**" forall N,
and it follows in particular that if ¢ is any power of p with ¢ > & then
cy? € IV Now, y is the sum of r,u and an element of J, so that

eyl —criufed 9} 1t follows that forall ¢ > &, crip’ €I (n+Da . ylal and

S0 cri € (1™ 4 ¥y . u? for all ¢ > h. By Theorem (7.9) of [HH4]
the colon ideal on the right is contained in the tight closure of the “formal
colon ideal” (calculated as though the x; were a regular sequence). In the
formal calculation, colon distributes over sum. Moreover, in the formal
case 1"V . 4% isin I7 (since u? has degree ng) and J9 : y? isin
"', Thus, cri € (I)" forall ¢ > h,and (IY)" c (I*)". If r, is notin
I™ there is a discrete valuation v of R infinite only on a minimal prime
of R such that v(r,) < min{v(«) : u € I}. But then v(c) + qu(r,) 2
min{v(u) : u € (I)"} > min{v(u) : u € I’} = ¢- min{v(u) : u € I}, for
all ¢ > h. Dividing by ¢ and taking the limit as ¢ — co we obtain a
contradiction. 0O

(8.18) Lemma. Let R C S be such that ideals of R are contracted from
S (which holds if R — S is faithfully flat or pure). Let I be an ideal of
R. Then (IS) NR=1.

Proof. Itis clear that (IS)" NR2I . Butif y€ R andisin (IS)
then for some k € Z*, yk e IS(IS +yS)k—l =I(I +yR)k_IS, and the
contraction of the latter ideal to R will be I(J + yR)k_l , which shows
that yeI' . 0O

(8.19) Remark. The conclusion of Theorem (8.17) is valid whenever
X, , X, are elements of R such that the colon of two monomial ideals
in the x’s is contained in the tight closure of the “formal colon ideal” (i.e.,
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the ideal generated by those monomials in the x’s which are in the colon
when the x’s are replaced by indeterminates), or if this can be shown
to be true after completion. E.g., we may drop the equidimensionality
condition on R if we assume instead that the x; are part of a system
of parameters modulo every minimal prime of the completion of R at
a maximal ideal containing 7. If R is universally catenary, it suffices if
mnht(x,, .-+, x,)R>d.

We next prove an analogue of (8.16) for tight closure.

(8.20) Theorem. Let R be a Noetherian ring of characteristic p, let
I = (x, - ,x;)R, and suppose that at least one of the following two
conditions holds:

(a) R has a completely stable weak test element, and for every maximal
ideal P of R with P D I, the completion of R at P is equidimensional
and the images of x,, --- , x; in R, are part of a system of parameters.

(b) R has a weak test element, and the x’s satisfy the condition that the
colon of two monomial ideals in the x’s is contained in the tight closure of
the formal colon ideal.

Then I" 0 (I"YY* = I"(I").

Moreover, if F is a homogeneous polynomial of degree n in d variables
such that F(x) e (I"*')" then all coefficients of F arein I".

Proof. First note that it suffices to prove the final statement. Second,
in case (a) if one has a counterexample one can preserve that a certain co-
efficient of F is outside I* while localizing R at a suitable maximal ideal
and completing (because R has a completely stable weak test element), and
then the hypothesis of (b) holds. Thus, we assume the condition in (b) and
suppose that y = F(x) e (I "“)" but that the coefficient Ty of the mono-
mial g isnotin I”. Let J be the ideal generated by the monomials other
than u of degree n in the x’s. Then r, u € "Y' +7c (" +J)*, and
so for some ¢ € R° we have that crju’ € (I 4 el = (gl gla
for all ¢ > 0, which yields that crz e ("l 4 jlaly . 49 Formally,
this is 7' and so the right-hand side is contained in (I'?)*. This is
sufficient for r, to be in I" by Lemma (8.16) of [HH4]. O

(8.21) Remark. The requirement of a weak test element in the hypothe-
sis for Theorem (8.20b) can be weakened: it suffices if there is an element
d € R° and a fixed power of p, say ¢, such that for any two ideals
A, B of R generated by monomials in the x’s, if € denotes the corre-

sponding formal colon ideal then c(2 :, ‘B)m C ¢l Note that then
e i %)[“] = c((A i ;B)lql)[ql c c(le o %[q])[ql c (Q:[ql)lql = ¢le?],
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since ¢ is the formal colon ideal for 29!, 81! One may apply the ar-
gument in the proof of Lemma (8.16) of [HH4] without change. Roughly
speaking, one only needs weak test elements for the kind of tight closure
arising taking colons of ideals generated by monomials in parameters. The-
orem (7.9) of [HH4] implies the existence of such a weak test element when
the x’s are permutable parameters in a locally equidimensional homomor-
phic image of a Cohen-Macaulay ring.

(8.22) Discussion. We conclude this section with a theorem that com-
bines a result of Lipman and Sathaye [LS] with the theory of test elements
developed in §§6 and 8 of [HH4] to give an easy method for getting spe-
cific information about what is in 7(R). We recall that if A is Noetherian
domain with fraction field L and R is a module-finite extension ring of
A, then R is generically smooth over A if L ® R is a finite product of
finite separable field extensions of L.

We shall suppose for simplicity that R is a domain containing 4,
module-finite over A, and generically smooth over 4. The Jacobian ideal
Jria & R may then be defined as the Oth Fitting ideal for the module of
differentials Qg e We may calculate Jg /4 by choosing a presentation
R=T/I,where T = A[z,,--- , z,] is a polynomial ring over A. Then
/4 is the ideal of R generated by the images (under T — R) of the
Jacobian determinants 8(f], - , f,)/8(z,, - ,2,) €T as f, -, f,
range through all choices of n-tuples of elements of I. If one chooses a
specific finite set of generators of I, it suffices to let the f’s be taken from
among the n element subsets of these generators. The final result of this
section is

(8.23) Theorem. Let R be a domain module-finite and generically
smooth over a regular Noetherian domain A of characteristic p. Then
Ir, 4NA C t(R). In fact, every nonzero element of 35 / N A is a completely
stable test element for R.

Proof. By Theorem (6.13) of [HH4] generalized to the case of test
elements for modules (see the discussion following Theorem (8.14) of
[HH4]), an element ¢ of 4° will be a completely stable test element
for R provided that cR® C A™[R], where R™ denotes U, RY4 (the
ring obtained from R by adjoining all gth roots of elements of R for
all ¢ = p°). Thus, it suffices to show that J R4 multiplies R> into

A®[R], and so it suffices to show that for all ¢ = ., 3 R/A multiplies
R4 into AY9[R], which by Lemma (6.4) of [HH4] may be identified
with 47 @ 4 R. Since the fraction field of R is separable over the
fraction field of 4, we know that R'% has the same fraction field as
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41 g 4R = AY 9IR], and so is contained in the normalization S of
S =A4"¢g 4 R. Thus, it suffices to show that J , multiplies S into

S. Let B = A7, which is still regular and, hence, normal. If we write
R = A[z])/1, where z =z,,--- , z,, then § = B[z]/IB[z], and so 33/3
is simply J. / S . Thus, it will suffice to show that 35/ p is contained in
the conductor of S into .S. But this is immediate from Theorem 2,
p. 200, of [LS] (it suffices to note that, in the notation of [LS], 1 €
S:7). 0O

(8.24) Remarks and an example. In trying to prove that 7(R) is large
we are free to represent R as a finitely generated module over a regular ring
A in many ways. Note that in looking for a multiple in 4° of an element
r€Jpa— {0} we may always use the field norm of r (the characteristic
polynomial of multiplication by r may be used to see that the field norm
is a multiple of r (cf. (6.6) of [HH4])), but this is often inefficient.

For example, suppose that R = K[z, --- , z,1/(f) (or K[[z]1/(f))
where K is a field of characteristic p and f = zg" +---+ z:" where every
a; is a positive integer not divisible by p. By viewing R as module-
finite over the ring 4; obtained by adjoining all the z’s except z; to K
and using the obvious presentation, we see that z:."' -t (a; is a unit) is in
Jgr/4, - This element is not in 4;, but z{' isin 4,, and so we see that
7(R) 2 (zg" N z:")R.

In general, this inequality is strict. For suppose that d > 2 and we let
all the a; be d + 1. Suppose that p is a prime that is congruent to 1
modulo d + 1. Then R is F-pure by Proposition (5.21c) on p. 157 of
[HR2]. It follows from (8.13) that ©(R) 2 (z,,--- , z;)R = m. Since
m is a maximal ideal, and since R is not weakly F-regular (e.g., in the
graded case a(R) = 0, which shows the failure of weak F-regularity for
the localization at m and for the completion as well) we must have that
7(R) = m here. Notice that Corollary (8.14) then applies.
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